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Purely imaginary eigenvalues of Zakharov-Shabat systems
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~Received 9 August 2001; published 11 February 2002!

Zakharov-Shabat systems with single-hump and real, but not necessarily symmetric, potentials are shown to
have purely imaginary eigenvalues only. Coupled with examples of double-hump potentials with nonimaginary
eigenvalues, this establishes that confinement of Zakharov-Shabat eigenvalues to the imaginary axis is a
characteristic of potentials whose energy is concentrated in a single region of the time axis.
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I. INTRODUCTION

Zakharov-Shabat~ZS! systems are sets of coupled sca
first-order differential equations of the form@1,2#

n1852 i jn11q~ t !n2 , n285 i jn22q~ t !* n1 , ~1!

wherej is a complex eigenvalue parameter and the aste
denotes the complex conjugate. In Eq.~1! the potentialq(t)
is, in general, a complex valued function of the real varia
t. An eigenvalue~EV! of Eq. ~1! is a complex numberj, with
Im(j).0, for which Eq.~1! has a nontrivial solution vector

nW ~ t !5S n1~ t !
n2~ t ! D

of integrable square on the real line, i.e.,*2`
` @ un1(t)u2

1un2(t)u2#dt,`.
To motivate ZS systems, they have their origin in t

inverse scattering transform~IST! theory associated with th
nonlinear Schro¨dinger equation~NLSE!, which we may
write in the form@1,2#

iuz1~1/2!utt1uuu2u50, u5u~z,t !. ~2!

In nonlinear fiber optics,u(z,t) in Eq. ~2! represents the
slowly varying field of a pulse propagating in a lossless o
tical fiber under conditions of anomalous group velocity d
persion and non-negligible fiber nonlinearities@3#. Herez is
a normalized propagation length andt is local pulse time.
The connection with Eq.~1! is that the NLSE~2! can theo-
retically be solved, although in intractable form, by setti
q(t)5u(0,t) in Eq. ~1! and solving foru(z,t) by the IST
procedure associated with Eq.~1! @1,2#. As for the variablez,
it is a central result in the method that the EVs and ot
spectral quantities evolve in a specific and known way
functions ofz @1,2#. In particular, the EVs are independent
z. This leads to a complicated analytical formula foru(z,t)
in terms of the EVsjk (k51,2,3, . . . ) of Eq.~1! and addi-
tional scattering quantities including the reflection coe
cients and norming constants@1,2#. ZS systems~1! are often
written with a potentialu(z,t) instead ofq(t). Since we are
interested only in EVs, which are independent ofz, we sup-
press thez dependence.

We note that Eq.~1! is a non-self-adjoint EV problem an
that Eq.~2! is known as the focusing version of the NLS
The corresponding self-adjoint problem has a plus sign
1063-651X/2002/65~3!/036607~5!/$20.00 65 0366
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fore the termq(t)* in Eq. ~1!, a minus sign before the
(1/2)utt term in Eq. ~2!, and is called the nonfocusing o
defocusing case.

For physically realistic pulse profilesq(t) there are a fi-
nite number of EVsjk , which correspond to optical soliton
solutions of Eq.~2!. The real and imaginary parts of thejk
are linked with relative soliton velocities and amplitude
respectively@2#. Generically, but not always, the EVs lie o
the positive imaginary axis; i.e.,jk5 isk , sk.0. This prop-
erty is physically significant because a pair of solutions w
identical real parts travel with the same velocity and c
combine to form a higher-order periodic soliton~periodic in
the z variable! @2#. For the standard real valued symmetr
pulse shapesq(t), including hyperbolic secants, Gaussian
and rectangles, all the EVs are on the positive imaginary a
@4–12#.

In fact, an interesting ‘‘folklore’’ property seems to hav
arisen in the literature over the last 25 years, namely,
only purely imaginary EVs can occur for symmetric real va
ued potentialsq(t). This property has been claimed expli
itly several times@6,7,13# ~and in Ref.@14# for merely real
potentials!. However, in a recent paper@12# the present au-
thors provided examples of symmetric, real valued potent
with nonimaginary EVs. The examples in Ref.@12# were
symmetric piecewise constant functions consisting of two
more ‘‘humps,’’ or lobes, or regions of focus of pulse ener
~area under the curve ofuq(t)u2!. The standard potential
~hyperbolic secant, Gaussian, etc.!, together with the double-
lobe examples, suggest that the confinement of EVs to
imaginary axis may be connected with the extent to wh
pulse energy is concentrated in some region of thet axis. In
the next section we derive precisely this result: single-lo
real potentials have purely imaginary EVs only. Symmetry
q(t) is not a factor. For completeness we cite another
ample of a two-lobe potential with EVs off the imagina
axis; this example is piecewise quadratic. The single-lo
theorem and the double-lobe examples, which are the m
contributions of this paper, close a loop in the somew
ambiguous history of this subject.

We derive the single-lobe result in Sec. III, followin
some preliminaries in Sec. II. We will assume thatq(t) in
Eq. ~1! is non-negative, bounded, piecewise smooth and
tegrable on the real line@qPL1(2`,`)#, but the key con-
dition is simply thatq(t) be nondecreasing on the left oft
50 and nonincreasing on the right~thus motivating the term
‘‘single lobe’’ potential!. Since Eq.~1! is invariant under
©2002 The American Physical Society07-1
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shifts of the t variable, no generality is lost in taking th
point of concentration of pulse energy to bet50. We will
supposeq(0).0, as otherwiseq(t) would vanish identi-
cally. By piecewise smooth we mean thatq(t) and q8(t)
have finite left and right limits for allt and that in any
bounded intervalq(t) has at most finitely many jump discon
tinuities.

After giving the proof in Sec. III, we discuss in Sec. I
the closely connected phenomenon of double EVs on
imaginary axis. We close the paper in Sec. V with so
remarks and a summary. There is an Appendix containin
technical derivation.

II. PRELIMINARIES

In scattering theory one defines the Jost solutionscW (t,j)
andwW (t,j) of Eq. ~1! by the asymptotic properties@1#

cW ~ t,j!>S 0
1Dei jt, t→`, wW ~ t,j!>S 1

0De2 i jt,

t→2`, Im~j!.0,

where

cW 5S c1

c2
D , wW 5S w1

w2
D .

Up to constant multiples,cW (t,j) andwW (t,j) are the unique
solutions that are integrable on@0, `! and ~2`, 0#, respec-
tively. An EV of Eq. ~1! thus corresponds to a solution

nW ~ t !5S n1~ t !
n2~ t ! D

that is a constant multiple of each ofcW (t,j) and wW (t,j).
Using the integral equation versions of Eq.~1!, one can show
that cW (t,j) and wW (t,j) are the unique solutions to th
coupled pairs of integral equations

c1~ t !52e2 i jtE
t

`

q~t!ei jtc2~t!dt,

c2~ t !5ei jtF11E
t

`

q~t!e2 i jtc1~t!dtG ,
w1~ t !5e2 i jtF11E

2`

t

q~ t !ei jtw2~t!dtG ,
w2~ t !52ei jtE

2`

t

q~t!e2 i jtw1~t!dt, ~3!

where we have suppressed the dependence onj. Since the
eigenfunctions~EFs! nW (t) are multiples ofcW (t,j) andwW (t,j)
then eachnW (t) satisfies Eq.~3!, with the 1’s being replaced
by possibly different constants.
03660
e
e
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We require some bounds on the EFs. Letj5a1 ib, b
.0 be an EV. By standard arguments involving the Gro
wall inequality and Eq.~3!, one can show thatn2 satisfies a
bound of type

un2~ t !u<Ce2bt, ~4!

for some constantC.0. Inserting Eq.~4! into the first of Eq.
~3! ~for nW ! shows thatn1 satisfies

un1~ t !u<CebtE
t

`

q~t!e22btdt. ~5!

Estimates~4! and ~5! will be useful only fort→` but it is
straightforward to obtain analogous bounds of the form

un1~ t !u<Cebt, un2~ t !u<Ce2btE
2`

t

q~t!e2btdt, ~6!

which are pertinent fort→2`, where we can use the sam
constantC for Eqs.~4!–~6!. In particular,nW (t)→0W , utu→`.
But more is true for single-lobe potentials. Lett.0 and sup-
poseq(t).0. By Eq. ~5!

un1~ t !u2

q~ t2 !
<

un1~ t !u2

q~ t !
<

C2e2bt~* t
`q~t!e22btdt!2

q~ t !

<C2e2btS E
t

`

e22btdt D S E
t

`

q~t!e22btdt D
5~C2/2b!S E

t

`

q~t!e22btdt D
<

C2q~ t1 !e22bt

4b2 , ~7!

@whereq(t6) denotes a right-left-hand-side limit# sinceq(t)
is nonincreasing. Thus,un1(t)u<(C/2b)q(t)e2bt. Using Eq.
~6! one can show that completely analogous results hold
the quotientun2(t)u2/q(t) with t,0, q(t).0.

We will also need an alternate condition implying pure
imaginary EVs. Write Eq.~1! in the form

in182 iq~ t !n25jn1 , in281 iq~ t !n152jn2 . ~8!

Assuming thatj is an EV, multiply the first of Eq.~8! by n2* ,
the second byn1* and subtract to obtain

i ~n18n2* 2n28n1* !2 iq~ t !~ un1u21un2u2!5j~n1n2* 1n2n1* !.
~9!

Integrating Eq.~9! over the realt axis we have

i E
2`

`

~n18n2* 2n28n1* !dt2 i E
2`

`

q~ t !~ un1u21un2u2!dt

5jE
2`

`

~n1n2* 1n2n1* !dt. ~10!

Integrating the first term in Eq.~10! by parts and using the
fact thatun1u,un2u→0, utu→`, one sees that the first integra
in Eq. ~10! equals (*2`

` (n18n2* 2n28n1* )dt)* , i.e., its own
7-2
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conjugate. Thus the first integral in Eq.~10! is real, so the
left-hand side of Eq.~10! is purely imaginary. The integra
on the right-hand side of Eq.~10! is also real. Therefore, if

E
2`

`

~n1n2* 1n2n1* !dtÞ0, ~11!

then j must be purely imaginary. We will use Eq.~11! in
deriving the single-lobe result.

In Ref. @7# the authors note that the condition~11! implies
purely imaginary EVs but only indicate that the integral typ
cally does not vanish unlessq(t) is antisymmetric.

III. SINGLE-LOBE POTENTIALS

Still assuming thatj5a1 ib, b.0, is an EV of Eq.~1!
we will show thatj must be purely imaginary. Multiply the
first of Eq. ~1! by n1* to obtain n2n1* 5@1/q(t)#n18n1*
1@ i j/q(t)#un1u2, assumingq(t).0. The conjugate of this

expression isn1n2* 5@1/q(t)#n18
* n12@ i j* /q(t)#un1u2. Add-

ing and integrating over an interval@0,d# whereq(t).0, we
have

E
0

d

~n2n1* 1n1n2* !dt5E
0

d

@1/q~ t !#~n18n1* 1n18* n1!dt

1 i ~j2j* !E
0

d un1u2

q~ t !
dt. ~12!

Using Eq.~12!, and a corresponding integral over (c,0), c
,0, we are going to show that Eq.~11! holds, with the
integral being strictly negative. Working first with Eq.~12!, it
will be convenient to break the argument into cases depe
ing on whetherq(t) does or does not have compact supp
on @0, `!. Supposeq(t) has compact support. Then there is
unique positived0 such thatq(d0

1)50 and q(t).0 for 0
,t,d0 . Taking d5d0 in Eq. ~12!, Eq. ~7! shows that the
integrals on the right-hand side of Eq.~12! exist even if
q(d0

2)50. The first integral on the right-hand side of E
~12!, which equals*0

d@(n1n1* )8/q(t)#dt, can be integrated by
parts as

(
k51

N11 un1~s!u2

q~s!
U

~ tk21!1

~ tk!2

1E
0

d un1u2q8~ t !

q~ t !2 dt, ~13!

where t050, tk (1<k<N) are the jump discontinuities o
q(t) in @0,d) and tN115d>tN , and where the integral in
Eq. ~13! also exists by Eq.~7!. The upperk5N11 term in
Eq. ~13! is the left-hand-side limit

lim
l→a2

@ un1~ t !u2/q~ t !#

which vanishes by the last integral in Eq.~7! because
q(d0

1)50. Rearranging the sum in Eq.~13!, and substituting
Eq. ~13! into Eq. ~12! gives
03660
d-
t

E
0

d

~n2n1* 1n1n2* !dt52
un1~0!u2

q~0!
1 (

k51

N S un1~ tk
2!u2

q~ tk
2!

2
un1~ tk

1!u2

q~ tk
1!

D 1E
0

d un1u2q8~ t !

q~ t !2 dt

22bE
0

d un1u2

q~ t !
dt, ~14!

where each term in the summation in Eq.~14! is nonpositive
becausen1(t) is continuous andq(tk

1)<q(tk
2). Indeed, the

right-hand side of Eq.~14! is negative sinceq8(t)<0 and
b.0. Sincen1(t)50 for t.d5d0 by Eq. ~7!, then the left-
hand side of Eq.~14! equals the same expression withd
5`. This shows that*0

`(n1n2* 1n2n1* )dt,0 in the compact
support case on@0, `!. On the other hand, ifq(t).0 for all
t ~noncompact support! then the right-hand side of Eq.~14! is
the same except that the termun1(d)u2/q(d2) must now be
included. The limit of this term asd→` is 0 by Eq.~7! and
so lettingd→` in Eq. ~14! gives*0

`(n1n2* 1n2n1* )dt,0 in
this case as well.

Turning to the interval@c,0# we multiply the second of
Eq. ~1! by n2* and proceed as above to obtain this time

E
c

0

~n2n1* 1n1n2* !dt52
un2u2

q~ t ! U
c

0

2E
c

0 un2u2q8~ t !

q~ t !2 dt

22b E
c

0 un2u2

q~ t !
dt, ~15!

where the integrated expression (* )uc
0 includes jump terms

that we do not write out explicitly here. Reasoning as befo
un2(c)u2/q(c1)→0, c→2`, and q8(t)>0 in Eq. ~15!,
making the right-hand side of Eq.~15! strictly negative.
Summing the two halves establishes Eq.~11!, where the in-
tegral is strictly negative. This proves the following.

Single-lobe theorem. Let q(t) be a non-negative, piece
wise smooth, boundedL1 function on the real line such tha
q(t) is nondecreasing fort,0 and nonincreasing fort.0.
Then any EVs of Eq.~1! must be purely imaginary.

Examples. For the specific function q1(t)5k@21
1(3p/4)13t2#, 21<t<1, q1(t)50 otherwise, one may
compute numerically that there is a pair of nonimagina
EVs located symmetrically about the imaginary axis in t
upper-half plane whenk is in the range 0.956,k,0.9999.
As k increases the EVs approach each other and the im
nary axis, and coalesce into a double EV atj50.03i when
k50.9999. The graph ofq1(t) is a cutoff quadratic, which
one can think of as a two-lobe potential. If the parameterk is
reversed, then we have a pair of nonimaginary EVs born
an imaginary pair collide and transition through a double E
state. The exampleq2(t)5145.85, for 1.06<utu<1.07,
q2(t)50 otherwise, which has an EV at 1.44261 i , was
cited in Ref.@12#.
7-3
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IV. EXTENSIONS

We turn first to the occurrence of double EVs on t
imaginary axis, a phenomenon that is closely linked with
existence of nonimaginary EVs. Recall the example of
piecewise quadratic two-lobe potential mentioned at the
of Sec. III where a pair of nonimaginary EVs move towar
each other in the upper-half plane and collide, as a param
k is increased, on the imaginary axis to form a double E
This suggests that single-lobe potentials have no double
on the imaginary axis, which we now establish. To simpl
the argument we will suppose thatq(t) is continuous and
vanishes outside@2d,d#.

The Wronskian of two solutionsnW (1)(t,j) andnW (2)(t,j) of
Eq. ~1! is defined as

W@nW ~1!,nW ~2!#~j!5n1
~1!~ t,j!n2

~2!~ t,j!2n2
~1!~ t,j!n1

~2!~ t,j!.

It is simple to verify that the Wronskian of two solutions
constant and vanishes if and only if the solutions are linea
dependent. Then EVs are complex numbersj where
W@cW ,wW #(j)50. A double EV is defined as an EVj where
additionally (d/dj)W@cW ,wW #(j)50, so as to form a double
zero of the Wronskian. In the Appendix we show thatj is a
double EV if and only if

E
2`

`

n1~ t,j!n2~ t,j!dt50, ~16!

wherenW (t,j) is the corresponding eigenfunction.
As in the purely imaginary EV case in connection wi

Eq. ~7!, we can thus rule out double imaginary EVs by sho
ing that the integral in Eq.~16! does not vanish. In fact, le
j5 ib, b.0, be an EV and suppose thatq(t) satisfies the
hypotheses of the single-lobe theorem~but is continuous and
supported on@2d,d#!. System ~1! for the eigenfunction
nW (t,j) becomes

n185q~ t !n21bn1 , n2852q~ t !n12bn2 . ~17!

Multiply the first of Eq. ~17! by n1 , solve for n1n2 , and
integrate over@0,d# to obtain

E
0

d

n1~ t !n2~ t !dt52
n1~0!2

2q~0!
1

1

2 E0

d n1
2q8~ t !

q~ t !2 dt

2bE
0

d n1
2

q~ t !
dt, ~18!

where the argument is the same as that leading to Eq.~14!.
The right-hand side of Eq.~18! is negative by the assump
tions onq(t). Using the second of Eq.~17! and integrating
over @2d,0# yields an analogous expression for the integ
over @2d,0#. Adding gives *2`

` n1(t,j)n2(t,j)dt,0 that
rules out double imaginary EVs by Eq.~16!. The extensions
to the noncompact support and piecewise smooth case
simple and proceed as above.

The relationship of the one-lobe theorem to the two-lo
examples makes it seem, on one hand, that the theorem i
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capable of much improvement. On the other hand, we n
that Eqs.~14! and ~15! together yield„assume thatq(t) is
continuous and has compact support@2d,d# for simplicity…

E
2d

d

~n2n1* 1n1n2* !dt52
un1~0!u21un2~0!u2

q~0!

2E
0

d un1u2

q~ t ! S 2b2
q8t

q~ t ! Ddt

2E
2d

0 un2u2

q~ t ! S 2b1
q8~ t !

q~ t ! Ddt.

Any condition onq(t) making this expression negative fo
all b.0 forces purely imaginary EVs by Eq.~11!. In another
direction, note that a condition of the formuq8(t)/q(t)u<K
implies that the above equation is negative for 2b.K; that
is, there are no nonimaginary EVsj with Im(j).(K/2).

The proof given in this paper for the single-lobe theore
can be replaced by more elegant perturbation theory a
ments, based on perturbations of the compact support c

V. SUMMARY AND CONCLUDING REMARKS

By deriving the single-lobe result, and citing the doub
lobe examples, we have established that purely imagin
EVs are a feature of potentials with concentrated ene
symmetry of the potential not being a factor.

The notation in Eq.~1! reflects the possibility thatq(t)
can be complex valued, although we have takenq(t) to be
real ~and non-negative! in this paper. However, the cas
where q(t) is complex, and especially of the formq(t)
5q0(t)eip(t), q0(t).0 andp(t) real, is the physically im-
portant situation of ‘‘chirped’’ optical pulses@3#. In Ref. @12#
these authors studied the behavior of EVs of such potent
focusing primarily on the case wherep(t)5Ct2, the con-
stantC being called the chirp parameter@3#. Generically~but
not always! the EVs are purely imaginary, even thoughq(t)
is complex, and move with increasingC towards absorption
into the lower-half plane atj50. It can happen, however
that imaginary EVs collide, form a double imaginary E
split, and move off the imaginary axis. It turns out that t
flatness ofq0(t) has a bearing on whether EV collisions ca
occur. There are some known@15# WKB bounds on the
width of a strip about the imaginary axis which contains t
EVs of ~1! in the semiclassical case, where the potentia
large. The single-lobe theorem places the EVs exactly on
imaginary axis.

APPENDIX

We show that a double EV occurs exactly when Eq.~16!
holds. Letj be an EV with eigenfunction

nW ~ t,j!5S n1~ t,j!

n2~ t,j! D .

SincenW (t,j) is a multiple of each ofcW (t,j) andwW (t,j) then
Eq. ~16! is equivalent to the same equation withnW (t,j) re-
placed bycW (j,t). In the WronskianW(j)5W@cW ,wW #(t,j),
which is independent oft by Eq. ~1!, we have wW (t,j)
5CcW (t,j) for some constantCÞ0. Differentiating W(j)
with respect toj, using a dot to denote thej derivative,
7-4
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Ẇ~j!5W@cẆ ,wW #1W@cW ,wẆ #5CW@cẆ ,cW #1~1/C!W@wW ,wẆ #,
~A1!

an expression that is independent oft ~even if j were not an
EV!. By Eq. ~1!, (ċ1c22ċ2c1)8522ic1c2 and so

W@cẆ ,cW #~X,j!2W@cẆ ,cW #~2X,j!

5ċ1c22ċ2c1u2X
X

522i E
2X

X

c1c2dt, ~A2!

where theX and2X in Eq. ~A2! refer tot values. By Eq.~3!

the functionscW and wW are exponentially decreasing in th
respective directions, and the same can be established
their j derivatives. Therefore,
g

-
od

03660
for

W@cẆ ,cW #~X,j!→0, W@wW ,wẆ #~2X,j!→0, X→`,
~A3!

so the first term in Eq.~A2! tends to 0. Since Eq.~A1! is
independent oft,

Ẇ~j!5 lim
X→`

CW@cẆ ,cW #~2X,j!1 lim
X→`

~1/C!W@wW ,wẆ #~2X,j!

~A4!

the second limit of which is 0 by Eq.~A3!. Using Eqs.~A1!–
~A4!,

Ẇ~j!5 lim
X→`

CW@cẆ ,cW #~2X,j!52iCE
2`

`

c1c2dt.

Therefore Eq.~16! is equivalent toẆ(j)50, that is, a double
EV.
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