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Purely imaginary eigenvalues of Zakharov-Shabat systems
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Zakharov-Shabat systems with single-hump and real, but not necessarily symmetric, potentials are shown to
have purely imaginary eigenvalues only. Coupled with examples of double-hump potentials with nonimaginary
eigenvalues, this establishes that confinement of Zakharov-Shabat eigenvalues to the imaginary axis is a
characteristic of potentials whose energy is concentrated in a single region of the time axis.
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[. INTRODUCTION fore the termq(t)* in Eqg. (1), a minus sign before the
(1/2)uy; term in Eqg.(2), and is called the nonfocusing or
Zakharov-ShabatZS) systems are sets of coupled scalardefocusing case.
first-order differential equations of the forf, 2] For physically realistic pulse profileg(t) there are a fi-
_ _ nite number of EV<,, which correspond to optical soliton
vi=—iévita(t)vy, vy=iévy—q(t)* vy, D solutions of Eq.2). The real and imaginary parts of tiig

e linked with relative soliton velocities and amplitudes,

. . . ar
where¢ is a complex e|ggnvalue parameter and the aSterISRespectively{z]. Generically, but not always, the EVs lie on
5,1 General & complex vatued function of the real varablg1e POSKIVE Imaginary aXis: =iy, a,c>0. This prop-
S ! ; _ ty is physically significant ir of soluti ith
t. An eigenvalugEV) of Eq. (1) is a complex numbe, with erty is physically significant because a pair of solutions wi

| -0 f hich Ea.(1) h trivial soluti " identical real parts travel with the same velocity and can
m(¢)>0, for which Eq.(1) has a nontrivial solution vector combine to form a higher-order periodic solitgueriodic in
vy(t)

the z variable [2]. For the standard real valued symmetric
V(1) pulse shapes(t), including hyperbolic secants, Gaussians,
2 and rectangles, all the EVs are on the positive imaginary axis
of integrable square on the real line, i.d.7.[|vy(t)|? [4-12. , . i
+|wo(1)|2]dt< 0. _In fapt, an mterestlng folklore” property seems to have
arisen in the literature over the last 25 years, namely, that
only purely imaginary EVs can occur for symmetric real val-
ued potentialgy(t). This property has been claimed explic-
itly several timeg6,7,13 (and in Ref.[14] for merely real
potential3. However, in a recent papgt2] the present au-
iu,+(1/2ug+|u?u=0, u=u(zt). (2)  thors provided examples of symmetric, real valued potentials
with nonimaginary EVs. The examples in R¢fL.2] were
In nonlinear fiber opticsu(z,t) in Eq. (2) represents the symmetric piecewise constant functions consisting of two or
slowly varying field of a pulse propagating in a lossless op-more “humps,” or lobes, or regions of focus of pulse energy
tical fiber under conditions of anomalous group velocity dis-(area under the curve dfj(t)|?). The standard potentials
persion and non-negligible fiber nonlinearit{eld. Herez is (hyperbolic secant, Gaussian, ¢ttogether with the double-
a normalized propagation length ands local pulse time. lobe examples, suggest that the confinement of EVs to the
The connection with Eq(1) is that the NLSE(2) can theo- imaginary axis may be connected with the extent to which
retically be solved, although in intractable form, by settingpulse energy is concentrated in some region oftthgis. In
g(t)=u(0}t) in Eq. (1) and solving foru(z,t) by the IST the next section we derive precisely this result: single-lobe
procedure associated with Ed) [1,2]. As for the variablez, real potentials have purely imaginary EVs only. Symmetry of
it is a central result in the method that the EVs and othel(t) is not a factor. For completeness we cite another ex-
spectral quantities evolve in a specific and known way asmple of a two-lobe potential with EVs off the imaginary
functions ofz[1,2]. In particular, the EVs are independent of axis; this example is piecewise quadratic. The single-lobe
z This leads to a complicated analytical formula tgz,t) theorem and the double-lobe examples, which are the main
in terms of the EV<;, (k=1,2,3...) of Eq.(1) and addi- contributions of this paper, close a loop in the somewhat
tional scattering quantities including the reflection coeffi-ambiguous history of this subject.
cients and norming constarits,2]. ZS systemgl) are often We derive the single-lobe result in Sec. lll, following
written with a potentiali(z,t) instead ofg(t). Since we are some preliminaries in Sec. Il. We will assume tlagt) in
interested only in EVs, which are independentzofve sup-  Eg. (1) is non-negative, bounded, piecewise smooth and in-
press thez dependence. tegrable on the real lingg e L}(—%,%)], but the key con-
We note that Eq(l) is a non-self-adjoint EV problem and dition is simply thatq(t) be nondecreasing on the left bf
that Eq.(2) is known as the focusing version of the NLSE. =0 and nonincreasing on the rigfthus motivating the term
The corresponding self-adjoint problem has a plus sign betsingle lobe” potentia). Since Eq.(1) is invariant under

p(t)=

To motivate ZS systems, they have their origin in the
inverse scattering transforiST) theory associated with the
nonlinear Schrdinger equation(NLSE), which we may
write in the form[1,2]
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shifts of thet variable, no generality is lost in taking the
point of concentration of pulse energy to be0. We will
supposeq(0)>0, as otherwiseq(t) would vanish identi-
cally. By piecewise smooth we mean thgft) and q’(t)
have finite left and right limits for alt and that in any
bounded intervad|(t) has at most finitely many jump discon-
tinuities.
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We require some bounds on the EFs. keta+ig, B
>0 be an EV. By standard arguments involving the Gron-
wall inequality and Eq(3), one can show that, satisfies a
bound of type

[va(t)[<Ce ™7, 4

for some constan®>0. Inserting Eq(4) into the first of Eq.

After giving the proof in Sec. Ill, we discuss in Sec. IV (3) (for 7) shows thatv, satisfies
the closely connected phenomenon of double EVs on the !

imaginary axis. We close the paper in Sec. V with some
remarks and a summary. There is an Appendix containing a

technical derivation.

II. PRELIMINARIES

In scattering theory one defines the Jost soluti@(ﬂsg)
and ¢(t,€) of Eq. (1) by the asymptotic propertid4]

- 0\ . 1 )
HLo=| |8 tom, G(t= O)e'f&
t——o, Im(£)>0,
where
- ¢1) »_(<P1>
dl_(lﬂz r P gy

Up to constant multiplesZ(t,g) and ¢(t,&) are the unique
solutions that are integrable 90, «) and (—o, 0], respec-
tively. An EV of Eq. (1) thus corresponds to a solution

vq(t)
vy(t)

17(t)=(

that is a constant multiple of each @f(t,&) and g(t,é&).
Using the integral equation versions of K, one can show

that 4(t,&) and @(t,&) are the unique solutions to the
coupled pairs of integral equations

P (t)= —e*iftfq(r)eigwfz(r)dr,

Wo(t)=¢€'et

1+qu(r)e*iff¢1(f)d7
t

pi(t)=e ¥ 1+ ﬁwQ(t)eigT@z(T)dT

. t .
a(t)= —e'g‘fiwq(r)e"%l(r)dr, 3

where we have suppressed the dependencé &ince the
eigenfunctiongEFs v(t) are multiples szZ(t,g) andg(t, &)
then eachw(t) satisfies Eq(3), with the 1’s being replaced
by possibly different constants.

|Vl(t)|Sceﬁtfth(T)e_zﬁTdT. (5)

Estimates(4) and (5) will be useful only fort—oo but it is
straightforward to obtain analogous bounds of the form

(] =Ce”, [utl=Ce# [ amedr, ©

which are pertinent fot— — o, where we can use the same
constantC for Eqgs.(4)—(6). In particular, 5(t)—0, |t|—c.
But more is true for single-lobe potentials. ltet0 and sup-
poseq(t)>0. By Eq.(5)

(2 _[m? _C*eP({q(ne *dn)?
qt—) — q(t) q(t)

$C2e23t(f ez'BTdT)(f q(r)ezﬁrdr)
t t

:(02/23)( fq(f)ewrdr)

C?q(t+)e 2/
g —
432 ’

[whereq(t=) denotes a right-left-hand-side limhiinceq(t)
is nonincreasing. Thuy,(t)|<(C/2B8)q(t)e #t. Using Eq.
(6) one can show that completely analogous results hold for
the quotient v,(t)|%/q(t) with t<0, q(t)>0.

We will also need an alternate condition implying purely
imaginary EVs. Write Eq(1) in the form

@)

®

Assuming that is an EV, multiply the first of Eq(8) by v5 ,
the second by} and subtract to obtain

iq(t)vo=¢vy, vy tiq(t)vy=—£€v,.

vy —

(v —vovi) —iq() (| va]?+|vo|?) = E(vivs +vo0}).

9
Integrating Eq.(9) over the real axis we have
| s =i | an
=§f (vv5 +vov])dt. (10

Integrating the first term in Eq10) by parts and using the
fact that|v4|,| v,|—0, |t| -, one sees that the first integral
in Eq. (10) equals (7 .(viv5—vovy)dt)*, ie., its own
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conjugate. Thus the first integral in E(LO) is real, so the d 1v,(0)|2 N va(t)]2
left-hand side of Eq(10) is purely imaginary. The integral f (vovy +vivs)dt=— 0 + —_—
on the right-hand side of E¢10) is also real. Therefore, if 0 q(0) =11oat)
) _Ivl(tk*)lz)+fd|ul|20|’(t)dt
|” s+ vabateo, th ot | ) a2
d| 1|2
o . : -2 (14
then & must be purely imaginary. We will use E@Ll) in q(t)

deriving the single-lobe result.
In Ref.[7] the authors note that the conditigil) implies
purely imaginary EVs but only indicate that the integral typi- \yhere each term in the summation in Ety) is nonpositive
cally does not vanish unleggt) is antisymmetric. becausev,(t) is continuous andj(t;)<q(t;). Indeed, the
right-hand side of Eq(14) is negative sincey’(t)<0 and
Il. SINGLE-LOBE POTENTIALS B>0. Sincer,(t)=0 for t>d=d, by Eq.(7), then the left-
hand side of Eq(14) equals the same expression with
=0, This shows thaf {(v,v5 + v,v7)dt<0 in the compact
support case of0, ). On the other hand, i§(t)>0 for all

Still assuming that=a+i8, >0, is an EV of Eq.(1)
we will show thaté must be purely imaginary. Multiply the
first of Eq. (1) by » to obtain vry=[1A(1)]vivI  {(noncompact supparthen the right-hand side of EQL4) is
+[i&lq(t)]]v4]?, assumlngq(t2>0. The conjugate of this o same except that the tetmy(d)|2/q(d~) must now be
expression i, vs =[1iq(t) vy vi—[i€*/q(t)]|v1]% Add-  included. The limit of this term ad— = is O by Eq.(7) and
ing and integrating over an intervigd,d] whereq(t)>0, we  so lettingd—c in Eq. (14) gives [ (v1v} + v,v})dt<0 in
have this case as well.

Turning to the interval ¢,0] we multiply the second of

d d Eqg. (1) by v% and proceed as above to obtain this time
f (vzv’l‘+v1v’2‘)dt=J [2/G(0)](vLvt + vi* py)dt a. (1) by vz and p
0 0

¢|val® 0 [v2l?° (olval?a’ ()
Fi(E— g f dt. 12 f * o die — _f_
(g g ) 0 Q(t) ( ) C(VZV]_ Vle)dt q(t) . q(t)z dt
2
Using Eqg.(12), and a corresponding integral over,@), c Dy JO |vz| (15
<0, we are going to show that Eq11) holds, with the Q(t)

integral being strictly negative. Working first with Ed.2), it
will be convenient to break the argument into cases depend-
ing on whether(t) does or does not have compact supportwhere the integrated expressioh)|C includes jump terms
on[0, ). Supposej(t) has compact support. Then there is athat we do not write out explicitly here. Reasoning as before,
unique positived, such thatq(dg)=0 andq(t)>0 for 0 |vo(c)|?/q(c+)—0, c——o, and q'(t)=0 in Eq. (15),
<t<dy. Takingd=dg in Eqg. (12), Eq. (7) shows that the making the right-hand side of Eq15) strictly negative.
integrals on the right-hand side of E¢l2) exist even if Summing the two halves establishes EHl), where the in-
g(dy)=0. The first integral on the right-hand side of Eqg. tegral is strictly negative. This proves the following.
(12), which equalsfg[(yly’l‘)’/q(t)]dt, can be integrated by Single-lobe theoremlLet q(t) be a non-negative, piece-
parts as wise smooth, boundeld* function on the real line such that
q(t) is nondecreasing for<O and nonincreasing far>0.
(0~ 4 [1,]2q" (1) Then any EVs of Eq(1) must be purely imaginary.
+J 1—2dt, (13 Examples For the specific functionqq(t)=«[—1
o q(t) +(37/4)+3t%], —1<t<1, q,(t)=0 otherwise, one may
compute numerically that there is a pair of nonimaginary
wherety,=0, t, (1<k<N) are the jump discontinuities of EVs located symmetricglly about the imaginary axis in the
g(t) in [0d) andty,;=d=ty, and where the integral in upper-half plane wher is in the range 0.956 «<<0.9999.

Eq. (13) also exists by Eq(7). The uppefk=N+1 term in As « increases the EVs approach each other and the imagi-
Eq. (13) is the left-hand-side limit nary axis, and coalesce into a double EV£at0.03 when

xk=0.9999. The graph ofj;(t) is a cutoff quadratic, which
one can think of as a two-lobe potential. If the parametisr
reversed, then we have a pair of nonimaginary EVs born as
an imaginary pair collide and transition through a double EV
which vanishes by the last integral in E7) because state. The exampleq,(t)=145.85, for 1.06|t|<1.07,
q(dg)=0. Rearranging the sum in E(L3), and substituting q,(t)=0 otherwise, which has an EV at 1.4425 was

Eq. (13) into Eq.(12) gives cited in Ref.[12].

i vi(s)[?

=1 q(s)

(te—p)*

lim [Jvs(t)[2/a(t))
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IV. EXTENSIONS

We turn first to the occurrence of double EVs on the
imaginary axis, a phenomenon that is closely linked with th

piecewise quadratic two-lobe potential mentioned at the en
of Sec. Ill where a pair of nonimaginary EVs move towards

each other in the upper-half plane and collide, as a parameter
k is increased, on the imaginary axis to form a double EV.

PHYSICAL REVIEW E 65 036607

capable of much improvement. On the other hand, we note

e
existence of nonimaginary EVs. Recall the example of the

d
(vovy +vivd)dt=

d

o

This suggests that single-lobe potentials have no double EVs

on the imaginary axis, which we now establish. To simplify
the argument we will suppose thgft) is continuous and
vanishes outsidg—d,d].

The Wronskian of two solutiong*)(t, &) and5(®)(t,¢) of
Eqg. (1) is defined as

W, 5@7(&) = vV (t, &) (1, &) — viP(t, ) v1P(t, ).

It is simple to verify that the Wronskian of two solutions is

2p

that Egs.(14) and (15) together yield(assume thag(t) is
continuous and has compact supgortd,d] for simplicity)
 ra(0)P+w,(0)[?
a(0)
d 2 "t
[ g
o q(t) a(t)
0 2 "(t
_f v, +q())dt.
—aq(t) q(t)
Any condition ong(t) making this expression negative for
all B3>0 forces purely imaginary EVs by E¢L1). In another
direction, note that a condition of the forjg’(t)/q(t)|<K
implies that the above equation is negative f@>2K; that
is, there are no nonimaginary E\fswith Im(£)>(K/2).
The proof given in this paper for the single-lobe theorem

constant and vanishes if and only if the solutions are linearlcan be replaced by more elegant perturbation theory argu-

dependent. Then EVs are complex numbe&fswhere
W[(Z,(,B](f)zo. A double EV is defined as an E¥ where
additionally (d/dg)VV[Jr,z,B](g):O, so as to form a double
zero of the Wronskian. In the Appendix we show tlgas a
double EV if and only if

| mtomoa-o (16

wherev(t,£) is the corresponding eigenfunction.

As in the purely imaginary EV case in connection with
Eq.(7), we can thus rule out double imaginary EVs by show-
ing that the integral in Eq(16) does not vanish. In fact, let
é=iB, B>0, be an EV and suppose thgft) satisfies the
hypotheses of the single-lobe theorémat is continuous and
supported on[ —d,d]). System(1) for the eigenfunction
v(t,€) becomes

17

Multiply the first of Eq. (17) by v,, solve forv,v,, and
integrate ovef0,d] to obtain

v1=q(t)vo+Bry, v,=—q(t)v;—Br;.

’ 107 1 favig’(D)
fo vi(Hwy(t)dt=— 2q(0) +§fo q(t)?
d 12
g0 e

where the argument is the same as that leading to( ).
The right-hand side of Eq18) is negative by the assump-
tions onq(t). Using the second of Eq17) and integrating

ments, based on perturbations of the compact support case.

V. SUMMARY AND CONCLUDING REMARKS

By deriving the single-lobe result, and citing the double-
lobe examples, we have established that purely imaginary
EVs are a feature of potentials with concentrated energy,
symmetry of the potential not being a factor.

The notation in Eq(1) reflects the possibility thad(t)
can be complex valued, although we have tagét) to be
real (and non-negatiein this paper. However, the case
where q(t) is complex, and especially of the form(t)
=qo(t)e’PV, go(t)>0 andp(t) real, is the physically im-
portant situation of “chirped” optical pulsds]. In Ref.[12]
these authors studied the behavior of EVs of such potentials,
focusing primarily on the case whept)=Ct?, the con-
stantC being called the chirp parame{&]. Generically(but
not always$ the EVs are purely imaginary, even thougyt)
is complex, and move with increasirigytowards absorption
into the lower-half plane at=0. It can happen, however,
that imaginary EVs collide, form a double imaginary EV,
split, and move off the imaginary axis. It turns out that the
flatness ofgy(t) has a bearing on whether EV collisions can
occur. There are some knowrd5] WKB bounds on the
width of a strip about the imaginary axis which contains the
EVs of (1) in the semiclassical case, where the potential is
large. The single-lobe theorem places the EVs exactly on the
imaginary axis.

APPENDIX

We show that a double EV occurs exactly when Ed)
holds. Leté be an EV with eigenfunction

Vl(tag))

L= 1)

over[ —d,0] yields an analogous expression for the integral

over [ —d,0]. Adding gives [=_ v,(t,&) vy(t,£)dt<0 that
rules out double imaginary EVs by E(L6). The extensions

Sincei(t, &) is a multiple of each ofj(t, &) and @(t,£) then
Eqg. (16) is equivalent to the same equation wilit, &) re-

to the noncompact support and piecewise smooth cases gseaced byJ/(f,t). In the WronskianW(&)=W[ zZ,cﬁ](t,f),

simple and proceed as above.

which is independent ot by Eq. (1), we have ¢(t,&)

The relationship of the one-lobe theorem to the two-lobe_ ¢ j(t,£) for some constanC+0. Differentiating W(¢)
examples makes it seem, on one hand, that the theorem is ngjfih respect tog, using a dot to denote thegderivative,
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W(§>=W[<Z.¢]+W[@Z,¢]=CMJ/?.@Z]+(1/C>W[¢,@\.l)

an expression that is independent ¢éven if £ were not an
EV). By Eq. (), (1tho— 1) = —2ighy4p, and so

WG, 10X, ) — WL, #1(— X, €)
=¢1¢z—¢2¢1|>5x
X
-X

where theX and— X in Eq. (A2) refer tot values. By Eq(3)

the functionsy and ¢ are exponentially decreasing in the

PHYSICAL REVIEW E65 036607

WG 1(6,6) =0, W[E,3](—X,£)—0, X,
A3)

so the first term in Eq(A2) tends to 0. Since EqAL) is
independent of,
W(&)= lim CWL¢, ¢/](—X,€)+ lim (LIC)W[ G, $](—X,£)
X—o X— 00
(A4)
the second limit of which is 0 by E¢A3). Using Eqs(Al)—
(Ad),

W(§)= lim cvv[«Nx](—x,§>=2in:¢1¢2dt.

X— o0

respective directions, and the same can be established fdherefore Eq(16) is equivalent toV(£) =0, that is, a double

their ¢ derivatives. Therefore,

EV.
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