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Multichannel pulse dynamics in a stabilized Ginzburg-Landau system
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We study the stability and interactions of chirped solitary pulses in a system of nonlinearly coupled cubic
Ginzburg-LandayCGL) equations with a group-velocity mismatch between them, where each CGL equation
is stabilized by linearly coupling it to an additional linear dissipative equation. In the context of nonlinear fiber
optics, the model describes transmission and collisions of pulses at different wavelengths in a dual-core fiber,
in which the active core is furnished with bandwidth-limited gain, while the other, pagkissy one is
necessary for stabilization of the solitary pulses. Complete and incomplete collisions of pulses in two channels
in the cases of anomalous and normal dispersion in the active core are analyzed by means of perturbation
theory and direct numerical simulations. It is demonstrated that the model may readily support fully stable
pulses whose collisions are quasielastic, provided that the group-velocity difference between the two channels
exceeds a critical value. In the case of quasielastic collisions, the temporal shift of pulses, predicted by the
analytical approach, is in semiquantitative agreement with direct numerical results in the case of anomalous
dispersion(in the opposite case, the perturbation theory does not apylg also consider a simultaneous
collision between pulses itihree channels, concluding that this collision remains quasielastic, and the pulses
remain completely stable. Thus, the model may be a starting point for the design of a stabilized wavelength-
division-multiplexed transmission system.
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[. INTRODUCTION multiplexed (WDM) multichannel scheme implemented in
the optical fiber. An objective is then to design a system
It is commonly known that cubic complex Ginzburg- supporting pulses in all the channels, which must be stable
Landau(CGL) equations constitute a class of universal mod-against small perturbations and mutual collisigsse, e.g.,
els for the description of pattern formation in various nonlin-Refs.[6,7] and a recent pap¢8]).
ear dissipative medidl]. Equations of the CGL type are also A single-channel system, which may suppress the insta-
frequently used in nonlinear fiber optics, to describe the forbility of the zero solution, simultaneously allowing for the
mation, stability, and interactions of solitary pulse&P’s. existence of stationary pulses and thus opening the way for
CGL equations with constant coefficients apply to a longthem to be stable, was proposed and studied by means of
nonlinear optic-fiber link if the pulses in it are broad enough,analytical perturbative methods in Ré¢f], and then tested
so that the corresponding dispersion length is essentiallipy direct simulations in Refl10]. In this system, the CGL
larger than the amplification spacing. In this case, the periequation is linearly coupled to an additional dissipative equa-
odically placed amplifiers and filtefgvhich limit the gain to  tion, which is a linear one in the most fundamental and
a relatively narrow spectral bapdhay be considered in the physically relevant version of the modél0,11]. In the con-
uniformly distributed approximation, neglecting their dis- text of optical fibers, the system may be realized atial-
cretenes$2]. core fiber, in which an active core carries the linear gain,
The single-component CGL equation with the cubic non-filtering, temporal dispersion, and Kerr nonlinearity, while
linearity possesses a well-known exact solitary-pulse soluthe parallel-coupled core is lossy, its intrinsic nonlinearity,
tion [3], which includes an internal chirfphase curvature dispersion, and filtering being negligible. It has recently been
across the pulseHowever, a fundamental drawback of this shown [12] that this model may describe transmission of
solution is that it isunstable as the zero solution to the cubic fully stable optical solitary pulses with an interreirp (in-
CGL equation, i.e., a background on top of which the pulse igrinsic phase structuyein an indefinitely long fiber-optic
built, is unstable due to the presence of linear gain in thecommunication link.
equation. Development of physically realistic models in In this paper, we study the stability and collisions of
which solitary pulses are fully stable is a problem of obviouschirped solitary pulses in a system of nonlinearly coupled
interest in its own right, and it also has profound importanceCGL equations stabilized by means of the aforementioned
for fiber-optic communicationgsee Ref.[2] and, for in- scheme, i.e., by linearly coupling each CGL equation to its
stance, a recent work4]), as well as for the design of own linear dissipative counterpart. In its simplest versions
soliton-generating fiber-loop las€fis]. In the context of op- that are considered in this work, the model includes two or
tical telecommunications, an issue of fundamental signifithree nonlinearly coupled stabilized subsystems, which is a
cance is the development of adequate models for multicomprototype of astabilized WDM systenThe most interesting
ponent systems, corresponding to a wavelength-divisionissues, on which we focus in this work, are the stability of
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SP’s in this system and collisions between th@meluding a i(,— 8- ) +ily=Ku, (4)
simultaneous collision between three pulses belonging to
three channejs Besides the obvious relevance to optical o
telecommunications, the obtained results are of interest jWhere the complex electric field envelopes v, ¢, andy
their own right, demonstrating new types of stable travelingare functions of the propagation distarcend retarded time
pulses and collisions between them in a generalizediti-  t Which are defined in the usual wg]. In the active core,
component CGL system. which is equipped with the amplification and filtering, the
The paper is structured as follows. In Sec. II, we give afieldsu andv obey Eqs(1) and(2), that include the nonlin-
detailed formulation of the model with two channels, andear self-phase modulation, linear gain, and effective filtering
exact solutions for SP’s in each channel. In Sec. |||, we de.(the latter term is fOI’ma”y tantamount to diffusion in the
velop an analytical approach to the collision problem, base§Pace. Coefficients in front of the terms in Eqél) and(2)
on the perturbation theory. In particular, a prediction for po-accounting for these three basic effect_s are QII norma_llzed to
sition shifts of the pulses in the case of a quasielastic colliPe equal to 1. On the other hand, the dispersion coeffilent
sion is obtained in a fully analytical form. In Sec. IV, results IS explicitly present in the equation®>0 andD<0 corre-
of systematic direct simulations of the collisions are dis-Sponding, respectively, to anomalous and normal dispersion.
played for both inelastic and quasielastic cases; in the lattefhe field envelopes andv in the active core are nonlinearly
case, the analytical predictions are found to be in good agre€oupled to each other, interacting through the cross-phase
ment with the numerical resultén a parametric region Modulation(XPM) induced by the Kerr effect, which gives
where the perturbation theory appliek the same section, a fise to the XPM coupling coefficient=2 in Egs.(1) and
region in the model’'s parametric space is identified, in which(2). The fieldsu and v are linearly coupled, through the
the pulses aréully stable, i.e., against both small perturba- corresponding coefficier, to their counterpartg) andy in
tions and mutual collisions. A generalization for a three-the linear dissipative core, which is characterized by a loss
channel model is briefly considered in Sec. V, with the con-coefficientI". Finally, the parametersand 6 in Eqgs.(1)—(4)
clusion that the pulses are also stable against simultaneognd for the inverse-group-velocity differences between the
collision of three of them. The paper is concluded in Sec. VI.copropagating waves in the active and passiossy cores.
A numerical value ot (assuming tha=c) will play an
important role below. To estimate the value that is of practi-
Il. THE TWO-CHANNEL MODEL AND EXACT cal interest, we note that the difference in the inverse group
SOLUTIONS FOR THE PULSES velocity is simply related to the frequency separatibm
A. The model between the channels= BA w, whereB=k" is the standard
ohysical dispersion coefficied2,6]. The frequency differ-

. The simplest version of the model descrlpes the propag nce can be expressed in terms of the wavelength separation
tion of two waves,u andv, carried by two different wave- AN, Aw=—(2mco/M\?)AN, where\ is the wavelength
] - 0 [}

lengths in the active core of a dual-core optical fiber. The oper,c, is the light velocity in vacuum, and is the re

H _ H H 1“0 ’ -
\éva\tlﬁs Eé?rrae(#etcrlrpnu?r?etgit'creoscf)rzh%rshee Tgﬂgitéon ;?gluc active index. For applications, the case of interest is the one
y med to b Iinl " I;/dt tW h Irfi lr)1d with the pulse’s temporal width~10 ps[2,6,7] and the
assumed to be finearly coupied to two othe eldsand y, wavelength separation between 1 and 0.1 p#h Using
respectively, which propagate in the passive core placed p hese values, and typical values of the dimensional param-

allel to the active one. In fact, it is not necessary 0 assumeg, ...t hih the present model provides for the best sta-

that all the long fiber-optic link has a dual-core structure;, . : .
) o - ‘bility of the pulses[see Eqs.(36) and (37)], an estimate
instead, it is sufficient to have short segments of the dual—Similar to that presented, e.g., in R&L4] shows that rel-

core f|be_r perlodlpall_y installed mt_o th? link. _Then, in the evant dimensionless values obelong to an interval
same uniformly distributed approximation which was men-

tioned above in relation to amplification and filtering, we
may consider areffectively homogeneousual-core fiber c~20-200. (5)
link. In fact, this approximation was already applied to the
single-channel dual-core model in REL3]. ) . . )

Thus, the model is based on the following system of norNumerical results will be presented for this region of the
malized equations governing the propagation of the fouvalues ofc (see Figs. 6 and 7 belgw
above-mentioned electromagnetic waves in the two linearly

coupled fiber cores: B. The linear spectrum

i(u,+cu)+(3D—i)ug—iu+(|ul?+ afv]>)u=Kg, Before proceeding to the analysis of the full system, it is
(1) relevant to consider its linear spectrum in the dissipationless
limit, i.e., in the case when the gain, filtering, and loss terms
are dropped in Eqg1)—(4). In the linear limit, the two sub-
systems (,¢) and @, ) are decoupled, and, looking for the
(2 solution to the linearized equations in the ordinary form
~expikz—iwt), one arrives at the following dispersion rela-
i(p,+ 6 d)+il' p=Ku, (3)  tions between the propagation distarkcend frequencyw:

i(v,—Cvy) + (3D =)oy —iv+(Jv|*+olulP)v=Ky,
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ST 71 T actually found in Ref[11]. In the reference frame moving
| il with the common inverse velocity= &, the exact solution
takes the form
0 — —]
i | u=Aexpikz)[sectiyt)]* 1, 9
] . d=AK(T —k) texpikz)[sectint)]* '~ (10

where the definition of the retarded tinhés adjusted to the

-101 N above-mentioned moving reference frame, and the chirp co-
L . efficient is
1 | L | ) | )
R - 0 I 2 w=—3D+132+9D2% (11)

&
The SP’s inverse widthy and squared amplitud&? (which

FIG. 1. Atypical form of the dispersion curvegy) [the shifted is the peak power, in the application to opliese expressed
propagation constant and frequency are defined in &ykfor the in terms of the Wéve numbér
linearized system in the dissipationless approximation. The curves

are shown foD = + 18 (the case of the anomalous dispergiand

c= 4. For normal dispersion¥= —18), the dispersion curves are 2_ 2k(I'—1)
mirror images of those shown in this figure. n K(Du— 2)+F[(1_/.L2)D +4u] ’
A?=(3+ ;D) un?, (12

4= 45 {(c— 92~ D% \[(c— 37 D+ 160%KY,

(6) and, finally, the wave number itself is determined by a cubic

equation
where

(uD—2)(k?=1)k+((1— u?)D+4u)(K?~T (K*~T?))
=0. (13

q=k¥ 6 -w, Eé=w=(c—3)/D. (7)

In the definitions(7) of the shifted propagation constant and

frequency, the upper and lower signs pertain, respectively, to Clearly, physical solutions of Eq13) are those which
the (u,¢) and (v,y) subsystems, while in the dispersion yie|d a real wave numbek and 72>0. Physical solutions
relation (6) the two different signs yield two different gyally exist in pairs, and only the one with a larger value of

branches of the dispersion curve, see Fig. 1. the peak power may be stable. As it was demonstrated in
It follows from Eq. (6) that the spectrum shown in Fig. 1 Refs. [10-13, the SP solution with the larger amplitude is
always has aap, indeed stable in a fairly vast region in the parameter space

(I',K,D). These pulses definitely remain stable in the frame-
work of the full system(1)—(4). Indeed, because the two
above-mentioned subsysterfis,(3) and(2),(4) are coupled
solely by the nonlinear XPM terms, the only additional sta-
bility condition for a pulse belonging to either subsystem is

full_dissipationless version of the present model, Ir](:ludmgthe linear stability of the zero solution in the mate subsystem,

the nonlinear terrps In qul) and(2), is defm_|tely nonlnte_- which is always the first condition imposed on parameters of
grable, therefore “solitons” are meant here simply as solltary,[he eligible model

waves. However, _the objective of this work is not to study Note that the exact SP solution displayed above can be
that possible family, but to focus on the search for Stableextended to the full system of the four equatids—(4) if
pulses in the full model, including the gain, filtering and loss y q

which is much more relevant to applications 'the group-velocity differences vanish, i.es §=0: the ex-
PP ' pressiong9)—(13) then yield a solution to the system of the

four  equations  after the  transformation u,v

0<—-4Dg<\(c—8)*+16D%K2—(c— )% (8

inside which, following the general principl¢$5], one may
expect the existence of a family gap solitong note that the

C. Solitary-pulse solutions H(u,v)/\/§, ¢,¢H(¢>,lﬂ)/\/§, and settingu=v and &
If the field is launched into one channel only, the system= .
(1)—(4) reduces to a subsystem of E¢b. and(3), or (2) and In the most general case# &, no exact solution for SP’s

(4), each including a CGL equation linearly coupled to itsis available, but pulses can be found numerically, see below.
linear dissipative counterpart. If, additionally, there is no dif-In any case, pulses generated by the decoupled subsystems
ference in the group-velocity mismatch in the active and pas¢1),(3) and (2),(4) move at different velocities, hence they
sive core(i.e., c=0), then, in the reference frame moving may collide. The strong XPM-induced nonlinear coupling
with the common group velocity, each subsystéin(3) or  between the channels, together with the dissipative character
(2),(4), decoupled from the other one, possesses its own padf the system(1)—(4), may give rise to complex dynamical

of exact analytical solutions for chirped SP’s, which werebehavior as a result of the collisions.
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Our objective in this work is to study in detail collisions methods(see, e.g., Refd.14,16]), provided that XPM may
between SP’s in the systeth)—(4) and their stability. Note, be treated as a small perturbati@onditions for applicabil-
in particular, that in the case when the inverse-group-velocityty of this assumption will be considered belpwit is also
differences in the active and passive cores are large arkhown that the filtering term in Eq$1) and(2) gives rise to
nearly equal, i.e.,c~35>1, the subsystemgl),(3) and an effective friction force which, in the most general case,
(2),(4) nearly decouple, therefore quasielastic collisions arean be evaluated and combined with the potential force by
expected in this case, while at smaller values of the groupmeans of the balance equation for the pulse’s momeiiasm
velocity mismatch collisions may be strongly inelastic. Thesdt was done, for instance, in Reffl7]). As a result, one
expectations are corroborated by numerical simulationsirrives at evolution equations for the soliton’s position and

which are displayed below. frequency shifts in the following general form:
I1l. AN ANALYTICAL APPROACH TO COLLISIONS d_T = Do (20)
BETWEEN SOLITARY PULSES dz '
A. The perturbation theory do M, A4

— 2 _ ’
In the cases of practical interest to fiber-optic telecommu- gz *” Mu+M¢w (My+My) U’ (n(T+c2)),

nications, the model is far from any exactly integrable limit, (21
therefore only direct numerical simulations of collisions be-

tween pulsesand of their stability, results of which will be ~ Where the prime stands for the derivative, and the friction
summarized in the next section, are really relevant. Nevercoefficient and interaction potential are

theless, some qualitative insight into the collision problem .

can be gained from an analytical apprgach, assuming that f |df(x)/dx|?dx

pulses may be approximated as quasisolitons. Within the —

framework of such an approach in its most general possible k= oo ' (22
form each pulse, in its own reference fraie which an f [f(x)]|2dx

exact solution is given by Eqg9)—(13), assuming thatd ‘°°
=c], is taken as

+ o
— 2 2

ATt T)exs(ike— o) » = [ty Bfeylac @9
d=0g(n(t—T))expikz—iwt), (15 (the XPM coefficiento was set equal to its physical value

2). The additional ternacz in the argument of the potential in
v=Af(n(t+T))explikz+iont), (16)  Eg. (21) is generated by the group-velocity difference be-

tween the two channels, and the ratio of the masses in the
p=0g(n(t+T))expikz+iot). (17)  friction term on the right-hand side of E€21) appears since

. the friction force acts only on the component of the pulse,
Here f(#t) and g(#T) are (generally speaking, complex pyt not on itsé component. Note that these general equa-
functions accounting for a particular shape of the unperyions are also valid in the case of dispersion management,
turbed pulsesy being their inverse temporal width, and® whenD is not a constant, but a function af17].
are amplitudes of their two components, atd and =T For the pulses with the shape given by E@—(13), one
are shifts of the pulses’ central frequencies and temporal pgsgp, find, from the expressiori22) and(23), that
sitions due to the interaction between thpwe consider the
interaction between identical pulses, hence the symmetry be-

tween expressionél4),(15) and (16),(17)]. Each component k=(413)(1+ pu?), N L= . (24
. . . U+ M & K2
of the pulse has its own effective mass, for instance, 1+
.. . k>+12
M =A217*1J [f(x)|2dx, M =CI>27/*1J’ |g(x)]2dx.
! —o ¢ —o0 2y cosh{(2y) —sinh(2y)
(19 U(y)=4 . (25

sink?(2y)
(Note that, in the absence of losses and ghp:+ M, as . . . . .
well asM,+M,,, are the conserved optical energies in eacH! IS worth mentioning that expressid@5) contains no sin-

subsystem.For the pulse given by the soluti¢8)—(13), one ~ 9ularity aty—0. S
finds To predict results of the collisions in the general case, the

nonlinear nonautonomous-dependent ordinary differen-
M, =27 'A2? M¢=MUK2/(k2+F2)- (19 tial equations(ODE’s) (20) and (21) with the effective po-
tential (25) must be solved numerically. In view of the com-
The XPM-induced coupling between the two subsystemsplexity of this ODE system and its approximate character, it
gives rise to a potential force of attraction between themakes sense to focus, instead, on direct simulations of the
pulses, which can be calculated by means of well-knowrunderlying partial differential equationDE’s) (1)—(4),
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which will be done below. Nevertheless, some results can be d(7T) A2D
obtained directly from ODE’$20) and(21). In particular, the _—
most essential effect observed in direct simulations of the d(cnz)  2¢?
underlying PDE’s is an inelastic outcome of the collision _ L i
(merger or complete decay of the pulsgwovided that the Equations(28) and (30) show that the coII|S|o_n is elastic
group-velocity difference is below a certain criticalthresh- N the present case, as the inverse-group-velocity gfiifdz

old) valuec,, . This value may be, very roughly, estimated aslS zero atz==*w, ie., both before and after the collision.

that at which the friction and potential forces in E81) are Nevertheless, the result of the collision is not trivial. Indeed,
comparable, which yields Eg. (30) can be used to evaluate an important characteristic

of the elastic collision, viz., a residual tempoigosition
shift of the pulse

U(cnz). (30

D|A?

~—. (26)
n(1+ p?)

cr AZD t+o

PAT= [ T(z=+2%) = T(z=—)]= Ff Uodx,

To obtain this estimate, it was set tht, /(M ,+M,)~1, oo (31)
which is true in the cases considered below, the expression

(24) for the friction coefficient was used, and it was naturally Thjs shift is important as it gives rise to the collision-induced

assumed that, for a nontrivial collision, the maximum valueiemporaljitter of the pulses, see, e.g., Reff&4] and[16]. In

of the frequency shiftv is on the order oDc, see Eq(20). particular, for the potential Eq25) one hasf**U(x)dx
Below, it will be seen that the crude estimate based on Ed_» hance

(26) helps us to understand the fact tlegtis much smaller
for the case of normal dispersion than for pulses propagating nAT=A2D/c2 (32)
under anomalous dispersion.
This analytical prediction will be compared below with re-
B. Collision-induced position shifts of the pulses sults of direct simulations.

) . To conclude the analytical consideration, we note that the
The ODE’s(20) and(21) can be used to obtaigquantita- o ) !
tive results in ihe)limitiﬁ]g )case of large so that i general condition(27) takes a simple form in terms aT.

Indeed, in the present case the characteristic collision dis-
tanceAz is determined by the pulse’s temporal widthy 150

<c. (270  that Az~1/(5c), and dT/dz may then be estimated as
AT/Az~ 5ncAT. Inserting this into Eq(27), one arrives at a

isi i ; imple resul
In fact, this is the case when the interaction of the pulses dug "Pe resu t

to XPM may be treated as a small perturbation, and all the 7|AT|<1, (33
above approach is strictly valid. In this case, the tefinin

the argument of the potential in ER1) may be omitted, \hich means that the linear equatic@8) applies to the de-
hence the equation immediately becomes linear. Upon subscription of collisions between pulses if the resulting normal-
stitution of w=—D~*dT/dz from Eq.(20) into Eq.(21) and  ized temporal shift of the pulse is small.

integrating once, it reduces to the following first-order linear

equation: IV. NUMERICAL ANALYSIS OF COLLISIONS
AND STABILITY OF PULSES

dT

dz

d(77T)+ 7 T_A2DU 28 i I
d(czz) k()= 22 (cnz) (28 A. The approach to the problem

We have employed the split-step Fourier algorithm to

(it is more natural to consider, as final dynamical variablesSC!Ve EAs{1)—(4) numerically using, as initial conditions, a

the renormalized temporal shiffT and propagation distance SUP€rposition of separated wavefort® and (10), which
c72). To obtain Eq.(28), it was again assumed that yield exact SP solutions for the two decoupled subsystems

My/(My+M,)~1, which will be confirmed below, and (2),(3) and(2),(4). Thus, the following initial configurations

M,=2A2?/» was substituted as per E{9). are used:
Equation(28) can be further simplified if, in addition to U(04) = Afsech n(t—T)H+ix

the condition(27), the group-velocity difference between the (01)=A{sechn( I

;:r?gir;r;le:c(s)r::se Iasrg?h:{]ough in comparison with an effective v(04)=A{sech p(t+T) |11+, (39)
AK .

Kk7<C. (29 $(0) = 77— isechh p(t=T)J}*,
In fact, this condition turns out to be less restrictive than Eq. AK
t(ﬁg)fgsrer-ne below. Neglecting the friction term, Ed28) takes #(0) = il“—k{secm p(t+ Tk, (35)
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which incorporate an initial temporal separation Between TABLE I. Outcomes of incomplete collisions far=c.
the pulses. We will then be able to study botbompleteand
completecollisions, corresponding td=0 and T#0, re-  Normal dispersion@=—18) Anomalous dispersiorD(= +18)
spectively(i.e., collisions between initially overlapped and

separated SP’s, see, e.g., Réist] and[16] for the discus- velocity Outcome velocity Outcome

sion of relative importance of both types of the collisipns c<8.35 decay c<3.52 merger
As for the choice of parameters, in most cases we haves.35<c<9.53 merger 3.52¢<46.98 decay

used the valueE =5 andK =4, which are located almost in ¢>9.53 elastic c=46.98 elastic

the center of the stability domain of the exact SP solution ta
the decoupled subsysteni$),(3) and (2),(4) [12]. For the

dispersion parameteD we have chosen the value® jstances are quite short,,<60. Thus, in these cases, after
=*18, in the anomalous- and normal-dispersion regimespassing the short collision distance, there remains, at most,
respectively. These two values bf actually correspond t0  one pulse. Obviously, the only outcome acceptable for appli-
the carrier wavelength near the zero-dispersion point in &ations to the optical telecommunications is a quasielastic
dispersion-shifted fibef12] [recall that Eqs(1) and(2) are  cojjision, when both SP’s restore their shapes after the inter-
normalized so that the effective filtering coefficients in themgetion.

are set equal to JL As was shown in Ref.12], for a typical Detailed results obtained for the incomplete and complete
physically relevant value of the filtering, the correspondingcollisions in both normal- and anomalous-dispersion re-
values|D| are indeed close to 18. Also, this valuedfjives  gimes, as well as results for the stability of isolated moving
rise to the best stability characteristics for SP’s in the singlgyy|ses, are summarized below. In all the simulations, the

channel model. Using these values for K, and D, the  XpM coupling coefficient in Eqg1) and(2) was set equal to
other parameters of the exact SP solution can be found frofs physical valueg=2.

Egs. (99—(13): in the case of anomalous dispersiob (
=+18),

B. Incomplete collisions

n=0.074, 7=157, k=23.35 A*=44.56, (36 The results for incomplete collisiodS=0 in Eqgs.(34)
and(35)] in the casec= & are summarized in Table |, where
the three above-mentioned possible outcomes, namely “de-
w=27.074, 7=0.058, k=23.35, A2=22.37. cay,” “merger,” and “elastic,” are indicate_d. As_is shovyn,
(37) for both the normal- and anomalous-dispersion regimes,
there exists a criticdi.e., minimum) valuec,, of the velocity
In the anomalous-dispersion regime, the pulses are much above which the collision is always elastic. More impor-
narrower, and(quite naturally have a much smaller chirp tantly, the value ot in the case of the normal dispersion is
than their counterparts existing in the case of the normamuch smaller, by a factor of=5, than that for the
dispersion. Note that, for these values of the parametergnomalous-dispersion regime. As the smaller critical velocity
M 4~0.028 M, according to Eqs(19), i.e., the mass of the difference between the channels makes it possible to have a
passive-core component of the pulse is negligible in comdenserWDM system, this result shows that the normal-
parison with its active-core component’s mass. dispersion regime may have an advantage over the more tra-
Our first objective is to study in detail all possible out- ditional from the viewpoint of the soliton transmissifa,
comes of collisions of stable moving pulses. In the numericahnomalous-dispersion regime. On the other hand, an advan-
simulations we have found that, depending on the value ofage of the latter regime is that, inside a given channel, the
the inverse group-velocity mismatahin the active core, pulses forming a data-carrying stream may be packed with a
three different outcomes of the collisions oco@):both SP’s  higher density, as their width is much smaller according to
perish (“decay”); (b) only one SP survives the collision, Egs.(36) and(37). In fact, the best approach to the enhance-
while the other one is destroydthis outcome may also be ment of the bit rate of the fiber-optic telecommunication link
considered as a merger of two pulses into)pa@d (c) the  is to use the channels ipoth the anomalous- and normal-
pulses undergo a quasielastic collision, so that both reappedispersion bands.
unscathed after the collision. The fact that the critical value,, is much smaller in the
Formation of a true stable bound state of two solitons as @aormal-dispersion regime can be explained by the crude es-
result of the collision has never been observed in the simutimate Eq.(26) obtained above on the basis of the analytical
lations. However, it will be shown below that, in some spe-consideration. Indeed, the ratio of the values which the ex-
cial casegsee Fig. 5a)], a metastable bound state is ob- pression(26) takes for the parametef86) and (37) corre-
served, which exists over a very long propagation distancesponding to the anomalous and normal regimes is very small
but finally collapses into a single pulse. (however, the estimate is too crude for a detailed quantitative
As far as the above-mentioned outcont@sand (b) are  comparison with the numerical resylts
concerned, it is important to mention that, in most cases Typical examples of the three different outcomes of the
(apart from the exception corresponding to the formation oincomplete collisions are shown in Figs(a-2(c) (for D
the metastable bound state, which will be specially consid=-18) and Figs. &-3(c) (for D=+18) in the form of
ered below, we have found that the corresponding collision contour plots. As is readily observed, SP’s in the normal-

and for the normal dispersioD(= —18),
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FIG. 2. Incomplete collisions of two pulses in the normal-
dispersion regime = —18). (a) Decay of both pulses, witlt

=5=6. (b) Merger of the pulses, witlt=5=9. (c) An elastic
collision, withc=6=14.
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dispersion regime are indeed much broader than those in the
case of the anomalous dispersion, in accordance with what is
predicted by the analytical solutidisee Eqs(36),(37)]. In
order to test the sensitivity af., to a possible mismatch of
the interchannel inverse-group-velocity differencesind ¢
between the two cores, we have also simulated incomplete
collisions in the caseS#c, viz., 6=1.1c and §=2c. The
results are summarized in Tables Il and I, respectively. It is
found that, in both normal- and anomalous-dispersion re-
gimes, a mismatch in the values of the inverse-group-
velocity differences in the active and passive cores results in
anincreaseof the critical valuec,,;, which was again found

to be much larger in the case of the anomalous dispersion. As
was mentioned above, for the applications it is necessary to
make the critical value. as small as possible. The results
presented here clearly show that the optimum will be at-
tained whendé=c, i.e., when the group-velocity differences
between the channels are the same in the active and passive
cores, which is not difficult to understand in qualitative
terms. Indeed, a group-velocity mismatch between the two
cores makes it necessary for the main componenthe
active core¢ to “drag” its counterpart in the passive core,
which inevitably generates additional losses through the fil-
tering term, thus enhancing inelasticity of collisions between
the pulses, cf. the perturbative treatment of the collision in
the previous section.

C. Complete collisions
1. Inelastic and elastic collisions

The results of the simulations for complete collisigns.,
for a case of a sufficiently large initial separation between the
colliding pulse$ in the caseS=c are summarized in Table
IV. In the simulations, the initial temporal separation be-
tween the solitons is taken to be equal, approximately, to five
pulse widths, i.e.T=2.34[see Eqs(9) and(10)]. Accord-
ing to Egs.(36) and (37), this choice impliesT=40 andT
=1.5, in the regions of normal and anomalous dispersion,
respectively.

The results shown in Table IV suggest that, contrary to the
case of incomplete collisions, in the normal-dispersion re-
gime the three outcomes, decay, merger, and elastic, alternate
with the increase o€, up to the threshold value,=13.92,
past which only elastic collisions take place. Notice, in par-
ticular, a small interval, 7.85¢<8.09, where the pulses un-
dergo elastic collisions, which is fourtzktweenthe regions
where at least one pulse disappears after the collisions. Typi-
cal examples of the merger, decay, and elastic outcomes for
D= —18 are shown in Figs.(d—4(c). Notice that the colli-
sion distance in all the cases does not exceeé.

On the other hand, in the anomalous dispersion regime,
outcomes of complete collisions resemble what was ob-
served in the case of the incomplete collisions: there are only
three, relatively broad intervals of where the outcomes are
merger, decay, and elastic, with a valuecgfslightly smaller
than that in the normal-dispersion regime. However, in the
case ofD=+18 it is important to note that, in the merger
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TABLE Il. Outcomes of incomplete collisions fa¥=1.1c.

Incomplete collisions §=1.1c)

Normal dispersion=—18) Anomalous dispersiorD(= + 18)

Velocity Outcome Velocity Outcome
€<9.88 decay c<2.42 merger
9.88<c<10.87 merger 2.42c<59.29 decay
10.8%&<c<14.17 decay c=59.29 elastic
c=14.17 elastic

interval (0=c<3.33), the pulses demonstrate a behavior
which is remarkably different from that observed in the case
of the decay or merger outcomes of incomplete or complete
collisions in all the other cases. In this interval, the pulses
stick together and propagate in such a quasibound state over
a long distance(up to z~3000), after which one of the
pulses eventually decays. This behavior is demonstrated in
Fig. 5a) for c=2, where the colliding SP’s form the locked
configuration immediatelysee the inset in Fig.(8)], and
then they propagate, keeping this configuration, upzto

~ 3000, where the merger eventually takes place through the
destruction of one of the pulses. Examples of other outcomes
of the collision, namely, decay of both pulses and their elas-
tic collision, are shown in Figs.(b) and Jc), respectively,
with the collision distance being very smath-0.1.

2. Position shifts of the pulses in the case of elastic collisions

A significant postcollision effect, in the case of the com-
plete elastic collisions between the SP’s, is a temporal shift
AT. The shift is apparent, for instance, in Figéc)4and Kc).

We have performed simulations to obtain the normalized
temporal shift p)AT as a function of the inverse-group-
velocity differencec= &, for different initial separations be-
tween SP’s. The results are shown in Fig(fér D= —18)

and Fig. 7(for D=+ 18); note that these figures display the
region of the values o€ which is relevant to the applica-
tions, according to the estimate E¢). Each curve starts
from the maximum value of the temporal shift corresponding
to the critical valuec=c,,. As is seen, the smallest value of
the temporal shift is attained in the case of the normal dis-
persion. Also, it is observed that a larger initial separation
7T leads to smaller values of the temporal shift in the case of
the normal dispersion, while the opposite holds in the
anomalous-dispersion case.

TABLE Ill. Outcomes of incomplete collisions faf=2c.

Incomplete collisions §=2c¢)

Normal dispersion=—18) Anomalous dispersiorD)(= + 18)

Velocity Outcome Velocity Outcome
FIG. 3. Incomplete collisions of two pulses in the anomalous-C<14.26 decay c<1.73 merger
dispersion regime = +18). (a) Decay of both pulses, witlt c=14.26 elastic 1.78¢c<122.17 decay
= 5=40. (b) Merger of the pulses, witlt=5=2. (c) An elastic c=122.17 elastic

collision, withc=6=48.
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TABLE IV. Outcomes of complete collisions fa¥=c and T
=4.7.

Complete collisions §=c and »T=4.7)

Normal dispersionp=—18) Anomalous dispersiorD(= + 18)

Velocity Outcome Velocity Outcome

c<1.88 decay c<3.33 merger
1.88<c<2.56 merger 3.38¢<12.82 decay
2.56<c¢<7.85 decay c=12.82 elastic

7.85<¢<8.09 elastic
8.09=c<11.71 merger
11.71=c<13.92 decay
c=13.92 elastic

It is quite pertinent to compare the numerical results dis-
played in Figs. 6 and 7 with the analytical prediction Eq.
(32), which should be relevant under conditio(®3) and
(29). First of all, the substitution of expressi@¢d?) into con-
dition (33) leads to an inequalitg®>A?|D|. From values of
the parameters being taken as per E§6) and(37), we can
conclude that this inequality holds in the parts of Figs. 6 and
7, where irregular oscillations go over into a systematic de-
cay of »AT with the increase ot.

Next, using expressiof4) for the effective friction co-
efficient which appears in the second condit{@), and the
same values of the parameters from E&§) and(37), one
sees that this condition readily holds in the case of the
anomalous dispersion, shown in Fig. 7, and in the case of
normal dispersionFig. 6) it holds for large values oft,
where the above-mentioned systematic decaydf takes
place.

Thus, one may expect that the analytical result Eg)
may be correct for sufficiently large valueswih both cases.
The inspection of Figs. 6 and 7 corroborates this expectation:
despite a considerable scatter of the values of the normalized
shift, depending on the initial value of the temporal separa-
tion between the pulses, the analytically predicted depen-
dence Eq(32) not only qualitatively agrees with the numeri-
cal results for large, but also, as one can readily determine,
numerical values of the shift, as predicted analytically and
found from the simulations, are fairly close.

D. The full-stability region for the solitary pulses

The results presented above were restricted to the fixed
values of the loss and coupling coefficients=5 and K
=4. Itis also important to investigate pulse collisions in the
full parameter spacel(,K,c) and, in particular, to identify
parametric domains where solely elastic complete collisions
occur. These domains actually represent regions offulie
stability of SP’s in the system of Eq$l)—(4), since colli-
sions are natural finite perturbations in this model, against
which the pulses must be stable, as well as against infinitesi-
mal perturbationgin this extended definition of the stability,

PHYSICAL REVIEW E 65 036605

FIG. 4. Complete collisions of two pulses in the normal-

we consider only complete collisions, which are inherentdispersion regimed=—18). () Merger of the pulses, witk= &
perturbations, and disregard incomplete collisions, that=10. (b) Decay of both pulses, with=§=13. (c) An elastic col-
strongly depend upon particular initial conditions lision, with c= 6=14.
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FIG. 5. Complete collisions of two pulses in
0 . . 0 /\ the anomalous-.dlspersmn regim@ € +18). (a)
5 0 5 Vs 0 S The merger, withc=6=2. The two pulses get
t t stuck almost immediatelysee the inset showing
(a) (b) the initial stage of the collision in detailand
then they propagate, keeping this shape up to
06 ~ 3000, where the mergéin fact, destruction of

one of the pulseseventually takes placéb) De-
cay of both pulses, witlt=6=5. (c) An elastic
collision, with c=6=48.
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FIG. 6. Relative temporal shift vs the inverse-group-velocity = FIG. 7. Relative temporal shift vs the inverse-group-velocity
mismatchc= § in the case of normal dispersio® & —18). mismatchc= & in the case of anomalous dispersidn=¢ + 18).
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%

FIG. 8. The full-stability region(implying the stability of the
solitary pulses against both arbitrary infinitesimal perturbations, and A (\
against collisions with a pulse moving in the other chahiethe 000 : 5'0 L 5'0 . "

(K,I') parametric plane, at different fixed values of the inverse- 1
group-velocity difference between the channels, in the case of nor- t
mal dispersion D= —18).

00

FIG. 10. An elastic complete collision betweémree solitary
pulses in the three-channel model, in the case of normal dispersion
The thus defined full-stability domains, found by means(D=—18), withc=¢6=20 and»T=2.34.
of systematic simulations, are displayed in Figs. 8 and 9 for
the cases of the normal and anomalous dispersion, respecsntains three channels, which are described by the follow-
tively, as gray regions in thel(K) parametric plane for ing system of the coupled CGL equations:
different values of the group-velocity parameter within O
=<c=<10. Notice that the domains have, roughly speaking, a . 1 . .
boomerang-like shape, resembling the corresponding domain i (uz+2cu) + (2D = Uy —iu+(|ul*+2Jv]*+2jw|?)u
found earlier in the single-channel stabilized CGL model, =K ¢, (39)
described by the decoupled subsysteths(3) or (2),(4)
[12]. More importantly, in both casd3= *+ 18, there exists a
minimum value ofc necessary for the collisions to be elastic,  iw,+ (3D —i)wy—iw+ (|w|?+2|u|?+2|v|?)w=K},
which is significantly lower in the case of the anomalous (39
dispersion, namelc,,;,=2 for D=+18, andc,,,=6 for
D= —18. It should also be noted that the unshaded triangular N ] ) ) ) )
region shown in Fig. 9 corresponds to the case where the two i(v,—2cv)+(3D=vy—iv+(Jv]*+2|ul*+2|w|*)v
pulses copropagate undistorted without actual interaction

) =Ky, 40
over a very long distancez&4000). v (40
V. THE THREE-CHANNEL MODEL (¢, +2chy) +il'dp=Ku, (41)
The model considered in this work can be extended to _ _
explicitly include a larger number of WDM channels, i.e., a ix,+il xy=Kw, (42
larger number of the CGL equations, each being coupled to
its linear dissipative counterpart. The simplest generalization i(,— 2cy) +iT =Ko, (43)

where we have assumed that each channel has the same
group velocity in the active and passive cores, while the
relative velocity between adjacent channels ¢s &s in the
above model(1)—(4). Although detailed study of the ex-
tended model is beyond the scope of this work, we give here
an example of the existence fflly stablepulses in the sys-
tem (38)—(43), which undergo elastic complete collisions
with each other. As is shown in Fig. 10or I'=5, K
=4, ¢=20, andynT=2.34), the three pulses after traveling a
distance ofz~1 collide and then restore their shapes and
propagate undistorted. Thus, we may conjecture that the pro-
posed stabilized scheme may be generalized to include a
FIG. 9. The same as in Fig. 8 for the case of anomalous dispefarger number of channels in which case stable pulses may
sion D= +18). still experience elastic collisions.
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VI. CONCLUSION pulses reappear unscathed after the colligwith some po-
sitional shiftg, provided that the group-velocity difference

chirped solitary pulses in nonlinearly coupled cubic comple etyveeq the channe,ls exceeds a critical value. As.a re;glt,
Ginzburg-LandauCGL) equations, each being linked to a regions in the model’s parameter space have been identified

stabilizing dissipative linear equation. Primarily, the two- here the pulses are stable against both small perturbations
channel model was considered. The model may be realized"d mutualicompletg collisions. An analytical perturbation
as wavelength-separated data-transmission channels coexigteory was developed to predict the positional shifts. The
ing in a nonlinear dual-core optical fiber, which contains an@nalytical results agree well with the numerical ones in the
active core with gain, and a passive core, where the prop&ases when applicability conditions for the perturbation
gation is governed by the linear dissipative equations. Eactheory hold.
channel has its components in the active and passive cores, For WDM applications, it is important not only to guar-
with a linear coupling between them. Nonlinear interactionantee the quasielastic character of the collisions between
between different channels is induced by the cross-phasgulses belonging to different channels, but also to have the
modulation(XPM), which acts in the active core only. Thus, critical group-velocity difference between adjacent channels,
the model describes a WDM multichannel fiber-optic trans-necessary for the elasticity of the collisions, as small as pos-
mission system, provided that the dispersion length of theible, so that the wavelength separation between the channels
pulses is essentially larger than the amplification and filteringnay be minimized. To this end, we have found that, in the
spacing, so that the system may be considered in the approxdase of incomplete collisions, the normal-dispersion regime
mation which assumes a uniformly distributed bandwidth-provides an essentially smaller critical velocity, whereas in
limited gain in the active coréand a continuous passive core the case of complete collisions, the critical velocities are al-
which, in reality, may consist of short segments periodicallymost equal for both signs of the dispersion. However, the
inserted into the long fiber-optic link, together with amplifi- region in the parameter space where complete collisions are
ers and filters always elastic is essentially larger in the case of anomalous
If the CGL subsystems are decoupled, they possess staldéspersion, and another advantage of the latter case is that the
chirped pulse solutions, which can be found in an exact anaemporal width of the pulses is much smaller. On the other
lytical form, provided that the group-velocity parameter ishand, the residual effect of elastic collisions, viz., the tempo-
identical in the cubic and linear equations. The XPM-ral shift of the pulses, which contributes to the soliton jitter
induced nonlinear coupling between the subsystems giveis optical communications, is weakest in the case of normal
rise to interactions when the pulses belonging to the differendispersion. Actually, the best solution may be to use the
subsystems collide. By means of direct simulations, we havehannels in both normal-dispersion and anomalous-
studied incomplete and complete collisions in detail. Threadispersion bands in the fiber. Finally, we have shown that the
different possible outcomes of the collision have been foundmodel may be extended to include more than two WDM
in the cases when the dispersion in the active core is anomahannels giving rise, in an appropriate region of the corre-
lous or normal: destruction of both pulses, destruction of onesponding parameter space, to completely stable, three-pulse
of them, and a quasielastic collision. In the latter case, botleollisions being quasielastic.

In this paper we have studied in detail collisions of
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