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Multichannel pulse dynamics in a stabilized Ginzburg-Landau system
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We study the stability and interactions of chirped solitary pulses in a system of nonlinearly coupled cubic
Ginzburg-Landau~CGL! equations with a group-velocity mismatch between them, where each CGL equation
is stabilized by linearly coupling it to an additional linear dissipative equation. In the context of nonlinear fiber
optics, the model describes transmission and collisions of pulses at different wavelengths in a dual-core fiber,
in which the active core is furnished with bandwidth-limited gain, while the other, passive~lossy! one is
necessary for stabilization of the solitary pulses. Complete and incomplete collisions of pulses in two channels
in the cases of anomalous and normal dispersion in the active core are analyzed by means of perturbation
theory and direct numerical simulations. It is demonstrated that the model may readily support fully stable
pulses whose collisions are quasielastic, provided that the group-velocity difference between the two channels
exceeds a critical value. In the case of quasielastic collisions, the temporal shift of pulses, predicted by the
analytical approach, is in semiquantitative agreement with direct numerical results in the case of anomalous
dispersion~in the opposite case, the perturbation theory does not apply!. We also consider a simultaneous
collision between pulses inthreechannels, concluding that this collision remains quasielastic, and the pulses
remain completely stable. Thus, the model may be a starting point for the design of a stabilized wavelength-
division-multiplexed transmission system.

DOI: 10.1103/PhysRevE.65.036605 PACS number~s!: 42.81.Dp, 42.65.Tg, 42.81.Qb
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I. INTRODUCTION

It is commonly known that cubic complex Ginzburg
Landau~CGL! equations constitute a class of universal mo
els for the description of pattern formation in various nonl
ear dissipative media@1#. Equations of the CGL type are als
frequently used in nonlinear fiber optics, to describe the
mation, stability, and interactions of solitary pulses~SP’s!.
CGL equations with constant coefficients apply to a lo
nonlinear optic-fiber link if the pulses in it are broad enoug
so that the corresponding dispersion length is essent
larger than the amplification spacing. In this case, the p
odically placed amplifiers and filters~which limit the gain to
a relatively narrow spectral band! may be considered in th
uniformly distributed approximation, neglecting their di
creteness@2#.

The single-component CGL equation with the cubic no
linearity possesses a well-known exact solitary-pulse s
tion @3#, which includes an internal chirp~phase curvature
across the pulse!. However, a fundamental drawback of th
solution is that it isunstable, as the zero solution to the cub
CGL equation, i.e., a background on top of which the puls
built, is unstable due to the presence of linear gain in
equation. Development of physically realistic models
which solitary pulses are fully stable is a problem of obvio
interest in its own right, and it also has profound importan
for fiber-optic communications~see Ref.@2# and, for in-
stance, a recent work@4#!, as well as for the design o
soliton-generating fiber-loop lasers@5#. In the context of op-
tical telecommunications, an issue of fundamental sign
cance is the development of adequate models for multic
ponent systems, corresponding to a wavelength-divis
1063-651X/2002/65~3!/036605~12!/$20.00 65 0366
-
-

r-

,
lly
i-

-
-

is
e

s
e

-
-

n-

multiplexed ~WDM! multichannel scheme implemented
the optical fiber. An objective is then to design a syste
supporting pulses in all the channels, which must be sta
against small perturbations and mutual collisions~see, e.g.,
Refs.@6,7# and a recent paper@8#!.

A single-channel system, which may suppress the in
bility of the zero solution, simultaneously allowing for th
existence of stationary pulses and thus opening the way
them to be stable, was proposed and studied by mean
analytical perturbative methods in Ref.@9#, and then tested
by direct simulations in Ref.@10#. In this system, the CGL
equation is linearly coupled to an additional dissipative eq
tion, which is a linear one in the most fundamental a
physically relevant version of the model@10,11#. In the con-
text of optical fibers, the system may be realized as adual-
core fiber, in which an active core carries the linear ga
filtering, temporal dispersion, and Kerr nonlinearity, whi
the parallel-coupled core is lossy, its intrinsic nonlineari
dispersion, and filtering being negligible. It has recently be
shown @12# that this model may describe transmission
fully stable optical solitary pulses with an internalchirp ~in-
trinsic phase structure! in an indefinitely long fiber-optic
communication link.

In this paper, we study the stability and collisions
chirped solitary pulses in a system of nonlinearly coup
CGL equations stabilized by means of the aforementio
scheme, i.e., by linearly coupling each CGL equation to
own linear dissipative counterpart. In its simplest versio
that are considered in this work, the model includes two
three nonlinearly coupled stabilized subsystems, which
prototype of astabilized WDM system. The most interesting
issues, on which we focus in this work, are the stability
©2002 The American Physical Society05-1
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H. E. NISTAZAKIS et al. PHYSICAL REVIEW E 65 036605
SP’s in this system and collisions between them~including a
simultaneous collision between three pulses belonging
three channels!. Besides the obvious relevance to optic
telecommunications, the obtained results are of interes
their own right, demonstrating new types of stable travel
pulses and collisions between them in a generalized~multi-
component! CGL system.

The paper is structured as follows. In Sec. II, we give
detailed formulation of the model with two channels, a
exact solutions for SP’s in each channel. In Sec. III, we
velop an analytical approach to the collision problem, ba
on the perturbation theory. In particular, a prediction for p
sition shifts of the pulses in the case of a quasielastic co
sion is obtained in a fully analytical form. In Sec. IV, resu
of systematic direct simulations of the collisions are d
played for both inelastic and quasielastic cases; in the la
case, the analytical predictions are found to be in good ag
ment with the numerical results~in a parametric region
where the perturbation theory applies!. In the same section,
region in the model’s parametric space is identified, in wh
the pulses arefully stable, i.e., against both small perturb
tions and mutual collisions. A generalization for a thre
channel model is briefly considered in Sec. V, with the co
clusion that the pulses are also stable against simultan
collision of three of them. The paper is concluded in Sec.

II. THE TWO-CHANNEL MODEL AND EXACT
SOLUTIONS FOR THE PULSES

A. The model

The simplest version of the model describes the propa
tion of two waves,u and v, carried by two different wave-
lengths in the active core of a dual-core optical fiber. T
waves interact through the cross-phase modulation indu
by the Kerr effect in the active core. The fieldsu andv are
assumed to be linearly coupled to two other fields,f andc,
respectively, which propagate in the passive core placed
allel to the active one. In fact, it is not necessary to assu
that all the long fiber-optic link has a dual-core structu
instead, it is sufficient to have short segments of the du
core fiber periodically installed into the link. Then, in th
same uniformly distributed approximation which was me
tioned above in relation to amplification and filtering, w
may consider aneffectively homogeneousdual-core fiber
link. In fact, this approximation was already applied to t
single-channel dual-core model in Ref.@13#.

Thus, the model is based on the following system of n
malized equations governing the propagation of the f
above-mentioned electromagnetic waves in the two line
coupled fiber cores:

i ~uz1cut!1~ 1
2 D2 i !utt2 iu1~ uuu21suvu2!u5Kf,

~1!

i ~vz2cv t!1~ 1
2 D2 i !v tt2 iv1~ uvu21suuu2!v5Kc,

~2!

i ~fz1d•f t!1 iGf5Ku, ~3!
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i ~cz2d•c t!1 iGc5Kv, ~4!

where the complex electric field envelopesu, v, f, andc
are functions of the propagation distancez and retarded time
t which are defined in the usual way@2#. In the active core,
which is equipped with the amplification and filtering, th
fieldsu andv obey Eqs.~1! and~2!, that include the nonlin-
ear self-phase modulation, linear gain, and effective filter
~the latter term is formally tantamount to diffusion in thet
space!. Coefficients in front of the terms in Eqs.~1! and ~2!
accounting for these three basic effects are all normalize
be equal to 1. On the other hand, the dispersion coefficienD
is explicitly present in the equations,D.0 andD,0 corre-
sponding, respectively, to anomalous and normal dispers
The field envelopesu andv in the active core are nonlinearl
coupled to each other, interacting through the cross-ph
modulation~XPM! induced by the Kerr effect, which give
rise to the XPM coupling coefficients52 in Eqs.~1! and
~2!. The fieldsu and v are linearly coupled, through th
corresponding coefficientK, to their counterpartsf andc in
the linear dissipative core, which is characterized by a l
coefficientG. Finally, the parametersc andd in Eqs.~1!–~4!
stand for the inverse-group-velocity differences between
copropagating waves in the active and passive~lossy! cores.

A numerical value ofc ~assuming thatd5c) will play an
important role below. To estimate the value that is of prac
cal interest, we note that the difference in the inverse gro
velocity is simply related to the frequency separationDv
between the channels,c5bDv, whereb5k9 is the standard
physical dispersion coefficient@2,6#. The frequency differ-
ence can be expressed in terms of the wavelength separ
Dl, Dv52(2pc0 /nl2)Dl, where l is the wavelength
proper,c0 is the light velocity in vacuum, andn is the re-
fractive index. For applications, the case of interest is the
with the pulse’s temporal width;10 ps @2,6,7# and the
wavelength separation between 1 and 0.1 nm@7#. Using
these values, and typical values of the dimensional par
eters for which the present model provides for the best
bility of the pulses@see Eqs.~36! and ~37!#, an estimate
similar to that presented, e.g., in Ref.@14# shows that rel-
evant dimensionless values ofc belong to an interval

c;20–200. ~5!

Numerical results will be presented for this region of t
values ofc ~see Figs. 6 and 7 below!.

B. The linear spectrum

Before proceeding to the analysis of the full system, it
relevant to consider its linear spectrum in the dissipationl
limit, i.e., in the case when the gain, filtering, and loss ter
are dropped in Eqs.~1!–~4!. In the linear limit, the two sub-
systems (u,f) and (v,c) are decoupled, and, looking for th
solution to the linearized equations in the ordinary fo
;exp(ikz2ivt), one arrives at the following dispersion rela
tions between the propagation distancek and frequencyv:
5-2
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q5
1

4D
$~c2d!22D2j26A@~c2d!22D2j2#2116D2K2%,

~6!

where

q[k7d•v, j[v6~c2d!/D. ~7!

In the definitions~7! of the shifted propagation constant an
frequency, the upper and lower signs pertain, respectively
the (u,f) and (v,c) subsystems, while in the dispersio
relation ~6! the two different signs yield two differen
branches of the dispersion curve, see Fig. 1.

It follows from Eq. ~6! that the spectrum shown in Fig.
always has agap,

0,24 Dq,A~c2d!4116D2K22~c2d!2, ~8!

inside which, following the general principles@15#, one may
expect the existence of a family ofgap solitons@note that the
full dissipationless version of the present model, includ
the nonlinear terms in Eqs.~1! and~2!, is definitely noninte-
grable, therefore ‘‘solitons’’ are meant here simply as solita
waves#. However, the objective of this work is not to stud
that possible family, but to focus on the search for sta
pulses in the full model, including the gain, filtering and los
which is much more relevant to applications.

C. Solitary-pulse solutions

If the field is launched into one channel only, the syst
~1!–~4! reduces to a subsystem of Eqs.~1! and~3!, or ~2! and
~4!, each including a CGL equation linearly coupled to
linear dissipative counterpart. If, additionally, there is no d
ference in the group-velocity mismatch in the active and p
sive core~i.e., c5d), then, in the reference frame movin
with the common group velocity, each subsystem~1!,~3! or
~2!,~4!, decoupled from the other one, possesses its own
of exact analytical solutions for chirped SP’s, which we

FIG. 1. A typical form of the dispersion curvesq(x) @the shifted
propagation constant and frequency are defined in Eqs.~7!# for the
linearized system in the dissipationless approximation. The cu
are shown forD5118 ~the case of the anomalous dispersion! and
c5d. For normal dispersion (D5218), the dispersion curves ar
mirror images of those shown in this figure.
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actually found in Ref.@11#. In the reference frame moving
with the common inverse velocityc5d, the exact solution
takes the form

u5A exp~ ikz!@sech~ht !#11 im, ~9!

f5AK~ iG2k!21exp~ ikz!@sech~ht !#11 im, ~10!

where the definition of the retarded timet is adjusted to the
above-mentioned moving reference frame, and the chirp
efficient is

m52 3
4 D1 1

4 A3219D2. ~11!

The SP’s inverse widthh and squared amplitudeA2 ~which
is the peak power, in the application to optics! are expressed
in terms of the wave numberk

h25
2k~G21!

k~Dm22!1G@~12m2!D14m#
,

A25~31 1
4 D2!mh2, ~12!

and, finally, the wave number itself is determined by a cu
equation

~mD22!~k221!k1„~12m2!D14m…„k22G~K22G2!…

50. ~13!

Clearly, physical solutions of Eq.~13! are those which
yield a real wave numberk and h2.0. Physical solutions
usually exist in pairs, and only the one with a larger value
the peak power may be stable. As it was demonstrated
Refs. @10–12#, the SP solution with the larger amplitude
indeed stable in a fairly vast region in the parameter sp
(G,K,D). These pulses definitely remain stable in the fram
work of the full system~1!–~4!. Indeed, because the tw
above-mentioned subsystems~1!,~3! and ~2!,~4! are coupled
solely by the nonlinear XPM terms, the only additional s
bility condition for a pulse belonging to either subsystem
the linear stability of the zero solution in the mate subsyste
which is always the first condition imposed on parameters
the eligible model.

Note that the exact SP solution displayed above can
extended to the full system of the four equations~1!–~4! if
the group-velocity differences vanish, i.e.,c5d50: the ex-
pressions~9!–~13! then yield a solution to the system of th
four equations after the transformation u,v
→(u,v)/A3, f,c→(f,c)/A3, and settingu5v and f
5c.

In the most general case,cÞd, no exact solution for SP’s
is available, but pulses can be found numerically, see be
In any case, pulses generated by the decoupled subsys
~1!,~3! and ~2!,~4! move at different velocities, hence the
may collide. The strong XPM-induced nonlinear couplin
between the channels, together with the dissipative chara
of the system~1!–~4!, may give rise to complex dynamica
behavior as a result of the collisions.

es
5-3
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Our objective in this work is to study in detail collision
between SP’s in the system~1!–~4! and their stability. Note,
in particular, that in the case when the inverse-group-velo
differences in the active and passive cores are large
nearly equal, i.e.,c'd@1, the subsystems~1!,~3! and
~2!,~4! nearly decouple, therefore quasielastic collisions
expected in this case, while at smaller values of the gro
velocity mismatch collisions may be strongly inelastic. The
expectations are corroborated by numerical simulati
which are displayed below.

III. AN ANALYTICAL APPROACH TO COLLISIONS
BETWEEN SOLITARY PULSES

A. The perturbation theory

In the cases of practical interest to fiber-optic telecomm
nications, the model is far from any exactly integrable lim
therefore only direct numerical simulations of collisions b
tween pulses~and of their stability!, results of which will be
summarized in the next section, are really relevant. Nev
theless, some qualitative insight into the collision proble
can be gained from an analytical approach, assuming
pulses may be approximated as quasisolitons. Within
framework of such an approach in its most general poss
form each pulse, in its own reference frame@in which an
exact solution is given by Eqs.~9!–~13!, assuming thatd
5c#, is taken as

u5A f„h~ t2T!…exp~ ikz2 ivt !, ~14!

f5Fg„h~ t2T!…exp~ ikz2 ivt !, ~15!

v5A f„h~ t1T!…exp~ ikz1 ivt !, ~16!

c5Fg„h~ t1T!…exp~ ikz1 ivt !. ~17!

Here f (ht) and g(hT) are ~generally speaking, complex!
functions accounting for a particular shape of the unp
turbed pulses,h being their inverse temporal width,A andF
are amplitudes of their two components, and6v and 6T
are shifts of the pulses’ central frequencies and temporal
sitions due to the interaction between them@we consider the
interaction between identical pulses, hence the symmetry
tween expressions~14!,~15! and~16!,~17!#. Each componen
of the pulse has its own effective mass, for instance,

Mu5A2h21E
2`

1`

u f ~x!u2dx, Mf5F2h21E
2`

1`

ug~x!u2dx.

~18!

~Note that, in the absence of losses and gain,Mu1Mf , as
well asM v1Mc , are the conserved optical energies in ea
subsystem.! For the pulse given by the solution~9!–~13!, one
finds

Mu52h21A2, Mf5MuK2/~k21G2!. ~19!

The XPM-induced coupling between the two subsyste
gives rise to a potential force of attraction between
pulses, which can be calculated by means of well-kno
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methods~see, e.g., Refs.@14,16#!, provided that XPM may
be treated as a small perturbation~conditions for applicabil-
ity of this assumption will be considered below!. It is also
known that the filtering term in Eqs.~1! and~2! gives rise to
an effective friction force which, in the most general ca
can be evaluated and combined with the potential force
means of the balance equation for the pulse’s momentum~as
it was done, for instance, in Refs.@17#!. As a result, one
arrives at evolution equations for the soliton’s position a
frequency shifts in the following general form:

dT

dz
52Dv, ~20!

dv

dz
52kh2

Mu

Mu1Mf
v2

A4

~Mu1Mf!
U8„h~T1cz!…,

~21!

where the prime stands for the derivative, and the frict
coefficient and interaction potential are

k5

E
2`

1`

ud f~x!/dxu2dx

E
2`

1`

u f ~x!u2dx

, ~22!

U~y!5E
2`

1`

u f ~x2y!u2u f ~x1y!u2dx ~23!

~the XPM coefficients was set equal to its physical valu
2). The additional termcz in the argument of the potential in
Eq. ~21! is generated by the group-velocity difference b
tween the two channels, and the ratio of the masses in
friction term on the right-hand side of Eq.~21! appears since
the friction force acts only on theu component of the pulse
but not on itsf component. Note that these general equ
tions are also valid in the case of dispersion managem
whenD is not a constant, but a function ofz @17#.

For the pulses with the shape given by Eqs.~9!–~13!, one
can find, from the expressions~22! and ~23!, that

k5~4/3!~11m2!,
Mu

Mu1Mf
5

1

11
K2

k21G2

, ~24!

U~y!54
2y cosh~2y!2sinh~2y!

sinh3~2y!
. ~25!

It is worth mentioning that expression~25! contains no sin-
gularity aty→0.

To predict results of the collisions in the general case,
nonlinear nonautonomous (z-dependent! ordinary differen-
tial equations~ODE’s! ~20! and ~21! with the effective po-
tential ~25! must be solved numerically. In view of the com
plexity of this ODE system and its approximate character
makes sense to focus, instead, on direct simulations of
underlying partial differential equations~PDE’s! ~1!–~4!,
5-4
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which will be done below. Nevertheless, some results can
obtained directly from ODE’s~20! and~21!. In particular, the
most essential effect observed in direct simulations of
underlying PDE’s is an inelastic outcome of the collisi
~merger or complete decay of the pulses!, provided that the
group-velocity differencec is below a certain critical~thresh-
old! valueccr . This value may be, very roughly, estimated
that at which the friction and potential forces in Eq.~21! are
comparable, which yields

ccr;
uDuA2

h~11m2!
. ~26!

To obtain this estimate, it was set thatMu /(Mu1Mf)'1,
which is true in the cases considered below, the expres
~24! for the friction coefficient was used, and it was natura
assumed that, for a nontrivial collision, the maximum va
of the frequency shiftv is on the order ofDc, see Eq.~20!.
Below, it will be seen that the crude estimate based on
~26! helps us to understand the fact thatccr is much smaller
for the case of normal dispersion than for pulses propaga
under anomalous dispersion.

B. Collision-induced position shifts of the pulses

The ODE’s~20! and~21! can be used to obtainquantita-
tive results in the limiting case of largec, so that

UdT

dzU!c. ~27!

In fact, this is the case when the interaction of the pulses
to XPM may be treated as a small perturbation, and all
above approach is strictly valid. In this case, the termhT in
the argument of the potential in Eq.~21! may be omitted,
hence the equation immediately becomes linear. Upon s
stitution ofv52D21dT/dz from Eq.~20! into Eq.~21! and
integrating once, it reduces to the following first-order line
equation:

d~hT!

d~chz!
1k

h

c
~hT!5

A2D

2c2
U~chz! ~28!

~it is more natural to consider, as final dynamical variabl
the renormalized temporal shifthT and propagation distanc
chz). To obtain Eq. ~28!, it was again assumed tha
Mu /(Mu1Mf)'1, which will be confirmed below, and
Mu52A2/h was substituted as per Eq.~19!.

Equation~28! can be further simplified if, in addition to
the condition~27!, the group-velocity difference between th
channels is large enough in comparison with an effec
friction force, so that

kh!c. ~29!

In fact, this condition turns out to be less restrictive than E
~27! ~see below!. Neglecting the friction term, Eq.~28! takes
the form
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d~chz!
5

A2D

2c2
U~chz!. ~30!

Equations~28! and ~30! show that the collision is elastic
in the present case, as the inverse-group-velocity shiftdT/dz
is zero atz56`, i.e., both before and after the collision
Nevertheless, the result of the collision is not trivial. Indee
Eq. ~30! can be used to evaluate an important characteri
of the elastic collision, viz., a residual temporal~position!
shift of the pulse

hDT[h@T~z51`!2T~z52`!#5
A2D

2c2 E2`

1`

U~x!dx.

~31!

This shift is important as it gives rise to the collision-induc
temporaljitter of the pulses, see, e.g., Refs.@14# and@16#. In
particular, for the potential Eq.~25! one has*2`

1`U(x)dx
52, hence

hDT5A2D/c2. ~32!

This analytical prediction will be compared below with r
sults of direct simulations.

To conclude the analytical consideration, we note that
general condition~27! takes a simple form in terms ofDT.
Indeed, in the present case the characteristic collision
tanceDz is determined by the pulse’s temporal width 1/h, so
that Dz;1/(hc), and dT/dz may then be estimated a
DT/Dz;hcDT. Inserting this into Eq.~27!, one arrives at a
simple result

huDTu!1, ~33!

which means that the linear equation~28! applies to the de-
scription of collisions between pulses if the resulting norm
ized temporal shift of the pulse is small.

IV. NUMERICAL ANALYSIS OF COLLISIONS
AND STABILITY OF PULSES

A. The approach to the problem

We have employed the split-step Fourier algorithm
solve Eqs.~1!–~4! numerically using, as initial conditions,
superposition of separated waveforms~9! and ~10!, which
yield exact SP solutions for the two decoupled subsyste
~1!,~3! and ~2!,~4!. Thus, the following initial configurations
are used:

u~0,t !5A$sech@h~ t2T!#%11 im,

v~0,t !5A$sech@h~ t1T!#%11 im, ~34!

f~0,t !5
AK

iG2k
$sech@h~ t2T!#%11 im,

c~0,t !5
AK

iG2k
$sech@h~ t1T!#%11 im, ~35!
5-5
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which incorporate an initial temporal separation 2T between
the pulses. We will then be able to study bothincompleteand
completecollisions, corresponding toT50 and TÞ0, re-
spectively~i.e., collisions between initially overlapped an
separated SP’s, see, e.g., Refs.@14# and @16# for the discus-
sion of relative importance of both types of the collisions!.

As for the choice of parameters, in most cases we h
used the valuesG55 andK54, which are located almost in
the center of the stability domain of the exact SP solution
the decoupled subsystems~1!,~3! and ~2!,~4! @12#. For the
dispersion parameterD we have chosen the valuesD
5618, in the anomalous- and normal-dispersion regim
respectively. These two values ofD actually correspond to
the carrier wavelength near the zero-dispersion point i
dispersion-shifted fiber@12# @recall that Eqs.~1! and ~2! are
normalized so that the effective filtering coefficients in the
are set equal to 1#. As was shown in Ref.@12#, for a typical
physically relevant value of the filtering, the correspondi
valuesuDu are indeed close to 18. Also, this value ofD gives
rise to the best stability characteristics for SP’s in the sin
channel model. Using these values forG, K, and D, the
other parameters of the exact SP solution can be found f
Eqs. ~9!–~13!: in the case of anomalous dispersion (D
5118),

m50.074, h51.57, k523.35, A2544.56, ~36!

and for the normal dispersion (D5218),

m527.074, h50.058, k523.35, A2522.37.
~37!

In the anomalous-dispersion regime, the pulses are m
narrower, and~quite naturally! have a much smaller chirp
than their counterparts existing in the case of the nor
dispersion. Note that, for these values of the paramet
Mf'0.028•Mu according to Eqs.~19!, i.e., the mass of the
passive-core component of the pulse is negligible in co
parison with its active-core component’s mass.

Our first objective is to study in detail all possible ou
comes of collisions of stable moving pulses. In the numer
simulations we have found that, depending on the value
the inverse group-velocity mismatchc in the active core,
three different outcomes of the collisions occur:~a! both SP’s
perish ~‘‘decay’’ !; ~b! only one SP survives the collision
while the other one is destroyed~this outcome may also b
considered as a merger of two pulses into one!; and ~c! the
pulses undergo a quasielastic collision, so that both reap
unscathed after the collision.

Formation of a true stable bound state of two solitons a
result of the collision has never been observed in the si
lations. However, it will be shown below that, in some sp
cial cases@see Fig. 5~a!#, a metastable bound state is o
served, which exists over a very long propagation distan
but finally collapses into a single pulse.

As far as the above-mentioned outcomes~a! and ~b! are
concerned, it is important to mention that, in most ca
~apart from the exception corresponding to the formation
the metastable bound state, which will be specially cons
ered below!, we have found that the corresponding collisi
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distances are quite short,zcoll&60. Thus, in these cases, aft
passing the short collision distance, there remains, at m
one pulse. Obviously, the only outcome acceptable for ap
cations to the optical telecommunications is a quasiela
collision, when both SP’s restore their shapes after the in
action.

Detailed results obtained for the incomplete and comp
collisions in both normal- and anomalous-dispersion
gimes, as well as results for the stability of isolated movi
pulses, are summarized below. In all the simulations,
XPM coupling coefficient in Eqs.~1! and~2! was set equal to
its physical value,s52.

B. Incomplete collisions

The results for incomplete collisions@T50 in Eqs.~34!
and~35!# in the casec5d are summarized in Table I, wher
the three above-mentioned possible outcomes, namely
cay,’’ ‘‘merger,’’ and ‘‘elastic,’’ are indicated. As is shown
for both the normal- and anomalous-dispersion regim
there exists a critical~i.e., minimum! valueccr of the velocity
c, above which the collision is always elastic. More impo
tantly, the value ofccr in the case of the normal dispersion
much smaller, by a factor of'5, than that for the
anomalous-dispersion regime. As the smaller critical veloc
difference between the channels makes it possible to ha
denserWDM system, this result shows that the norma
dispersion regime may have an advantage over the more
ditional from the viewpoint of the soliton transmission@2#,
anomalous-dispersion regime. On the other hand, an ad
tage of the latter regime is that, inside a given channel,
pulses forming a data-carrying stream may be packed wi
higher density, as their width is much smaller according
Eqs.~36! and~37!. In fact, the best approach to the enhanc
ment of the bit rate of the fiber-optic telecommunication li
is to use the channels inboth the anomalous- and norma
dispersion bands.

The fact that the critical valueccr is much smaller in the
normal-dispersion regime can be explained by the crude
timate Eq.~26! obtained above on the basis of the analytic
consideration. Indeed, the ratio of the values which the
pression~26! takes for the parameters~36! and ~37! corre-
sponding to the anomalous and normal regimes is very sm
~however, the estimate is too crude for a detailed quantita
comparison with the numerical results!.

Typical examples of the three different outcomes of t
incomplete collisions are shown in Figs. 2~a!–2~c! ~for D
5218) and Figs. 3~a!–3~c! ~for D5118) in the form of
contour plots. As is readily observed, SP’s in the norm

TABLE I. Outcomes of incomplete collisions ford5c.

Normal dispersion (D5218) Anomalous dispersion (D5118)

Velocity Outcome Velocity Outcome

c,8.35 decay c,3.52 merger
8.35<c,9.53 merger 3.52<c,46.98 decay

c.9.53 elastic c>46.98 elastic
5-6



the
at is

f

lete

t is
re-

up-
s in

. As
y to
ts
at-
s
ssive
e

two

,
fil-
en
in

the

e-
five

on,

the
re-
rnate

ar-
-

ypi-
for

me,
ob-
nly

e

the
r

l-

MULTICHANNEL PULSE DYNAMICS IN A STABILIZED . . . PHYSICAL REVIEW E 65 036605
FIG. 2. Incomplete collisions of two pulses in the norma
dispersion regime (D5218). ~a! Decay of both pulses, withc
5d56. ~b! Merger of the pulses, withc5d59. ~c! An elastic
collision, with c5d514.
03660
dispersion regime are indeed much broader than those in
case of the anomalous dispersion, in accordance with wh
predicted by the analytical solution@see Eqs.~36!,~37!#. In
order to test the sensitivity ofccr to a possible mismatch o
the interchannel inverse-group-velocity differencesd and c
between the two cores, we have also simulated incomp
collisions in the casedÞc, viz., d51.1c and d52c. The
results are summarized in Tables II and III, respectively. I
found that, in both normal- and anomalous-dispersion
gimes, a mismatch in the values of the inverse-gro
velocity differences in the active and passive cores result
an increaseof the critical valueccr , which was again found
to be much larger in the case of the anomalous dispersion
was mentioned above, for the applications it is necessar
make the critical valueccr as small as possible. The resul
presented here clearly show that the optimum will be
tained whend5c, i.e., when the group-velocity difference
between the channels are the same in the active and pa
cores, which is not difficult to understand in qualitativ
terms. Indeed, a group-velocity mismatch between the
cores makes it necessary for the main component~in the
active core! to ‘‘drag’’ its counterpart in the passive core
which inevitably generates additional losses through the
tering term, thus enhancing inelasticity of collisions betwe
the pulses, cf. the perturbative treatment of the collision
the previous section.

C. Complete collisions

1. Inelastic and elastic collisions

The results of the simulations for complete collisions~i.e.,
for a case of a sufficiently large initial separation between
colliding pulses! in the cased5c are summarized in Table
IV. In the simulations, the initial temporal separation b
tween the solitons is taken to be equal, approximately, to
pulse widths, i.e.,hT52.34@see Eqs.~9! and~10!#. Accord-
ing to Eqs.~36! and ~37!, this choice impliesT540 andT
51.5, in the regions of normal and anomalous dispersi
respectively.

The results shown in Table IV suggest that, contrary to
case of incomplete collisions, in the normal-dispersion
gime the three outcomes, decay, merger, and elastic, alte
with the increase ofc, up to the threshold valueccr513.92,
past which only elastic collisions take place. Notice, in p
ticular, a small interval, 7.85<c,8.09, where the pulses un
dergo elastic collisions, which is foundbetweenthe regions
where at least one pulse disappears after the collisions. T
cal examples of the merger, decay, and elastic outcomes
D5218 are shown in Figs. 4~a!–4~c!. Notice that the colli-
sion distance in all the cases does not exceedz;5.

On the other hand, in the anomalous dispersion regi
outcomes of complete collisions resemble what was
served in the case of the incomplete collisions: there are o
three, relatively broad intervals ofc, where the outcomes ar
merger, decay, and elastic, with a value ofccr slightly smaller
than that in the normal-dispersion regime. However, in
case ofD5118 it is important to note that, in the merge
5-7
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FIG. 3. Incomplete collisions of two pulses in the anomalo
dispersion regime (D5118). ~a! Decay of both pulses, withc
5d540. ~b! Merger of the pulses, withc5d52. ~c! An elastic
collision, with c5d548.
03660
interval (0<c,3.33), the pulses demonstrate a behav
which is remarkably different from that observed in the ca
of the decay or merger outcomes of incomplete or comp
collisions in all the other cases. In this interval, the puls
stick together and propagate in such a quasibound state
a long distance~up to z;3000), after which one of the
pulses eventually decays. This behavior is demonstrate
Fig. 5~a! for c52, where the colliding SP’s form the locke
configuration immediately@see the inset in Fig. 5~a!#, and
then they propagate, keeping this configuration, up toz
;3000, where the merger eventually takes place through
destruction of one of the pulses. Examples of other outcom
of the collision, namely, decay of both pulses and their el
tic collision, are shown in Figs. 5~b! and 5~c!, respectively,
with the collision distance being very small,z;0.1.

2. Position shifts of the pulses in the case of elastic collisions

A significant postcollision effect, in the case of the com
plete elastic collisions between the SP’s, is a temporal s
DT. The shift is apparent, for instance, in Figs. 4~c! and 5~c!.
We have performed simulations to obtain the normaliz
temporal shift hDT as a function of the inverse-group
velocity differencec5d, for different initial separations be
tween SP’s. The results are shown in Fig. 6~for D5218)
and Fig. 7~for D5118); note that these figures display th
region of the values ofc which is relevant to the applica
tions, according to the estimate Eq.~5!. Each curve starts
from the maximum value of the temporal shift correspond
to the critical valuec5ccr . As is seen, the smallest value o
the temporal shift is attained in the case of the normal d
persion. Also, it is observed that a larger initial separat
hT leads to smaller values of the temporal shift in the case
the normal dispersion, while the opposite holds in t
anomalous-dispersion case.

-

TABLE II. Outcomes of incomplete collisions ford51.1c.

Incomplete collisions (d51.1c)

Normal dispersion (D5218) Anomalous dispersion (D5118)

Velocity Outcome Velocity Outcome

c,9.88 decay c,2.42 merger
9.88<c,10.87 merger 2.42<c,59.29 decay
10.87<c,14.17 decay c>59.29 elastic

c>14.17 elastic

TABLE III. Outcomes of incomplete collisions ford52c.

Incomplete collisions (d52c)

Normal dispersion (D5218) Anomalous dispersion (D5118)

Velocity Outcome Velocity Outcome

c,14.26 decay c,1.73 merger
c>14.26 elastic 1.73<c,122.17 decay

c>122.17 elastic
5-8
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It is quite pertinent to compare the numerical results d
played in Figs. 6 and 7 with the analytical prediction E
~32!, which should be relevant under conditions~33! and
~29!. First of all, the substitution of expression~32! into con-
dition ~33! leads to an inequalityc2@A2uDu. From values of
the parameters being taken as per Eqs.~36! and~37!, we can
conclude that this inequality holds in the parts of Figs. 6 a
7, where irregular oscillations go over into a systematic
cay of hDT with the increase ofc.

Next, using expression~24! for the effective friction co-
efficient which appears in the second condition~29!, and the
same values of the parameters from Eqs.~36! and ~37!, one
sees that this condition readily holds in the case of
anomalous dispersion, shown in Fig. 7, and in the case
normal dispersion~Fig. 6! it holds for large values ofc,
where the above-mentioned systematic decay ofhDT takes
place.

Thus, one may expect that the analytical result Eq.~32!
may be correct for sufficiently large values ofc in both cases.
The inspection of Figs. 6 and 7 corroborates this expectat
despite a considerable scatter of the values of the norma
shift, depending on the initial value of the temporal sepa
tion between the pulses, the analytically predicted dep
dence Eq.~32! not only qualitatively agrees with the numer
cal results for largec, but also, as one can readily determin
numerical values of the shift, as predicted analytically a
found from the simulations, are fairly close.

D. The full-stability region for the solitary pulses

The results presented above were restricted to the fi
values of the loss and coupling coefficients,G55 and K
54. It is also important to investigate pulse collisions in t
full parameter space (G,K,c) and, in particular, to identify
parametric domains where solely elastic complete collisi
occur. These domains actually represent regions of thefull
stability of SP’s in the system of Eqs.~1!–~4!, since colli-
sions are natural finite perturbations in this model, aga
which the pulses must be stable, as well as against infinit
mal perturbations~in this extended definition of the stability
we consider only complete collisions, which are inhere
perturbations, and disregard incomplete collisions, t
strongly depend upon particular initial conditions!.

TABLE IV. Outcomes of complete collisions ford5c andhT
54.7.

Complete collisions (d5c andhT54.7)

Normal dispersion (D5218) Anomalous dispersion (D5118)

Velocity Outcome Velocity Outcome

c,1.88 decay c,3.33 merger
1.88<c,2.56 merger 3.33<c,12.82 decay
2.56<c,7.85 decay c>12.82 elastic
7.85<c,8.09 elastic
8.09<c,11.71 merger
11.71<c,13.92 decay

c>13.92 elastic
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FIG. 4. Complete collisions of two pulses in the norma
dispersion regime (D5218). ~a! Merger of the pulses, withc5d
510. ~b! Decay of both pulses, withc5d513. ~c! An elastic col-
lision, with c5d514.
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FIG. 5. Complete collisions of two pulses i
the anomalous-dispersion regime (D5118). ~a!
The merger, withc5d52. The two pulses get
stuck almost immediately~see the inset showing
the initial stage of the collision in detail!, and
then they propagate, keeping this shape up toz
'3000, where the merger~in fact, destruction of
one of the pulses! eventually takes place.~b! De-
cay of both pulses, withc5d55. ~c! An elastic
collision, with c5d548.
ity ity
FIG. 6. Relative temporal shift vs the inverse-group-veloc
mismatchc5d in the case of normal dispersion (D5218).
03660
FIG. 7. Relative temporal shift vs the inverse-group-veloc
mismatchc5d in the case of anomalous dispersion (D5118).
5-10
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The thus defined full-stability domains, found by mea
of systematic simulations, are displayed in Figs. 8 and 9
the cases of the normal and anomalous dispersion, res
tively, as gray regions in the (G,K) parametric plane for
different values of the group-velocity parameter within
<c<10. Notice that the domains have, roughly speaking
boomerang-like shape, resembling the corresponding dom
found earlier in the single-channel stabilized CGL mod
described by the decoupled subsystems~1!,~3! or ~2!,~4!
@12#. More importantly, in both casesD5618, there exists a
minimum value ofc necessary for the collisions to be elast
which is significantly lower in the case of the anomalo
dispersion, namelycmin52 for D5118, andcmin56 for
D5218. It should also be noted that the unshaded triang
region shown in Fig. 9 corresponds to the case where the
pulses copropagate undistorted without actual interac
over a very long distance (z'4000).

V. THE THREE-CHANNEL MODEL

The model considered in this work can be extended
explicitly include a larger number of WDM channels, i.e.,
larger number of the CGL equations, each being couple
its linear dissipative counterpart. The simplest generaliza

FIG. 8. The full-stability region~implying the stability of the
solitary pulses against both arbitrary infinitesimal perturbations,
against collisions with a pulse moving in the other channel! in the
(K,G) parametric plane, at different fixed values of the inver
group-velocity difference between the channels, in the case of
mal dispersion (D5218).

FIG. 9. The same as in Fig. 8 for the case of anomalous dis
sion (D5118).
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contains three channels, which are described by the foll
ing system of the coupled CGL equations:

i ~uz12cut!1~ 1
2 D2 i !utt2 iu1~ uuu212uvu212uwu2!u

5Kf, ~38!

iwz1~ 1
2 D2 i !wtt2 iw1~ uwu212uuu212uvu2!w5Kx,

~39!

i ~vz22cv t!1~ 1
2 D2 i !v tt2 iv1~ uvu212uuu212uwu2!v

5Kc, ~40!

i ~fz12cf t!1 iGf5Ku, ~41!

ixz1 iGx5Kw, ~42!

i ~cz22cc t!1 iGc5Kv, ~43!

where we have assumed that each channel has the
group velocity in the active and passive cores, while
relative velocity between adjacent channels is 2c, as in the
above model~1!–~4!. Although detailed study of the ex
tended model is beyond the scope of this work, we give h
an example of the existence offully stablepulses in the sys-
tem ~38!–~43!, which undergo elastic complete collision
with each other. As is shown in Fig. 10~for G55, K
54, c520, andhT52.34), the three pulses after traveling
distance ofz'1 collide and then restore their shapes a
propagate undistorted. Thus, we may conjecture that the
posed stabilized scheme may be generalized to includ
larger number of channels in which case stable pulses
still experience elastic collisions.

d

-
r-

r-

FIG. 10. An elastic complete collision betweenthree solitary
pulses in the three-channel model, in the case of normal disper
(D5218), with c5d520 andhT52.34.
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VI. CONCLUSION

In this paper we have studied in detail collisions
chirped solitary pulses in nonlinearly coupled cubic comp
Ginzburg-Landau~CGL! equations, each being linked to
stabilizing dissipative linear equation. Primarily, the tw
channel model was considered. The model may be real
as wavelength-separated data-transmission channels co
ing in a nonlinear dual-core optical fiber, which contains
active core with gain, and a passive core, where the pro
gation is governed by the linear dissipative equations. E
channel has its components in the active and passive c
with a linear coupling between them. Nonlinear interacti
between different channels is induced by the cross-ph
modulation~XPM!, which acts in the active core only. Thu
the model describes a WDM multichannel fiber-optic tra
mission system, provided that the dispersion length of
pulses is essentially larger than the amplification and filter
spacing, so that the system may be considered in the app
mation which assumes a uniformly distributed bandwid
limited gain in the active core~and a continuous passive co
which, in reality, may consist of short segments periodica
inserted into the long fiber-optic link, together with ampli
ers and filters!.

If the CGL subsystems are decoupled, they possess s
chirped pulse solutions, which can be found in an exact a
lytical form, provided that the group-velocity parameter
identical in the cubic and linear equations. The XPM
induced nonlinear coupling between the subsystems g
rise to interactions when the pulses belonging to the differ
subsystems collide. By means of direct simulations, we h
studied incomplete and complete collisions in detail. Th
different possible outcomes of the collision have been fou
in the cases when the dispersion in the active core is ano
lous or normal: destruction of both pulses, destruction of o
of them, and a quasielastic collision. In the latter case, b
er
s

. P

e
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pulses reappear unscathed after the collision~with some po-
sitional shifts!, provided that the group-velocity differenc
between the channels exceeds a critical value. As a re
regions in the model’s parameter space have been ident
where the pulses are stable against both small perturba
and mutual~complete! collisions. An analytical perturbation
theory was developed to predict the positional shifts. T
analytical results agree well with the numerical ones in
cases when applicability conditions for the perturbati
theory hold.

For WDM applications, it is important not only to gua
antee the quasielastic character of the collisions betw
pulses belonging to different channels, but also to have
critical group-velocity difference between adjacent chann
necessary for the elasticity of the collisions, as small as p
sible, so that the wavelength separation between the chan
may be minimized. To this end, we have found that, in t
case of incomplete collisions, the normal-dispersion regi
provides an essentially smaller critical velocity, whereas
the case of complete collisions, the critical velocities are
most equal for both signs of the dispersion. However,
region in the parameter space where complete collisions
always elastic is essentially larger in the case of anoma
dispersion, and another advantage of the latter case is tha
temporal width of the pulses is much smaller. On the ot
hand, the residual effect of elastic collisions, viz., the tem
ral shift of the pulses, which contributes to the soliton jitt
in optical communications, is weakest in the case of norm
dispersion. Actually, the best solution may be to use
channels in both normal-dispersion and anomalou
dispersion bands in the fiber. Finally, we have shown that
model may be extended to include more than two WD
channels giving rise, in an appropriate region of the cor
sponding parameter space, to completely stable, three-p
collisions being quasielastic.
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