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Time delay distribution in Bragg gratings
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A layer-by-layer analysis of the time delay of both reflected and transmitted light in one-dimensional
photonic band-gap structures is developed and applied to uniform Bragg gratings. An effective Fabry-Pe
cavity is associated with every layer along the Bragg grating, multiple paths with a well defined layer traversal
time are identified, and the average time is computed, introducing an appropriate weighting factor that accounts
for interference between different paths. The analysis presented leads directly to a complex-valued time delay
whose real part is shown to be equivalent to the classic phase time delay. Physical meaning is also given to the
imaginary part. The local dwell time, interpreted as the average time spent by light in the layer independently
of the final(transmitted or reflectgdstate, is proved analytically to be related to the energy density distribution
when small index change gratings are considered. The time delay evolution is derived at different wavelengths
and the nonuniform distribution along the grating is discussed. Nonintuitive features such as superluminal
transmission time delay for propagation inside the band gap and negative reflection time delay close to
transmission resonances are addressed. Finally, the effect of introducing a small perturbation in the structure is
shown to be directly related to the local time delay and is proposed as a possible experimental measurement
scheme for both its real and imaginary parts.
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I. INTRODUCTION reflected and transmitted light, respectively, their application
The propagation of light in one-dimensional periodic orto the simple but significant case of a uniform grating, and
guasiperiodic media has been extensively studied, mainly ithe analysis of locally perturbed structures as a possible ex-
the context of the fundamental properties of photonic bangherimental route to measuring them. It is worth noting that
gaps[1]. Multilayer mirrors, corrugated waveguides, and fi- the derivation presented is structure independent and can be
ber Bragg gratings are among the most common implemenapplied to any scattering medium, either uniform or nonuni-
tations of such structures. These scattering structures aférm. The results obtained are likely to be helpful in energy
characterized by a high dispersion around the stop bangtorage characterizatiofimportant in active device design,
edges and show significant variation in the group velocity as.e., distributed Bragg reflector and distributed feedback la-
the wavelength is varied across the stop-bgijdCompared  sers[7]), design robustness analys@&device is more sensi-
to free space propagation, the group veloeigycan be either  tive to imperfections where the light actually dwells the
increased for in-band-gap propagation or decreased close fos), and obviously in the design of devices with a particu-
transmission resonances, and significant time delay varidar dispersior(i.e., dispersion compensating fiber Bragg grat-
tions(wherer=L/vy) can be achieved with the introduction ings[8]). Moreover, the approach derived can also contribute
of nonuniform perturbations or defedt|. to the broad discussion about “traversal time under a poten-
However, only the time delay characteristic of the entiretial barrier,” which applies to both electromagnetic evanes-
scattering region has been analyzed so far. Typically, a trangent propagation and quantum particle tunneliseg[9] and
fer matrix approactibased on coupled wave theory for fiber references therein for an exhaustive revidxecause of the
gratings[4,5] or on the actual layer parameters for multilay- analogy between the Helmholtz and the time-independent
ers[6]) is used to calculate the reflection and transmissiorschralinger equation§10].
coefficients and the time delaphase timgis obtained by In Ref.[11], a multilayer is considered and a Fabryréte
differentiation of the global phase retardatiérwith respect like picture is proposed for layer-by-layer characterization.
to » [3]. No knowledge of the local properties is gained. The structure is divided into two different sections preceding
Questions such as “How is the time delay accumulated alongnd following the currently investigated layer, and multiple
the length?” and “Are there sections that are likely to affect reflections are experienced inside this effective cavity before
the light propagation more than others?” are important foreither transmission or reflection takes place. The probability
both physical and technological reasons. Only a layer-byef each path is calculated through the reflectiiyand the
layer analysis of reflected and transmitted light behavior catransmissivity T, and since each possible path has a well
give such insight. defined associated transit time the average dwell time in the
The object of this paper is the derivation of analytical layer can be evaluated. In this analysis the propagating field
expressions for such local time delayg(s) and 7¢(s) for s treated as a classical particle and the scattering probabili-
ties are calculated by wave theory. But light is best described
by a wave form and its fieldprobability amplitud¢ evolu-

*Email address: fgl@orc.soton.ac.uk tion. As pointed out elsewhergl2], the fictitious particle
On sabbatical leave to Southampton Photonics Inc., Southamptapicture (“photon”) can still be used, but only taking into
S016 7NS, U.K. account that it has to be associated with a probability ampli-
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_______________ ‘ FIG. 1. Possibléth pathsz;  inside the grat-
ing due to multiple scattering, leading to either
final transmissiorileft) or reflection(right).
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tude|#)—E, i.e., a complex number with a phase that varieslengthL, the final state i$¢r)—E;=E(&,L) for the trans-
spatially. Moreover, “if a particle can reach a final state by mission time delay anflyr)— E;=Eg(£,0) for the reflection
two possible routes, the total amplitude for the process is théme delay, where the fields are evaluated at tignand in
sum of the two routes considered separatel$3]. This  positionz=L or 0, respectively. The traversal time operator
means that, considering fiel@s(phase information retaingd through s can be defined once the actukth path z;
and not intensitie$ in the Fabry-Peot-like picture, the infi- =27 (£) to reach the considered final statg) at time ¢ is
nite series of different paths leading to either transmission oknown:
reflection can be independently identified and their interfer-

ence effects taken into account. Since a precise traversal time

is associated with every single path, the average time delay Tf,k(s):f Odzek(£)1dE, O zepd =)y o, .o
of both transmitted and reflected photons can be evaluated in fk® &2)
each grating section.

This approach was first introduced in Rdf$4,15. It has
recently been used by Lest al. to analyze a single Fabry-
Paot cavity [16], and it was shown to be an application of
Feynman paths in the spirit of Sokolovski and Confiof].

A close relationship with the weak measurement theory fo
tunneling times developed by Steinb¢id] was also found. {24 1,22, ... Zi x - . .} for each final statéy) and there-

In Sec. II, the local time delay will be defined and ana-¢5a ’
lytical expressions presented. The energy velocity will also
be considered and the relationship with previously defined R R
time delays discussed. The actual derivations are given in rf(s)=j 75 k(S) O¢ (dK, 3
Appendix A, and the equivalence between the proposed ap- K
proach and the phase time is analytically proved for uniform .
gratings in Appendix B. In Sec. Ill, the derived expressionswhere d; , means that the time delay operatqr(s) has to
will be applied to a uniform grating and the correspondingbe associated only with the contributip ((s)) of the path
time delay distributions will be analyzed. In Sec. IV, the Z k to the final statd;):
effects of grating perturbations are considered and shown to

1 if Zf,kES7

where0 selects only the portion of the path spent inside the
investigated layes. Given a possible path (¢), the related
time delay is well defined and unique.

As Fig. 1 shows, in a grating the distributed scattering
broduces a continuum of possible different trajectories

be related to the time delay obtained. This approach is pro- - [~
posed as a possible measurement method for local time de- 7i(S)|Y1(s)) = ka,k(S) 8¢ il ¥r(s))dk
lay.
= | 7rx(S)| 41 k(9))dk (4)
Il. DERIVATION OF TIME DELAY DISTRIBUTION fk hk ()

A. Approach to time delay computation with time delay eigenvaluey (s). Using Eq.(4), Eq. (1)

The mean traversal time of a certain section inside a scathay be written in a more concise way:
tering medium will be computed using the following defini-

i 15]:
s = e S
- T(SEF (HE(£)de
rf(s>:<"’f<';f?j'>¢f>=f REY f F()Eq (£)dé
o f ET (§Eq(§)dé = fkws) dk

f f (E(()d¢

|4+ is the final state to be characteriz&d, is the associated

electric field,sis the considered layer in the scatterer, and the =fT (s)P; dk (5)
. N . . f,k f,kAK,

integration is performed over the tim& In a grating of k
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FIG. 2. The selected layexr(shaded areadivides the structure < Veo(s) | it :CQ:; o
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into three different regions. The reflectors on either side are fully 2- Vg RSN :DZ:
characterized by reflection and transmission coefficients, while the .8 = Wi 1(S) itl_i :&'_’5 I W
layer s is characterized by its phase deldy(free propagation ap- é Vi ofs) ‘Tg“—i N T
proximation. L o :j e 1 e ::DZ:
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I/vhere( ;ﬂflwf'k(s» 's the pro{jection>0f each field component FIG. 3. Possible paths leading to photon transmiss@®rand
¥t k(s)) onto the global field¢(s)). This means that each s i ‘ ) .

71(S) has to be weighted by how much the corresponding{?ﬂecuon(b) ?jccordmgt:] to n;}”:tr"p'? sca(ttﬁnggaNote that in reflec-
path contributes to the global field. In E€F), a generally U0 [#ro(S)) does not reach the layer(shaded area

complex probabilityP; , can be formally identified, since it

can be directly shown that,P; ,= 1. Indeed, ther¢(s) op- With respect tcs, the grating can be seen as a FabryePe

|gavity in which the left(labeled 1 and right (labeled 2

erator so defined is non-Hermitian due to the nonorthogonareﬂectors are fully characterized by their reflection and trans-
ity of the final state componentgs (s)). Therefore the oc- mission coefficients andt shown in Fig. 2. The complex

currence of complex probabilities and complex eigenvalues ™.~ .
7;(s) is expected18]. The related physical picture corre- Coefficientsr ., andt,, refer to forward propagating paths
sponds to the interference between different paths at eithd? trfée l?ﬁ refli?rtor(lef’:;gi r'ﬁ’th:)’ ?nfgrll;] an;jtli, rto blafnk'_
side of the structure when coherent fields are considere§f® Ft)hODaga ? pla i 9 —to eh id [1%] eNcptofr?tthe
[15]. Introducing a complex-valued time delay may seem lum, the general relation , =t; - holds|19]. Note that the
odd and nonphysical, but in Sec. Il it will be shown that transmission and reflect_|on coefficients are d|sper_5|ve and
Re{7¢(s)} is associated with well established time delany;ferent for_every coTlsgjered (Ija?/? but tfhe tﬂomt'?(nt ¢
definitions. In Sec. IV a physical meaning will also be given — [(#:S). T =T(w,5) will be used later on for the sake of
to Im{7(s)} [16]. simplicity. In the following analysis a monochromatic exci-

i : = @l (BZ=w0d) \yji i i

The approach described leads to the computation of th@t'0n|w'“>7E'“ e °=” will be considered, i.e., steady
scenter of mass” arrival time if applied to pulse propagation State condltlons'wnl be assuzmed,zand only the .Iossless case,
and to the whole grating lengfii4]. The main advantage of Where the relatiorR+T=|r|*+[t|*=1 holds, will be ad-
the proposed formalism is the possibility of analyzing thedress_,e_d. Itis also useful to introduce the roqnd-trlp rgflectlon
time delay characteristics of the structure layer by layer, prop(?,;lffl'c'em’_’ of the effective Fabry-Ret cavity associated
vided that all the possible pathgi,)—|#s) and the corre- with fayers.
sponding contributionys ) — Es ((€) are identified. p=ry_r,e12¢ (6)

Equation(5) looks different from expressiof¥) reported ’
in Ref.[15], where the same time delay definition is applied
to propagation through a dielectric slab, i.e., a FabmePe
cavity. However, it has been analytically verified that the
same final expressions are obtained by applying (Bgto I . .
the same scattering structure, but with less involved compu- As shown in Figs. @) and 3b), a discrete set of possible

tations and with a clearer physical understanding. For thi$aths {nyo’zf'.l’ ko .} with a well 'deﬁned. time
reason the Eq(5) formalism will be used in the rest of the 7t4(S) spent inside the layes can be associated with both
study. the transmitted) and reflectedy) final states. Knowing

r and t expressions for the given structutéor instance,

through a transfer matrix approa¢8,6,19), the final state
B. Fields and time delay computation can be computed and expressed throughyits(s)) compo-
nents. In transmission,

where ¢=BAL(S)=wpA7y(S) is the phase delay for a
single pass through the layer, with layer lendth(s) and
layer time delayA 75(S) = AL(S)/veg=nNegAL(S)/C.

We start by considering an input fie|d;,) entering the

structure as shown in Fig. 2 and a generic layémside it.
The considered layer is treated in the following derivation as i - «
a free space propagation region, i.e., only straight trajectories [r) = hin) 1+ 1€ go p (7a)
z¢ (&) are possible insids. This approximation is valid as
long as the layer lengtiAL(s) is small compared to the
inverse of the coupling constamt, which means that the
probability of a scattering event inside it is negligible.

ty tel®
=) =ty (7D
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wherety, is the transmission coefficient of the whole grating. Tiot( S) = 71(S) Tgrt TR(S) Ryr
With a similar analysis in reflection,

1+R
= ATo(S)Tgr

2
- 1-R,’ (11)
)=l thin)| T4 +as 7oty 122> pk (83 . _ . o o
k=0 where R, is the right mirror reflectivity. It is important to
_ note that the total time delay so computed is always real and
iy +ro(ty, /t5,)el?¢ positive, despite the fact that the two independent compo-
=|¢in) 1, =i grs (8D  nents are complex. The physical explanation of this distinc-

tive feature will be given in Sec. Il C, whergy(s) will be
shown to be related to the energy density distribution inside
F]he scatterer. Equatiofill) corresponds to the result pre-
sented in Ref[11].

Since 7y(S) is real, Eq.(11) can be expanded as

wherer, is the total grating reflection coefficient. The ex-
pressions obtained with this approach are consistent wit
transfer matrix results, and each path compongni(s)) is
clearly shown in Eqs(7a) and (8b). This identification al-

lows us to perform a weighted average over all possible in- s =R T +R R 12
terfering paths and to calculate the layer time delay accord- o $) = R 7} Tgrt ReL7r} Ry, (123
ing to Eq.(5). 0=Im{77} Tyt Im{7e}R (12b

The detailed derivation of both transmitted and reflected o

time delays is presented in Appendix A. The time delay,yhere the corresponding expressions for the real and imagi-
7r(s) accumulated in layes by transmitted light is found to nary parts of the time delay are given by E¢s3) and(A7).

be Equation(12b) is a direct consequence of energy conserva-
tion, as will be shown in Sec. IV.

(] 72(9)|Yr) 1+p From the previously calculated expressions, it is possible

()= Tl =ATy(S) —p (9 to characterize the time delay of the entire grating by simply

summing up all the individual layer contributions:

71(S) is evaluated by taking into account that each field com-

ponent| ¢ (s)) in Fig. 3(@) experiences (R—1) passes in =2, 7(S) (13

the layer due to multiple scattering in the grating before be- s

ing transmitted. An important feature of E(Q) is that the -y .

real part of the transmission time delay is always positive inwheref stands fofT, R, or “tot.” The equwalencg of th? real

every layer, as shown by EGA3a). Equation(9) is a gener- part Qf Eq.(13 _for reflected and transmitted light with the

alization of Eq.(10) in Ref. [16]. classu_: pha;e tllme deld] c:?mnot be proved by.a genergl
Starting from Eq.(8b), the reflection time delayrx(s) analytl_c der|vat|c_>n.An analytlc_pr_oof can be_ obtained (_)nly in

becomes ' R the uniform grating case, and it is derived in Appendix B.

~ C. Energy distribution and dwell time
(¥Rl TR(S)| ¥R)
RS =""F7T77""—

The electromagnetic energy density distributldrinside

4 . .

(Yl the scatterer and the Poynting vec®r(related to energy
_ Ty p flux) can be easily derived knowing the field distribution in
=2A1(s) 1-p p—R,’ 10 the various sectiong21]:

_1 2 @121 312
where T, and R, are the left mirror transmissivity and re- U =2 eonenl E[*+ 3 ol HI%, (14

flectivity, respectively. With reference to Fig(t8, it is worth . .

noting that the time spent in layarby |¢g o(S)) is 7ro(S) S=3Re[EXH*}, (15

=0 since these photons are reflected before reaching the

layer, while for all the other field componentss (s)  Whereep andu, are the vacuum permittivity and permeabil-

=2kA7o(s). The real part ofrg(s) can be shown to be ity andneg is the effective refractive index.

negative for certain wavelengths and in certain grating posi- Considering purely transverse fields, the electric figld

tions. A possible justification of this nonintuitive result will =Eqe!(#*”“0? is scalar and can be calculated in every posi-

be given in Sec. Ill, describing uniform grating calculations. tion inside the structure with the multiple scattering picture
Using Egs.(9) and (10), the overall timer,(S) spent in described above, which is equivalent to the transfer matrix

|ayer IS by a photon can be derived, independenﬂy of itsmethOd. Considering the fields at the end of each layer, the

transmitted or reflected final state. Since the final states af@rward and backward propagating fiels andE_ in layer

different, the two fields do not interfere ang(s) is given Sare

by the average value weighted by each final state probability

(given by the transmissivityl,, and reflectivity Ry, of the

whole grating [13,20;:

tl+ej¢
E+(s)=Ein—1_p , (16a
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E_(s)=E.(s)rs,, (16b U(s)AL(s)

7'tot:2S S
n
and, as shown by normal mode analyg?®,23, the total
electric and magnetic fields are expressed in term of these 2 W(s)
components as follows: s (21
= = =1,
Sin Sn
Ew(S)=E (S)+E_(s), (173

whereW(s)=U(s)AL(s) is the stored energy in laysrand
B Wi s the total stored energy. According to the definition given
Hil(s) = ——[E+(s)~E-(s)]. (17D in Ref.[25], 7, can be identified with the dwell time inside
o0M0 .
the structure. It has been applied to electron quantum tunnel-
_ ~ing by Bltiker [26] and extended to optical tunneling by
According to Eqs(14), (16), and(17), the energy density - steinberd10]. In [27], the dwell timerp, is well described as

distribution along the grating is given by “the ratio between the total integrated particle dendityn
the barrier region divided by the incident currgritin op-
1 5 1+R, tics, the number of stored photofi®., the stored energy)

U(s)= 5 €one Ein|2Tgr1_—R2- (18 corresponds tdl and the incident photon fluft.e., the Poyn-

ting vectop to j, and Eq.(21) is obtained. The correspon-
dence of the dwell time with the total time delay, com-
In Eq (18), the |Ongitudinal dependence of the effective rE'puted by the mu|t|p|e path approach in the small index-
fractive index inside the considered layehas not been ex- contrast limit is an important result. It is an analytical proof
plicitly taken into account and the average valyg is con-  of the validity of the proposed multiple path approach in this
sidered. This approximation is valid only for structures inapproximation.
which the refractive index contrast is small, such as fiber = physically, the dwell time so defined can be related to the
Bragg gratings. Typically, these gratings are centimeters longime necessary to build up the final photon density in the
and the refractive index change #~10"". Instead, in  grating, which under steady state conditions also corresponds
multilayer structures which are only micrometers long andto the time to empty the cavity and is related to the caGity
have 5n>10"", the local expression fames=ne(z) has to  factor. To our knowledge, this definition has only been ap-
be used and slightly different results are obtaifi2d]. In  plied to the analysis of the entire gratif@g,10. But a local
this case, the analytical equivalence presented in the followcavity can also be associated with each layer of length
ing [see Eq.(20)] is not strictly valid. AL(s) inside the grating. In Appendix C, the same physical
Using Egs.(15), (16), and(17), it is possible to evaluate meaning is also attributed tg,(s) = 7,(S), defined for each
the net Poynting vector flug(s) inside the grating along the |ayer by Eq.(20). Therefore,p(s) can actually be inter-
propagation directiom: preted as a local dwell time inside the grating.
Despite the formal parallelism between the electron wave
B function¥(s) and the electric fiel&(s) outlined in[10] and
S(s)= 2—|Ein|2Tgr: SinTgr, (190 derived from the Schidinger and Maxwell equations anal-
@oko ogy, it must be stressed that E@1) is the correct extension
of the dwell time to electromagnetism. Indeed, the energy of
where Si,= 3ngm/eg/ ol Ein? is the flux of the incident an electromagnetic wave is stored in both the electric and
transverse wave. The Poynting flux is found to be constaniagnetic fields. Considering only (as suggested in Ref.
along the grating and related to the incoming fixthrough  [10]) would produce an extra term related to the self-
the grating transmissivity o, as expected because of energyinterference between forward and backward propagating
conservation in passive, lossless media under steady statemponents in E¢21), and the agreement and physical in-

conditions. sight obtained would be lost.
Using Egs.(11) and (18), and taking into account that In Ref. [21], the energy velocity inside each layer was
A7y(s)=nerAL(S)/c, a simple manipulation gives defined av(s) =S/U(s), which after substituting Eq$18)

and(19) becomes

U(s)A7y(s) U(s)AL(s)
TtOt( S) = 1 2 = Si . (20) C 1_ R2 C
2 €oNetl Einl n ve(S)=— =
Net 1+ Ry Neg

(22)

A direct relationship between the local total time delay pre-

viously defined and the energy density distribution inside thel'he local energy velocity is clearly related to the local stored
grating has been derived. Summing up over the gratingnergy and to the Poynting vect®+ S;, which is an invari-
length according to Eq(13), the result for the total time ant and represents the energy flux that passes along the struc-
spent inside the grating by light is ture and is finally transmitted. Equatio®2) ensures that the
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FIG. 4. Time delay spectral characteristic computed using Eq.
(13) (circles and the phase derivative approaglid line) for a
uniform grating withL =1000A, én=3x10"3, Taragy=0.01, and
Bragg wavelength\g,q= 1550 nm. Rérr}, Re{7x}, and iy are

identical and superimpose(lThe time delay evolution in the grat- 0 02 04 06 08 10 02 04 06 08 1
ing for the four marked wavelengths is described in Fig. 5. s=zlL s=zlL

o o o FIG. 5. Longitudinal time delay distribution,(s), solid line;
energy velocity in a periodically perturbed medium is aIwaysRe{TT(s)}, dash-dotted line; Reg(s)}, dotted line. The time de-
subluminal, i.e., less than the corresponding velocity in anays have been normalized to the single pass time detggs) and
unperturbed medium/ngg. the effective number of passég(s) is shown. The four wave-

On the contrary, the total tim@well time) is by no means lengths marked in Fig. 4 are considerde) \;; (b) A, (C) Ag;
a time of flight and is not related to any well defined energy(d) \,.
transport phenomena. It contains weighted average contribu-

tions from all photons present in laysrregardless of their equivalence proved in Appendix B, with minor differences

final state. Therefore, it lacks directionality and any velocity(<0.01 p3 over the whole analyzed bandwidth due to the
associated with this time definition has no clear physicafinite length of each layer.

meanjng. As in Ref[24], a different gxpression for the local The main advantage of the proposed approach is the pos-
velocity vp(s) can be introduced using E(R1): sibility of analyzing the contribution of every single section
to the overall time delay. In Fig. 5 the longitudinal distribu-
_AL(S) _ Sn _ S(5) _velS) tion of the time delay has been computed for the four wave-
mp(s)  U(s) U(S)Tgr Tgr ’

UD(S (23)

lengths indicated in Fig. 4, for both transmitted and reflected
light and for the layer dwell time. Again, it has to be stressed
which can be shown to be superluminal under certain propahat the integratedr;, Re{71}, and R¢rg} are identical,
gation conditions, namely, for small valuesTyf;. However, despite the different spatial distributions. For the sake of
no violation of causality occurs since no real tunneling carclarity, an effective number of passéKs) in the selected
be associated withrp. This result is in agreement with layersis shown in Fig. 5, where

[28,29, where pulse propagation simulations show that at no

time does the intensity of the transmitted pulse exceed the Re{7(s)} Re{7x(S)}
incident intensity in the absence of the grating, i.e., energy is N+(s)= “Arg(s) r(S)= TAro(S) (29
always propagating at subluminal velocity. 7o 7o

IIl. UNIFORM GRATING SIMULATIONS Intuitively, the local time delay is expected to depend on the

single pass time delak mo(s) and on the average number of

The theoretical picture described has been applied to passesN, since the layer is considered as a nonscattering
short and strong uniform grating of lendgth= 1000\, where  region andN accounts for the multiple reflections in the ef-
A is the grating period, refractive index modulation=3  fective cavity. This can easily be visualized in Figéa)3and
%103, and transmissivityT g,q~0.01 at the Bragg wave- 3(b).
length, to allow a reasonably short computational time. As It is worth pointing out that the number of passes at the
described before, each layer has to be as short as possiblegrating ends =0 andL) is always fixed irrespective of the
order to be effectively approximated by a nonperturbed rewavelength, since no multiple reflections ocdtire associ-
gion. In the following the grating has been split period by ated effective cavity hag=0). Transmitted light simply
period and the single layer traverse time(s) has been crosses these layers once during propagation toward the end
computed taking into account the average refractive index.of the grating[N+(0)=N¢(L)=1]. Reflected light always

Figure 4 shows the real part of the integrated time delayasses twice through the very beginning of the grafihg
obtained for a wavelength detunidg\ [0,5] nm with re-  enters the grating and is finally bounced baklg(0)=2],
spect to the Bragg wavelenghly,,os= 1550 nm. It should be  while it never reaches the very eflg(L)=0] since other-
stressed thaty,, Re{71}, and Rérg} are identical and su- wise it would never be reflected. These general relations can
perimposed. The corresponding transfer matrix rejdilis  be derived analytically from the corresponding E@—(11)
essentially superimposed, as expected from the analyticath the limitsz=sL—O0,L.
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The Bragg wavelength)\(;) is presented in Fig. (8), 1
while Fig. 5c) shows the evolution at a wavelength corre-  osf
sponding to the time delay maximum and close to the first og}
transmission resonance \{). As expected, Ty(S) ;“0‘4 I
=Re[7r(S)} whenRy~=1 andr,(s)=Re{7r(s)} whenT,, o2k |
=1. At the Bragg wavelength, the dwell time decays expo- . ) . (a)
nentially along the structure in accordance with the evanes- O 01 02 035 04 05 o065 07 o8 09 1
cent propagation at this wavelength. Almost all the energy is s=zL
stored in the first part of the grating. At the transmission 1T - x
resonance, instead, much higher energy storage is achieve: 088 S subluminal (b)
since light is trapped in the grating center between twod o6} ~ superlutninal
highly reflective mirrors and constructive interference be- J~ .| ¢ < - _
tween different paths takes place. Figurés) and 5d) refer & O— . _ -,
to wavelengths\, and\ , which have the same overall time I T e
delay 7=2.75 ps. However, the different scattering condi- o 09 099 0999 09999
tions produce a completely different distribution of delay in- R

side the structure and, therefore, different energy density dis-
trlbutlons |t |S already apparent that each Wavelength “Sees” FIG. 6. Transmission time delay d|Str|bUt|0® and Integl’ated
the grating in a different way. This particular mapping Cantimg delay(b) at the Bragg wavelength, for different strength
potentially be used to characterize the grating along itgratings:tJ R=0.5; ¢ R=0.9; O R=0.99; * R=0.999; ® R
length, to design different devices, or to understand the spec= 0-9999. In(a) the effective number of passég(s) is shown in
tral response differences under various perturbations anfits ofA70(S). In (b) the integrated time delay Rer} (dashed
noise distributions. Ilng) is normalized to the smglg pass time delay,=ngsL/c. The
Considering the transmission time delay, inside the banaOIId line shows the traverse time in vacuum.
gap[for A=\, Fig. 5@] the light that passes through the . )
grating is mainly delayed at the edges of the structure. It can Outside the band gaffor A=A\ and )‘:2)‘4' Figs. §c)
be shown that at this wavelength the multiple paihg,(s)) and §d)], the cavity round-trip reflectivityp| “=R4R; oscil-
are interfering destructively for all layessAround the grat- Iates along the structure. 'leferent paths interfere const_ruc—
ing center, the destructive interference is almost completdVely close to transmission resonances and destructively
due to sufficient contributions from either side of the layer. [t"€@r transmissivity minima. Oscillating time delay contribu-
actually gets more complete as the grating reflectivity in-ions are therefore obtained. , ,
creases, since the number of interfering paths increases. '€ reflection time delay does not allow a simple physical
Therefore, the corresponding time delay distribution goes adnteérpretation. Qualitatively, Fig. 5 shows that inside the
ymptotically to zero. As the grating edges are approached?@nd gap Rerg(s)} is always positive, while as soon as the
however, the contributing paths are predominantly only fromvavelengthh moves outside the gap it can be shown that it
one side and the destructive interference becomes graduafjecomes negative in certain layers. In particular, it may as-
incomplete. The time delay distribution at the grating ends i$Ume very high positive and negative values close to reflec-
therefore always finite. This picture is confirmed by compar-ivity minima, as shown for the case af=\3. Again, this
ing the time delay of different strength gratings, as shown irppnmtwﬂv_e behav!O( is related to interference effects. Con-
Fig. 6. The higher the reflectivity, the lower the transmissionSidering Fig. ), it is clear that the reflected component
time delay in the structure centffig. 6@], so that the in- |#ro(S)) does not contribute to the time delay directly but
tegrated traversal time decreases for increasing gratingnly through interference at the beginning of the grating with
strengthFig. 6(b)]. This phenomenon is typical of structures the other contributing paths. The real part of this interference
with tunneling and/or evanescent wave propagation and it i§ontribution can be negative in general, keeping in mind the
known as the “Hartman effect{30]. In sufficiently strong honorthogonality of the field componerjis «(s)), and can
gratings[R=0.7 in Fig. Gb)], this effect produces a trans- produce a negative r('afle(':t]on time de!ay in th.e layer. Pulse
mission time delay that is actually shorter than the one irPropagation gives an intuitive explanatlo_n of thl_s steady state
vacuum. Transmission under these circumstances has bek§sult. Negative time delays are associated with a reflected
interpreted as “superluminall31,14,28. In pulse transmis- Pulse peak originating mainly in the leading edge of the in-
sion through periodic structures, it has been well establishe@ident pulse. Therefore, the reflected peak leaves the consid-
that “superluminal” effects are associated with lack of suf- €red layer before the incident peak actually entef82.
ficient destructive interference at the leading edge of the
pul_se and strong destructive interference during the main du- IV. TIME DELAY DISTRIBUTION: GRATINGS WITH
ration of the puls€15,14]. On the other hand, the picture SMALL PERTURBATIONS
presented shows that the Hartman effect and the associated
superluminal effect under steady state conditions are due to The most commonly accepted approach to an operative
strong and nearly complete destructive interference at thdefinition of time delay is to correlate the time spent by light
central part of the periodic structure and partial interferencen a certain region to the change in a physical quantity in-
near its edges. duced by an external perturbation, when a direct and linear
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relation can be inferred between such a change and the time Taking into account that the derived time delays are com-
of interaction. This approach originated from the problem ofplex valued, the effect of the perturbation can be further
measuring the duration of quantum-mechanical collisionsnalyzed. Considering a generic final transmission or reflec-
and was first applied to the traversal time for particle tunneltion coefficient f=t,r and remembering thad¢/A 7¢(s)

ing by Butiker and Landau€l33]. Different external pertur- = w,

bations have been proposed in quantum mechdpssllat- _ _

ing barrier[33], time-modulated incident waJ@&4], Larmor frer(S) = fg(5)eld¢71 (VAT = £  (5)elwomi(s)

precession of spif26]), and applied later in optidéntroduc-
tion of lossy layerd 18], Faraday rotatioi35]). The com-
mon characteristic of the perturbation analysis is to obtairbsing Foed(S)=F o+ AF, whereF =|f|2=T R refers to ei-

complex-valued Interaction times, In which the real part Calther transmissivity or reflectivity, it is easy to show that
be directly related to the classical time delay. In the foIIow—In[F (S)/F o ]=AF/F,, and therefore
pe g™ ar

ing, the same kind of analysis will be applied to a localized

— fgr(s)ej o Re{rf(s)}e— Io%) |m{Tf(S)}.

region inside the grating, in close similarity to the Steinberg Adi(S)=wo RE[7((S)} (28)

approacH18]. It will be shown that clear physical meaning 0 ’

is associated with both the real and imaginary parts of the AF(S)=— 2wgF ¢ IM{ 7¢(S)} (29)
ar '

local time delay obtained by the multiple path technique.

Let us introduce an infinitesimal phase perturbati@hin  \yhere AF=AT,AR are the transmissivity and reflectivity
a defined positiors inside the grating. This kind of perturba- yariations, respectively. Therefore both real and imaginary
tion can easily be introduced in a grating by localized heatyats of the transmission and reflection time delays have a
ing.or strain, its gffect is reyersible, and _experimental Ve“ﬁ'precise physical meaning. Introducing a phase perturbation
cation of the simulated time delay distributions can beregyits in a phase change related to the real part of the time
obtained by simply scanning the grating. For these reasonge|ay, while the amplitude change is related to the corre-
the ins_ertion _of a phase defect seems particularly attractivgponding imaginary part. They are directly related to mea-
and will be directly analyzed. Analogous results can be degyraple variations in the transmission and reflection coeffi-
rived by using other proposed perturbation schertlesal  cients. Using Eq(29), it is quite straightforward to show that

variation of layer losses or local perturbation with an exter-Eq_ (12b) results iNAT+AR=0, which is consistent with
nal magnetic fielfl taking into account the different physical o energy conservation principle.

quantities associated with them. _ Equation(28) can also be derived from E@24) using
~ Using the Sec. Il B formalism and Ezb), the transmis-  jitive arguments. The more times light crosses the layer
sion coefficient is given by where the perturbation is located, the bigger phase shift is
de accumulated, so thak ¢(s)=d¢ N(s) where N(s) is the
t(s)= 1 te (259 effective number of passes in the layer.
per 1—poel2dd’ The analysis developed by Steinb¢8%,18 gives a the-

oretical interpretation of the effect described, using the

theory of “weak measurements” developed by Aharonov and
(25  Vaidman[37]. In a classical quantum measurement theory, it
1=po is not possible to get information both about the time spent
by light in a certain region and about the final transmitted or
. IReflected state. The first measurement collapses the system
the unperturbed grating¢=0 and from EG(6) po=r1-T2.  gtatys on the measured eigenstate and thus the system evo-
Using the Taylor expansions fat$—0 in the previous ex- yion is irreversibly altered. But if the measurement is suf-
pressions, after a lengthy manipulation it is possible to W”teficiently “gentle” (but therefore imprecigethe system does

not collapse and both pieces of informati@re., the weak
tper(S) ~ id(1+p0)/ (1= po) — gid $7r(s)/ATg(s) (26) value of the time delgycan be obtained by averaging a large
ty(s) ' set of such measurements. The final result is in general a
_ complex number. The real part is related to the mean varia-
where pg=p=r;_r,el?% for an infinitesimal perturbation. tion in the measured quantitypointer” ) and gives the final
The reflection coefficient computation is similar, but math-result of the measurement. The imaginary part is shown to be
ematically more involved. From E¢8b) and using the same associated with the mean shift in the pointer conjugate mo-

t4tp

tgr(s):

for the perturbed and unperturbed structures, respectively.

approximations as before, mentum, which corresponds to the back action of the mea-
surement on the system. It can be thought of as a measure of
I perl S) — @ 200[T1 /(1 po)]po /(po~ Ry) — gid d7r(S)/A(S) how much the system has been p'e_rt'urbed. '
rgi(S) According to the above definition, the perturbation

(270  scheme proposed in this section is a weak measurement. The
optical phase of light is the measurement pointer since the
It is analytically confirmed that the effect of the perturbationphase shift induced by the perturbed layer is used as a clock.
can be directly related to the complex time deld9sand  The conjugate momentum is represented by the photon num-
(10). ber, i.e., the transmissivity and reflectivity of the grating. The
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FIG. 8. Transmissivity(left column and reflectivity(right col-
umn) variation (in dB) induced by the inclusion of 4/100-long
layer in the grating. The simulated grating is uniform with
=1000\, 6n=3x10"3, and Ngrags= 1550 Nm.\; (upper row,
Bragg wavelengthj\; (central row, transmission resonance;
(lower row), first reflection sidelobe. Both the values obtained from
grating simulationdfilled circles and from the imaginary part of

FIG. 7. Transmissiofleft column and reflection(right column
phase variations induced byAd100-long layer added to the grating
(in mrad. A uniform grating withL=1000A, én=3x10"2%, and
Ngragg= 1550 nm has been simulated. The three different wave
lengths shown in Fig. 4 are representad: (upper row, Bragg
wavelength;\5 (central row, transmission resonanca; (lower
row), first reflection sidelobe. Both the simulat s) (filled . Lo -
circ?es) and the values obtained from the real par;ﬂ(j)(?(th)e Eime dela)}he time delay distribution&29) (solid lines are shown.
distributions and Eq(28) (solid lines are shown.

sion resonancd q,=1); A4, time delay minimum(first re-
variationsAT andAR can be interpreted as the effects of theflection sidelobg In Fig. 8, the amplitude variatior@ dB)
perturbation introduced in the system by the measuremerorresponding to thé /100-long defect inclusion are shown
and are proportional to the time delay imaginary part. Thisin both transmissiorfleft column and reflection(right col-
theoretical approach also shows that correct results are olxmn). Again, filled circles represent the perturbed grating
tained as long as the state of the system remains to a larggmulations and solid lines the results of time delay analysis
extent undisturbed by the measuring procedure. Thereforgiven by Eq.(29).
good agreement between the complex time delay distribu- In transmission, Figs.(@ and 7b) show that at the Bragg
tions calculated with Eqs9) and (10) and the effect of a wavelengthn; the agreement is almost perfect, and much
localized phase defect is expected wherg¢(s)} is small, smaller phase variations are obtained in the center of the
while differences are expected when the perturbation signifigrating with respect to the sides. The experimental detection
cantly affects the grating. This is the case of a relativelyof such a phase shift decrease can give direct evidence of
strong perturbation or a weak or strong perturbation near thehorter interaction times of light in a periodic structure com-
transmission resonances. pared to free space propagation. Possibly, a direct proof of

This approach has been numerically tested on the uniforrguperluminal time of flight can be found in a sufficiently
grating already described in Sec. IIL£1000\, én=3  strong grating. In reflection the perturbation effect decays
X 1073). A A/100-long nonscattering layer has been addechiimost exponentially along the grating length. As com-
to the grating in different positions (90.09.,0.1L, ... L), mented with respect to Fig. 5, it closely follows the local
resulting ind¢=7/100=31 mrad. The smalti¢ value is  power distribution, since light is mainly reflected in the first
necessary to guarantee the weak measurement assumptigaction and cannot sample the end of the structure.

The corresponding transmission and reflection phase varia- This intuitive (but approximate interpretation was first
tions A ¢(s) are shown in Fig. Tfilled circles and are com- proposed in Ref[38], where the reflection phase shift was
pared with the corresponding distributions obtained from theelated to the power distribution inside the grating. Good
local time delay and Eq28) (solid lines. Three representa- fitting was obtained for wavelengths inside the band-gap re-
tive wavelengths are considerddee Fig. 4 \;, Bragg gion, but worse agreement was found close to the band-gap
wavelength\ 5, time delay maximungclose to the transmis- edge. The approach presented here explains the limits of that
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analysis and extends those results. Close correspondence bechnique to obtain an experimental confirmation of the com-
tween the reflection time delay and power evolution is foundputed results has been discussed, with particular interest in
inside the band gap, sineg(s) = r,(s)*xU(s) for R=1,as  superluminal propagation and negative time delay verifica-
shown in Fig. 5a) and Eq.(21). But further away from the tion. Scanning a small phase shift along the grating has been
Bragg condition the existence of two different final statesshown to produce a variation of the output optical phase and
becomes important and the above approximation fails. Inpower proportional to the real and imaginary parts of the
stead, the application of the local time delay distributionlocal time delay, respectively. An experimental demonstra-
gives good agreement even outside the band ya@fd\,,  tion of the proposed technique has been reported elsewhere
central and lower rows in Fig.)7and it can be applied to [39] with respect to the time delay imaginary part.

both reflected and transmitted light independently. The proposed theoretical model may prove to be a useful

The nonperfect fit obtained faxg and A, is consistent tool in the design of active device@ cold cavity condi-
with the weak measurement theory. At the Bragg wavelengthions) and dispersion compensating gratirji§$ The point-

N\, (upper row, Figs. 8a) and 8b) show that the induced by-point analysis of the grating features can also be effective
perturbation is negligible and excellent agreement betweein investigating local defects contribution in gratingse.
time delay computation and perturbation analysis is exunwanted phase shifts in standard writing technigjoeso-
pected. Close to the first reflection sidelobg and in par- bustness analysis of non-standard grating design. The results
ticular to the first transmission resonankg much bigger of Sec. IV can also be used to understand the effect of dis-
perturbations of the grating are obtained compared to th&ibuted phase errors on the reflectivity and time delay spec-
Bragg wavelength, and a worse agreement between theotfa of Bragg grating$40]. Such a detailed analysis will be
and measurement is therefore expected. It is apparent that thee subject of another publication.

smoother the transmission and reflection spectra around the

considered wavelength, the less any small variation affects ACKNOWLEDGMENT

the final shape, and thus the better the time delay distribution o ) ) .

can be inferred from this kind of measurement. It is obvious Ve thank Vittoria Finazzi for helpful discussions related
that further reducing the phase shift amplitude improves thd0 this work.

fit that can be obtained at all wavelengths. But it has been

numerically verified that a good measurement of the theoret- APPENDIX A: DERIVATION OF TIME DELAY

ical time delay distribution ah; requiresd¢ as small as EXPRESSIONS

/500, which is not experimentally feasible.

Nevertheless, Fig.(d) clearly shows that foh=\5 the
experimental detection of positive phase shifts at the gratin
far end ¢—L) can be correlated with the nonintuitive idea
of negative interaction times of light in the perturbed region.

In the following a monochromatic excitatigmi,)— E;,
= el (A2~ «0f) ill be considered. Using the E@l) formalism
nd considering the time delay as a generic complex number,
Eq. (7b) allows the transmission delay computation:

|ty to]?
V. CONCLUSIONS <‘/’T|¢T>:m: o (Ala)
A method for local time delay characterization of periodic
scattering structures such as gratings has been developed. R th the i O
The grating is divided into small layers which can be con- (¢l 7r(9)|¥r) = ————2 > (2k=1)A7g(s)
sidered as free space regions. A multiple reflection approach 1-rirze k=1

is used to calculate all the possible classical paths,for both Xty e ¥r, r,el2¢]< 1

transmitted and reflected light. This effective Fabrye®e

analysis allows a field decomposition in terms of compo- |ty ts]? 1+p

nents whose traversal time inside the layer is well defined, = e A7y(s) (1= (Alb)

and the average time spent in the layer by transmitted or
reflected light can be evaluated. A generally complex-valued _ 24 . . .
time is obtained, but clear physical meaning has been gively'€r€ P=T1-r2€"* is the round-trip reflection coefficient
to both its real and imaginary parts. The real part is related ?@ and 7 (s) = (2k—1)Ao(s) is the time delay for each
the actual traversal time, while the imaginary part gives th

ield component 1 (S)). A7y(s) is the time spent in the
extent of the back action of the measurement on the syster@Ye' in a single pass and k2 1) is the number of passes
Finally, the dwell time in the structure is derived by appro-

before the photon is transmitted, as shown in Fig).3Com-
priately weighting and summing up the two contributions.PiNing Egs.(Ala) and (Alb) according to Eq(1), the ex-
The dwell time is analytically shown to be always real, pos

i_pression for the transmission time delay(s) in layers is
tive, and directly related to the power distribution inside the
grating in small index-contrast gratings. _ _
The reflection and transmission time delays of a uniform mr(s) (| r) Ao(s) 1-p° (A2)
grating derived with this approach have been proved to agree
with those from standard techniques based on transfer matrixi general,7+(s) is a complex number whose real and imagi-
calculations and phase derivatives. A possible measuremenary parts can be expressed as follows:

_<l/fT|;T(S)|¢’T>_ 1+p
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1-RR Tiot(S) = 71(S) T+ TR(S)R
RG{TT(S)}=ATO(S)Tng122, (A3a) 10t(S) = 77(8S) ar 1?—('—-\’) gr
2
=AT7y(S) Tgrl_—R2 ) (A8)
gr
A3b
Ty’ B30 here the relations [p|?=RyR, and Ry=|Ry—p|?/

|1—p|?R; [easily derived from the reflection coefficieny,
whereT,,R; andT,,R, are the transmissivity and reflectiv- definition (8b)] have been used.
ity of the left and right reflectors, respectively. Equation
(A3a) shows that the real part of the transmission time delay APPENDIX B: Re{r}= TohaseIN UNIFORM GRATINGS:

is always positive. ANALYTIC PROOF
With an analogous derivation starting from E&b) the ] )

reflection time delayrs(s) can be computed: The equivalence between the multiple path approach and

the classical phase time delay.s& 960/ Jw [3] can be ana-

_ 2_p — lytically proved only in the special case of a uniform grating.
(el ) = Irgl"=Ry=(1=Tgr (Ada) Taking into account the former approach and layers of
- infinitesimal lengthdz, the single pass time delay st
(el ;R(S)|¢R>: *lp L 0+ E 2kA7o(S) =nezdz/c and the summation in Eq13) has to be replaced

by integration over the grating length If the transmission
time delay Rér¢} is considered, it is convenient to express

: , _ Eqg. (A3a) in terms of the left and right reflector transmissivi-
Xty yty 1€/ rpel2/) tiesT1(z) andT,(2):

ty ty_roel?? neff T1(2)+T2(Z)_T1(Z)T2(Z)
GRANTL e A RS J, % T.@T2)

(B1)

|ro(s)) is reflected before reaching laysrand therefore
Tro(S)=0, while all the other components pask #mes
throughs [see Fig. &)]. The desired expression is

The generic transmissivity for a uniform grating of length
A is given by[3]

) e (ylk)?
<¢F2|;R|(;)|>¢R> =it cosi(yA)— (ol k)?’
RIYR

(B2)
Tr(S) =

ity 81 T2 where A=L,z,(L—2) for Ty, T(2),To(2), respectively,o
—2A7y(S) gnti+ti-T2 p . (A5) is the effective detuning from the Bragg wavelengths the
rgd? grating coupling constant, ang= \'k>— o2 [3]. The integra-
tion of Eq.(B1) gives the following expression for the inte-
With algebraic manipulation and using the reciprocity rela-grated transmission time delay:
tionrq, /t;,=—ri_/t], valid in the lossless caga9], Eq.

(A5) can be simplified as follows: n ﬁL [sinh(2yL)]/2yL— (o k)?
Re{ 71} = — —. (B3
T cost(yL)— (ol k)
1 p
7R(S)=2A70(S) 1-p p— Ry’ (A6) If the reflection time delay Rew} is considered, the integra-

tion of Eq.(A7a) over the grating length gives

The corresponding real and imaginary parts are found to be
Net Tgr (L Ra(2) —Ry(2)

R =Rerih+ T R, )y Tamam o7 B9

Ro—Ry

Ryr

Re{7r(S)}= ATO(S) 1-R;R,+
(A73) whereR;(z) andR,(z) are the reflectivities of the left and
right reflectors. The integrand function in E&4) is an odd
T function with respect ta=L/2, sinceT,(z)=T,(L—2) and
IM{7:(S)} = — 2A 7o( s)lm{p} L (A7b) R1(z) =R,(L —2) in a symmetric structure. Therefore the in-
T T2 Ryr tegral is equal to 0 and

The total timer,,(S) spent in sectiors by a photon is Re{ g} = Re{ 71}. (B5)
given by the average value ef(s) and mx(s), weighted by
the final state probabilitil g or Ry,. After an algebraic ma-  Finally, it is straightforward from E¢(A8) to show that even
nipulation its concise expression results: Tior= RE{ 77}
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The derivation of the phase time delay is algebraicallyby Eq.(20) by considering a generic laysmof lengthAL(s)
more involved. Starting from the analytic expression of theand the associated FabrysBecavity. The stored energy is
coefficientsty, andr g of a uniform grating 3], it is easy to  U(s)AL(s) and the flux leaving the layer is given by
recognize that the transmission and reflection phaseend S, (s)=S.(s)+S_(s), where both the counterpropagating
0 are equal apart from a constant factor. Therefore, the coffields E, (s) and E_(s) given by Eq.(16) are considered.
responding transmission and reflection time delayg,se But Sy,(S) takes into account even photons that will be scat-
=d6;/dw are equal and equal to the total time delay, as igered during the propagation and will reenter lagefThis
clear from Eq.(11). The corresponding expression is means that these photons do not actually contribute to energy

removal from the analyzed layer and therefore must not be
] (B6) accounted for in the dwell time computation. The fields as-
' sociated with photons that will not be further scattered and

] . o o reenter the layes are therefore
Performing the differentiation and taking into account that

J ; 0't L
=—1{ arctan— tan
Tphasé e arcta y anh(yL)

doldw=ngglc, the total time delay is found to Ha1] E.(s)=E.(s)t,=Er, (Cla
Re(re) Nesl [SINM(2yL)1/2yL — (o k)? - E_(s)=E_(s)t;_ +Eyr14 =Eg, (Clb
TRy = ~ .
¢ costt(yL) = (ol k) and correspond to the transmitted and reflected fields, as is

easily verified from Eqs(7b), (8b), and (16). It is worth
noting that interference in the backward direction between
photons leaving sectiosand photons scattered back before
has been used and the longitudinal modulatios(z) has reachings has to be considered. Using Eq1) and consid-

been disregarded in this derivation. Therefore, the analyticaﬁ_rlng the c~orrect Iioyntlrlg vector.fluxes, the gutgomg asso-
results presented are valid in the small index-contrast apfiated fluxS, (s)+S_(s)=Sr+ Sg is constant, independent

The equivalence betweety,, Re{ 71}, Re[7r}, and 7ppascat
every wavelength is analytically proved by Ed83) and
(B7). It has to be noted that the average refractive inalgx

proximation only(see Sec. Il ¢ of the layer position, and equal 18,, because of energy
conservation. Therefore, applying the general definition of
APPENDIX C: LOCAL DWELL TIME DERIVATION dwell time to each layer, the local dwell timg(s) is

AND PHYSICAL INTERPRETATION U(s)AL(S) B W(s)

The dwell timerp, associated with a generic cavity can be 7o(S)= 3 13 S,
interpreted as the time necessary to empty the cavity itself in T
steady state conditions. The same physical meaning can kend the formal relation introduced in EqR0) and (21) is
extended to the local dwell timep(s)= 7(S) introduced proved.
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