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Parametric and resonant transition radiation in periodic stratified structures
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We consider the problem of electromagnetic emission when an electrically charged particle crosses a peri-
odically stratified structure following an arbitrary linear trajectory. A theory generalizing a recently developed
method@Phys. Rev. E63, 016613~2001!# is presented in the framework of the classical theory of electromag-
netism in continuous media. It allows one to account for both the so-called parametric radiation and the
resonant transition radiation. We implement our model to interpret the experiments performed by Kaplinet al.
@Appl. Phys. Lett.76, 3647~2000!# in the x-ray domain with a stack of 300 W/B4C bilayers irradiated by 500
MeV electrons.
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I. INTRODUCTION

When an electrically charged particle~in practice, an elec-
tron! crosses the interface separating two different materi
electromagnetic radiation is emitted, mainly in the x-ray d
main. This radiation, called transition radiation~TR!, is the
consequence of the readjustment of the field associated
the charged particle, when it moves in a material showin
sudden change of polarization; it has been discovered
Ginsburg and Frank@1#. The emission takes place in a con
centred on the trajectory of the particle with an open
angle practically equal to 2/g, whereg is the Lorentz factor
associated to the energy of the particle. Numerous te
have observed the TR by means of radiators consisting
set of thin foils @2#. If the arrangement of foils is periodic
coherent x-ray emission, called resonant transition radia
~RTR!, resulting from constructive interferences between
waves emitted by each foil can be observed@3,4# when the
following resonant condition is satisfied:

cos@a#5
1

b
2p

l

d
, ~1!

wherea is the angle of emission with respect to the traje
tory of the particle,b is the reduced speed of the particle,d
the period of the arrangement,l the wavelength of the co
herent radiation, andp the order of interference. Such per
odic radiators with thin films separated by vacuum are v
difficult to realize for mechanical reasons. Alternatively,
has been proposed to use as radiators, periodic multil
structures similar to x-ray multilayer interferential mirrors
produce RTR in the x-ray domain@5#; to match the angle for
which the TR emission by a single interface is maximum,
periodd of the multilayer structure must be in the microm
ter range to produce soft x-rays and simple calculations s
that in this condition, the multilayer-based RTR is a re
tively intense source of x-rays@6,7#. The modelization of the
RTR emission by periodic stratified structures has been d
by different groups, both in a classical and quantum con
@8,9,10#. More recently, a dynamical theory of electroma
1063-651X/2002/65~3!/036501~9!/$20.00 65 0365
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netic emission by a periodic multilayer structure crossed
an electron at normal or oblique incidence@11# has shown
that beside the classical RTR, an enhancement of emis
occurs when conditions close to the Bragg condition are
isfied; this emission was called Bragg resonant transition
diation ~BRTR!. This kind of radiation is similar to the so
called parametric radiation forecasted by Dialetis@12# and
evidenced by several teams in the hard x-ray domain fr
irradiation of natural crystals by electrons@13–16#.

Standard RTR was observed by a Japanese team, w
has irradiated a Ni/C multilayer structure of periodd equal to
397 nm with 15 MeV electrons@17#. Their measurements ar
in close agreement with the values given by a rigorous c
sical theory of standard RTR emission from periodic stra
fied structures recently developed and using a matrix form
ism commonly implemented in optics of multilayer med
@18#.

Moreover, in conditions similar to those proposed in R
@6#, i.e., with electrons impinging the periodic multilaye
structures at oblique incidence, so that the x-ray emiss
satisfies the Bragg condition, an relatively intense emiss
of hard x-ray ~around 15 keV! from 500 MeV electrons
crossing a W/B4C multilayer with a periodd equal to 1.24
nm has just been observed@19#.

The purpose of this paper is to generalize the theory p
sented in Ref.@18# to the case where the incident partic
enters the multilayer stack from any direction. This theo
must account both for the RTR and the BRTR~or parametric
radiation!. Our approach is rigorous in the framework of th
classical theory of electromagnetism in continuous media
a similar way as in Ref.@18#, it calls upon the matrix formal-
ism introduced in optics to deal with the wave propagation
multilayer media; the main difference from the model pr
sented in Ref.@18# is that we use the matrix method initiall
introduced by Abele`s @20#, which makes it possible to treat i
an elegant manner, the problems of polarization.

The paper is organized as follows:
Section II is devoted to the derivation of the equati

governing the electromagnetic field produced by an elect
crossing two homogeneous media separated by a plane i
face.
©2002 The American Physical Society01-1
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B. PARDO AND J.-M. ANDRÉ PHYSICAL REVIEW E 65 036501
Section III introduces the matrix formalism.
Section IV presents the calculations of the field emit

from the radiator in the far zone and of the correspond
intensity in terms of energy radiated by unit frequency int
val and per unit solid angle.

In Sec. V, we apply our model to account for an expe
ment conducted recently and reported in Ref.@19#.

The conclusion and the perspectives are given in Sec.

II. EQUATION OF THE ELECTROMAGNETIC FIELD
PRODUCED BY AN ELECTRON CROSSING
TWO HOMOGENEOUS MEDIA SEPARATED

BY A PLANE INTERFACE

We consider the electromagnetic field associated with
electrically charged particle of chargeq, crossing at a con-
stant speed the interface between two homogeneous m
If «@v# denotes the dielectric constant and if the magne
permeability is assumed to be equal to unity, then the Fou
transforms of the electric and magnetic field read, in
Gauss unit system,

k3Ĥ52
v«@v#

c
Ê2

q

c

i

2p2 d@v2k•v#v, ~2a!

k•Ê5-
i

2p2«@v#
qd@v2k•v#, ~2b!

k3Ê5
v

c
Ĥ, ~2c!

k•Ĥ50, ~2d!

where E, H are, respectively, the generic symbols for t
electric field intensity and the magnetic field intensity;v is
the speed vector of the particle with a componentvi parallely
to the interface and a componentv' along the direction per-
pendicular to the interface;c is the velocity of light in
vacuum;v andk are, respectively, the angular frequency a
the wave vector of the field;d is the Dirac distribution. In the
following, we use the notationk05v/c.
By combining the above equations it follows that

Ê@k,v#5
qi

2p2«@v#

v«@v#

c2 v2k

k22
v2«@v#

c2

d@v2k•v#, ~3!

Ĥ@k,v#5
1

c

qi

2p2

k3v

k22
v2«@v#

c2

d@v2k•v#. ~4!

To apply easily the boundary conditions of optics, that is,
our context, the continuity of the tangential components
the electric and magnetic field, it is convenient to introduc
partial Fourier transform of these fields; these quantities,
bellished by overbar are defined by the following expr
sions:
03650
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Ē@ki ,v,z#5
1

~2p!3 E E E E@r,z,t#ei ~2ki•r1vt !dt d2r,

~5!

H̄@ki ,v,z#5
1

~2p!3 E E E H@r,z,t#ei ~2ki•r1vt !dt d2r.

~6!

It can be shown in Appendices A and B that the above qu
tities are given by

Ē@ki ,v,z#5
1

v'

qi

2p2«@v#

3

v
«@v#

c2 vi2ki1S v
«@v#

c2 2
v2ki•vi

v'
2 D v'

ki
21S v2ki•vi

v'
D 2

2
v2«@v#

c2

3expS i
v2ki•vi

v'

zD , ~7!

and

H̄@ki ,v,z#5
1

v'

qi

2p2«@v#

3

«@v#

c S ki3vi1ki3v'1
v2ki•vi

v'
2 v'3vi D

k21S v2ki•vi

v'
D 2

2
v2«@v#

c2

3expS i
v2ki•vi

v'

zD . ~8!

These expressions are the generalization to the oblique
of Eqs. ~12!, ~13! of Ref. @18#. The general solution of the
problem is obtained as the sum of the particular solution
the inhomogeneous Maxwell equations and the solution
the homogeneous equations. The latter is, in terms of ele
field intensity,

E0@r,z,t#5E E E Ẽ0@ki ,k'#ei ~ki•r1k'z2vt !d2kidk' ,

~9!

wherev, ki , andk' are related by the dispersion relation

k'
2 5

v2

c2 «@v#2ki
2. ~10!

As shown previously, one introduces the partial Four
transforms

Ē0@ki,v,z#5
1

~2p!3 E E E E0@r,z,t#ei ~2ki•r1vt !dt d2r,

~11!

and
1-2
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PARAMETRIC AND RESONANT TRANSITION . . . PHYSICAL REVIEW E65 036501
H̄0@ki ,v,z#5
1

~2p!3 E E E H0@r,z,t#ei ~2ki•r1vt !dt d2r.

~12!

Then one obtains from calculations similar to the ones
Appendices A and B:

Ē0@ki ,v,z#5E E E Ẽ0@k8#eik'8 zd@ki82ki#

3d@v82v#d2ki8dk'8 , ~13!

and similar results for the magnetic field.
After some manipulations, one gets

Ē0@ki ,v,z#5Ē80t@ki ,v#eik'@ki ,v#z

1Ē80r@ki ,v#e2 ik'@ki ,v#z, ~14!

H̄0@ki ,v,z#5H̄80t@ki ,v#eik'@ki ,v#z

1H̄80r@ki ,v#e2 ik'@ki ,v#z, ~15!

where one has

Ē80t@ki ,v#5
1

2k'@ki ,v#c2 S 2v«@v#

1v2
d«@v#

dv D Ẽ0t@ki ,v#, ~16!

and similar expressions forĒ80r@ki ,v#, H̄80t@ki ,v#, and
H̄80r@ki ,v#.

The boundary conditions state that the tangential com
nents of the electric and magnetic field intensities must
continuous at each interface.
If one denotes by

Ē0i@ki ,v,z#5Ē80i t@ki ,v#eik'@ki ,v#z

1Ē80ir@ki ,v#e2 ik'@ki ,v#z, ~17!

and

H̄0i@ki ,v,z#5H̄80i t@ki ,v#eik'@ki ,v#z

1H̄80ir@ki ,v#e2 ik'@ki ,v#z, ~18!

the tangential components of the electric and magnetic fi
associated to the homogeneous equation, the continuity
ditions require that the following quantities:

1

v'

qi

2p2«@v#

v
«@v#

c2 vi2ki

ki
21S v2ki•v i

v'
D 2

2
v2«@v#

c2

ei
v2ki•vi

v'
z

1Ē80i t@ki ,v#eik'@ki ,v#z1Ē80ir@ki ,v#e2 ik'@ki ,v#z,

~19!
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1

cv'

qi

2p2

ki3v'1
v2ki•vi

v'
2 v'3vi

k21S v2ki•vi

v'
D 2

2
v2«@v#

c2

expS i
v2ki•vi

v'z D
1H̄80i t@ki ,v#eik'@ki ,v#z1H̄80ir@ki ,v#e2 ik'@ki ,v#z, ~20!

are conserved at the interfaces.

III. MATRIX FORMALISM FOR THE PROPAGATION
OF THE FIELD IN A PERIODIC STACK

OF PLANE LAYERS

One consider a laboratory reference system~x, y, z!, for
which the interfaces between the layers are parallel to
plane ~x, y!; the z axis is orthogonal to the stratificatio
planes~x, y!. In fact, the relevant system of reference~X, Y,
Z! that makes it possible to introduce conveniently the a
plitudes of the different waves will be called the canonic
system. In this system, which depends on the tangential c
ponent of the wave vector, the tangential component of
field has only aY component, theX component being null.
This system of reference can be obtained as follows:

The unit vector of theZ axis uz is along the direction
normal to the stratification planes, that is, along thez axis.

The unit vector of theY axis uy is colinear with the tan-
gential component of the wave vectork.

The unit vector of theX axisux is obtained from the cross
productux5uy3uz .

In this canonical system, an electromagnetic plane w
can be decomposed in a transverse magnetic~TM! wave and
a transverse electric~TE! wave. For the TM wave, the mag
netic field has only a component along theX axis and the
electric field can be determined from the magnetic field
means of a Maxwell equation. For the TE wave, it is t
electric field that has only a component along theX axis, and
the magnetic field can be calculated by means of a Maxw
equation. The waves that propagate with a given tangen
wave vectorki can be split into a transmitted TM compo
nent, a reflected TM component, a transmitted TE com
nent, and a reflected TE component, which can be prese
in the form of a quadrivector

TR@ki ,v,z#5S TTM@ki ,v,z#
RTM@ki ,v,z#
TTE@ki ,v,z#
RTE@ki ,v,z#

D . ~21!

In the following, we will be led to use the tangential comp
nents of the homogeneous electromagnetic field and to
press them in the form of a quadrivector in the canoni
reference system:
1-3
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F@ki ,v,z#5S H̄0x@ki ,v,z#

Ē0y@ki ,v,z#

Ē0x@ki ,v,z#

H̄0y@ki ,v,z#

D . ~22!

The matrix that transforms the quadrivectorTR into the
quadrivectorF, that is,F5M TR, is given in the canonica
system by

M5S 1 1 0 0

2
k'

k0

k'

k0
0 0

0 0 1 1

0 0
k'

k0
2

k'

k0

D . ~23!

In the canonical system, the total electromagnetic field~i.e.,
inhomogeneous field plus homogeneous field! can be totally
known from a quadrivectorQ built by the means of the
corresponding tangential components of the electric
magnetic fields,

Q@ki ,v,z#5S H̄x@ki ,v,z#

Ēy@ki ,v,z#

Ēx@ki ,v,z#

H̄y@ki ,v,z#

D . ~24!

From the results of Sec. II, it follows that theQ quadrivector
reads

Q@ki ,v,z#5S@ki ,v#eikzz1F@ki ,v,z#, ~25!

with

kz5
v2ki•vi

vz
. ~26!

The quadrivectorS can be expressed in the canonical syst
as
03650
d

S5
iq

2p2«vzS S v2kyvy

vz
D 2

2kz
2D

3S «

c
kyvz2

vy~v2kyvy!

vz

«

c2 vvy2ky

«

c2 vvx

«

c

vx~v2kyvy!

vz

D expF i
z~v2kyvy!

vz
G .

~27!

The stack consists of an arrangement of plane layers cha
terized by their dielectric constants« j and their thicknesses
dj . At the interface, whose abscissa iszj 21 and which sepa-
rates the layerj 21 from the layerj, the continuity relations
give the set of recurrent equations,

Fj 21@ki ,v,zj 21#1Sj 21@ki ,v#eikzzj 215Fj@ki ,v,zj 21#

1Sj@ki ,v#eikzzj 21. ~28!

By introducing the following quantities,

D j 215Sj 212Sj , ~29!

one has

Fj@ki ,v,zj 21#5Fj 21@ki ,v,zj 21#1D j 21@ki ,v#eikzzj 21.
~30!

The Fj 21@ki ,v,zj 21# can be deduced from
Fj 21@ki ,v,zj 22# by means of the Abele`s formalism@20,21#:

Fj@ki ,v,zj 21#5A@ki ,v,zj 212zj 22#•Fj 21@ki ,v,zj 22#

1D j 21@ki ,v#eikzzj 21, ~31!

whereA@ki ,v,zj 212zj 22# is the Abelès matrix for a single
layer. In the canonical system, this matrix takes the follow
simple form:
A@ki ,v,dj #5S cos@k'dj # 2
i«k

k'

sin@k'dj # 0 0

2
ik'

«k
sin@k'dj # cos@k'dj # 0 0

0 0 cos@k'dj #
ik

k'

sin@k'dj #

0 0
ik'

k
sin@k'dj # cos@k'dj #

D . ~32!
1-4
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Now, one handles the case of a periodic multilayer st
immersed in the vacuum~see Fig. 1!. We suppose that the
stack consists of an alternate arrangement of two mate
characterized by the dielectric constants«1 and «2 and the
thicknessesd1 and d2 , respectively. We denote byd, the
periodd11d2 , and byN, the number of periods. The num
ber of the first medium is 0 while the one of the last mediu
is equal to 2N11.
Using twice, the Eq.~30!, one obtains,

F2 j 118 @ki ,v,z2 j #5m@ki ,v,d1 ,d2#•F2 j 218 @ki ,v,z2 j 22#

1d@ki ,v,d1 ,d2 ,kz#, ~33!

with

F82 j 115e2 ikzz2 j 11F2 j 11@ki ,v,z2 j #, ~34!

m@ki ,v,d1 ,d2#5e2 ikz~d11d2!A@ki ,v,d2#•A@ki ,v,d1#,
~35!

and

d@ki ,v,d1 ,d2 ,kz#5A@ki ,v,d2#•D@ki ,v#e2 ikz~d11d2!

2D@ki ,v#eikzd2, ~36!

where

D5D1 . ~37!

In this derivation, we have used the fact thatDn1152Dn . A
little algebra leads to a linear relationship betweenF82 j 11
andF81 :

F82 j 115Sj@m#d1Pj@m#F81 , ~38!

where

Sj@m#5(
i 50

j 21

m i and Pj@m#5m j . ~39!

FIG. 1. Scheme of a periodic multilayer stack made up of al
nate layers of a material of dielectric constant«1 and thicknessd1

and of a material of dielectric constant«2 and thicknessd2 . The
number of bilayers isN. The electron enters the stack with an inc
dent angleu.
03650
k

ls

IV. DETERMINATION OF THE RADIATION INTENSITY
IN THE FAR ZONE

The electric fieldED@D,t# seen by a detector located
D5(r,D) in the laboratory frame can be calculated by Fo
rier transform

ED@D,t#5E E d2ki E dv ẼBh@ki ,v#

3eihk'@ki ,v#zBei ~ki•r1k'@ki ,v#D2vt !
]k'@ki ,v#

]v
,

~40!

whereẼBh@ki ,v# is the partial Fourier transform of the elec
tric field calculated at the appropriate boundary situate atzB .
The presence of the symbolh is due to the fact that disper
sion relation@Eq. ~10!# admits the two solutions1k' and
2k' .

In fact, we shall be interested in the time Fourier tran
form for the calculation of the radiated intensity,

ÊD@D,v8#5
1

2p E dt eiv8tE E d2ki E dv ẼBh@ki ,v#

3eihk'@ki ,v#zBei ~ki•r1k'@ki ,v#D2vt !
]k'@ki ,v#

]v
.

~41!

The integrations overt andv give

ÊD@D,v8#5E E d2kiẼBh@ki ,v8#eihk'@ki ,v8#zB

3ei ~ki•r1k'@ki ,v8#D !
]k'@ki ,v8#

]v8
. ~42!

Now we calculate the field at an observation pointD situated
in far zone, the spherical coordinates of which areD, a, w;
note that the reference frame is chosen so thatw590°, when
the observation pointD is located in the incident plane
formed by the speed vector and the normal to the stratifi
tion planes. Provided that the values ofD’s are large enough
the integrals~42! can be performed by using the method
stationary phase generalized at two dimensions@22#. The cal-
culation gives

ÊD@D,v#5s2p i
v

c
cos@a#ẼBh@kiS ,v#eihk'@kiS ,v#zB

3
eiDf@kiS#

D

]k'@kiS ,v#

]v
, ~43!

wheref is the so-called stationary phase andkiS is the sta-
tionary wave vector given in the canonical system by

kiS5k0S 0
sin@a#

0
D , ~44!

-

1-5
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s is an irrelevant quantity that depends on the geometry
whose modulus is equal to unity. The problem at this stag
to calculate the electric field at the boundariesẼBh@kiS ,v#.
To do it, one needs the homogeneous field quadrivectorsF’s
at the two boundaries~zB5z050 andzB5z2N! of the stack.
According to Eq.~38!, they are connected by the followin
vector equation:

F8@kiS ,v,z2N#5SN@m#•d@kiS ,v#1PN@m#•F8@kiS ,v,z0#.
~45!

Moreover, at the two boundaries, these homogeneous
quadrivectorsF’s are related to the corresponding amplitu
quadrivectorsTR@ki ,v,z0# andTR@ki ,v,z2N# by means of
the matrixM, which in the canonical representation, is giv
by Eq. ~22!.

To solve the problem, one has to take into account the
that there are no incoming waves in the extreme media
that the Eq.~45! becomes:

Fo85SN@m#•d@kiS ,v#1PN@m#•F8 i , ~46!

with

Fo85exp@2 ikzd#MS To@TM#
0

To@TE#
0

D . ~47!

and

Fi85exp@2 ikzd#MS 0
Ri@TM#

0
Ri@TE#

D . ~48!

To@TM# andTo@TE# stand for the amplitude of the transmi
ted TM and TE waves atz5z2N , respectively, whileRi@TM#
andRi@TE# stand for the amplitude of the reflected TM an
TE waves atz5zo , respectively: the suffix ‘‘o’’ is for out-
going while the suffix ‘‘i’’ is for incoming in relation with the
direction of propagation of the electrons with respect to
stack.

The resolution of the system~46! gives the values of
To@TM#, To@TE#, Ri@TM#, andRi@TE# from which one can
calculate the reflected and transmitted intensities of the r
ated far-field per unit angular frequencydv and per unit
solid angledV according to their different polarizations, b
using the relationship

]3I @V,v#

]v]2V
5cD2iÊD@D,v#i2. ~49!

V. APPLICATIONS

First, we have checked that our generalized approac
able to retrieve the results obtained in the case of RTR w
the previous model@18#. RTR occurs when one of the quan
tities SN involved in Eq.~45! presents a resonant behavio
there are constructive interferences between the RT em
03650
d
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by each bilayer. This resonant condition reduces to the c
sical resonant condition@cf. Eq. ~1!# for the RTR when the
indices of refraction are small enough; this case correspo
to the so-called x-ray regime studied in Ref.@11#.

The present generalized model was, in fact, develope
account for the so-called Bragg resonant transition radia
or, to use a more common vocable, the parametric ra
tion~PR!.

We consider the experiment recently performed in
x-ray domain with 500 MeV electrons impinging at obliqu
incidence, a stack of 300 W/B4C bilayers@19#. The geometry
was choosen to observe x-rays around 15 keV~Fig. 2!. Fig-
ure 3 shows the intensity in terms of number of photo
electron/eV/sr calculated versus the photon energy wit
our model, corresponding to this experiment; the azimut
angle of observationw retained for the calculation is equal t
90° ~it means that the observation is done in the incid
plane formed by the electron speed vector and the norma
the stratification planes!. The intensity is calculated for the
TM polarization since the contribution of the TE polarizatio
vanishes for this value of the azimutal angle because of s
metry reasons. The spectrally integrated intensity calcula
from our model is about 100 photons/electron/sr, while
experimental value is about 0.22 photons/electron/sr. The
thors of the paper reporting the experimental data@19# claim
that this latter value is in agreement with a calculation ba

FIG. 2. Geometry for the observation of the emitted radiatio

FIG. 3. Calculated TM spectrum of the parametric radiati
emitted by a target consisting of 300 W B4C bilayers crossed by a
500 MeV electron. The thickness of the W layer is 0.5 nm and
thickness of the B4C layer is 0.7 nm. The incident angle of th
electron is 88°. The spherical angles of the observation point
a51.9° andw590°.
1-6



u-
eo
nt

or
it

a
0

an
o
k
n
ti

i-

r

er
he
m
al

um
e 5
-

rgy
R
-

er

of
e-

ion
s-

PR

ly
the

ob-
u-

of
ri-

ity

of

th
d

-
n

e
he
is

PARAMETRIC AND RESONANT TRANSITION . . . PHYSICAL REVIEW E65 036501
on a simple model of virtual-photon reflection. Unfort
nately, no reference concerning this model is given. A th
retical approach connected to the method of virtual qua
that we have previously developed@11#, gives a spectrally
integrated intensity in agreement with the present the
~See Fig. 4!. We have observed that the calculated intens
is very sensitive to the value of the observation anglea: a
shift of 1021 degree on this value with respect to the optim
a value leads to a fall in the intensity by a factor about 10
The fact could explain the discrepancy between theory
experiment. Moreover, the multilayer structure is likely n
ideal ~interfacial roughness, small irregularities in the stac!,
so that these imperfections lead, in practice, to a reductio
the emitted intensity. In Fig. 5, we have plotted for the op
mal energy~about 15.58 keV!, the intensity versus the az

FIG. 4. Spectrum of the parametric radiation emitted by
same target as in Fig. 3, calculated from the virtual-quanta mo
presented in Ref.@11#.

FIG. 5. Azimutal angular~w! distribution of the parametric ra
diation emitted by the same target as in Fig. 3. The calculatio
done for the TM and TE polarizations at the optimum energy~15.58
keV!.
03650
-
a,

y
y

l
.
d

t

of
-

muthal anglew: the difference in the spatial distribution fo
the TM and TE cases is clearly evidenced.

Parametric radiation occurs when the periodic multilay
stack is in the Bragg regime for the emitted radiation. T
observation angle for which the PR emission is maximu
does not follow the Snell law, which means that the optim
valueaopt of the anglea is not equal top/2-u ~that is, 2° in
the case of interest!, but to 1.9°; this latter value is exactly
the value of the position of the detector reported in Ref.@19#.
Note that we have observed that the value of the optim
energy depends drastically on the electron energy. Figur
shows the TM reflectivity of the multilayer mirror corre
sponding to the multilayer target, for an incident angleu
equal to 88°. One sees the shift between the Bragg ene
~around 14.85 keV! and the optimal photon energy of the T
emission~15.58 keV!. It is interesting to note that the theo
retical spectral bandwidth~SBW! of the Bragg reflection
~about 56 eV! as shown in Fig. 6 is considerably broad
than the theoretical SBW of the PR emission~about 29 eV!.

VI. CONCLUSIONS AND PERSPECTIVES

We have developed a rigorous theory, in the framework
the classical theory of electromagnetism in continuous m
dia, which modelizes both the RTR and the PR emiss
from periodically stratified targets. The model makes it po
sible to account for the main results of recent RTR and
experiments@17,19#.

In a forthcoming paper, this model will be systematical
used to study the influence of the different parameters on
PR emission; the polarization of the radiation versus the
servation direction will be especially examined. The infl
ence of the electron energy, of the number of bilayers, and
the interfacial roughness will be also studied. Careful expe
mental investigations would be useful to check the valid
of our model.

APPENDIX A

The transverse spatial and temporal Fourier transform
the field is defined by

e
el

is

FIG. 6. TM reflectivity versus the photon energy of th
multilayer interferential mirror equivalent to the target used for t
calculation of Figs. 3, 4, and 5. The incident angle of the x rays
88°. Thea observation angle is equal to 2°.
1-7
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Ē~ki8 ,v8,z!5
1

~2p!3 E E E E~r,z,t !ei ~2ki8•r1v8t !dt d2r.

~A1!

Taking into account Eq.~3! yields

Ē~ki8 ,v8,z!5
1

~2p!3 E E E E E E E qi

2p2«@v#

3

v«@v#

c2 v2k

k22
v2«@v#

c2

d@v2k•v#ei ~k•r2vt !dv d3k

3ei ~2ki8•r1v8t !dt d2r. ~A2!

Performing the integration over the timet and the variabler
gives

Ē~ki8 ,v8,z!5E E E E qi

2p2«@v#

v«@v#

c2 v2k

k22
v2«@v#

c2

3d@v2k•v#eik'zd@ki2ki8#

3d@v82v#dv d2kidk' . ~A3!

The integration overv leads to

Ē~ki8 ,v8,z!5E E E qi

2p2«@v8#

v8«@v8#

c2 v2k

k22
v82«@v8#

c2

3d@v82k•v#eik'zd~ki2ki8!d2kidk' .

~A4!

The integration overki gives,

Ē~ki8 ,v8,z!5E qi

2p2«@v8#

v8«@v8#

c2 v2ki82k'

ki8
21k'

2 2
v82«@v8#

c2

3d~v82ki8•vi2k'•v'!eik'zdk' .

~A5!

After a last integration overk' , ones obtains the expressio
of Ēi ,
03650
Ēi~ki8 ,v8,z!5
1

v'

qi

2p2«@v8#

3

v8«@v8#

c2 vi2ki8

ki8
21S v82ki8•vi

v'
D 2

2
v82«@v8#

c2

3expS i
v82ki8•vi

v'

zD . ~A6!

APPENDIX B

The transverse spatial and temporal Fourier transform
the magnetic field is defined by

H̄~ki8 ,v8,z!5
1

~2p!3 E E E H~r,z,t !ei ~2ki8•r1v8t !dt d3r.

~B1!

Taking into account Eq.~4! yields

H̄~ki8 ,v8,z!

5
1

~2p!3 E E E E E E E qi

2p2«@v#

«@v#

c
k3v

k22
v2«@v#

c2

3d@v2k•v#ei ~k•r2vt !dv d3kei ~2ki8•r1v8t !dt d2r.

~B2!

Performing the integration over the timet and the variabler
gives

H̄~ki8 ,v8,z!

5E E E E qi

2p2«@v#

«@v#

c
k3v

k22
v2«@v#

c2

3d@v2k•v#eik'zd@ki2ki8#d@v82v#dv d2kidk' .

~B3!

The integration overv leads to

H̄~ki8 ,v8,z!5E E E qi

2p2«@v8#

«@v8#

c
k3v

k22
v82«@v8#

c2

3d@v82k•v#eik'zd@ki2ki8#d2kidk' .

~B4!

The integration overki gives,
1-8
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H̄~ki8 ,v8,z!5E qi

2p2«@v8#

«@v8#

c
~ki81k'!3v

ki8
21k'

2 2
v82«@v8#

c2

3d@v82ki8•vi2k'•v'#eik'zdk' .

~B5!

After a last integration overk' one obtains the following
expression forH̄i :
.
D

.
d

th
H

pt

03650
H̄i~ki8 ,v8,z!5
1

v'

qi

2p2«@v8#

3

«@v8#

c S ki83v'1
v82ki8•vi

v'
2 v'3vi D

ki8
21S v82ki8•vi

v'
D 2

2
v82«@v8#

c2

3expS i
v82ki8•vi

v'

zD . ~B6!
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