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Axisymmetric relativistic self-channeling of laser light in plasmas
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By using an improved cavitation model, relativistic self-channeling structures are derived, which make it
possible to propagate laser powers exceeding the critical one for self-focusing. A propagation mode for high
laser power is also presented which is qualitatively different from those in the weakly relativistic case. Struc-
tural stability analysis shows that stable self-wave-guide propagation can take place.
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[. INTRODUCTION self-consistent description of the relativistic self-focusing
that solves the problem of “negative electron density” with-
In recent years, the combined effect of ponderomotive an@ut violating the total charge conservation was still missing.
relativistic nonlinearities have assumed an important role for In our previous work[12], we presented an improved
the problem of penetration of super-intense laser pulses inteavitation model that, in a planar geometry, allowed for exact
underdense plasmas especially regarding self-focusing ari@o-dimensional2D) stationary analytical solutions describ-
self-channeling phenomeria—4]. The importance of these ing the transverse structures of waveguide channels with
phenomena is not only intrinsic but is also related to theelectron cavitation. In this model both the ponderomotive
requirements of most of the advanced application scheme&nd relativistic nonlinearities were taken into account, along
like, e.g., inertial confinement fusiofb], where the laser Wwith the constraint given by total charge conservation. It was
radiation has to propagate over distances considerably b&hown that multifilament structures can be described exactly
yond the diffraction limit without significant energy losses. in analytical terms and the threshold power for the genera-
Numerical and experimental studies have given evidence fdion of such structures was calculated. It turned out that the
the formation of stable channels and radiation filamentghreshold power was lower than what was predicted without
[6,7]. taking into account charge conservation. The main purpose
As was shown by Sust al.[1], the properties of relativ- 0f the present paper is to find analogous stationary structures
istic self-focusing can change drastically for very high-powerin the 3D case with axisymmetric geometry, using numerical
beams. In this case, the laser intensity is so strong that theomputations and to analyze the structural stability of these
ponderomotive force can expel all electrons from the regiorsolutions. As is well known, the higher dimensionality in
of the high-intensity field. Recent studigg6,8—1Q demon-  self-focusing is very important in order to be able to deliver
strate that stable channeling can occur with propagatinggser powers much higher than the critical one but also leads
power exceeding the critical one for relativistic self-focusingto fundamental differences as compared to the one-
[11], i.e., P>P¢,=170% v}, GW. The laser radiation is then dimensional case.
confined in a self-induced waveguide, which is emptied of In what follows, we will first introduce our model and
electrons. justify the approximations we have considered in order to
The physical idea behind self-focusing and self-a8nalyze the self-focusing and self-channeling phenomena.
channeling with superintense laser pulses is that the relativthen we will determine the shape of the stationary structures
istic motion acquired by the plasma electrons and the densitgnd calculate the power required to generate them. It will
perturbations due to the action of the laser ponderomotivélso be demonstrated how the form of the structures changes
force (time scales are so short that ions can be considered 4@ increasing incident laser power. The central problem will
immobile) can induce significant modifications in the refrac- then be to consider in more detail those structures that ex-
tive index of the plasma. Electrons tend to be expelled fronfibit full electron cavitation and to determine exactly their
the focal region of the laser beam, while acquiring relativis-Properties and stability.
tic quiver velocities and the pulse is focused into what in
principle could be a catastrophic singularity. However, if the IIl. BASIC EQUATIONS
intensity is high enough, it has been shown that full electron
cavitation occurs, leading to a stable channeling of the radia- In order to identify the effect due to the action of pon-
tion in cavities depleted of their electrons and where consederomotive and relativistic nonlinearities, we will consider
quently further focusing cannot take place. The complicatedhe interaction between an ultrahigh power laser pulse and an
interplay between the laser action and the forces due to thénderdense plasma, i.e., a plasma with=Ng/N,<1,
charge-density perturbations makes it difficult to follow ana-where Nq is the unperturbed electron density aiy,
lytically such phenomena while taking rigorously into ac- =mw?/4me? is the critical density. Introducing the different
count global plasma quasineutrality. In order to make anatime scales aa);el, the electron response tim@,}il, the ion
lytical progress, a simplified cavitation model has been usedesponse time, and 1, the laser carrier oscillation time, the
[1,3,6,9. However, as was recently pointed out[ib0], a  main requirements on the laser parameters are that the inten-
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sity must be high enough to set electrons in relativistic[10]. Finally, the inequality>« ~* will allow us to use the
quiver motion, while the characteristic time of the interactionslowly varying envelope approximation in order to single out

dynamicsr must be such that the fast optical time scale.
Naturally, the laser-plasma interaction will present a dy-
wﬁﬁ» T>wgel>afl. namical stage described by the full time-dependent set of

equations, but the existence of quasistationary structures that
For relativistic electron velocities all thermal and collisional can be realized as a result of the interaction and their stability
effects can be neglected and the electron thermal pressugge interesting and important questions. The search for qua-
becomes negligible compared to the ponderomotive pressursisteady solutions leads us to an important simplification: if
Furthermore, the inequality)gi1>7- guarantees that ion dy- the electron fluid is initially vortex free, we can assume that
namics can be disregarded. In this case, we can start owr remains equal to zero. Furthermore, in the paraxial ap-
analysis with the modelsee alsd13]) that describes a rela- proximation, the longitudinal component of the vector poten-
tivistic cold electron fluid with a background of immobile tial can be neglected and we can assuefr,t)/mc
ions and which is based on Maxwell's equations together (1/2){a(r, ,z)(e+ig)exdi(kz—wt)]+c.¢f, where z has
with the equation of motion for the electron fluid and a gaugebeen chosen as the propagation coordinatekanad/c is the
choice(the Coulomb gauge will be adopted in our dase  vacuum wave number. As linear polarization would not bring

any significant change into the model, we can consider, for

1 9%A 19 A the sake of simplicity, circularly polarized radiation. Thus,
A—— —=——Voeo+—Ney, (1) our basic equations will result in a simplified set of equations
c2 gt2 c oot c
da _,  kng
Vz(p:47Te(N—NO), ) 2|kE+VLa—Tna—O, (7)
e 2p=k?ng(n—1
myv= EA+V¢I’ (3) VL¢ no(n ). (8)
¢=vy—1 ifand only if n#0, 9
I
—f —ee—mci(y=1), (4) y=+1+|al?, (10)

where V2 =2/ 9x?+ 9?/ 9y? accounts for the diffraction in
the transversex;y) plane and we have in(goduced the fol-
. L ) lowing normalizationn=N/Ngy, ¢=e¢/(mc). So far, our
Here, y=1/y1—v"/c”is the relativistic factorN is the elec- 1, 4| equations are exactly analogous( to tr)wose presented by
tron density,e andm are the electron charge and mass, ré-gyn and otherfl,3,8,9, except for one point: the subsequent
specnver,A is the eIectror_nagnetlc vector potent_laljs th_e treatment of Eqs(8) and(9). The delicate point is the deter-
electrostatic scalar potential, aqu a scalar function which | ination of the electron density profifg(r). As a matter of
expresses the electron canomt;al momentum. Eq.ua([a)ns fact, n(r) is determined by Poisson’s E¢B) together with
and(4) imply that we are assuming vortex-free motion of the 4o torce balance Eq9) and nothing in the model prevents
electrons.. Centra! to the.mod.el is the fact Fhat the g:hargﬁ(r) from assuming nonphysical negative values. The com-
conservation law is contaln_ed in these equations: Taking thg, way to solve this problem, suggested by the physics of
divergence of Eq(1) and using Eqs(2) and(5) we find that  he hroblem itself, is to set(r) =0 where the equations lead
the charge conservation law to the unphysical result of negative values. This is meant to
model mathematically the fact that, as soon as electrons start
ﬁJFV ((NV)=0 (6) f:avitatir)g, the force ba!ance equation loses its validity since
at in a region depleted of its electrons there are no particles left
to balance the ponderomotive force. Unfortunately, setting
is automatically satisfied, i.e., the total charge is conservedthe boundaries of the depletion region at the point where the
The second inequalityr> wgel) will help us in isolating  density vanishes does not respect total charge conservation
the combined effect of ponderomotive and relativistic non-and it has been shown that this usually leads to an excess of
linearities from other effects like wake field generation, asnegative charges, which in turn means that the power re-
the pulse will be long enough to disregard phenomena due tquired to generate these structures will be overestimated
longitudinal charge separation. Given the assumptions on thd2]. It also means that the set of Eq3)—(10) cannot be
characteristic time scales of the interacting pulse and thesed for simulation by itself without additionally including
plasma, we expect that stationary plasma-field structures cghe electron temperatughermal forcé as in[10] or by us-
emerge, as the electron fluid should have time to approachiag a fluid model[see Egs(3) and(4)]. The problem is due
guasisteady state. On the other hand, the question if the¢e the fact that the cavitation boundaries within the frame-
structures actually appear on a time scale that effectivelyork of Egs.(7)—(10) can be defined self consistently only if
allows us to disregard other effects and complications was ithe global structure of the solution is determined. Neverthe-
fact answered confirmatively by numerical simulations inless, this set of equations is useful for determining the self-

V.A=0. (5)
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focusing structures and their stability because in this case the 4
self-consistency problem can be overcome. )
3 L
. AXISYMMETRIC STRUCTURES w
c
A. Self-guiding channel m“mz'
First, we extend the solution presented by Satral. in
order to rigorously account for total charge conservation and g
to use this constraint to determine the actual width of the
electron cavity. Assuming a solution for the field in the form o0 é 0
a(r, ,z)=aq(r)exp(—ixz), we can rewrite Eqs(7)—(10) as ;
follows:
FIG. 1. Stationary single-cavitation structure witk=0.5
2 _Nsy <k . electron density(solid line) and field (dash line distribu-
Viast| « Vs as=0, (1D tions. No cavitation regions appear far larger than the critical
value.
V2hs=ng—1, (12)

tending from the central axis to a certain unknown boundary

b=v.—1 ifandonlyif n#0 (13) positionR, see Fig. 1, can be written as
S S S 1

V= \/1+a§, (14 f0+m(l—ns)rdr=JOerr+J+w(1—ns)rdr=0. a7
R

where « is the propagation constant, V?2
=(1/r)d(rd/dr)/dr and we have used the following dimen-
sionless variables:=ky/nor, z=knyz/2.

Assumingng(r)>0 and combining Eqg12) and(13) we
obtain an equation describing the electron density under the

Equation(15) determines the electron-density profile taking
into account the two counteracting forces, and therefore,
making use of this equation we obtain

effect of both the ponderomotive force and the force due to 8535 __ E
. ; ; : . = R. (18
charge separation. This can in turn be inserted into the equa- «/1+a§ 2

tion for the vector potential, and the two equations read =R

In order to calculateR, we need to know the values of the

ne=1+ 1 i( r %) (15) field amplitude and its first derivative at=R. Starting from
S rdri dr)’ the point R and considering the region>R we have a
plasma field structure which cannot be calculated analyti-
1d( da| as/dag\? cally, but for 0<r <R, in the depleted channel, we can write
Tar rW ~Slar +ys(kys—1)ags=0. (16) an explicit solution for the field as Eq16) reduces to the
Vs linear equation
These equations can be solved numerically in a cylindrical 1d/ da
geometry as an eigenvalue problem and it is possible to dis- T a( " ar +kas=0. (19

tinguish between different regimes, depending on the inci-

dent power of, In otherwprds, on the paramatgthe wave- Therefore, in the cavitation channel the stationary solution
number shif since there is a direct correspondence betweetﬁOr the field is given by a Bessel function of order zero

these two quantities. For low-incident powers there is no
cavitation structure, only electron-density perturbations — AJy(Vr

[1,2]. Increasing the incident power or equivalently, consid- a(r)=Ado(V«r),
ering smaller values ok, the perturbation of the electron . : B o
density becomes stronger and stronger, the hole in the ele thereA is the amplitude at =0 (which is not known. At

tron density deeper and deeper, until the minimum electrof® boundqryR, howgver, we h‘?‘.Ve one more condmon. 0
density vanishes fok equal to the critical valuex,,=0.88 apply, that is the continuity condition for the field and its first

(20

[1]. The power at this point just slightly exceeds the criticalder'v"’mve

one for self-focusing,P(x¢)=1.09.,. Exceeding this

limit, we will have a region depleted of its electromgr) ay(R) =AJ(VxR), (22)
=0. In a stationary regime, the width of such a region is

determined by the balance between the pushing ponderomo- al(R)=—AVkd;(VkR), (22)

tive force and the restoring force due to the charge-density
perturbations. The starting point must be total charge consewhich can be inserted into EG18) to give the field ampli-
vation, which in the presence of one cavitation channel extude as a function oR and
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FIG. 2. Total power required to generate one central cavitation FIG. 3. Stationary filament structure with zero electron density
channel as a function of the paramekecalculated without taking ~ at the filament boundariy, (i.e., the free parameter is defined only
into account total charge conservatitiash-dotted lineand with by the requirement of the existence of a localized solutfon «
total charge conservatigsolid line). =0.3: electron densitysolid line) and field (dash ling distribu-

at low-power levels and their existence is connected with the

tions.
A2 R » /1+ 16xJ%(\kR)
8kJ3(VkR) R2J3(\xkR)
cavitation phenomenon and thus it has a power threshold for

Given a certain, for a fixed value oRwe know bothas(R)  excitation. The procedure to calculate the plasma field struc-
and a((R). The equation for >R can be then solved nu- tyres for this case starts from the central axis. With the shoot-
merically with the shooting method witR as the shooting ing method the field distribution and electron-density distri-
parameter, in order to find a localized solution with thepytion for the central electron filament can be calculated. In
asymptotic behavioas,a;—0 asr—c. Figure 1 shows one this case, the on-axis value of the field will act as a shooting
example of such a structure far=0.5<«, . parameter, while its first derivative must be zero on axis due

Furthermore, the power required to generate these cone the symmetry of the configuration. Thus we have a certain
figurations can be computed &s= [ “aZrdr and will be a  freedom when choosing the boundary position of this chan-
function of the parametek. For k= x;, we have an exact nelRj, see Fig. 3, the only requirement being, so far, that the
estimate of the threshold power for cavitation, in agreemenglectron density must not be negative. The minimum incident
with previous calculations, but as soon as cavitation comepower for generating such a structure at a fixeid such that
into play, it is evident that previous calculations tend to over-the electron density &R, vanishes, which is the case pre-
estimate the total power. This is due to the fact that, withousented in Fig. 3(solid line) (but, of course, this is not a
carefully taking into account charge conservation, an excessnique choice for finding localized solution as we will see
of negative charges is present which leads to a higher powdselow). Once a choice oR; has been made, we know the
being required in order to sustain such structures against themplitude and the first derivative of the field at this point,
restoring force which is overestimated as a direct conseay(R;), a;(R;), and we can make use of the matching con-
quence of the negative charge excess. If the total charge iitions to determine the parameters of the vacuum solution,
conserved, the power needed to generate one central cavitghich is a superposition of the zeroth-order Bessel and Neu-
tion channel is lower than previously fourfd,3,9. The  mann functions, i.e.,
comparison between our calculations and previous ones is
shown in Fig. 2, where laser power is presented in units of ag(r)=A,Jq \/;r)+BUYo( \/;r). (29
the critical power for self-focusing.

It should also be noted that within the framework of Egs. o .
(11)—(14), the total charge) is a free parameter. By using This solution describes the field in the cavitation region,
the procedure applied above @r=0, which corresponds to Which extends fronR, to a still unknown positiorR,. In
quasineutral plasma guiding structures, it is easy to extenBarticular we have
these solutions to any giveR. Such structures with a given
net charge over the transverse plane can, in principle, be
realized within a restricted space interval but with the global ay(Ry)=A,Jo(VkRy) +B,Yo(VkRy), (29
guasineutrality condition defined over the whole space.

. (23 depends on the incident power. Such structures do not exist

B. Plasma filament surrounded by field a3(Ry) =~ AJi(VkRy) =B,k Y1(VkRy).  (26)

Here we would like to emphasize another peculiarity of
Egs. (11)—(14). Structures with a central cavitation channel It is then the constraint of total charge conservation that dic-
are not the only possible ones. Another possibility is that of aates how far the cavitation channel can extend. Inserting
central electron filament surrounded by a depleted ring cenPoisson’s equation and the force balance equation into the
tered on the axis. The character of this kind of configuratiortotal charge conservation law
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FIG. 4. Total power for the case of the filament structure in Fig.
3 as a function of the parameter The solid line represents the
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FIG. 5. Maximum density values in the filaments as a function
of the parametek. The dashed and solid lines correspond to curves

minimum laser power needed to sustain a filament mode with zerin Fig. 4.

density atR,, while the dash lines correspond ny(R,) =2.4.
+ o0 Ry
J (1—ns)rdr=f (1—ng)rdr
0 0

Ry +
+J' rdr+J (1—ng)rdr=0

Ry Ry
(27)

function of k is shown in Fig. 5, while Fig. 6 shows how the
boundary position®; andR, depend on the parameterAs
clearly seen from Fig. 4, with this kind of configuration the
power is not uniquely related te and, in fact, two qualita-
tively different branches are possible. These two branches
are characterized by strofigft branches from the minimum

of the curve at fixedhg(R;)] or weak (right branch with
power increasing with) density perturbations. We note that
the left branch solutions represent a new type of structure,

and taking into account the symmetry of the configurationwhereas the right branch may be rather considered as a gen-
and the asymptotic behavior of the localized solution we areralization of the one-dimensional single-cavity structure to

looking for, a relation betweeR; andR, is established, viz.

1 -
Q(Rl)_g(Rz):E(Rz_Rl)- (28)

where

rasas

g(r): \/mz

(29

cylindrical geometry with the localized structure lying far
from the axis as seen in Fig. 6. Usually the latter are unstable
not only with exponentially growing symmetry-breaking per-
turbations but also with linearly growing perturbations: in
this case, it tends to compress the ring since opposite parts
attract each other. It should also be emphasized that these
cavitation structures can be produced only if the power ex-
ceeds some minimal level equal to 3B4, but for the
stable structuregas shown below for the case of Fig. B
>P,=53P,, . In this senseP,;, assumes the role of thresh-

OnceR, has been calculated, what is left is to check that thé?/d power for generation of such stable filament structures.
solution in the last semi-infinite plasma region is actually a!N€Se plasma structures may be of interest for the x-ray laser

localized solution. An example of such a structure is preProblem since they represent long plasma filaments with

sented in Fig. 3 and the related power as a functior o
shown in Fig. 4(solid line).

As for the choice of the left boundary positi& we have
a certain freedom. In fact for a given propagation constkant
the solution is not unique, rather there is a continuous fami

high densities supported by strong laser fields.

C. Self-focusing ring structures

It is also possible to find solutions with more than one
lycavity that can support so-called ring structures of laser ra-

of such solutions within a certain power range, as clearly
seen in Fig. 4 where the minimum power that can sustain
such structures as a function efs presented. For increasing
boundary density, the power needed to sustain such struc-
tures increases too. However, formally in the limiting case at
fixed , the maximum power goes to infinity. As an example,
in Fig. 4 we also present the power dependence dor the
filament boundary densityig(R;) =2.4. As we will see be-
low, this curve separates stable and unstable filament struc-
tures. Such configurations can be generated by a laser beam
with a minimum intensity on axis and present the interesting
feature of strong filament density perturbations, so that the

15

0.3 0.4 0.5 0.6
N

actual electron density in the filament can reach values sig- FIG. 6. Boundary position®; andR, for the filament structures
nificantly higher than the unperturbed one. The growing beas functions of the parametetr The dashed and solid lines corre-
havior of the maximum density values in the filament as aspond to curves in Fig. 4.
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b) FIG. 8. Two-cavity structure without sign reversed field for
20F =0.35 andng(R,)=2.5, ng(R,) =2.5: electron densitysolid line)
B and field structurédash line.
:m 10 ‘\‘
- o | sol_ution. In the next cavity regiorRz_<r<R3), integra_ting_
R Poisson’s equation over the whole interval and taking into
_10 R account the fact that the net charge must equal zero, we
arrive at the transcendental equation
-20 :
5 10 15 3 ‘
r 2, (~D'[zRI+9(R)]=0 (30
1=

FIG. 7. Two-cavity structuré€a) with the field passing through
zero for k=0.6 andng(R,) =2.7, ng(R,)=1.8; (b) the limit case,
for increasing power, of the two-cavity structure for the samas
for a single cavity: electron densitgolid line) and field(dash ling
distributions.

where the functiomg(r) obeys Eq(29). This equation, being

a generalization of Eq$18) and(28) to the case of a higher
number of cavities, defines the boundary positieg to-
gether with the corresponding field amplitude and its deriva-
diation. At first instance, these structures might be treated déve for givenR; andR,. After this, integrating again Egs.
higher-order nonlinear mod¢8,8] and considered as a con- (11)—(14) over the semi-infinite plasma layeR{<r <o),
tinuation of higher-order solutions of the nonlinear Sehro while requiring a localized solution, we obtain the total
dinger equatiori14], which is valid for the present problem plasma-field structure. There are two continuous families of
in the weakly relativistic limit. However, as was shown by such two-parametrifng(R;) andng(R;)] solutions with the
Kolokolov and Suko\[16], all higher-order modes in media corresponding laser power uniquely defined for fixedrig-
with local nonlinearity are unstable and, therefore, do noure 7a) shows an example of the first one with the field
represent a situation of practical interest. For higher intensipassing through zero. This may be considered as a generali-
ties, regions with decreased electron density will be transzation, to higher-incident laser powers, of the higher-order
formed into depletion regions. This implies that the cavita-modes of the nonlinear Schtimger equation to the cavita-
tion regime corresponds to an extremely saturatedion regime. The cavity widthsR; and R;—R;) and the
nonlinearity, which, in fact, can be stable as shown belowelectron layer widthR,— R,) are comparable witk ~* over
Because of this, we have considered these structures in soragbroad range of laser powers, but for increasing power, the
more detail. Some of these solutions, with a denumerablelectron width decreases to zero. Thus, in this limit the two-
number of cavities and qualitatively corresponding to thecavity structure will transform into a single-cavity structure,
one-dimensional case, are presentedli?]. Obviously, not  but will contain a vacuum field distribution passing through
all of these structures can appear in an axisymmetric geonzero, as shown in Fig.(). Since this problem is multipara-
etry due to the requirement of symmetry. Moreover, the proimetric and too complex to be presented in a simple way, we
cedure of constructing these solutions for the axisymmetri@lso, as an example, present in Fig(d@sh-dotted linethe
case is more complex as compared with the case of the onpower dependence oa for fixed electron densities at the
dimensional geometry, even numerically. The procedure is alsoundariesng(R;) =2.7 andng(R,) =1.8.

follows. In the central cavity <R; [see Figs. @) or 8], the The second family of solutions without sign reversed field
solution for the field is of the form given by E¢R0), where  distributions represents a type of solution that exists only in
at fixed amplitudeA (the shooting parametetthe field value the cavitation regime. As an example, in Fig. 8 is shown the
and its first derivative are known. Integrating E¢kl)—(14) solution fork=0.35 andng(R;) =2.5, ng(R,) =2.5. The de-
over the nearest plasma layer lying within the interiRal  pendence of power or for fixed boundary parameters is
<r<R,, we arrive at the bounday, having two degrees of shown in Fig. 9(solid line). We note that for these structures,
freedom: the choice of the values Bf andR, is restricted similarly to the filament solutions, the power versuscan
only by the requirements that the electron-density functiorhave two meanings, which corresponds to two different
should be positive. However, the actual value can vary fronbranches: in the first ongeft branch from the minimum of
zero to some value defined by the existence of a localizethe curve, the widths of the cavities and the electron layers
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150 T In the cavitation regions wheney(r)=0, the operators
\ and L, coincide:L,;=L,=—V?—« and on the boundaries
100} \ of the electron layers, the functions v, and their first de-
5 4 rivatives are continuous.
% y We emphasize that in spite of the fact that the cavity
501 . . structures are determined by differential equations of higher
T than the second ordéfor example, in the one-dimensional
-------------- case with different Hamiltonian values from layer to layer
%3 0'4 0'5 o'e 0'7 [12]), nevertheless the eigenvalue problem is similar to the

« case of local nonlinearity15-18. However, the second-

_ . order operatoré, L, here have effective step-wise poten-
FIG. 9. The power of the two-cavity structures as a function oftjg|s where the cavity boundaries are fixed. From this point
« for fixed electron density at the boundaries: without sign reverseq)f view, it is convenient to review some common properties
field at ng(Ry)=2.5, ny(R,)=2.5 (solid line); with field passing ¢ 16 set of Eqs(31) and(32) that will be useful in order to
through zero any(Ry) =2.7, ng(R,) = 1.8 (dash-dotted ling draw some qualitative conclusions. All the stationary solu-

1. . tions ag(r) with corresponding density distributiong(r),
1. S
are of Fhe order ofk = n the secondright) branch, for are eigenfunctions of the operatbg with the eigenvalues
Increasing power, th_e width of the eI_ectron layer the_ equal to zero as follows from Ed11). For the two most
boun_dary positiorR,) Increases. Thus, fmally_t_he two-cavity important cases, single channeling and a plasma filament sur-
solu_t|on may be considered as a _superposmon .Of a singl ‘ounded by field, they correspond to the lowest eigenfunc-
cavity structure and a one-dimensional one-cavity StruCtur@ < that do no’t pass through zero. This implies that all
lying far from the axis. The prqcegiure of calculating .Struc'higher—order eigenfunctions have positive eigenvalues. We
tures with more than two cavities is the same, but with the, ;. " o that by using E31) we obtain(u|a.)=0, where

. . S, )
difference that it introduces more free paramexemse for (alb)=fab*ds, and therefore the subspace of the solutions
each additional cavijyand consequently other terms will

appear in Eq(30) of Egs.(31) and(32) with I'# 0 is orthogonal to the ground
' stateas. In this subspace of functions, the operaloy is
positive definite, thus assuring the existence of the inverse
IV. STRUCTURAL STABILITY

operatorL, *. Combining Eqs(31) and(32) into one and

Strictly speaking, an analysis of the nonlinear stability asapplying the inverse operator we arrive at the following ex-
well as of the evolution of the relativistic self-focusing in the pression defining the eigenvalue:
cavitation regime cannot be done within the framework of
Egs.(7)—(10) since the boundaries of the cavities cannot be —
determined self consistently from global charge conserva- r2=— (u[Lyu) _
tion. However, if the plasma-field distributions of the station- (u|Cou)
ary structures are knowsee Sec. I, we are able, by using
Egs. (7)—(10), to study the problem of structural stability . _ _ PR
assuming exponentially growing small perturbations. For thighs follows from this equation, since the operaloy * is
purpose we assuma=[ag(r)+a;(r,z)]Je "% n=ng(r) also positive definite, thi stability problem depends on the
+n,(r,z) whereag, ng are the stationary solutions of Eqgs. properties of the operatdr;. In accordance with the theory
(11)—(14), anda,, n, are small perturbations. Substituting developed by Kolokolov and Vakhitop 5], if the operator
this ansatz into Eqg7)—(10), the growth rate of the small [, admits only one negative eigenvalue, the ground state is
perturbations &; andn;ece'?) is determined by the eigen- stable when the power is a decreasing function of the propa-
value problem: gation constant, i.edP/8k<0, the so called Vakhitov and
Kolokolov criterion, otherwise it is unstable. If the operator

L, has more than one negative eigenvalue, the ground state

is unstable. In order to solve numerically the eigenvalue

Lyu(r)=—To(r), (32 problem, it is convenient to rewrite Eq®1) and(32) in the
following form:

wherea;=u+iv, u andv are the real functions, and the

operatord_, andL; are given by = \1+a2)

(39

Lov(r)=Tu(r), (3D

Lov(r)=Tu(r), (36)
—~ n
=-V2— it —, 33 =
: 7. %9 Cou(r) == 2T u(n), @37
- - n@al a,_.a -
1=Lo— 535 Sy (34)  Where the operatdr; is written in the same structural form
Ys Ys Vs L.

aslLg:
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FIG. 10. Eigenvalues , of the operatoL, as a function ofc FIG. 11. The growth rate fom=1,2 as a function ok for the

for the filament structure witmg(R;)=0 (solid lines and ng(R;) filament structures as i_n Figd): solid Iine_s correspond to the mini-
=3.0>n* (dash-dotted lingsfor different azimuthal indexesnf mum power curve, while dash-dotted lines correspond to a power

=0,1,2). curve withng(R;)=1.0<n} .
— 5 aZ Ny example,[17]). According to this criterion, the right-hand
Li=—V'+— V_K+7S' (38 branches in Fig. 4right from the minimum correspond to
Vs unstable structures. However, for the structures correspond-
5 ing to the left-hand branch, the problem of stability is not
- 2 2(Vay) clear(although they are stable against symmetrical perturba-
Ns=nstagl 1-2kys— ——5—|. (39 -
Vs tions) because the operatar, may also admit negative ei-

genvalues for asymmetric eigenfunctions. For example, for

Since in Eq.(37) 72 is a positive definite function, conclu- the curve with the minimum laser powiig. 4 (solid line)],
sion about the stability problem may be drawn from the op= ) . i k
L, has at least two negative eigenvalues in the whole interval

> of k, as seen in Fig. 1@solid lineg, and therefore these
problem forL: Linm=Nnm (Wherem is the azimuthal structures are unstable. For increasing boundary density,
index, A, and ¢, are the eigenvalue and eigenfunction, re-ng(R,), we arrive at the case when,=0. In this case we
spectively since the general problem of finding the eigen-found thatng(R,)=n% ~2.45 in the whole interval ok for
functions of Egs.(36) and (37) is a formidable task even the left-hand branch. At slightly higher density values, the
computationally. This knowledge also essentially simplifiestypical dependence of the eigenvaluesois shown in Fig.

eratorL, as well. It is also useful to know the eigenvalue

the numerical search of these solutions. 10 (dash-dotted lines Consequently, the left-hand branch of
the dash-dotted line in Fig. 4 separates stable and unstable
A. Stable single-channel wave guiding filament structures and the minimum of this curve corre-

For the single-channel solutions considered in Sec. Asponds to a real threshold power for generating such struc-
tures. In the general case we have to solve EBf.and(37)

the operatoll.; admits only one negative eigenvalue corre-gjrectly and this was done numerically for the eigenvalue
sponding to azimuthal index=0, all the others with higher problem, noting that the solutions in the vicinity of the axis
azimuthal indices are positive. Therefore, stability of thesg,ary asu,v~r™ and that the asymptotic behavior at infinity
stationary structures can be analyzed by the Vakhitov angy ) is known. In Fig. 11 the dependence of the growth
Kolokolov criterion. For the main axisymmetric modes, the rate I' on « is presented fom=1,2. As we see, the field
dependence of power on the propagation constant presentgghctures corresponding to the curve with the minimum
in Fig. 2 meets the stability criterion, thus proving the stabil-power in Fig. 4 are always unstable. The increment has an

ity of single-channel wave guiding. absolute maximum for the eigenfunction witlh=2 but it is
N . localized in a more narrow region af At increasing bound-
B. Stability of filament structure ary density, the growth rate becomes smaller and smialter

For a case when a plasma filament is surrounded by §€€n in Fig. 11, for example, at(R;)=1.0] implying that
filament structures lying above the threshold power curve

corresponding tog(R,) =n% =2.4 are stable. Thus, at high
aser power we can expect the creation of stable laser-plasma
structures.

bright ring beam(see Sec. Il B, the operatol_; can have
several negative eigenvalues as shown in Fig. 10, corr
sponding to symmetricazimuthal indexm=0) and different
asymmetric eigenfunctionan(=1,2). Since in this case the
amplitude distributiorag(r) never passes through zero as for
the single channel cageee Fig. ], we can again apply the
stability criterion of Vakhitov and Kolokolov by considering The stability of ring structures presented in Sec. Il C is
the power dependence versudsfor fixed boundary param- not quite clear. In media with local nonlinearities, such solu-
eter, however only for symmetrical perturbatiosee, for tions are always unstab|&6,17], usually being destroyed by

C. Stability of ring structures

036416-8
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FIG. 12. The growth rate as a function &ffor the two-cavity FIG. 13. Dependence of the growth rate for=1 onny(Ry) for
structures in Fig. 9dash-dotted line m=1 (solid ling andm=2  the two-cavity structures for fixee=0.65 andny(R,)=0 (solid
(dash-dotted ling line), 1.0 (dash-dotted ling 2.7 (dashed ling

perturbations which break the azimuthal symmetry of thdevel [ng(R,)] and less sensitive to the parameters of the
beams. However, in the present problem, the cavitation reprevious electron layers. This is clearly seen in Fig. 13 where
gions tend to become larger at higher-laser power. This imthe growth rates presented for fixed propagation constant
plies that the contribution of the nonlinear part, which isonly weakly depend omg(R;) but strongly depend on
rgspon3|ble _for' the instability, becomes smaller compareg (R,) decreasing with increasing(R,). It should be noted
with the cavitation(*vacuum”) part. Therefore, we can ex- that higher-boundary density levels can be sustained with
pect the existence of structures which are stable agamstsqu,ther powers. Furthermore, if such structures for fixed
perturbations. In order to.sqlve this problem cﬁrectly we cannS(Rl) andng(R,) are supported by lower-laser power levels
use a two-step app[(zach. first, to solve the eigenvalue proqaepending onk) they have enhanced stability. The main
lem for the operatot; and then, having information about conclusion is that stable two-cavity structures can indeed be
the possible range of growth rates, to solve the full problemproduced in laser-plasma interactions.

given by Eqs(36) and(37). Since the ring structures depend

on many parameters, we present different examples demon- V. CONCLUSION

strating the stability for some of them. Figure 12 represents
In this paper, we have shown how it is possible to extend

the growth rates corresponding to the structures in Fig. 9.
Unstable as well as stable solutions are clearly seen. There tise stationary solution describing cavitation structures due to

a gap in the interval 0.62 «<<0.68 between the growth rates self-focusing and self-channeling of superintense laser pulses
for azimuthal modes wittm=1 and m=2 (and also all in underdense plasmas with axial symmetry, to a description
higher modes withm>2) with increments equal to zero that fully takes into account plasma quasineutrality. The rig-

(with nonzero growth rates they lie to the right of the caseorous conservation of global charge leads to an estimate of
m=2). This means that structures with parameters withirthe power necessary to generate such structures. If the criti-
this gap are stable. We note that all the structures existing inal power for cavitation is correctly estimated, the power to

the form of one cavity while the second one contains only egenerate such structures with strong density perturbations
density variation are always unstable. Consequently, in ordeurns out to be lower than previously found. Stationary con-

to have stability of the plasma-field structures they must bdigurations with one central cavitation channel as well as
in the form of a cavity emptied of electrons. The results ofwith a cylindrical cavitation ring have been presented. The
the calculations can be summarized as follows: the stabilitproblem of stability has been also considered showing that
of the structures is most sensitive to the last layer densitgtable formation of such structures is possible.
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