
PHYSICAL REVIEW E, VOLUME 65, 036416
Axisymmetric relativistic self-channeling of laser light in plasmas
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By using an improved cavitation model, relativistic self-channeling structures are derived, which make it
possible to propagate laser powers exceeding the critical one for self-focusing. A propagation mode for high
laser power is also presented which is qualitatively different from those in the weakly relativistic case. Struc-
tural stability analysis shows that stable self-wave-guide propagation can take place.
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I. INTRODUCTION

In recent years, the combined effect of ponderomotive
relativistic nonlinearities have assumed an important role
the problem of penetration of super-intense laser pulses
underdense plasmas especially regarding self-focusing
self-channeling phenomena@1–4#. The importance of these
phenomena is not only intrinsic but is also related to
requirements of most of the advanced application sche
like, e.g., inertial confinement fusion@5#, where the laser
radiation has to propagate over distances considerably
yond the diffraction limit without significant energy losse
Numerical and experimental studies have given evidence
the formation of stable channels and radiation filame
@6,7#.

As was shown by Sunet al. @1#, the properties of relativ-
istic self-focusing can change drastically for very high-pow
beams. In this case, the laser intensity is so strong that
ponderomotive force can expel all electrons from the reg
of the high-intensity field. Recent studies@3,6,8–10# demon-
strate that stable channeling can occur with propaga
power exceeding the critical one for relativistic self-focusi
@11#, i.e.,P.Pcr517v2/vpe

2 GW. The laser radiation is the
confined in a self-induced waveguide, which is emptied
electrons.

The physical idea behind self-focusing and se
channeling with superintense laser pulses is that the rela
istic motion acquired by the plasma electrons and the den
perturbations due to the action of the laser ponderomo
force ~time scales are so short that ions can be considere
immobile! can induce significant modifications in the refra
tive index of the plasma. Electrons tend to be expelled fr
the focal region of the laser beam, while acquiring relativ
tic quiver velocities and the pulse is focused into what
principle could be a catastrophic singularity. However, if t
intensity is high enough, it has been shown that full elect
cavitation occurs, leading to a stable channeling of the ra
tion in cavities depleted of their electrons and where con
quently further focusing cannot take place. The complica
interplay between the laser action and the forces due to
charge-density perturbations makes it difficult to follow an
lytically such phenomena while taking rigorously into a
count global plasma quasineutrality. In order to make a
lytical progress, a simplified cavitation model has been u
@1,3,6,8#. However, as was recently pointed out in@10#, a
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self-consistent description of the relativistic self-focusi
that solves the problem of ‘‘negative electron density’’ wit
out violating the total charge conservation was still missin

In our previous work@12#, we presented an improve
cavitation model that, in a planar geometry, allowed for ex
two-dimensional~2D! stationary analytical solutions describ
ing the transverse structures of waveguide channels w
electron cavitation. In this model both the ponderomot
and relativistic nonlinearities were taken into account, alo
with the constraint given by total charge conservation. It w
shown that multifilament structures can be described exa
in analytical terms and the threshold power for the gene
tion of such structures was calculated. It turned out that
threshold power was lower than what was predicted with
taking into account charge conservation. The main purp
of the present paper is to find analogous stationary struct
in the 3D case with axisymmetric geometry, using numeri
computations and to analyze the structural stability of th
solutions. As is well known, the higher dimensionality
self-focusing is very important in order to be able to deliv
laser powers much higher than the critical one but also le
to fundamental differences as compared to the o
dimensional case.

In what follows, we will first introduce our model an
justify the approximations we have considered in order
analyze the self-focusing and self-channeling phenome
Then we will determine the shape of the stationary structu
and calculate the power required to generate them. It
also be demonstrated how the form of the structures chan
for increasing incident laser power. The central problem w
then be to consider in more detail those structures that
hibit full electron cavitation and to determine exactly the
properties and stability.

II. BASIC EQUATIONS

In order to identify the effect due to the action of po
deromotive and relativistic nonlinearities, we will consid
the interaction between an ultrahigh power laser pulse an
underdense plasma, i.e., a plasma withn05N0 /Ncr,1,
where N0 is the unperturbed electron density andNcr
5mv2/4pe2 is the critical density. Introducing the differen
time scales asvpe

21 , the electron response time,vpi
21 , the ion

response time, andv21, the laser carrier oscillation time, th
main requirements on the laser parameters are that the in
©2002 The American Physical Society16-1
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sity must be high enough to set electrons in relativis
quiver motion, while the characteristic time of the interacti
dynamicst must be such that

vpi
21@t@vpe

21.v21.

For relativistic electron velocities all thermal and collision
effects can be neglected and the electron thermal pres
becomes negligible compared to the ponderomotive press
Furthermore, the inequalityvpi

21@t guarantees that ion dy
namics can be disregarded. In this case, we can start
analysis with the model~see also@13#! that describes a rela
tivistic cold electron fluid with a background of immobil
ions and which is based on Maxwell’s equations toget
with the equation of motion for the electron fluid and a gau
choice~the Coulomb gauge will be adopted in our case!

“

2A2
1

c2

]2A

]t2
5

1

c

]

]t
“w1

4p

c
Nev, ~1!

“

2w54pe~N2N0!, ~2!

mgv5
e

c
A1“c, ~3!

]c

]t
5ew2mc2~g21!, ~4!

“•A50. ~5!

Here,g51/A12v2/c2 is the relativistic factor,N is the elec-
tron density,e and m are the electron charge and mass,
spectively,A is the electromagnetic vector potential,w is the
electrostatic scalar potential, andc is a scalar function which
expresses the electron canonical momentum. Equations~3!
and~4! imply that we are assuming vortex-free motion of t
electrons. Central to the model is the fact that the cha
conservation law is contained in these equations: Taking
divergence of Eq.~1! and using Eqs.~2! and~5! we find that
the charge conservation law

]N

]t
1“•~Nv!50 ~6!

is automatically satisfied, i.e., the total charge is conserv
The second inequality (t@vpe

21) will help us in isolating
the combined effect of ponderomotive and relativistic no
linearities from other effects like wake field generation,
the pulse will be long enough to disregard phenomena du
longitudinal charge separation. Given the assumptions on
characteristic time scales of the interacting pulse and
plasma, we expect that stationary plasma-field structures
emerge, as the electron fluid should have time to approa
quasisteady state. On the other hand, the question if t
structures actually appear on a time scale that effectiv
allows us to disregard other effects and complications wa
fact answered confirmatively by numerical simulations
03641
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@10#. Finally, the inequalityt@v21 will allow us to use the
slowly varying envelope approximation in order to single o
the fast optical time scale.

Naturally, the laser-plasma interaction will present a d
namical stage described by the full time-dependent se
equations, but the existence of quasistationary structures
can be realized as a result of the interaction and their stab
are interesting and important questions. The search for q
sisteady solutions leads us to an important simplification
the electron fluid is initially vortex free, we can assume th
c remains equal to zero. Furthermore, in the paraxial
proximation, the longitudinal component of the vector pote
tial can be neglected and we can assumeeA(r ,t)/mc2

5(1/2)$a(r' ,z)(ex1 iey)exp@i(kz2vt)#1c.c%, where z has
been chosen as the propagation coordinate andk5v/c is the
vacuum wave number. As linear polarization would not bri
any significant change into the model, we can consider,
the sake of simplicity, circularly polarized radiation. Thu
our basic equations will result in a simplified set of equatio

2ik
]a

]z
1“'

2 a2
k2n0

g
na50, ~7!

“'
2 f5k2n0~n21!, ~8!

f5g21 if and only if nÞ0, ~9!

g5A11uau2, ~10!

where“'
2 []2/]x21]2/]y2 accounts for the diffraction in

the transverse (x,y) plane and we have introduced the fo
lowing normalization:n5N/N0 , f5ew/(mc2). So far, our
model equations are exactly analogous to those presente
Sun and others@1,3,8,9#, except for one point: the subseque
treatment of Eqs.~8! and~9!. The delicate point is the deter
mination of the electron density profilen(r ). As a matter of
fact, n(r ) is determined by Poisson’s Eq.~8! together with
the force balance Eq.~9! and nothing in the model prevent
n(r ) from assuming nonphysical negative values. The co
mon way to solve this problem, suggested by the physics
the problem itself, is to setn(r )50 where the equations lea
to the unphysical result of negative values. This is mean
model mathematically the fact that, as soon as electrons
cavitating, the force balance equation loses its validity sin
in a region depleted of its electrons there are no particles
to balance the ponderomotive force. Unfortunately, sett
the boundaries of the depletion region at the point where
density vanishes does not respect total charge conserv
and it has been shown that this usually leads to an exces
negative charges, which in turn means that the power
quired to generate these structures will be overestima
@12#. It also means that the set of Eqs.~7!–~10! cannot be
used for simulation by itself without additionally includin
the electron temperature~thermal force! as in @10# or by us-
ing a fluid model@see Eqs.~3! and~4!#. The problem is due
to the fact that the cavitation boundaries within the fram
work of Eqs.~7!–~10! can be defined self consistently only
the global structure of the solution is determined. Nevert
less, this set of equations is useful for determining the s
6-2
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AXISYMMETRIC RELATIVISTIC SELF-CHANNELING . . . PHYSICAL REVIEW E65 036416
focusing structures and their stability because in this case
self-consistency problem can be overcome.

III. AXISYMMETRIC STRUCTURES

A. Self-guiding channel

First, we extend the solution presented by Sunet al. in
order to rigorously account for total charge conservation
to use this constraint to determine the actual width of
electron cavity. Assuming a solution for the field in the for
a(r' ,z)5as(r )exp(2ikz), we can rewrite Eqs.~7!–~10! as
follows:

“

2as1S k2
ns

gs
Das50, ~11!

“

2fs5ns21, ~12!

fs5gs21 if and only if nsÞ0, ~13!

gs5A11as
2, ~14!

where k is the propagation constant, “

2

[(1/r )d(rd/dr)/dr and we have used the following dimen
sionless variables:r 5kAn0r , z5kn0z/2.

Assumingns(r ).0 and combining Eqs.~12! and~13! we
obtain an equation describing the electron density under
effect of both the ponderomotive force and the force due
charge separation. This can in turn be inserted into the e
tion for the vector potential, and the two equations read

ns511
1

r

d

dr S r
dgs

dr D , ~15!

1

r

d

dr S r
das

dr D2
as

gs
2 S das

dr D 2

1gs~kgs21!as50. ~16!

These equations can be solved numerically in a cylindr
geometry as an eigenvalue problem and it is possible to
tinguish between different regimes, depending on the in
dent power or, in other words, on the parameterk ~the wave-
number shift! since there is a direct correspondence betw
these two quantities. For low-incident powers there is
cavitation structure, only electron-density perturbatio
@1,2#. Increasing the incident power or equivalently, cons
ering smaller values ofk, the perturbation of the electro
density becomes stronger and stronger, the hole in the e
tron density deeper and deeper, until the minimum elect
density vanishes fork equal to the critical valuekcr50.88
@1#. The power at this point just slightly exceeds the critic
one for self-focusing,P(kcr)51.09Pcr . Exceeding this
limit, we will have a region depleted of its electrons,n(r )
50. In a stationary regime, the width of such a region
determined by the balance between the pushing pondero
tive force and the restoring force due to the charge-den
perturbations. The starting point must be total charge con
vation, which in the presence of one cavitation channel
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tending from the central axis to a certain unknown bound
positionR, see Fig. 1, can be written as

E
0

1`

~12ns!rdr 5E
0

R

rdr 1E
R

1`

~12ns!rdr 50. ~17!

Equation~15! determines the electron-density profile takin
into account the two counteracting forces, and therefo
making use of this equation we obtain

F asas8

A11as
2G

r 5R

52
1

2
R. ~18!

In order to calculateR, we need to know the values of th
field amplitude and its first derivative atr 5R. Starting from
the point R and considering the regionr .R we have a
plasma field structure which cannot be calculated anal
cally, but for 0,r ,R, in the depleted channel, we can wri
an explicit solution for the field as Eq.~16! reduces to the
linear equation

1

r

d

dr S r
das

dr D1kas50. ~19!

Therefore, in the cavitation channel the stationary solut
for the field is given by a Bessel function of order zero

as~r !5AJ0~Akr !, ~20!

whereA is the amplitude atr 50 ~which is not known!. At
the boundaryR, however, we have one more condition
apply, that is the continuity condition for the field and its fir
derivative

as~R!5AJ0~AkR!, ~21!

as8~R!52AAkJ1~AkR!, ~22!

which can be inserted into Eq.~18! to give the field ampli-
tude as a function ofR andk

FIG. 1. Stationary single-cavitation structure withk50.5
,kcr : electron density~solid line! and field ~dash line! distribu-
tions. No cavitation regions appear fork larger than the critical
value.
6-3



-

he

o

t
e
e

er
ou
e
w
t t
s
e
v

s
o

s
g

en
n
, b
ba

o
e
f
e
io

xist
the
for

uc-
ot-

tri-
. In
ing
ue
ain
an-
the
ent

-

ee
e
t,
n-
ion,
eu-

n,

ic-
ting
the

tio ity
ly

KIM, TUSHENTSOV, CATTANI, ANDERSON, AND LISAK PHYSICAL REVIEW E65 036416
A25
R2

8kJ1
2~AkR!

S 11A11
16kJ1

2~AkR!

R2J0
2~AkR!

D . ~23!

Given a certaink, for a fixed value ofR we know bothas(R)
and as8(R). The equation forr .R can be then solved nu
merically with the shooting method withR as the shooting
parameter, in order to find a localized solution with t
asymptotic behavioras ,as8→0 asr→`. Figure 1 shows one
example of such a structure fork50.5,kcr .

Furthermore, the power required to generate these c
figurations can be computed asP5*0

1`as
2rdr and will be a

function of the parameterk. For k5kcr we have an exac
estimate of the threshold power for cavitation, in agreem
with previous calculations, but as soon as cavitation com
into play, it is evident that previous calculations tend to ov
estimate the total power. This is due to the fact that, with
carefully taking into account charge conservation, an exc
of negative charges is present which leads to a higher po
being required in order to sustain such structures agains
restoring force which is overestimated as a direct con
quence of the negative charge excess. If the total charg
conserved, the power needed to generate one central ca
tion channel is lower than previously found@1,3,9#. The
comparison between our calculations and previous one
shown in Fig. 2, where laser power is presented in units
the critical power for self-focusing.

It should also be noted that within the framework of Eq
~11!–~14!, the total chargeQ is a free parameter. By usin
the procedure applied above forQ50, which corresponds to
quasineutral plasma guiding structures, it is easy to ext
these solutions to any givenQ. Such structures with a give
net charge over the transverse plane can, in principle
realized within a restricted space interval but with the glo
quasineutrality condition defined over the whole space.

B. Plasma filament surrounded by field

Here we would like to emphasize another peculiarity
Eqs. ~11!–~14!. Structures with a central cavitation chann
are not the only possible ones. Another possibility is that o
central electron filament surrounded by a depleted ring c
tered on the axis. The character of this kind of configurat

FIG. 2. Total power required to generate one central cavita
channel as a function of the parameterk calculated without taking
into account total charge conservation~dash-dotted line! and with
total charge conservation~solid line!.
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depends on the incident power. Such structures do not e
at low-power levels and their existence is connected with
cavitation phenomenon and thus it has a power threshold
excitation. The procedure to calculate the plasma field str
tures for this case starts from the central axis. With the sho
ing method the field distribution and electron-density dis
bution for the central electron filament can be calculated
this case, the on-axis value of the field will act as a shoot
parameter, while its first derivative must be zero on axis d
to the symmetry of the configuration. Thus we have a cert
freedom when choosing the boundary position of this ch
nel R1, see Fig. 3, the only requirement being, so far, that
electron density must not be negative. The minimum incid
power for generating such a structure at a fixedk is such that
the electron density atR1 vanishes, which is the case pre
sented in Fig. 3~solid line! ~but, of course, this is not a
unique choice for finding localized solution as we will s
below!. Once a choice ofR1 has been made, we know th
amplitude and the first derivative of the field at this poin
as(R1), as8(R1), and we can make use of the matching co
ditions to determine the parameters of the vacuum solut
which is a superposition of the zeroth-order Bessel and N
mann functions, i.e.,

as~r !5AvJ0~Akr !1BvY0~Akr !. ~24!

This solution describes the field in the cavitation regio
which extends fromR1 to a still unknown positionR2. In
particular we have

as~R1!5AvJ0~AkR1!1BvY0~AkR1!, ~25!

as8~R1!52AvJ1~AkR1!2BvAkY1~AkR1!. ~26!

It is then the constraint of total charge conservation that d
tates how far the cavitation channel can extend. Inser
Poisson’s equation and the force balance equation into
total charge conservation law

n FIG. 3. Stationary filament structure with zero electron dens
at the filament boundaryR1 ~i.e., the free parameter is defined on
by the requirement of the existence of a localized solution! for k
50.3: electron density~solid line! and field ~dash line! distribu-
tions.
6-4
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E
0

1`

~12ns!rdr 5E
0

R1
~12ns!rdr

1E
R1

R2
rdr 1E

R2

1`

~12ns!rdr 50

~27!

and taking into account the symmetry of the configurat
and the asymptotic behavior of the localized solution we
looking for, a relation betweenR1 andR2 is established, viz.

g~R1!2g~R2!5
1

2
~R2

22R1
2!, ~28!

where

g~r !5
rasas8

A11as
2

. ~29!

OnceR2 has been calculated, what is left is to check that
solution in the last semi-infinite plasma region is actually
localized solution. An example of such a structure is p
sented in Fig. 3 and the related power as a function ofk is
shown in Fig. 4~solid line!.

As for the choice of the left boundary positionR1 we have
a certain freedom. In fact for a given propagation constank,
the solution is not unique, rather there is a continuous fam
of such solutions within a certain power range, as clea
seen in Fig. 4 where the minimum power that can sus
such structures as a function ofk is presented. For increasin
boundary density, the power needed to sustain such s
tures increases too. However, formally in the limiting case
fixed k, the maximum power goes to infinity. As an examp
in Fig. 4 we also present the power dependence onk for the
filament boundary densityns(R1)52.4. As we will see be-
low, this curve separates stable and unstable filament s
tures. Such configurations can be generated by a laser b
with a minimum intensity on axis and present the interest
feature of strong filament density perturbations, so that
actual electron density in the filament can reach values
nificantly higher than the unperturbed one. The growing
havior of the maximum density values in the filament a

FIG. 4. Total power for the case of the filament structure in F
3 as a function of the parameterk. The solid line represents th
minimum laser power needed to sustain a filament mode with z
density atR1, while the dash lines correspond tons(R1)52.4.
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function ofk is shown in Fig. 5, while Fig. 6 shows how th
boundary positionsR1 andR2 depend on the parameterk. As
clearly seen from Fig. 4, with this kind of configuration th
power is not uniquely related tok and, in fact, two qualita-
tively different branches are possible. These two branc
are characterized by strong@left branches from the minimum
of the curve at fixedns(R1)# or weak ~right branch with
power increasing withk) density perturbations. We note tha
the left branch solutions represent a new type of structu
whereas the right branch may be rather considered as a
eralization of the one-dimensional single-cavity structure
cylindrical geometry with the localized structure lying fa
from the axis as seen in Fig. 6. Usually the latter are unsta
not only with exponentially growing symmetry-breaking pe
turbations but also with linearly growing perturbations:
this case, it tends to compress the ring since opposite p
attract each other. It should also be emphasized that th
cavitation structures can be produced only if the power
ceeds some minimal level equal to 33.4Pcr , but for the
stable structures~as shown below for the case of Fig. 4! P
.Pth553Pcr . In this sense,Pth assumes the role of thresh
old power for generation of such stable filament structur
These plasma structures may be of interest for the x-ray l
problem since they represent long plasma filaments w
high densities supported by strong laser fields.

C. Self-focusing ring structures

It is also possible to find solutions with more than o
cavity that can support so-called ring structures of laser

.

ro

FIG. 5. Maximum density values in the filaments as a funct
of the parameterk. The dashed and solid lines correspond to curv
in Fig. 4.

FIG. 6. Boundary positionsR1 andR2 for the filament structures
as functions of the parameterk. The dashed and solid lines corre
spond to curves in Fig. 4.
6-5
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diation. At first instance, these structures might be treate
higher-order nonlinear modes@3,8# and considered as a con
tinuation of higher-order solutions of the nonlinear Sch¨-
dinger equation@14#, which is valid for the present problem
in the weakly relativistic limit. However, as was shown b
Kolokolov and Sukov@16#, all higher-order modes in medi
with local nonlinearity are unstable and, therefore, do
represent a situation of practical interest. For higher inte
ties, regions with decreased electron density will be tra
formed into depletion regions. This implies that the cavi
tion regime corresponds to an extremely satura
nonlinearity, which, in fact, can be stable as shown bel
Because of this, we have considered these structures in s
more detail. Some of these solutions, with a denumera
number of cavities and qualitatively corresponding to
one-dimensional case, are presented in@12#. Obviously, not
all of these structures can appear in an axisymmetric ge
etry due to the requirement of symmetry. Moreover, the p
cedure of constructing these solutions for the axisymme
case is more complex as compared with the case of the
dimensional geometry, even numerically. The procedure i
follows. In the central cavityr ,R1 @see Figs. 7~a! or 8#, the
solution for the field is of the form given by Eq.~20!, where
at fixed amplitudeA ~the shooting parameter!, the field value
and its first derivative are known. Integrating Eqs.~11!–~14!
over the nearest plasma layer lying within the intervalR1
<r<R2, we arrive at the boundaryR2 having two degrees o
freedom: the choice of the values ofR1 andR2 is restricted
only by the requirements that the electron-density funct
should be positive. However, the actual value can vary fr
zero to some value defined by the existence of a locali

FIG. 7. Two-cavity structure~a! with the field passing through
zero for k50.6 andns(R1)52.7, ns(R2)51.8; ~b! the limit case,
for increasing power, of the two-cavity structure for the samek as
for a single cavity: electron density~solid line! and field~dash line!
distributions.
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solution. In the next cavity region (R2,r ,R3), integrating
Poisson’s equation over the whole interval and taking i
account the fact that the net charge must equal zero,
arrive at the transcendental equation

(
i 51

3

~21! i@ 1
2 Ri

21g~Ri !#50 ~30!

where the functiong(r ) obeys Eq.~29!. This equation, being
a generalization of Eqs.~18! and~28! to the case of a highe
number of cavities, defines the boundary positionR3 to-
gether with the corresponding field amplitude and its deri
tive for given R1 and R2. After this, integrating again Eqs
~11!–~14! over the semi-infinite plasma layer (R3<r ,`),
while requiring a localized solution, we obtain the tot
plasma-field structure. There are two continuous families
such two-parametric@ns(R1) andns(R2)# solutions with the
corresponding laser power uniquely defined for fixedk. Fig-
ure 7~a! shows an example of the first one with the fie
passing through zero. This may be considered as a gene
zation, to higher-incident laser powers, of the higher-or
modes of the nonlinear Schro¨dinger equation to the cavita
tion regime. The cavity widths (R1 and R32R2) and the
electron layer width (R22R1) are comparable withk21 over
a broad range of laser powers, but for increasing power,
electron width decreases to zero. Thus, in this limit the tw
cavity structure will transform into a single-cavity structur
but will contain a vacuum field distribution passing throu
zero, as shown in Fig. 7~b!. Since this problem is multipara
metric and too complex to be presented in a simple way,
also, as an example, present in Fig. 9~dash-dotted line! the
power dependence onk for fixed electron densities at th
boundaries:ns(R1)52.7 andns(R2)51.8.

The second family of solutions without sign reversed fie
distributions represents a type of solution that exists only
the cavitation regime. As an example, in Fig. 8 is shown
solution fork50.35 andns(R1)52.5, ns(R2)52.5. The de-
pendence of power onk for fixed boundary parameters i
shown in Fig. 9~solid line!. We note that for these structure
similarly to the filament solutions, the power versusk can
have two meanings, which corresponds to two differe
branches: in the first one~left branch from the minimum of
the curve!, the widths of the cavities and the electron laye

FIG. 8. Two-cavity structure without sign reversed field fork
50.35 andns(R1)52.5, ns(R2)52.5: electron density~solid line!
and field structure~dash line!.
6-6
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are of the order ofk21; in the second~right! branch, for
increasing power, the width of the electron layer~or the
boundary positionR2) increases. Thus, finally the two-cavit
solution may be considered as a superposition of a sin
cavity structure and a one-dimensional one-cavity struc
lying far from the axis. The procedure of calculating stru
tures with more than two cavities is the same, but with
difference that it introduces more free parameters~one for
each additional cavity! and consequently other terms w
appear in Eq.~30!.

IV. STRUCTURAL STABILITY

Strictly speaking, an analysis of the nonlinear stability
well as of the evolution of the relativistic self-focusing in th
cavitation regime cannot be done within the framework
Eqs.~7!–~10! since the boundaries of the cavities cannot
determined self consistently from global charge conser
tion. However, if the plasma-field distributions of the statio
ary structures are known~see Sec. III!, we are able, by using
Eqs. ~7!–~10!, to study the problem of structural stabilit
assuming exponentially growing small perturbations. For t
purpose we assumea5@as(r )1a1(r ,z)#e2 ikz, n5ns(r )
1n1(r ,z) whereas , ns are the stationary solutions of Eq
~11!–~14!, and a1 , n1 are small perturbations. Substitutin
this ansatz into Eqs.~7!–~10!, the growth rate of the smal
perturbations (a1 and n1}eGz) is determined by the eigen
value problem:

L 0̂v~r !5Gu~r !, ~31!

L 1̂u~r !52Gv~r !, ~32!

where a15u1 iv, u and v are the real functions, and th
operatorsL 0̂ andL 1̂ are given by (gs5A11as

2)

L 0̂52“

22k1
ns

gs
, ~33!

L 1̂5L 0̂2
nsas

2

gs
3

1
as

gs
“

2
as

gs
. ~34!

FIG. 9. The power of the two-cavity structures as a function
k for fixed electron density at the boundaries: without sign rever
field at ns(R1)52.5, ns(R2)52.5 ~solid line!; with field passing
through zero atns(R1)52.7, ns(R2)51.8 ~dash-dotted line!.
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In the cavitation regions wherens(r )50, the operatorsL 1̂

and L 0̂ coincide:L 1̂5L 0̂52“

22k and on the boundarie
of the electron layers, the functionsu, v, and their first de-
rivatives are continuous.

We emphasize that in spite of the fact that the cav
structures are determined by differential equations of hig
than the second order~for example, in the one-dimensiona
case with different Hamiltonian values from layer to lay
@12#!, nevertheless the eigenvalue problem is similar to
case of local nonlinearity@15–18#. However, the second
order operatorsL 0̂, L 1̂ here have effective step-wise pote
tials where the cavity boundaries are fixed. From this po
of view, it is convenient to review some common propert
of the set of Eqs.~31! and~32! that will be useful in order to
draw some qualitative conclusions. All the stationary so
tions as(r ) with corresponding density distributionsns(r ),
are eigenfunctions of the operatorL0 with the eigenvalues
equal to zero as follows from Eq.~11!. For the two most
important cases, single channeling and a plasma filament
rounded by field, they correspond to the lowest eigenfu
tions that do not pass through zero. This implies that
higher-order eigenfunctions have positive eigenvalues.
also note that by using Eq.~31! we obtain^uuas&50, where
^aub&5*ab* ds, and therefore the subspace of the solutio
of Eqs.~31! and~32! with GÞ0 is orthogonal to the ground
stateas . In this subspace of functions, the operatorL 0̂ is
positive definite, thus assuring the existence of the inve
operatorL 0̂

21. Combining Eqs.~31! and ~32! into one and
applying the inverse operator we arrive at the following e
pression defining the eigenvalue:

G252
^uuL 1̂u&

^uuL 0̂
21u&

. ~35!

As follows from this equation, since the operatorL 0̂
21 is

also positive definite, the stability problem depends on
properties of the operatorL 1̂. In accordance with the theor
developed by Kolokolov and Vakhitov@15#, if the operator
L 1̂ admits only one negative eigenvalue, the ground stat
stable when the power is a decreasing function of the pro
gation constant, i.e.,dP/dk,0, the so called Vakhitov and
Kolokolov criterion, otherwise it is unstable. If the operat
L 1̂ has more than one negative eigenvalue, the ground s
is unstable. In order to solve numerically the eigenva
problem, it is convenient to rewrite Eqs.~31! and~32! in the
following form:

L 0̂v~r !5Gu~r !, ~36!

L 1̃
ˆu~r !52gs

2Gv~r !, ~37!

where the operatorL 1̃
ˆ is written in the same structural form

asL 0̂:

f
d

6-7



-
p

e

e
n

e

A

e

s
an
he
n
il

y

rr

e
or

g
-

d

nd-
ot
ba-

-
for

rval

sity,

he

of
able
re-
ruc-

lue
is

ty
th

m
an

rve
h
sma

is
lu-

-
wer

KIM, TUSHENTSOV, CATTANI, ANDERSON, AND LISAK PHYSICAL REVIEW E65 036416
L 1̃
ˆ52“

21
“as

2

gs
2
“2k1

ns̃

gs
, ~38!

ns̃5ns1as
2F122kgs2

2~“as!
2

gs
3 G . ~39!

Since in Eq.~37! gs
2 is a positive definite function, conclu

sion about the stability problem may be drawn from the o

eratorL 1̃
ˆ as well. It is also useful to know the eigenvalu

problem forL 1̃
ˆ : L1m̃
ˆ cm5lmcm ~wherem is the azimuthal

index, lm andcm are the eigenvalue and eigenfunction, r
spectively! since the general problem of finding the eige
functions of Eqs.~36! and ~37! is a formidable task even
computationally. This knowledge also essentially simplifi
the numerical search of these solutions.

A. Stable single-channel wave guiding

For the single-channel solutions considered in Sec. III

the operatorL 1̃
ˆ admits only one negative eigenvalue corr

sponding to azimuthal indexm50, all the others with higher
azimuthal indices are positive. Therefore, stability of the
stationary structures can be analyzed by the Vakhitov
Kolokolov criterion. For the main axisymmetric modes, t
dependence of power on the propagation constant prese
in Fig. 2 meets the stability criterion, thus proving the stab
ity of single-channel wave guiding.

B. Stability of filament structure

For a case when a plasma filament is surrounded b

bright ring beam~see Sec. III B!, the operatorL 1̃
ˆ can have

several negative eigenvalues as shown in Fig. 10, co
sponding to symmetric~azimuthal indexm50) and different
asymmetric eigenfunctions (m51,2). Since in this case th
amplitude distributionas(r ) never passes through zero as f
the single channel case~see Fig. 1!, we can again apply the
stability criterion of Vakhitov and Kolokolov by considerin
the power dependence versusk for fixed boundary param
eter, however only for symmetrical perturbations~see, for

FIG. 10. Eigenvalueslm of the operatorL 1̃
ˆ as a function ofk

for the filament structure withns(R1)50 ~solid lines! and ns(R1)
53.0.ns* ~dash-dotted lines! for different azimuthal indexes (m
50,1,2).
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example,@17#!. According to this criterion, the right-han
branches in Fig. 4~right from the minimum! correspond to
unstable structures. However, for the structures correspo
ing to the left-hand branch, the problem of stability is n
clear~although they are stable against symmetrical pertur

tions! because the operatorL 1̃
ˆ may also admit negative ei

genvalues for asymmetric eigenfunctions. For example,
the curve with the minimum laser power@Fig. 4 ~solid line!#,

L 1̃
ˆ has at least two negative eigenvalues in the whole inte
of k, as seen in Fig. 10~solid lines!, and therefore these
structures are unstable. For increasing boundary den
ns(R1), we arrive at the case whenl150. In this case we
found thatns(R1)5ns* '2.45 in the whole interval ofk for
the left-hand branch. At slightly higher density values, t
typical dependence of the eigenvalues onk is shown in Fig.
10 ~dash-dotted lines!. Consequently, the left-hand branch
the dash-dotted line in Fig. 4 separates stable and unst
filament structures and the minimum of this curve cor
sponds to a real threshold power for generating such st
tures. In the general case we have to solve Eqs.~36! and~37!
directly and this was done numerically for the eigenva
problem, noting that the solutions in the vicinity of the ax
vary asu,v;r m and that the asymptotic behavior at infini
(r→`) is known. In Fig. 11 the dependence of the grow
rate G on k is presented form51,2. As we see, the field
structures corresponding to the curve with the minimu
power in Fig. 4 are always unstable. The increment has
absolute maximum for the eigenfunction withm52 but it is
localized in a more narrow region ofk. At increasing bound-
ary density, the growth rate becomes smaller and smaller@as
seen in Fig. 11, for example, atns(R1)51.0# implying that
filament structures lying above the threshold power cu
corresponding tons(R1)5ns* 52.4 are stable. Thus, at hig
laser power we can expect the creation of stable laser-pla
structures.

C. Stability of ring structures

The stability of ring structures presented in Sec. III C
not quite clear. In media with local nonlinearities, such so
tions are always unstable@16,17#, usually being destroyed by

FIG. 11. The growth rate form51,2 as a function ofk for the
filament structures as in Fig.~4!: solid lines correspond to the mini
mum power curve, while dash-dotted lines correspond to a po
curve withns(R1)51.0,ns* .
6-8
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perturbations which break the azimuthal symmetry of
beams. However, in the present problem, the cavitation
gions tend to become larger at higher-laser power. This
plies that the contribution of the nonlinear part, which
responsible for the instability, becomes smaller compa
with the cavitation~‘‘vacuum’’ ! part. Therefore, we can ex
pect the existence of structures which are stable against s
perturbations. In order to solve this problem directly we c
use a two-step approach: first, to solve the eigenvalue p

lem for the operatorL 1̃
ˆ and then, having information abou

the possible range of growth rates, to solve the full probl
given by Eqs.~36! and~37!. Since the ring structures depen
on many parameters, we present different examples dem
strating the stability for some of them. Figure 12 represe
the growth rates corresponding to the structures in Fig
Unstable as well as stable solutions are clearly seen. The
a gap in the interval 0.62,k,0.68 between the growth rate
for azimuthal modes withm51 and m52 ~and also all
higher modes withm.2) with increments equal to zer
~with nonzero growth rates they lie to the right of the ca
m52). This means that structures with parameters wit
this gap are stable. We note that all the structures existin
the form of one cavity while the second one contains onl
density variation are always unstable. Consequently, in o
to have stability of the plasma-field structures they must
in the form of a cavity emptied of electrons. The results
the calculations can be summarized as follows: the stab
of the structures is most sensitive to the last layer den

FIG. 12. The growth rate as a function ofk for the two-cavity
structures in Fig. 9~dash-dotted line!: m51 ~solid line! andm52
~dash-dotted line!.
A
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level @ns(R2)# and less sensitive to the parameters of
previous electron layers. This is clearly seen in Fig. 13 wh
the growth rates presented for fixed propagation cons
only weakly depend onns(R1) but strongly depend on
ns(R2) decreasing with increasingns(R2). It should be noted
that higher-boundary density levels can be sustained w
higher powers. Furthermore, if such structures for fix
ns(R1) andns(R2) are supported by lower-laser power leve
~depending onk) they have enhanced stability. The ma
conclusion is that stable two-cavity structures can indeed
produced in laser-plasma interactions.

V. CONCLUSION

In this paper, we have shown how it is possible to exte
the stationary solution describing cavitation structures du
self-focusing and self-channeling of superintense laser pu
in underdense plasmas with axial symmetry, to a descrip
that fully takes into account plasma quasineutrality. The r
orous conservation of global charge leads to an estimat
the power necessary to generate such structures. If the
cal power for cavitation is correctly estimated, the power
generate such structures with strong density perturbat
turns out to be lower than previously found. Stationary co
figurations with one central cavitation channel as well
with a cylindrical cavitation ring have been presented. T
problem of stability has been also considered showing
stable formation of such structures is possible.

FIG. 13. Dependence of the growth rate form51 onns(R2) for
the two-cavity structures for fixedk50.65 andns(R1)50 ~solid
line!, 1.0 ~dash-dotted line!, 2.7 ~dashed line!.
,
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