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Quasilinear diffusion as a result of modulational instability in the pulsar plasma
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Quasilinear diffusion due to modulational instability is considered in this paper. Interaction between the
high-frequency, nearly transver€emode (or the transvers& mode and the low-frequency, nearly longitu-
dinal L-O mode in a pulsar magnetospheric pair plasma can lead to modulational instability. The low-
frequencyL-O mode is superluminal, which is not subjected to usual Landau damping, and it is possible that
excess wave energy is stored in this superluminal mode. The superluminal low-fredué&hayode can
dissipate in a way similar to the process of Langmuir wave collapse, that is, it cascades from the long- to
short-wavelength regimes. When the phase speed becomes less thenwaves can be damped through
various resonances. We consider, in particular, damping through cyclotron resonance, which can lead to
particle acceleration. The energetic beam particles, which have a very small spread initially, can develop a
high-energy distribution tail, acquiring pitch angles through quasilinear diffusion. These particles cap emit
rays through synchrotron radiation, contributing to the observed pulsar high-energy emission.
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. INTRODUCTION respect to the field line direction(1) The L-O mode with
the polarization vector being in tHeB plane, which is su-

It is widely believed that a pulsar magnetosphere is popu- luminal at low f d hiah f > >
lated with dense electron-positron pair plasmas, which ar eriuminal at low frequency and hig requency reg'dﬁsi’.
' e low frequency Alfven mode, which can be heavily

producgd above Fhe polar cap through cascades by a(?celecfémped if its phase speed is less than the bulk plasma speed;
ated primary particlefl—4]. Such a plasma system, which

_ X .~ and (3) the X mode with the polarization vector being per-
includes a bulk secondary pair plasma and an energetic Plbendicular to thé-B plane, which is subluminal at low fre-

mary particle beam, is unstable, subjected to various P|asmﬂuency and is purely transverse. In the high-frequency region
instabilities[5] (a recent review in Ref6]). There has been the| .0 mode becomes transverse, called Ghenode.
considerable interest in studying plasma processes in the pul- gjpce the low-frequency.-O mode is superluminal and
sar magnetospheric plasma, mainly motivated by attemptingot subject to Landau damping, even for a very modest effi-
to understand the pulsar emission mechari§/W-12. Pul-  cijent production mechanism there can be excess low-
sars are observed to radiate coherent radio emission, whichfgquencyL-O mode waves. Since the low-frequentyO
believed to be originating from some type of plasma instamode is mainly longitudinal in the superluminal region, it
bility [6], and some pulsars also radiate high-energy emiseannot escape from pulsar magnetospheres without conver-
sion [13], which may be due to synchrotron or cyclotron sion to high-frequency transverse waves. Nonlinear interac-
radiation from electron-positron cascades as in the polar gagion between the low-frequencl-O mode and the high-
[4,14] or outer gap modelEl5]. It has recently been shown frequency transvers® mode (or X mode was recently
that some plasma processes may also contribute to pulsstudied in Refs.[18,11]. Assuming there preexists high-
high-energy emissiofil2,16]. frequencyO-mode(or X-mode waves, Ref[11] considered
There were extensive discussions on possible modes inodulational instability of theD mode due to nonresonant
relativistic pair plasma in a strong magnetic field interaction. Through nonresonant interaction, in which nei-
[5,7,9,10,17. Pulsars are believed to have very strong magther Cerenkov nor cyclotron resonance condition can be sat-
netic fields with typical strength ranging from®@ 10* G.  isfied, the low-frequency superluminal-O mode is con-
Electrons or positrons moving in such strong magnetic fieldverted to an unstable low-frequency beat wave with an
radiate away rapidly their perpendicular energy and theyblique propagation angle and at the same time particles ac-
move along the field lines one dimensionally. In practice, onejuire a pitch angle emitting synchrotron radiationXror y
may derive plasma dispersion by assuming zero perpendicuays[12].
lar momentump, =0, but allowing transition to the first In this paper, we discuss modulational instability of the
Landau leve[8]. Further, since the bulk pair plasma consistslow-frequency superlumindl-O mode by the beat of two
of electrons and positrons, one may assume quasineutralityigh-frequency transverse waves and consider the subse-
with charge symmetry, which allows the dispersion relationgguent quasilinear diffusion due to the resonant interaction
to be simplified considerably. In these approximations, onef plasma particles and the unstable wave. Specifically we
can obtain three distinct modes for oblique propagatiith  consider quasilinear diffusion as a result of cyclotron reso-
nance by very energetic particles, such as, those in the pri-
mary beam. We assume that the two high-frequency trans-
*Also at Abastumeni Astrophysical Observatory, 2a, A. Kazbegi,verse waves can be generated by a certain type of plasma
Thilisi 380060, Georgia. instability.
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[l. MODULATIONAL INSTABILITY diffusion (RQD) [22,23. In the following discussion we
Modulational instability of the superlumindl-O mode isn‘ﬁ;g'iﬁgjly consider RQD  resulting from modulational

by beat of two transverse waves was recently discussed in
Ref. [11]. The transverse waves are referred to those high-
frequencyO mode orX mode wavegwith frequency being Ill. ABSORPTION OF WAVES
much higher thanw, and the dispersion is close to the
vacuum casen=1), which are assumed to be generated by Assume that the unstable wave generated from modula-
some plasma instability, e.g., anomalous cyclotron resonandi¥®n@l instability of the low-frequency superlumin&l-O
[19]. For two high-frequency transverse waves with frequen-_mOOIe is subluminal with a frequenay. The unstable wave
ciesw' andw’t and wave vectork! andk’!, it is possible to interacts with plasma particles causing quasilinear diffusion.
have a beat wave with a frequentyn = wt'_w,t which has RQD requires a resonant interaction between the wave and
a longitudinal, superluminal component with the para||e|part|cles. There are thrge types of resonance processes that
phase speed given by can cause wave absorption: Landau, Landau drift, and cyclo-
tron damping. We show that among them the cyclotron reso-
Aw nance is the most efficient.
—>C, (2.1
|AK]

A. Cyclotron damping
whereAk= kﬁ— k’ﬁ and we assume'> w'!. The beat of the

two transverse waves can induce density modulation Wiﬂ?ari
|k} —k’{[>]kj—Kk’]|, leading to modulational instability of

We first consider damping due to cyclotron absorption
sing from normal cyclotron resonan@CR), which can

. . occur for waves with a superluminal parallel phase speed
the low-frequency superlumindl-O mode with frequency . ~¢ [24]. Pulsar magnetic fields can be modeled as di-
w <o, o'. For nearly parallel propagation, the low- polar fields with the radius of field line curvature being ap-
frequencyL-O mode is almost electrostati8]. The condi- proximated byRg~ (4/3)(RR.c)2 for the last open field
tion for instability requires that the beat frequency be smaII"neS' whereR is the radial distance arfd, ¢ is the radius of

[11] the light cylinder. Relativistic particles moving in a curved
ke K c\2 magnetic field have drift motion across the field lines with
asKe (2.20  the drift velocity being
Aw ° 0 wp |’

vﬁy
wherek, is the perpendiculaito the magnetic fiel[dcompo- Ud:Q_RBa 3.1
e

nent of the wave vectokl,=kyc/2w,, kg is the wave num-

ber of electrostatic waves generated from interaction be- )

tween the two high-frequency waves,=(4me?n/m,)¥2  WhereQ.=eB/mcc is the cyclotron frequency. The effect of
with n=n,+n_ the total plasma pdensity(electrons field line curvature in generation of pulsar radio emission has

and positrons is the plasma frequency, a. been discussed by several authors, e.g., R&l. From Eq.
= (0,0l y,0?)|E |2, Q, is the cyclotron frequencyE! (3.1), the curvature drift can be significant for ultrarelativis-
el Vp g ] e gl

_ ; : _tic particles.

_eE_l/(mGpr) |s_the perpendicular component of the elec Including the curvature drift, the NCR condition can be
tric field of the high-frequency transverse wave. Thus, the .

; . written as

energy of the superlumin&l-O mode is converted to pertur-
bations with the low frequency'— w'". This instability has
back reaction on the plasma particle distribution with quasi- o—Kp =k vg=Qely. (3.2
linear diffusion in the momentum space.
~ As shown in Refs[11,12 the growth of modulational The condition can be satisfied for a subluminal wave with
instability that leads to nonresonant interaction in the fre-,/k<¢ but w/k;>c. Throughout our discussion we consider
quency regionjo—Kkjp|y/Qe<1. In the nonresonant ap- the-O or X mode in the quasitranverse approximation with
proximation[20,21, plasma particles are subjected to non-gispersionw=kc(1— ), where| 5|<1 is a small correction
resonant quasilinear diffusiofNQD) leading to transfer of 5 the vacuum dispersion. The condition for dampingds
pgrtlcle’s parallel energy to its perpendlcular energy. The<(kl/k”—vd/c)2/2, implying that waves with a nonzero
pitch angle y=arctanp, /py) acquired by the plasma par- propagation angle can be damped. The smaller the angle, the

ticles is given by[11,12 larger is the Lorentz factor required for particles to damp the
waves through NCR. In the following, we consider NCR by
W~ B_i (2.3 energetic particles in the primary beam, which has a typical
B’ Lorentz factor of 10 for typical pulsars. The resonant fre-
quency is

whereB, is the magnetic field of the unstable waves, being
perpendicular to the pulsar magnetic fieRl Generally, 2

: Qe [k,
plasma particles and the relevant unstable waves can have Ope~ _(_) (3.3
resonant interaction, which can result in resonant quasilinear Yhires\ K|
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where vy, s is the Lorentz factor of the beam particles that df(pj,) 1 4 d

are in cyclotron resonance angysis the resonant frequency at Iy 1 DW@,JFDw\\% f(py. )

(hereafter we simply use). The damping rate is given by |

[23-25 d H J J ) }
+—|| Dyy=—+Dy—|f(py,¥) |,

o 1 apy |\ Plv g P, ) fP1Y)
NCR= 77 — — | 3.4
"o 34 4.

where wy, is the plasma frequency of the beam; is the where the diffusion coefficier is given by

beam spread. D,y N (Ag)?
B. Landau damping Dyy=Dyj =§ J (277)3W(S'k'p)Nk A‘//Apzll :
Dy (Apy)

For Landau damping we have
w_k”UH:O. (35) 4 262

— * 2

Since particles in the fast beam can have a very large Lorents/(SK:P)= hwy | (k)-V(s.k,p)|*6(w—kjp| = 52e /),
factor and therefore, in general, as for Cerenkov instability (4.3
the kinetic approximation is not valid for Landau damping
[26] (more recently, cf. Refl10]). For particles withy= vy, where

+Ay, wherey, is the Lorentz factor that satisfies the reso- ~ V(s,K,p)=[v,sk(e)/e,—insv, Ii(e),vds(Q)],
nance wes— kjc(1—1/2y5) =0, Ay<y, is the spread, we
havew — Ky~ wed v/ ys. For a nearly parallel propagation
wave, the condition(3.5 can be satisfied only for very en-
ergetic particles. Since the Landé&emporal damping rate

i 3 — < . . .. .
is 'pox %, we havejw —kjoy| <I'p for a largey,. Therefore, g ;0 probability for cyclotron emission, am, is the wave

the klnet!c approximation is not appllcgble. . . occupation number. The Landau damping corresponds to
Damping or instability associated with energetic partlcles:0 which is not considered here. Equatiéhi) is in the
must be in the hydrodynamic regime, i.e., the resonanceg |

A NCEmall pitch angle approximatiofi<1, which is relevant for
width is much smaller than the relevant growth or dampmgpulsar magnetospheric plasmas. For NCR, we only need to

rate. However, it can be shown that damping or instability in : =
.considers=1.

the hydrodynamic regime is small. Thus, Landau damping is As shown in Refs[18,11], the unstable wave generated

not effective[26] and will not be considered further. through modulational instability has substantial transverse
component. For convenience, we assume the polarization
vector simply to bee=(0,i,0), we have|e* - V|?=(v?/4).

The usual Landau resonance conditi@?b) is modified  The three relevant components are
by a drift term, that is,

o=k v, y/Qe,

is the charge sign, Apy=7ikj, Ay
=shQeme/pip, , €K) is the polarization vectory(s,k,p)

C. Landau-drift resonance

re
w_kHUH_kLvd:or (3.6) Dl//l,/lm ZmeC’y3ﬁQenk’ (4-4)
which we call the Landau-drift resonance. In the kinetic ap- ot
proximation the resonant condition can be written as Dy,~ 2e_hwknkv (4.5
Y
1 ki Ud)2
5%—(——— . 3.7 r Wi
2 kH c DHH:ZemeC)/l/IZQ—eﬁwknk, (46)

Although the damping due to Landau-drift resonance can be _
important, the conditiori3.7) can only be satisfied in a nar- Wherep;/mec~y (in the pulzsar frzf'ime tqg parallel momen-
row parameter range. So, in the following discussion we contum is always positive r.=e“/msc“~10 - cmis the clas-

sider absorption due to NCR only. sic electron radiusn,= [N, (dk, /27), with k=K at the
cyclotron resonance. For the parallel diffusion coefficiept
IV. RESONANT QUASILINEAR DIFFUSION DUE TO NCR we neglect the Cerenkov resonance, which is not considered

here. Equatiori4.5) has positive sign, implying acceleration.
Let f(p,#) be the plasma distribution wherg is the  Lominadzeet al. studied RQD due to anomalous cyclotron
pitch angle defined by tap=p, /p; with p; andp, being, resonance and derived the parallel-perpendicular component
respectively, the parallel and perpendicular momentwgia-  of D, which has a minus sign, corresponding to deceleration,
tive to the magnetic field field directipnin the strong pulsar e.g., Eq.(4.5 in Ref.[23]. Application of anomalous cyclo-
magnetic field we have the approximatign /pj=tanys  tron instability to pulsar emission was discussed by Macha-
~ <1, and the RQD equation [23,27] beli and UsoV 28].
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The right-hand side of Ed4.1) describes stimulated pro- square bracket on the right-hand side are zero. The first term
cesses in which the effectiveness is proportional to the wavan the second pair of square bracket dominates, yielding
occupation numbe, . However, radiation reaction can also
change the particle distribution. There are two ways to treat d aft(py. )
this effect, which are equivalent; one way is to consider the EJ WT
reaction as a spontaneous term, which is added in£#),
another way is to treat it as an effective force, which can be 4.13
included on the left-hand side. Here we adopt the latter, that '
is, the left-hand side of Eq4.1) can be written as

wdi=— o

ﬁwknkf(p)}

The left-hand side of Eq4.1) is

df J
— = — +— [(G+F)f]
dt at odp &p| Fif(py, lp)lpdw__a&_p|[72<¢2>f\\(p\\)]-
‘9 (4.14
puz/faw[‘”(Gl DI [G+FTL @7

Then, we find the one-dimensional quasilinear diffusion
whereF is the effective force due to radiation and damping,equation
el o4
¢ meC € p||

such as synchrotron radiation and damping, &ds the
effective force induced by the magnetic field inhomogeneity af”(p”) 9 by
[28]. Forp, #0, we havd 28,9 H lﬁo( )

ot ap|
G=Bry¥*, G,=—PBryth (4.8 3wy
2bog P )ﬁwknk fi(p )] (4.19
whereBr=mc?/Rg, Ry is the radius of field line curvature. Q" lapy HH
The radiation reaction force due to synchrotron and curva-
ture radiation is given by where y2=(y?). The first and second terms in the square
brackets are the result of reaction force due to synchrotron
Fi=—ay*"—acy’, (4.9  and curvature radiation. The termn, is diffusion due to
) waves, which increases the distribution taik., the accel-
Fi=—ay(l+y7y), (4.10  eration effect When this term is dominant with, being

) ) ) independent op, we have the solutiofy~pj .
where the second term in E@L.9) is due to curvature radia-

tion, a=2e202/3c?=2e?/3p?, p =c/Qe, a.=2€%3R3.

Sincea/a.=(Rg/p.)?<1, curvature radiation is important A. Spectral evolution

only for very largey. SinceG|<F, the terms withG; can The evolution of the wave occupation number is de-
be neglected. scribed by

For convenience we introduce parallel momentum distri- 5 P
bution f|(p;) and pitch angle distributiorf, (), defined, ﬂ+—(ernk):—ank, 4.16

respectively, by integration df(p,,¢) over pitch angle and
parallel momentum, i.e.,

wherel, is the growth rate of modulational instabilitl/,5

is the damping rate due to NCR, and where we consider
one-dimensional waves. Fatf/gt=0 and dn,/dt=0 we

/2 o0
fu(p|\)=f0 Yt (py,)dy, fl(lﬁ):fiwf(p\\,w)dpu-

(4.11 find
Integrating Eq«(4.1) over p;, we find NE=nok [+ To/TWI, (4.17)
afl(lﬁ)"’_i_[l//(GL—’_FL)fL(lp)] Generally, we may assume.=k ¢N(t). Then, from Eq.
ot Py Iy (4.16 we find
19 ot ()
=7 SAERL s 41 r
ol M oy (4.12 N(t)=Noexp[— 1+F—D—§)Fmt : (4.19
M

Similarly we can derive diffusion equation for parallel
momentum. Since the maximum pitch angle is abgt,  WhereN=Ng att=0. There are three possibilities that need
~1/y, we can safely assume the boundary conditionsto be considered separately. First, f6=1+15/T),, we
f(py,¥— m/2)=0 [which is equivalent to assumigp,p, haveN(t) = const corresponding to the solution given by Eq.
— o) =0]. Integrating Eq(4.1) over pitch angle, we find the (4.17). Second, folé|>1+T /Ty, we have monotonically
quasilinear diffusion equation for parallel momentum. In theincreasingN(t). Finally, for|£|<1+T/I'y, we have an ex-
small pitch angle approximation, the terms in the first pair ofponential decay spectrum with,—0 ast— oo,
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B. Diffusion in pitch angles

If RQD can develop fully, we havef, , /¢t=0, and since
D,y is not sensitive tay (cf. Eq. 4.9, the evolved distribu-
tion is derived as

2
%) (4.19

Ye=[2p Dy /(a+ Bry)"*=[AQenyr /(@

fi(lﬂ)*AleXF{ -

where

+ BrY) ¥*1¥2 is the characteristic pitch angle caused by dif-

fusion, andA; is a constant that is independentfbut in
general may depend quy. Similar to NQD, the RQD pro-

PHYSICAL REVIEW E 65 036408
mec\ 4
fi~ o |

which is much steeper than the cutoff due to synchrotron
radiation.

(4.22

V. CONCLUSIONS AND DISCUSSION

We have considered quasilinear diffusion arising from
modulational instability of the low-frequendy-O mode by

cess can result in an increase in the particle’s pitch angldligh-frequency transverse waves in the pulsar plasma. Ow-

ground state can emit synchrotron/cyclotron radiation.

C. Diffusion in parallel momentum

We consider the case in which eithey is small orvy is
large. Then, Eq(4.15 can be solved to yield

2

2 Py
afy+ ac< e c
e

&
Pi

whereA, is a constant, which is independentmfand then,
term is neglected. For very large but y</3a/2¢yRg/e

fi(pp~Az . (4.20

energy of the superluminal low-frequencyO mode to low-
frequency perturbationgwvith frequencyw'— w'). The un-
stable waves evolve into the subluminal region and can be
absorbed through various resonances. We consider particu-
larly NCR, as it is the most efficient absorption process.
Cyclotron absorption can occur for particles in the energetic
beam for theO mode with a small propagation angle. As a
result of nonlinear interaction, the beam, which initially has
very small spread, can develop a high-energy tail with non-
zero pitch angles. These particles can emit synchrotron ra-
diation, contributing to pulsay-ray emissior{12,16]. There

is a cutoff at high energy, which is determined by the decel-

= oRe(2e/c, deceleration due to cyclotron damping is im- eration due to synchrotron or curvature radiation being bal-

portant, and then, we have a cutoff
A, (mec)2
f ~—— .

1PV~ 2 o

(4.21

For v>yyRgQ./c, curvature radiation becomes dominant

and the distribution has a much steeper cutoff, given by

anced by acceleration due to NCR damping.

ACKNOWLEDGMENT

The authors thank Australian Research Council for finan-
cial support.

[1] P. A. Sturrock, Astrophys. 164, 529 (1971J.

[2] M. A. Ruderman and P. G. Sutherland, Astrophys196 51
(1975.

[3] J. Arons and E. T. Scharlemann, Astrophy2311, 854(1979.

[4] J. K. Daugherty and A. K. Harding, Astrophys. 262, 337
(1982.

[5] A. S. Volokitin, V. V. Krasnosel'shikh, and G. Z. Machabeli,

Fiz. Plazmy11, 531 (1985 [Sov. J. Plasma Phyd1, 310
(1985)].

[6] D. B. Melrose, inPulsar Astronomy—2000 and Beyoedlited
by M. Kramer, N. Wex and N. WielebinskiASP, San Fran-
cisco, 2000, Vol. 202, pp. 721.

[7] J. Arons and J. J. Barnard, Astrophys302, 120(1986.

[8] D. G. Lominadze, G. Z. Machabeli, G. I. Melikidze, and A. D.
Pataraya, Fiz. Plazm¥2, 1233(1986 [Sov. J. Plasma Phys.

12, 712(1986)].

[12] G. Z. Machabeli, Q. Luo, D. B. Melrose, and S. V. Vladimirov,
Mon. Not. R. Astron. Soc312 51 (2000.

[13] D. J. Thompson, ifPulsars: Problems and Progressdited by
S. Johnston, M. A. Walker, and M. Bailé&SP, San Francisco,
1996, \ol. 105, pp. 307.

[14] S. J. Sturner and C. D. Dermer, Astrophys. J. L&20 L79
(1994.

[15] K. S. Cheng, C. Ho, and M. Ruderman, Astrophys3QD, 522
(1986.

[16] Q. Luo, D. B. Melrose, and G. Z. Machabeli, Bamma-Ray
Astrophysics 20Qledited by S. Ritz, N. Gehrels, and C. R.
Shrader, AIP Conf. Proc. N&87 (AIP, New York, 2003, pp.
585.

[17] M. P. Kennett, D. B. Melrose, and Q. Luo, J. Plasma PBy¥s.
333(2000.

[9] M. E. Gedalin, D. B. Melrose, and E. Gruman, Phys. Rev. E[18] G. Z. Machabeli, S. V. Vladimirov, and D. B. Melrose, Phys.

57, 3399(1998.
[10] D. B. Melrose and M. E. Gedalin, Astrophys. 521, 351
(1999.

Rev. E59, 4552(1999.
[19] A. Z. Kazbegi, G. Z. Machabeli, G. I. Melikidze, Mon. Not. R.
Astron. Soc.253 377 (1991).

[11] G. Z. Machabeli, S. V. Vladimirov, D. B. Melrose, and Q. Luo, [20] R. C. DavidsonMethods in Nonlinear Plasma Physi¢Aca-

Phys. Plasmag, 1280(2000.

demic Press, New York, 1972

036408-5



MACHABELI, LUO, VLADIMIROV, AND MELROSE PHYSICAL REVIEW E 65 036408

[21] V. D. Shapiro and V. I. Shevchenko, zZh. Eksp. Teor. Hig, [25] R. D. Blandford and E. T. Schaflemann, Mon. Not. R. Astron.

1612(1963 [Sov. Phys. JETR8, 1109(1964]. Soc.174 59 (1976.
[22] V. D. Shapiro and V. I. Shevchenko, Zh. Eksp. Teor. B4,  [26] V. D. Egorenkov, D. G. Lominadze, and P. G. Mamradze, As-
1187(1968 [Sov. Phys. JETR7, 635(1968]. trofizika 19, 753 (1983.
[23] D. G. Lominadze, G. Z. Machabeli, and A. B. Mikhailovskii, [27] D. B. Melrose, Plasma Astrophysi¢§ordon & Breach, New
Fiz. Plazmy5, 1337 (1979 [Sov. J. Plasma Phys, 748 York, 1986, \Vols. 1&2.
(1979]. [28] G. Z. Machabeli and V. V. Usov, Pis'ma Astron. Z6, 445
[24] Q. Luo and D. B. Melrose, Mon. Not. R. Astron. S@25, 187 (1979 [Sov. Astron. Lett5, 238 (1979].
(2001, ’

036408-6



