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Stopping power of nonideal, partially ionized plasmas
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The stopping power of strongly coupled, partially ionized plasmas is investigated for charged beam particles
with arbitrary velocities. Our approach is based on kinetic equations of the Boltzmann type that are suitably
generalized to describe three-particle collisions. In this way, we consider elastic collisions between the beam
and free plasma particles as well as the ionization and excitation of composite plasma particles by beam
particle impact. Explicit expressions for both contributions are given in terms of the momentum transfer cross
section that has been generalized for three-particle collisions. For fast beam particles, we obtain a generalized
Bethe formula that includes correction terms due to the nonideality of the target plasma. Results are shown for
hydrogen, carbon, and argon plasmas. Considerable modifications compared to the ideal behavior arise for
strongly coupled plasmas. In particular, we are able to describe the Mott transition in the stopping power of
dense, partially ionized plasmas.
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[. INTRODUCTION Furthermore, the energy loss of correlated beam ions as
well as cluster ion beams was investigatéske, e.g.,
Beam-matter interaction experiments are one of the keyefs.[20,21]).
tools to investigate the properties of dense plasmas. One field Although the first calculations for the stopping power
of interest is the creation and heating of plasmas. Here, spevere done for gas targef22-24, much less theoretical
cial focus is directed to inertial confinement fusion relatedwork has been done for the bound state contribution in
topics, e.g., to the properties in heavy ion fusion converterplasma targets. Most of the approaches result in a modified
[1,2], to a-particle heating in the fusion coff®,4], and to  Bethe formula that is generalized for multiply charged
fast ignition by proton beamg5]. Furthermore, heavy ion plasma iongsee, e.g[25—27). For weakly coupled plasmas
beams can be used to produce cold, dense plasmas for equd fast ion beams, this formula is in good agreement with
tion of state investigationgs,7]. To guide and to interpret experimental data[8,28], however, deviations arise for
these experiments, a precise knowledge of the energy loss bfgher particle densitie29]. A modified Bethe formula has
charged particles traveling through strongly coupled plasmabeen also derived for the energy loss of electron beams in
is needed. The diagnostics of dense plasf8¢d is another dense plasmas0].
important application of particle beams where an exact de- In this paper, we pay special attention to the bound elec-
scription of the stopping power is required. tron contribution. For this purpose, we utilize kinetic equa-
Except high-temperature hydrogen plasmas, most of thdons of the Boltzmann type including three-particle colli-
target plasmas under consideration in these experiments asibns [31,32. This approach is particularly advantageous
applications are partially ionized. Therefore, descriptions obecause it allows the inclusion of all relevant two- and three-
both the contribution due to the free plasma particles and thparticle scattering processes in a systematic way. The consid-
one due to the bound electrons or composite particles have &red kinetic equations also include strong coupling effects as
be considered. the lowering of the ionization energy and medium effects on
In recent years much theoretical work has been done tthe cross sectiong33,34). Furthermore, no approximations
model the interaction between beam ions and free plasmeoncerning the beam particle velocity are necessary.
particles in nonideal plasmas. For instance, local field correc- To give a general insight into this approach, a brief dis-
tions[10], density functional theory11,12, the force auto- cussion of the kinetic equations is given in Sec. Il. On this
correlation function[13], the nonlinear system of Vlasov- basis, we derive explicit expressions for the ionization, exci-
Poisson equationgl4], kinetic equations beyond the Born tation, and deexcitation contributions to the stopping power
approximation[15—-17, and computer simulationgl8,19 in Sec. lll. Furthermore, a description of the calculation of
have been applied. In these investigations, special attentiathe ionization and excitation cross sections, which are the
was paid to strong beam ion-plasma electron correlationsnain input quantities, is given in this section. The free elec-
tron contribution is addressed in the next section. For this
contribution, we use a scheme that considers close collisions
*Electronic address: gericke@lanl.gov as well as dynamic screening effedts6,17]. Results for
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strongly coupled hydrogen plasmas are given in Sec. VA. TABLE I. Definitions of multichannel scattering theory for the
The effect of the plasma composition on the stopping poweflifferent types of three-particle collisions: channel indéx
of carbon plasmas is investigated in Sec. V B. Furthermore, asymptotic statefka), differentials, three-particle energies, and the
comparison with experimental data for an argon plasma i§€t of distribution functions in the considered channel.

shown.

k |ka) d(ka) EXpe fi(ka)
Il. KINETIC EQUATIONS FOR PARTIALLY IONIZED 0 |p)lpo)pe)  dpadpydpe Eat+Ep+Ec  fa(pa)fo(Py)fe(pe)
PLASMAS 1 |pa>|Pbcj> dpadpbc Ea+Ebc fa(pa)Fj(Pbc)
Before we turn to the calculation of the stopping power, 2 |pb>|PaC!> dpydPy, EptEac Fo(Po)F(Pac)
let us briefly discuss our approach to the properties of par—3 P} Pani) dpedPap EctEap fe(Pe)F(Pap)

tially ionized plasmas. We employ the so-called chemical
picture, i.e., the basic elements of our analysis are free elec- .
trons, free ions, and composite particles. The latter can bgguations that account for all relevant two- and three-particle
atoms or ions. Applying the kinetic description, the proper-Processes. Furthermore, the influence of the surroundin_g me-
ties of the system can be expressed in terms of the distribidium on the scattering processes has to be included in the
tion functions for free carrier§,(p,t) and composite par- Ccase of strongly coupled plasmas. Kinetic equations consid-
ticles (two-particle bound statgs;(P,t), where the index €ring inelastic scattering processes as well as many-particle
“j” denotes a complete set of internal quantum numberseffects were derived in the frame of density operator formal-
These distributions are normalized as follows: ism [35-38 and using the technique of nonequilibrium
Green'’s functiong31,39—-41. The latter approach is based
on a cluster expansion of the two-particle Green’s function
dp dpP including self-energies and phase space occupation effects.
Na= f Wfa(pvt) and n;= f WFJ(Pvt)- The result is a generalized Boltzmann equation containing
(1)  additional three-particle collision integrals. Due to the
screening of the Coulomb potential, the effective interaction
Here, n, is the free carrier number density of the speciesin dense plasmas is short ranged. Therefore, kinetic equa-
“a,” and n; is the number density of the composite particlestions of the Boltzmann type can be applied also for partially
in the statg j). The total density of bound states is given by ionized plasmag40,41]. In the case of homogeneous and
nbzz,-n,-. Then it holds for the total electron density: isotropic plasmas, the resulting kinetic equation for the free
n'=ng+nP. carriers reads
To describe the balance between the different species, one
has to consider the possibility of reactions between the par-

X B A d
ticles, e.g., ionization and recombination Efa(p,t)zg |ab(p,t)+; labd(Put). (3)
e+it@ DsitZ 2 For inhomogeneous or anisotropic plasmas, the left-hand
side (lhs) has to be replaced by the well-known drift term.
and inelastic processes changing only the internal seate The right-hand sidérhs) of Eq. (3) contains the different

citation and deexcitation It is well known that energy and collision terms. The first term describes the scattering of two
momentum conservation in such inelastic scattering profree carriers. Depending on the applied approximation
cesses require at least three particles. Therefore, one hasdcheme, it is given, e.g., by the collision integral of the
go beyond the usually used binary collision approximation inLenard-Balesc(i42,43 or Boltzmann kinetic equatiorjg4].
order to describe partially ionized plasmas including suchThe second sum on the rhs includes the different three-
inelastic processes. particle scattering processes. Considering a nondegenerate
The time evolution of the free and bound particle distri- plasma, this three-particle collision integral is given by
bution has to be determined by a set of appropriate kineti¢31,36|

1 dpp dp
labdPa, t)= W% Zk 2nh)? (ZW—};)E}d(kE)|(pa|<pb|<pC|Tg'§c|kc_v}|2

% 27 8(EQpe— EXp{ F(Kart) = fa(Pa,t) Fi(Po 1) Fo(Pe 1)}
1 dPyc .
+W§ ; fﬁgd(ka)lpaKPbc”T;EJkaﬂz
X 27 8(ELy o~ EXp{ frlKaut) — Fa(Pa,t)F;(Poe, )} @)
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In this expression, we used the notations of multichanneétc.
scattering theory that are explained in Tablsée also Refs. However, Eq.(3) for the free carrier distribution is not
[45,46). The index ‘K’ denotes the scattering channel that closed. Furthermore, an equation for the distribution of the
corresponds to the channel stgter). In this way, the sum- composite particles;(Pyp,t) is needed to describe the time
mation overk accounts for all kinds of scattering processes:evolution of a partially ionized plasma. For homogeneous
the first main term describes all processes with three freand isotropic systems, this kinetic equation reg@41]
particles in the incoming chann@.g., three-particle recom-
bination whereas the second one considers all processes
with one bound and one free particle in the incoming channel
(e.g., impact ionization

EX,. are the quasiparticle energies for three particles ifP., denotes here the total momentum of the composite par-
the channek that are explained in Table I. For the one- andticle “(ab).” For inhomogeneous and anisotropic systems,
two-particle energies mentioned in this table, we have the Ihs of Eq.(11) has to be replaced by the drift term for a

two-particle complex. The rhs is a collision integral that de-

(9 .
5t Fi(Pa =2 1o Pap 1. (D

Pa scribes the interaction of a bound particle complex with a
EaZZma+Aa ) free carrier. For nondegenerate systems, we have for this
collision integral
and dp. d(Ka)
B o
P2, b Pab 1) = 2 (2077—h)32 7 8(E3pe— Egbo)
Eab 5 TE +Aab (6)
2M

X |<pcPabj |T2EC| k6_l>|2
In the latter definitionE; denotes the binding energy of an <If (Kat) —F. (P f 12
isolated statéj). The influence of the surrounding medium is {filkait (Pap Ofc(Pe, U} (12

reflected by the energy shifis, andA},. In order to sim-  The notation of multichannel scattering theory is used here
plify the calculation, momentum independent shifts in rigid again(see Table)l The index ‘c” denotes a species of free
shift approximatior{47] are used frequently. In this approxi- plasma particles scattering with the bound complex.

mation, the energy shifts can be identified with the correla- The system of equation@®) and (11) with the collision

tion part of the chemical potentia, i.e., u=pu'"¥+A. As-  integrals(4) and(12) allows the description of partially ion-
suming statically screened Coulomb interactions, the shiftszed plasmas considering the following scattering processes:
are given in lowest order in the density by elastic two- and three-particle collisions, elastic carrier-
) bound state collisions, rearrangement processes, impact ion-
A (t)=— Ze7k(1) _ @) |z_at|9n by free carriers, three—pamcle_ recpmbmanon, and ex-
2 citation and deexcitation due to particle impact.

) _ . Furthermore, this system considers dense plasma effects
Here, k?=4me?3 Zin /kgT is the (local) inverse Debye included in the quasiparticle energies and in the three-

screening length. However, one has to go beyond approxbartcheT matncesTabc Therefore, the presented kinetic

mation (7) for strongly coupled systems. In this case, moreequatlons are an appropriate basis to derive expressions for

sophisticated approximations have to be app[48l. : : o ; :
The transition probabilities from a given chantkeo an tmhgnit_%g?tlir::?e pec]chvgitrsof partially ionized plasmas including

outgoing channek are described by the retarded three-

particle T matrlcesTabC, where the energy arguments are Ill. BOUND STATE CONTRIBUTION TO THE STOPPING
fixed on the energy shell of the considered scattering process. POWER
TheseT matrices obey the following Lippmann-Schwinger

equation(operator notation[39,45: In this paper, we investigate the energy loss of beam par-

ticles with a fixed beam charge numh&g neglecting their
inner structure. That means, that we do not consider the evo-
lution of the beam particle charge. This approximation is
appropriate for short times and in the case of beams consist-
ing of electrons, protons, and fast nuclei of light elements,
. Lo ! . where the beam charge number remains almost constant.
three-particle Hamlltoman including sglf—energy 9ffect§ vViapowever, the stopping power of heavy ions can also be de-
the energy shifts. .The channel potentl_lw1§,9 are given in - geribad in many cases considering tivelocity dependeit
terms of the effectivéscreenefltwo-particle interaction po-  equilibrium charge state of the considered beam particle spe-
tential V4, cies[49].

For the beam particle distributiofy,, we use a delta-
function-like distribution in momentum space,

c(w) Vabc+vabc bc(w)vla(\bc* (8)

whereGY, .= (w—HS%,.— V2, .+ie) ! is the retarded three-
particle Green's function, and?,. is the effective free

Vabe=Vabt Vact Voc, 9)
Vibe=Vap+ Vac, (10) fo(p)=(27%)3npd(p—MyV), (13)
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wherev, m,, andn, denote the beam particle velocity, mass, particle collision integra(4): The first onglk=0 in the sec-
and density, respectively50]. The stopping power, i.e., ond sum of Eq(4)] is characterized by the set of distribu-
A E)l ox (where_ thex direction is considered to be parallel to tions fy(p)F;(Pe;) and theT matrix Té?ei) . The second one
the beam particle velocity), is then determined by the js given byk=1 in the first sum of Eq(4), i.e., by the set of

change of beam particle momentum per unit time. e o —}
S X : distributionsf(ka) =f,(p)F:(Pe;) and theT matrix T . -
h | ! 1 b M ei - b(ei)
Considering a homogeneous and isotropic target plasm lternatively, the transition probability for the considered

[51] and low-density beams, i.e., neglecting intrabeam scat- ; .
tering and beam particle-beam particle correlations, we opProcesses can be described by the three-parficieatrix

11 H H
tain for the stopping power of a partially ionized plasma  Tbei) - However, the outcoming state includes a correlated
scattering state of the ionized particle in this cfs2),

J 1 dp  (p-v)
—(Ey=—> | s lpe(P) o _ _
Xy f @mh)* v P <p|<jPei|Té?ei>|pi>|pe>|ﬁ>=<p|<1Pei|Té%ei>|Peipe+>|m(.15)

1 dp (p-v)
+n—b% fWT|b<cd)(P)- (14

eDue to the large mass ratio of ions and electrons, i.e.,
i, /m.>1, the argument of the ion distribution is then given

siders all kinds of two- and three-particle processes that arBy the center of mass momentuRy;, and the one for the
included in the collision integral$,. and lyq) , respec- electrons by the rel_atlve momentqng_._ .

tively. The bound state contributions are given by the second. '€ corresponding terms describing beam particle as-
term. We consider only reactions in which the beam chargé'Sted recombination are proportional to three free particle

number remains constant, i.e., the beam particles enter arffistributions and can be neglected. With the beam particle
leave the Scattering processes as free partic|esl distribution (13), we then obtain for the ionization contribu-

tion of the stopping power

Here, the sums run over all elementary plasma species, i.
electrons and the different ion species. Expressiah con-

A. lonization of plasma particles

The ionization of bound plasma particles by beam particle
impact is described by two different terms of the three-

J ion_(ZWﬁ)6 dPei dp dEei dﬁ dpe (p'V)
&<E> Yz EJ: J(Zﬂ'h)3 (27h)3 (27h)° (27h)3(27h)° v

><{5(E8(ei>—Eé<ei),j)l<p|< + PePeil Thtei | Peil )P 28(D— MpV) F (Pey)

— 8(Epei. ;— Engei) [{PI(i Peil Then| PeiPe+ )Y 28(p— mpv) F (Pei) - (16)

We want to consider arbitrary mass ratios of plasma and For the three-particld matricesTkl,(lei), we now obtain
beam ions. Therefore, it is appropriate to transform the mothe relation
menta in Eq.(16) into Jacobi variables. These variables are

defined by the following relations: ) —
[{PI(i Pl Thten | PPe+) P} IP=(27#)*V S(K

K, 17 —K)|(K[(} | Thep|Pet )K)|?
(18)

mp

K=p+Ps and k=p—
b(ei)

where we have introduced the total mass of the three scatter-
ing particlesMy ) =my+ m; + m,. The Jacobi coordinalé  4nq for the three-particle energies, it holds
is the center of mass momentum of the three-particle colli-

sion, andk is the relative momentum between the beam par-

ticle and the bound state(&i).” Due to the large mass ratio El
of ions and electrons, the third Jacobi momentum is given by b(e)
the momentum of the ejected electron. We, therefore, keep

the notationp,. In the further analysis, we will also use the K2 K2 2
total mass of the plasma particlbk,;= m; +m, and the two Eg(ei):—+ K Pe

reduced masses,=MyM ei/Mpeiy and fie;=mMem; /M;. 2Mpeiy  2mn  2pei

K2 k2

=+ —+E+ At A, 19
i 2Mpeiy  2pp 0 TP 19

+A+A+A.  (20)
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Again, E; is the binding energy of the isolated two-particle M2 nA3 kaT
J ion_ ei " Jjoei 7B ion
bound state Considering the arguments in the energy con-&X(E> = —E —; Zm&3 dk k3Q (k)
Mp

serving é function, it is useful to introduce the effective ion-
ization energy of the bound statp. This quantity is defined od - Mgiv2 e Meivi
P- 2kgT | P+ 2ksT | |
191=|Ej|+ Aet+ A — A . (22) (25)

by

Furthermore, it is convenient to define an auxiliary functionHere, we have introduced the following abbreviatiops:

g, by =1%(upkgT)/(Mgikv) and v.=k/up*tv. Furthermore,
Aoi=(27h%IM kg T)¥? is the thermal wavelength of the
composite plasma patrticles.

gp=k2— 2o p2—2upl &, (22) Expression25) gives the stopping power due to the ion-
Hei ization of plasma particles in terms of the transport cross
o section of ionization. It has the same structure as the expres-
and to transform the momentum vectdrsandk into polar  sion for the stopping power of fully ionized plasmas assum-
coordinates. Therefore, we introduce the following angledng statically screened interactiottsee also Sec. IV The
£(k,K)=0, ~(py,K)=6,, and 2 (p,,k)=6, and abbre- different scattering processes are reflected by the different

viations cosf=x, cos#,=x,, and cosh=x,. These angles YPES Of transport cross sections.

are not independent; they are connected by the well-

known relation of spherical trigonometryx,=xx; B. Excitation and deexcitation of plasma particles
+sin#sin 6, cosg, .

Considering the conservation of total momentum and the Excitation and deexcitation processes as well as elastic

expressior(13) for the beam particle distribution, the and collisions of beam particles with composite plasma particles
— . , o are described by collision integrals that are characterized by
the K integration can be performed easily. By utilizing also 5 ¢omposite plasma particle in the input and output channels

the energy conservation to perform thentegration, we get [k=1 term in the second sum of EG)]. The derivation of
for the stopping power the following intermediate result:  corresponding expressions for the stopping power is similar
to the one shown in the previous section for the ionization

, g’i 1 contribution. However, we now have to introduce the trans-
5<E>'°”=—(2w)4ﬁ7 e fo dk sz 1dX1 X1 port cross section ofde)excitation:
b _
2
Mhpceik ex ()= +pJ (1 9
XFj Meiv_ m(—(:) Q“,(k) (277) ﬁ4k 3 d 1-x Kk
* 1 XCKIGITES 77 K2, 26
Xf dpepgf deef dx % |< |<J| b(ei) |J >| >| ( )
0 -1
The indices §” and “ j'” denote the internal quantum num-

X (k= gpX) [(K[(j | ThcenIPe+)IK)Z  (23)  bers of the incoming and the final state, respectively. Excita-
tions of plasma particles are determined by the relation
E;<E; , whereas for deexcitation&;>E;, holds. The
transport cross section for elastic three-particle collisions has
the same form but with=".
Due to the different energy levels, we have to account for
e fact that the excitation and deexcitation contributions
have the opposite sign. Indeed, excitations of composite
Mbgb f d J’ 40 f d plasma particles reduce the beam energy while deexcitations
(2w (27)%h% Pe Pe pe X deliver energy to the beam particles. Finally, we obtain for
the contribution of the stopping power, which is due to ex-
citation of composite plasma particles,

Here, the modulus of the momentukis given by the func-

tion gy, i.e., |k_|=gb. Following the usual definition of the
total ionization cross sectiofb3], we now define the mo-
mentum transfer or transport cross section of ionization by th

|on( k)

1- X_)|<k|<J|Tb(e||pe+>|k_>|2- (24

ex_ MZ njAgi kBT ex

As we consider a nondegenerate target plasma in local ther < )= —E_;E_ R dk kSQ (k)
mal equilibrium, the distribution of bound plasma particles is < Ko
given by the Boltzmann distribution. Therefore, theinte- M2 Mgiv2
gration can be performed analytically, too. As the final result p_exp — —pLexp —

. . . . . . 2kBT 2|(BT
for the ionization contribution of the stopping power, we
then obtain (27)
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where the same abbreviations are used as in(E5). The 9 M2, |eff kBT
deexcitation contribution has the opposite sign and the sumﬁ—<E>'°“— —2 (277) ﬁ — dk ko '°“(k)
runs in this case over all states wil)>E;,. For the con-
tribution due to the elastic scattering of the beam particle M o2 M o2
with a composite plasma particle and analogous expression [p exp( T oT )—p+ exp( T oKT )]
can be obtained. B B

(33

C. Limit of high beam particle velocities In the case of high beam velocities, the second term in the

In this section, we consider the contribution of three-curly brackets is negligible. In the first term, only momenta
particle collisions to the stopping power in the case of verywith k~uyv contribute to thek integral. Furthermore, all
energetic beam particles. First, we will focus on the ionizafunctions can be treated as constgat the pointk= uyv)
tion contribution. Our starting point is E§23) but consid- compared to the strongly varying exponential. The remaining
erable simplification arise for fast beam particles. In thisintegral can be performed analytically. For the ionization
case, the relative momenta between the beam particle and tkentribution, the relation
composite plasma particle before as well as after the colli-
sion, i.e., k 'and k, are large compared to the mpmentum i(E)“’”z—E 15, 0o 0
transfer defined by=k—k. Therefore, the scattering angle '

0 is very small (co®=x~1), too. Furthermore, we can as-

sume that the energy of the ejected electron is small confollows, where the sum runs over all existing bound states of
pared to the sum of kinetic beam and ionization energiescomposite plasma particles. From H§4) we see the ex-
With the definition of the auxiliary functiog, (22), then, it ~ pected relations: the stopping power is proportional to the

(34)

follows that energy transfer per coIIisioI‘fﬁ, the number density of the
bound states in the plasmg, and the probability for an
K—gpX~Kk—0p, (28 jonization. Nonideality effects are included by the medium
dependent ionization energuegr and cross sectlon;"“
ke e 2 (29 A similar expression can be found for processes that de-

scribe excitation of plasma particles. Compared to ([B4),
the ionization energy has to be replaced by the excitation
~Kk1 Mb|_eff_ (30) energy and the total excitation cross sect&q‘fﬁ‘ has to be
! used in this case. Elastic collisions are negligible for high
beam velocities. The same follows for the energy gain of the
Applying this approximation, we get for the stopping powerbeam particles due to deexcitation of excited plasma par-
ticles because, for fast beam particles, the deexcitation pro-
cess becomes unlikely compared to an ionization of the

J ) :
ion_ eff plasma particle.
(3’X<E> (2 )ZﬁSE I bmb J dk k .

To find an explicit expression for the high velocity limit
of the stopping power, we need an analytic expression for the
k ionization cross section for large momenta or energies. For
V_M_ ' hydrogenlike composite particles, one can use a modified
Bethe cross sectio(see, e.g., Ref$23,54)). Comparing the
(31 cross sections for electron and ion impact, a scaling can be
found. It turns out that, for the impact of energetic particles,
where we have introduced the total ionization cross sectiorf€ ionization cross section is only a function of the relative
This quantity is defined b{53] velocf[y. Furthermore, we fqunql in the I|r_n|t of large impact
energies that the cross section is proportional to the square of
the beam ion—electron interaction potential, |@"’”~Z2

. 1
><a']°n(k) JlXmXle( Mei

ion Mp9b Therefore, we obtain for the ionization cross sectlon at large
o] (k)_(2 )zh“kJ dpepeJ dQp, impact energy
_ . |E;| 2mk?/ u?
X [ dxI(kI(ITE k)2 (32 N(k) =8 raZZe— o
J X|< |<J| b e|)|pe >| >| ( ) aj (k) 87TaBmeek2/2;U~§ n |Ej| ) (35)

— where| E]-| is the ionization energy of an isolated two-particle
In this definition, the modulus of the momentumis fixed  pound state. In contrast to the modified Bethe-Bibermann
by the relationk=g, and, therefore, a function of the ion- cross section suggested in Rd#53,54], we neglect here the
ization energy. Using the equilibriurfBoltzmann distribu-  energy shifts in the logarithm because these terms are negli-
tion for the composite plasma particles, we obtain gible for large impact energies.
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Inserting the cross sectiai@5) in Eq. (34), we obtain a . Mﬁ Prmax 9.
generalized version of the Bethe formula for the ionization — Qj(k)= 2m 2 dpe pﬁf dq qJ dQ,
contribution of a hydrogenlike bound state. This expression . 0 q-
is, in contrast to the original Bethe formyla3], also valid in

i K+d5—9°
the regime of strongly correlated plasmas, X

1_T)|Vbe(q)Pj,pe(q)|2- (38)

. (36) Here, the integration over the scattering angle has been trans-
formed to an integration over the momentum exchagge

) o . The limits of theq integration are given by the relatian.
An analogous expression follows for the excitation contribu-_,  — . .
=k=*k. The maximum momentum of the ejected electron

tion. The major nonideality effect on the stopping power mfollows from the energy coNSENVatonp.=(md?u,

the high velocity limit is condensed in effective ionization off\1/2 :
energyl fﬁ. As this quantity is always smaller than the ideal Zmeli_) - Furthermore, one has to consider that the modu-

ionization energy, the ionization contribution to the stopping!Us of k is given by the auxiliary functiong,, [see definition

power of a strongly coupled plasma is reduced compared t : )

the one of a weakly coupled plasma with the same number [N EQ. (38), dense plasma effects are taken into account

density. by the statically screened beam particle-plasma electron in-
i i deraction potentiaVye(q) = 47Zpe?/(k?+q%%?), by an ef-

For target atoms or ions having more than one boun A pot beld b g/n7), by an €
electron, we use the Bethe cross sec{i28]. For high im- fective atomic form facton,pei, and the effective ionization
pact energies, this cross section is proportional to the numb(emergylfﬁ. Considering the large mass difference of elec-
of bound electrons. Therefore, we obtain for the stoppingrons and ions, the atomic form factor is given by
power of an ideal plasma

i
P _ _47nge4 z, 2mew? Pj,pe(q)zfdr\lf}*(r)\lfpe(r)ex%—gr-q), (39
—(EYO'=———— > (Z—Z)nzIn| —=—].
X mew® 70 |EZ|

nil )| (Zmevz
meU2 |Ej|

Jd )
252
& < E)IOH: - lBﬂTaBZbEj:

whereW(r) and\lfpe(r) are the wave functions of the two-
particle bound and scattering states determined by the Schro
Here,Z. denotes the nuclear charge of the considered targetinger equation with a statically screened interaction poten-
speciesn; is the number density, anfl, is the ionization tial [33].
energy of a(isolated Z-fold charged ion. A similar formula For the numerical evaluation, it is more convenient to use
was also found by Peter and i¢her[27] for weakly coupled the angle integrated atomic form factors that are defined by
plasmas. It should be mentioned that E8j7) was success-
fully used to describe the energy loss of ions in weakly = _ zj da. |P. 2 40
coupled, partially ionized plasmas with free electron densi- (n).p,(4)=Pe pel Pi oo DI 40
ties N,<10'° cm 2 [8,9,28. In a strongly coupled plasma, . . .
the reeduction of the ionization energy, which is the majorThe bound state is here characterized by the main quantum
medium effect, can be included approximately by a factor”UImbe'Tn and thfeEanA%Jlar quantlum numUIeFor a numeri-
15|E,] in every term of the sum. cal evaluation of Eq(40), we apply a partial wave expansion
and get for the form factor

(37

D. lonization and excitation cross section 1 = (|/ 1”7 )(|/ " )

We have shown in the previous sections that the ioniza- Finip (@)= K2, 2 0 0 olo o0 o

tion and excitation cross sections are the essential input 0

quantities for the bound state contributions to the stopping X (21" +1)(21"+ 1)|'(;{'|')'p (q), (41)

power of partially ionized plasmas. In the case of very fast ne

beam particles, the total ionization and excitation cross secz, .« LY is a special Wigner $-symbol[55]. The quan-
tions are needed for large impact energies and, therefore, a = o

modified Bethe cross section could be utilized in Sec. Il CHtY I(1),,.(d) is given by

In the general case, we have to start from EZS) and(27).

There, the transport cross sections of ionization and excita- !
tion are needed. These quantities are given in terms of the (
three—particIeT—matricesTtl,(lei) according to the definitions

(24) and (26). wherej(x) denotes the spherical Bessel function agg(r)

As the solution of the effective three-body problem is aandu,,_/(r) are the radial wave functions for bound and
very difficult task, we apply here a Born approximation scattering states, respectively. We computed these wave
regarding the beam particle-plasma interaction, i.e.functions by numerical solution of the radial Sctimger
Té(lei)zvbe_l'vbiv but describing the output channel by a equation with a statically screened Coulomb potential and
correlated scattering stafp.+). Using this approximation, self-energy shifts in Debye approximatiofisee, e.g.
we obtain for the transport cross section of ionization [33,47,56).

2
, (42

ron
A

n,I),pe(q)=

jo drun,(r)up i (Nji~(qr/h)
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0 250 500 750 1000 IV. FREE PARTICLE CONTRIBUTION TO THE
loo STOPPING POWER
000 To calculate the free particle contribution, we have to con-
) sider the first term on the rhs of Eq@l4). Elastic three-
4 0.06 particle collisions are negligible. Depending on the beam ve-
locity and the plasma parameters different effects are
1003 significant and, therefore, different approximation schemes
3 for the two-particle collision integrals are appropriate.
1 0.0 . . .
, , , In the important case of fast beam particles, dynamic
0 250 500 750 1000 screening effects and collective plasma excitation have to be
k[ag'] included into the theory. These effects can be treated within

the so-calledv® approximation[16]. Therefore, we have to

apply the collision integral of the Lenard-Balescu equation
42,43 in Eq.(14). The resulting expression for the stopping
ower read$17]

FIG. 1. Transport cross section of ionizati@i®(k) versus
wave numberk=p/# for different screening parameters The
considered process is the ionization of a hydrogen atom in th
ground state by proton impact.

free be d k (hk2/2mb) e
For the transport cross section of excitation, we obtain in a_X<E>RPA iz
the Born approximation b) ™

Xlw—

, . Z_mb Ime Y(k,w)ng(w). (45
(K= +dq q
Qrt (2m)*h*K In this approximation, the stopping power is given in terms
Wt P o of the imaginary part of the inverse dielectric functien®
x(l— +t9—q )|V (QP; ()2 (43) and the Bose functiomg=[expfw/ksT)—1] ! that repre-
2k? be I ' sents the plasmon distribution. The dielectric function will be
calculated here in random phase approximat®RA). In the
limit of very fast beam particles, the following formula can
Again, the limits of integration are given b3y+—k+k but  be obtained from Eq45):
the modulus of the momenturk is now given byk?=k? 26202
- 2,u,bljff+2,ublj, . The corresponding atomic form factor for lim i<E>free: _ Zpe wp

. . . 2
plasma particle excitation reads p—ee0X v

2meu 2)
(46)

hw

pl

_ Here,w,2)|:47re22CnC/mC denotes the square of the plasma
_ * b frequency.
Pj'j'(q)_aj'j'+J dr (r)\Ifj,(r)exp( h r-q). On the other hand, strong beam-plasma correlations are
(44)  important for slow beam particles and strongly correlated

plasmas. An appropriate approximation to describe these
strong coupling effects is based on thenatrix approxima-
tion for the collision integral of the quantum Boltzmann
equation44]. The corresponding expression for the stopping
Spower is given in terms of the transport cross section for
two-particle scatterin@,, [17],

Numerical results for the transport cross section of i |on|za
tion are plotted in Fig. 1 for different screening parameters

considered. The data fot=0 are related to the Coulomb
case or the weakly coupled high-temperature limit. Qualita-

tively, we find similar results as they were found for the total M2 neAd KkgT
ionizati_on_ cross _secti0|lj33]_: ir_1cre_asing screening lengths 5(E>¥f’§]amx:—2 —3° 2m o J dk k3QbC(k)
result in (i) a shift of the ionization threshold and of the ¢ Mbc

maximum of the cross section to smaller wave vect@rs; m.o? 2
L . U mevs

an enhancement of the cross section in the region around the Xip_ exp( - _) -ps EXF{ - ) ] )

maximum; and(iii) a decrease of the cross section for large 2kgT 2kgT

wave vectork. The first and the second points are related to (47)

the lowering of the ionization energy with increasing screen-

ing length. Therefore, ionization requires less energy and islere, up,.=mym./(my+m.) is the reduced beam-plasma

more likely. Compared to the screening effects in the case gbarticle mass. The definitions for the abbreviatigns and

electron impact33], we observe here a much larger en-v. are similar to the ionization cageee Sec. Il A, but the

hancement of the cross section. For large wave vectors, theduced mass and the plasma particle mass have now to be

weakening of the interaction potential by screening is theeplaced byu,. andm;, respectively. The sum in E¢47)

dominant effect, which gives rise to the opposite trend, i.e., auns over all free carrier species in the plasma, but except for

decreasing of the cross section. very slow beam particles only the free electrons have to be
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considered. Dynamical screening effects are not included in 16 18 20 22 24

: : . 1.0 . : : 1.0

the T-matrix calculation(47) because we apply a statically

screened Coulomb potential to calculated the cross sections. 08 b ) {os
To incorporate both dynamic screening effects and strong ¢

beam-plasma correlations, a combined scheme for the stop- 0.6 f 106

ping power was proposed in R¢fL6]. This model adds the g X

RPA (45) andT-matrix (47) approximations and subtracts the 04 Sy 104

static Born term to avoid double counting. In this way, the a -

typical failures of the Born and static approximations for low 0.2 r ¥ 57102

and high beam velocities, respectively, can be avoided. The o e

dynamic Born approximatior{45), for instance, overesti- 0'016 18 0 2 240'0

mates the stopping power several timesuetvy, and strong logof 0 [em™])

beam-plasma coupling, i.e., low temperatures and large beam

charge number$17,57]. On the other hand, the stopping  FIG. 2. Plasma composition of a hydrogen plasma with a tem-
power is underestimated by a factor of two applying theperature ofT=2x10% K as a function of the total electron density.

static approximation in the high velocity limit due to the The quantitya; is the fraction of the different species in units of the

neglect of plasmon excitatiofL6]. As the combined model total electron density, i.e.@e=ne/ng", ay=nu/ng', and ay,

is given by theT-matrix results(47) for v—0 and by the =2nH2/ntem-
dynamic Born resul{45) for very fast beam particles, it has
the correct limiting behavior, which was shown by a com-e+ p<H. Of course, this mass action law represents a rather
parison with simulation data and experimeptg,28. For  simplified model to determine the plasma composition of
intermediate beam velocities, the combined model approxihydrogen. In particular, at lower plasma temperatures, the
mately accounts for both correlations and dynamical screerformation of molecules, according to the dissociation equi-
ing effects while smoothly interpolating between the stdtic librium H+H<H,, has to be taken into account.
matrix and the dynamically screened Born approximations. To go beyond the approximations mentioned above, we
We therefore apply this combined scheme in this paper foapply the model introduced in R¢68]. In this scheme, the
the free particle contribution of the stopping power. energy shifts are identified by the correlation part of the
chemical potential, i.eA,= s, In the derived ionization-
V. RESULTS AND DISCUSSION dissociation model, the plasma composition is determined by
the following mass action laws:

A. Stopping power of partially ionized hydrogen plasma ) . o cor oor
1. Plasma composition M= 2NpDp eXPBLpe + pe T e — D), (49)
~ Beside the scattering cross sections, the plasma composi- nsznﬁbﬂH exp ALy "+ ui = mip) ) (50)
tion is the main input quantity to calculate the stopping
power of partially ionized plasmas. Starting from the kineticHere, bf, denotes the partition sum of atomic bound states
equations(3) and (11), rate equations for strongly coupled that is approximated by the ground state contribution, i.e.,

plasmas can be derivg®3,34,53. These equations deter- bﬁzexp(—ﬁEo). baH is the bound state part of the fourth

mine the time evolution of the number densities of free and,) sier coefficient for the electronic singlet state of atom-
bound particles. In this paper, we consider target plasmas iy, interaction. The contributions to the chemical potential
thermodynamic equilibrium and, therefore, the rate equationg,a; are due to interactions of free charged particles are cal-
reduce to a set of mass action laws. For a hydrogen plasmgjated from Padeormulas. These formulas were deter-
with atoms in the ground state follows mined on the basis of quantum statistical theory using the
known limiting behavior for low and high densities as well
N = A2exp BIc) (48) as Monte Carlo dat§48,59. The charged particle—neutral
NeNp € o scattering processes are included in terms of second cluster
coefficients in first Born approximation using the optical po-
where B=1/kgT is the inverse temperature. Following tential method60]. The contributions of neutral-neutral in-
the definition (21), the effective ionization energy of the teractions are calculated in a simple manner from the Man-
ground state is given byl 8”=|E0|+A9+Ap—Ao with soori formula [61] applying temperature dependent hard
Eo=—13.6 eV being the ground state energy. The nonidealsphere radi{58]. This scheme allows a qualitative descrip-
ity of the plasma is accounted for by the averaged energsion of neutral-neutral interaction in the considered tempera-
shifts A, (rigid shift approximation Unfortunately, the ture range ofT=15000 K. Of course, improvements are
simple Debye shif(7) is only justified for weakly coupled necessary, especially in the range of lower temperatures and
plasmas. In fact, this approximation overestimates the effedtigh densities where atoms and molecules dominate the be-
of screening, and pressure ionization is, therefore, predicteblavior of the system. This can be done using more realistic
for too low densities. neutral-neutral interaction potentigisee, e.g.[62—64)).
Equation (48) describes the plasma composition deter- Results for the plasma composition of a hydrogen plasma
mined by the ionization equilibrium of the reaction with a temperature of =2x 10" K are plotted in Fig. 2. For
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FIG. 3. lonization contribution to the stopping power of a hy-
drogen plasma for a proton beam in different approximati@es
text) versus beam particle velocity. The latter is given in units of the
thermal velocity of the electron componeng,= VkgT/me. The
plasma temperature i=10° K and the total electron density is
ng'=5.5}10% cm 2. 0 3 6 9 12 15

- 9E/dx [10° MeV/m]

low densities, we get the behavior known for weakly coupled FIG. 4. Stopping power of a partially ionized hydrogen plasma
plasmas: an almost fully ionized plasma for very low densi-for a proton beam versus beam particle velogity units of the
ties and with increasing plasma density the formation of atthermal velocity of the electron componenf,= ykgT/m,). The
oms (for n;otéloﬂ cm’g) and molecules (for nteot plasma temperature %)r:d tOt(E)il ele?fztrotgt denslltyh@siéz..ox 10* K
=10%L cm3). Nonideality effects are small up to densities of (T=3-5% 10° K) andng'=10" cm™? (ng'=10* cm ") in the up-
n'<10?* cm™3. For denser systems, the self-energy shiftsP®" (lowen figure, respectively.

reach the same magnitude as the dissociation and ionization
energies. Therefore, the effective binding energies vanish
and the bound states break up. We observe here the transiti;()l(}
from a partially ionized to a fully ionized plasma due to
pressure ionization. This behavior is known as the Mott trany,;. correctly within approximatiofiii), the low-velocity

S'tﬂto” [48]. ?S a_sresult, most F’a”'c'es are free_ carriers forregion cannot be described. However, both asymptotic re-
Ng >5X 1.02 cm°. Although this pghawor IS quite genera!, sults merge for high beam particle velocities with the general
the density where the Mott transition occurs strongly variegegy|t (i) that includes nonideality effects. A similar merger
for different approximations for the energy shifis Apply- — foiows for fast beam particles if the nonideality corrections
ing, e.g., the Debye shiff7), the Mott point occurs approxi-  4re neglected in all approximatiorigot shown. However,
mately one order of magnitude earlier. the results using ideal cross sections overestimate the energy
loss in that case. This overestimation is a direct result of the
neglect of screening effects, which ends up in too high cross
Let us first discuss the ionization contribution to the stop-sections in the larg&-value domain(see Fig. 1
ping power separately. In Fig. 3, the ionization contribution Comparing the result§) and (ii), one observes a shift to
of a hydrogen plasma is shown as a function of the beanbwer beam velocities if nonideality effects are considered.
velocity. The beam particles are protons and, therefore, th&€his shift follows from the lowering of the ionization energy.
beam charge number &,=1. With the considered plasma For this reason, beam particles with a lower endkgpjocity)
temperature and density, an ionization degree®f0.74 and  can ionize the target atoms in strongly coupled plasmas. This
a screening parameter of=0.4%g" follows. Hydrogen effect is not included in the ideal calculatidii). The en-
molecules are negligible in this case because their concentranced ionization probability in the low-energy doméee
tion is less than 1%. To test the influence of nonidealityFig. 1) leads also to an enhancement in the stopping power
effects and to show the limitations of the often used Bethdor low beam velocities.
formula, the following approximation schemes are plotted in  Figure 4 shows the total stopping power of a partially
Fig. 3: (i) the general expressioi25) with the medium de- ionized hydrogen plasma, the free electron, and the ioniza-
pendent transport cross secti@8)—full line; (i) the general tion contributions as a function of the beam particle velocity.
expression25) with the transport cross secti@B8) for the  Again, the beam consists of protons, i.8,=1. With the
ideal case(that is x=0)—dashed line{iii) the asymptotic given plasma parameters, ionization degreea©10.49 and
formula (34) with the numerically calculated total ionization «=0.19 were obtained for the upper and lower figure, re-
cross section in the Born approximati¢®2)—dash-dotted spectively. The molecule concentration is here again under
line; (iv) the asymptotic resul36) where the modified Bethe 1%. Due to the fact that ionization requires a minimum im-
cross sectiorf35) was utilized—dotted line. pact energy, it is expected that the free electron contribution

It is clearly visible that both asymptotic resulii§) and
) underestimate the stopping power for low beam veloci-
ties. Although the energy threshold for ionization is calcu-

2. Stopping power
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19 20 21 22 23 24 smaller in the lower part. Such an enhancement of the stop-
' ' ' ' 10 ping power of plasmas compared to cold gases was also ob-
{10 served in experimental investigations of proton and deuteron
stopping in plasma$65,66 and can be explained with the
different excitation energies in the corresponding high-
{10 velocity expressions, i.el,jeff in Eq. (36) for the ionization

. contribution and#wp in Eq. (46) for the free plasma
particles.

The density dependence of the stopping power is demon-
sT ; ; ; ¥ 5 strated in Fig. 5 for three different plasma temperatures. Hy-
drogen molecules are treated here as timdependentat-
oms. The beam particles are protons with 1 MeV energy.
3 Therefore, the high-velocity formul@6) can be used. To get

a consistent description of plasma composition and stopping
110 power, the effective ionization energy according to the model
110! (49) and (50) is used in both calculations.

In addition to the total stopping power, the free electron
and the ionization contributions are plotted. Furthermore, re-
0 F ’ ’ ’ 10 sults for the stopping power assuming a fully ionized plasma
.|  T=15000K 1. are given for comparison. Due to the increasing number of

both free and bound electrons with increasing total electron

density, both contributions become larger in the low-density

) range. For very low densities, the plasma is approximately

fully ionized. Therefore, the contribution of the bound elec-

trons increases stronger due to the formation of atoms in the

0 plasma with increasing density. As a result, a density region
exists for T=1.5x10* K and T=2.5x10" K, where the

24 stopping power due to ionization exceeds the free particle
logio( e [em”]) contribution. ForT=3.5x 10* K, the fraction of bound elec-

FIG. 5. Total stopping poweifull line), free electron contribu- trons is always too small to give a larger contribution than
tion (dash-dotted ling and ionization contributioidashed ling of the free ?le?trons'_ .

a partially ionized hydrogen plasma versus total electron density. A dualitatively different behavior can be observed at den-
The beam consists of protons with 1 MeV per particle. In addition,Sities arounchg'=10? cm™3. Here, the ionization contribu-

results assuming a fully ionized plasr(dotted ling are shown. tion suddenly drops. This behavior results from the simulta-
neous occurrence of two effects that both reduce this

is dominant for very small beam velocities, which is con- contribution. The first one is the lowering of the ionization
firmed by the numerical results in Fig. 4. However, our re-ENergy that becomes signifipgnt in this regiqn qnd reduces
sults show that also for beam energies where the maximuri{le €nergy transfer per collision. As the ionization energy
of the stopping power occurs, the free electrons give th@lso aff_ects the plasma composition, secon_d, the ionization
major contribution even if only 19% of the electron are freed€9ree increases rapidly. At the same density, the free elec-
carriers (see upper part This behavior is even more pro- tron contribution shows a strong increase because of the
nounced in the case where the number of free electrons fdigher fraction of free electrons. As the free electrons give a
approximate|y equa| to the number of atoms. Here, the ionhigher Con.tribution per partiCIe than the bo.unq eleCtronS, the
ization of atoms contributes only 9% at the maximum of thetotal stopping power shows a strong effective increase at this
total stopping power. This clearly shows that this effect,density, too. As we can see from the plasma compositea
which is also known from weakly coupled plasmas, is muchFig- 2, we observe here the transition from a partially ion-
stronger in nonideal systems. The reason is that the enerdged to a fully ionized plasm#Mott transitior). The influ-
transfer per collision, i.el", is reduced by strong coupling €N¢® of this phenomenon on the stopping power of partially
effects. ionized plasmas is demonstrated here for a hydrogen plasma.

For high beam velocities, the fraction of the ionization
contribution becomes larger, but the contribution per bound
electron is still smaller than the one per free electron. For
instance, the contribution per free electron is approximately For plasmas of elements other than hydrogen, one has to
twice as high as the one per bound electron for a beam paaccount for ions in different charge states. Consequently, it
ticle velocity of v=20Xuvy. As a result, the bound state follows a set of coupled mass action laws for all possible
contribution exceeds the free electron contribution for highcharge states. In the nondegenerate case, we get instead of
velocities in the upper part of Fig. 4, but is noticeably Eq. (48),

4] T=35000K

- OE/Ox [MeV/m]

) L
—_
(=]

- OE/9x [MeV/m]
3

- OE/Ox [MeV/m]

B. Stopping power of carbon and argon plasmas
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FIG. 7. Energy loss of 8%U5%" jons with a beam energy of 6.3
MeV per nucleon traveling through a 20 cm long, partially ionized

: 2 MeVia 40 argon plasma. The theoretical result is plotted as a full line. The
-/_—/_W 30 circles show experimental results taken from Ré&8).

120

% pared to an ideal calculation. Furthermore, we want to point
6 MeV/u 110

B L N out that the very stable configuration of tkeliumlike) C**
10 2 s 10 2 s 10 ions dominates in a large temperature range. These plasma
TleV] temperatures are of special interest to describe beam-plasma

. . - 4 .
FIG. 6. Chemical compositioupper figur¢ and stopping 'Sn‘;{ggfotgocr:);)ézﬁ;g?nts where?Cions were also detected

ower(lower figure of a carbon plasma versus plasma temperature: . . .
P ( gure g { e The influence of the chemical composition on the stop-

The total nuclear density i5'=10%* cm™2. In the lower figure, the . 3 i
stopping power is shown for different beam enerdieslocities. ping power of a carbon pla§ma is demonstrated in the lower
The beam particle is a heavy ion with a charge stat&,sf 10. part of Fig. 6 for fast beam iond, 2, 3, 4, 5, and 6 MeV per
nucleon beam energyObviously, the stopping power in-
creases with the plasma temperat(oe the ionization de-
=A2 9z exp(,Bliﬁ). (51) gree. This increase is again explained by the fact that the
1 free electrons give a higher contribution per electron than the
. . . . bound ones. As this different behavior is more pronounced at
Here,nz is the number ‘?'e,”s'ty Of, ions in the charge. sm.te lower beam velocities, we observe a stronger increase in this
and gz denotesﬁthe statistical weight. For the effective ion-c,q A remarkable increase occurs for temperatures around
ization energyl7", we apply here a model proposed by Stew-1_ 19 ey where the ionization degree changes more rapidly.
art and Pyat{67] because of its numerical simplicity and This range is then followed by plateaulike region from
proven good reSL_JIts for intermediate a_md high plasma tem= 15 gy to T~40 eV, which is a direct effect of the stable
peratureg68]. This scheme smoothly interpolates betweenyejiymiike configuration resulting in an almost constant ion-
the Debye shifts for low densities and the ion-sphere model, ation degree.
for high densitie67]. Again all atoms and ions are assumed 5 comparison of our theoretical predictions with experi-
to be in the ground state. The effective ionization energy of,ental results is given in Fig. 7, where data for the energy

150

- 8E/dx [10° MeV/m]
8 &8 2

=1
<

2

nz

NeNz41

an ion in the charge staiis given in this model by loss of 2% ions traveling through a 20 cm long, partially
. ionized argon plasma are sho\#69). The plasma was pro-
o |3(Z+1)K+1]%? duced using & pinch with a pinch-axis parallel to the beam
17'=1Ez| - 2(Z+1) kgT. (52) direction. The lack in the experimental data is due to the

strong reduction of the output beam intensity, which is an
— effect of the strong focusing force of the plasma current
Here,Z is the average charge state of the ions, and the paplasma lens effegf70]. It was shown experimentally that
rameterK is defined a =Ze’x/kgT. the beam ion charge number remains almost constant
In the upper part of Fig. 6, results for the chemical com-aroundZ,=53. The beam particle energy is 6.3 MeV per
position of a carbon plasma are presented as a function of theucleon that justifies the application of the high-energy for-
plasma temperature. Qualitatively, we find the expectednulas(37) and(46). However, it should be mentioned that
results: almost only atoms exist at low temperatures; then thstrong fields can influence the stopping power due to the free
ionization degree increases with the temperature. All ionizaelectrons(see, e.g., Ref§.71,72 for magnetic fields
tion stages appear and disappear at certain temperatures andThe densities of the free electrons were taken from time-
only sixfold ionized carbon ions exist for very high tempera-resolved spectroscopy measurements and are in the range of
tures. However, the fractions of the different ions species are,= 10~ 10'° cm™3. Assuming a plasma temperature of
influenced by correlation effects, especially in the tempera=10° K, the (time dependenttotal nuclear densities are
ture range where the maximum of thé @nd the €* ions  then calculated from the solution of the set of Saha equations
occurs. Here, the composition is noticeably modified com{51). This calculation does not include the effects of electro-
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magnetic fields and also neglects the heating and cooling aind three-particle collisions as well as the influence of cor-
the plasma during the pinch and the relaxation phases, reelation effects. Special attention was paid to the bound state
spectively. It should be mentioned that a considerable ineontribution of the stopping power where ionization and ex-
crease of the ionization degree due to electric fields occurssitation of a composite plasma particles by beam particle
in the given electron density range, only for field strengthSmpact were considered. In particular, the nonideality effects
E>10° V/m [73] whereas magnetic fields tend to decreaseyn the cross sections were discussed. Then these results were
the ionization degref74]. It can also be shown that the total ysed to calculate the stopping power of partially ionized hy-
stopping power is only a weak function of the plasma tem-drogen plasmas. The largest nonideality effects were found
perature forT=10" K [8]. Since the average charge state offor low beam velocities. Especially, the threshold for the ion-
the plasma ions never exceefls 5, the main contribution to ization was shifted to smaller beam velocities. For fast beam
the energy loss is due to the ionization of bound electrons.particles, we found a reduction of the stopping power due

The comparison shows a good agreement between the cdp the lowering of the ionization energy. Furthermore, we
culated and the measured stopping power in the expansiaggbserved the Mott transition in the stopping power for large
phase that verifies the applicability of the high velocity resultdensities. The effect of temperature ionization on the stop-
(37) for plasmas with densities up to,=10"°cm 3. The  ping power was demonstrated for a carbon plasma. Finally,
disagreement in the compression phase is mainly due to thee have shown a comparison with experimental data for an
fact that the temperature is not constant during the dischargargon plasma that proves the applicability of the Bethe-like
but strongly increases during the compression. formula for fast ion beams.

VI. SUMMARY
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