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Steady ion momentum in nonlinear plasma waves
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The analysis of a one-dimensional two-fluid hydrodynamic model with relativistic electrons and nonrelativ-
istic ions shows that the propagation of a nonlinear plasma wave is accompanied by a steady currentless plasma
drift. lons, due to their larger mass, appear to be the main carriers of the average momentum of the plasma
wave. Two examples of nonlinear plasma waves generated by moving s¢simoeslaser pulses and electron
buncheg are analyzed to show details of the energy and momentum conservation laws.
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[. INTRODUCTION the laser wake field this fact was pointed out in R&f],
where it was shown that the momentum lost by the laser
Nonlinear plasma waves have been the object of theorepulse is transferred into the wake-field wave and that its av-
ical interest in the 1950s, when some of their most remarkerage momentum is carried by ions, no matter how heavy
able properties were discovered. It was shown that the frethey are.
quency of the one-dimensional nonrelativistic nonlinear However, in Ref[8] this conclusion was obtained in the
p|asma wave does not depend on its ampm[ljdé] (See also approximation that the VeIOCity of the laser pu|Se and, hence,
Ref.[3] and references thergirThe dependence of the wave the phase velocity of the generated plasma wave equals the
frequency on the amplitude results from the relativistic varia-Speed of light. . _ _ N
tion of the electron mas@]_ The amp”tude of a p|asma In th|S paper we take into COﬂSIderatlon the m0b|l|ty Of
wave is limited by the wave-breaking phenomenon that ocions and investigate the general properties of a nonlinear
curs when the velocity of the electron fluid becomes equal t®/asma wave propagating in a plasma with arbitrary ampli-
the phase velocity of the wayd]. tude and phase velocity less than the speed of light. To illus-
A new growth of interest in nonlinear plasma waves wastrate how the moving source transfers the energy and the
stimulated by the idea of electron acceleration in powerfumomentum to the nonlinear plasma wave, we consider the
plasma waves generated by electron buncpsma wake- generation of the wake field by short laser pulses and by
field acceleratoror by short laser pulsedaser wake-field —€lectron bunches.
accelerators (see Refs[5,6] and references therginThe
main attention was attracted to the studies of the dependende THE ENERGY AND MOMENTUM OF PLASMA WAVES
of the amplitude and the period of the generated plasma . I .
wave on the parameters of the source. Usually, in these in- in our investigation we use a set of cold two-fluid hydro_-
vestigations, plasma is considered as an electron fluid Wh“gynamlcs equations for relativistic electrons and nonrelativ-

ions are treated as an immobile uniform background. suctstic ions and restrict ourselves to the one-dimensional geom-

an approximation seems to be reasonable but it leads to sonfdy:
problem concerning the average momentum of a plasma

wave. Indeed, it is evident that the laser pulses as well as the INe + i(n v)=0, (1)
electron bunches while generating plasma waves lose not gt gz T

only energy but also momentum. The energy lost by the

source is transferred to the energy of the electron oscillations JPe JPe 5
in a plasma. But the momentum lost by the source cannot be Wﬂ)e 0z =eE, e
transferred into the steady momentum of the electrons, be-

cause the steady electron flow would result in the nonlinear an, 4

Doppler shift of the wave frequendy] in contradiction with St T 7z (Mv =0, (©)

the isochronism property of the nonrelativistic nonlinear
plasma wavél-3]. On the first sight it looks as if the source o _ _

. Ui v €
loses momentum but the generated wave does not gain it. —+v—=—E, (4
Hence, to clear up the situation with the wave momentum, at gz m
we consider the propagation of one-dimensional nonlinear
plasma wave without the usual restriction to immobile ions. E:4 (en+en;) )
We show that independently of the generation method the gz " Me &iNiJ,
propagation of the wave is accompanied by the appearance
of currentless steady drift of the plasma as a whole. Due tavhereE is the charge separation electric fie&lm, ng, v,
the larger mass of ions they carry the main part of the averande;, m;, n;, v; are the charges, masses, concentrations,
age momentum of the plasma wave. In the particular case @nd velocities of electrons and ions, respectively,is the
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momentum of the electron fluid per particle, related to the eE dy
electron velocity by the formula,=p./(my), where m&- " dE (17
D | 2112
y=|1+ e (6) To establish the relations betwerg,, n;q, veg, andv;g,
mc let us assume that in Eq&l3)—(16) the potential is a con-

stant, =y, and that the perturbations in the plasma are
absent. We find that in the unperturbed plasma vy, Ne
=Ny, UVi=0jg, andn;=n;q. Assuming that in unperturbed
state the plasma is neutral and electrons and ions are at rest
oW dS we obtain thatng=27n;g and vg=vjp=0. By means of

Herec is the speed of light.
From the set of Eqs(1)—(5) one can easily obtain the
energy and the momentum conservation laws,

—+ , (7) these relations Eq$13)—(16) are much simplified. One can
gt~ oz easily see that the electrons and the ions stop at the same
P T points where the potential of the plasma wave is equdijto

o ot ®) Without the loss of generality, we may put=1.
o gz The set of Eqs(13)—(16) allows us to express all the

) hydrodynamic variables as functions of the potengal
whereW, S, P, andT stand for the energy density, the energy

density flow, the momentum density, and the momentum y= 7§[¢_5(¢2_7;2)1/2], (18
density flow, respectively,

2 2 —2\1/;
m; I2 E2 E:B%[lﬂ_ﬁ(lﬂ _‘}/p ) 2]
W=nemC2'y+ni Zv +§, (9) neo (1//2_')/‘;2)1/2 ’ (19)
miv'2 &: 2 g2 =2 1/2] 20
Sznevemcz’y-‘rniviTl, (10) mec 7p[18¢ (lﬂ 7p ) ’ ( )
P=nepe+minjv;, (12) i B 2
o2 Mo B 2e(4—1)’
T:nepeve""miniviz_g (12
Ui
—=p— VBT 2<(4—1), (22

As we are interested in one-dimensional stationary plasma
waves, we suppose that all hydrodynamic variables are fun
tions of §=v ,t —z only, wherev , is the phase velocity of the
plasma wave. In this approximation, integration of Ed3$-

Svhere ¥p=(1-B%)~"2is the relativistic factor determined
by the phase velocity of the plasma wave.
Substitutingn, and n; from Egs.(19) and (21) into the

(4) gives Poisson equatiofb) we obtain
ne( B- %) = neo( B- %) : (13 &y Bylv— B =y Y B
drn’ (P —y, 5 VBP—2e(y—1)
Pe Peo (23)
7’_,3%:’)’0_,3%4"#_(/’0: (14

where n=k,&, k,=w,/c, and w,=(4me*ng/m)*? is the
plasma frequency. The nonrelativistic limit of E@3) was
ni(ﬁ— ﬂ) :nio(ﬁ— m)' (15)  Uused in Ref[9] to study the influence of the ion motion on
c c the plasma wave frequency. For the case of immobile ions
(e=0), Eq. (23 coincides with the well-known and much
5 m) (16) studied one(see, for example, Ref§10—15). The Poisson
c )/’ equation, taking into account relativistic motion of electrons
and ions, was derived in Refl6,17.
where we assumed that the density and the velocity of elec- The first integral of this equation may be written in the
trons and ions equabey, vey, Nig, anduv;g, respectively, form
at the point wheres= ;. At the same pointy andp, attain

Uj 2
PRI

the values denoted ago=[1+(Peo/Mc)?]*2, and peo 2 ) TN
=Mueo/(1—v2y/c?) 2, respectively. Herg=v,/c is the 2\dy =lo= BVl BY— (7= 7,") "]
dimensionless phase velocits (Zm/m;)<1 is a small pa- 8

rameterZ is the ion charge number, angis the electrostatic P B 2e(u—1)

potential determined by the relation € [B=NB"~2e(4= D], (24
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FIG. 1. Phase portraits of E(R5) showingdy/d» as a function
of ¢ for B=0.9 and several values of integration constst
1-1,=0.05; 2—1,=0.2, 3—1,=0.5; 4—1,=0.9; 5—1,=1.294.

wherel ; is the integration constant. Expanding E@3) and
(24) in power series of small parameteto the zeroth-order
terms, we obtain

d?y L [By—(PP— v, 2
G (P @9
1(dy\?
5(%) =lg—Uo(¥), (26)
where
Uo(¥) = val = B(?— v, M2 - 1. (27)

The functionUy(¢) is real only foryg= yrjl. In this region it
has its only extremurtthe minimun) located aty= 1, where
Uy(1)=0. According to Eq.(26), the amplitude of the
plasma wave electric field at=1 attains a maximum value
equal to

mcwp
el

V21,

(28)

ax

However, the value of, cannot be arbitrarily large. The
periodic solutions to EQq.26), describing the nonlinear
plasma waves, exist only if the right-hand side of E2f)
takes real positive values. Therefore, the magnitudk, a$
limited by the condition g<U(y, 1y from which we find
IO,max= Yo~ 1. (29
This magnitude being substituted into E@8) gives the
well-known result of Ref[4] for the wave-breaking ampli-
tude of plasma wavelk,,,. The influence of the ion motion

on the wave-breaking field is proportional to the small factor

€[17].

Figure 1 shows a typical phase portrait of EZ5), with
dy/dn plotted as a function ofs for several values of inte-
gration constanty. The dimensionless phase velocjyis
taken to be 0.9. The curve with the largest valué pforre-
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sponds to its maximal permissible value @+ 0.9 as deter-
mined by Eq.(29). It bounds the region of possible real
solutions of Eq.(25).

Using EQgs.(18)—(22), we can express all hydrodynamic
variables appearing in the conservation laws in terms of the
electrostatic potential. For example, the dimensionless en-
ergy density can be written as

By 1 (dl/f)

WPy )M 21dy

[B—B%—2e(y—1)]?
2eB—2e(y—1)

Note that, while writing this expression, we subtracted the
rest energy of electromg,,mc? from the total energy. Analo-
gously, we can write expressions for dimensionless energy
density flowN, momentum densit®, and momentum den-
sity flow G

_ W
" NgyM

(30

__S _ +’3[,3—\/m]3
Neem@ (42— 7,92 e W

PotP;
NggMCe

+BB—JB2—26(¢—1)
eVBZ—2e(y—1)

T (v 1(d¢)2
T mng B(E—y,)Y% 2ldy

N [B—VB°—2e(y—1)]?
eVBZ—2e(yy—1) .

The last terms of Eq¥30)—(33) describe the ion contri-
bution to the corresponding quantities. Expanding these
terms in power series of the small parametewe find that
these contributions are small everywhere except for(82).

In the limit e<1 the ion momentun®; remains finite and
equalsB~1(y¢—1). Thus, we conclude that ions effect is
essential only for the momentum density of the plasma wave,
giving a finite contribution even in the limit of infinitely
heavy ions. For all the other hydrodynamic quantities, as
well as in the Poisson equation, the influence of the ions may
be entirely neglected. As a result, Eq80)—(33) take the
form

Y(y—)
=Q+ Q= W

(32

(33

L= By~ RO 5222

U=8v}, (=77 vl =By, )Y
Yp
lo, (34
N gyl G s U e}
7p (W2, D)
(35
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Q=Q.+Q density also equals zero. Using conFinuity equatithsand
s oy s oy (3), the current density may be rewritten in the form
LU= B =y, DM By— (42— v, D)

=B = N 2
p (2= % 2)172 3 encv:n+0eén|v, :,33—77241- 42
+B7Hy-1), (36)

It is evident that the average current density is also equal to
zero. This relation is valid independently of the parameter

JLBU— (P =y, 22

_ 2 2 -2\1/2 . .
G=57p = y-2)ir2 vl =B =, )] It is worth noting that although the average electron current
P density and the average ion current density may differ from
—1-1y. (37 zero, their sum always equals zero. So, the current density,

the electron momentum density, and the energy density flow

We emphasize once again that in these equations the onbf plasma waves are purely oscillatory functions.
term appearing due to the ions s *(4—1) in Eq.(36). From Eq.(34) we find for the average energy density of

All quantities characterizing the nonlinear plasma waveplasma waves
may be presented as the sum of two terms. One of them is
independent ofp and determines the average of the corre- 2 (v U()dy
sponding quantity. The other one is purely oscillatory and the (U)= N de W =
integral of it over the plasma wavelength is zero. -

To find the average parts of the quantiti®)—(37) we  Averaging Eq(36) by means of the same procedure as above
calculate initially the wavelength of the plasma wave \ye obtain
which equals twice the distance between the two nearest

lo. (43

minimum and maximum points of the potentidl In k;l 2V2B [1+10(2y%—(1+14)y—1)dy
units it has the following form: (G)= x f > (44
1 NA+1lp-y)(y - 1)
v di
A=2 doldr (38) At last, the average momentum density is equal to
y_ dyldn
=(0N=(B Yy—1
wheredy/d 7 is determined by Eq(26), while ¢, and ¢ _ (@=(Qu=(F""(y=1))
are the roots of the right-hand side of the equatiafid» 2V2 (1+lp  (2y?’—y—1)ydy
0, =— f - . (45
M (L+He-y)(yP - )
Ye=141=B\(1+15)°—1. (39

Thus, the average energy density of the plasma wave is
Introducing a new integration variable=y, we can re- €qual to the valug,, which appears as an integration con-

write Eg. (39) in the form stant in Eq.(24). We see also that the average energy density
and the average momentum density flow are connected with
1+1, y dy electrons, while the average momentum density appears
A=2V28 ) . (400  mainly due to ions.
1 N1+ le—y)(y*-1) Keeping in mind that the temporal and the spatial depen-

Note, this integral as well as other integrals below may b%drzqurﬁhoef ?gr?sue?\rjgtligi ?:\,I\g)e g?%(()g:kp(vpt—z), we find

reduced to elliptic integralgL8].

It can be shown that the average energy density flBg BU—N=C, (46)
(35)], the electron part of the average momentum density in ’
Eqg. (36), and the average current density are equal to zero. BQO-G=C, (47)

To prove this statement, let us consider at first the energy
density flow(35). The expression foN can be written in the \yhereC, andC, are integration constants. Averaging these

form equations and taking into account ti{at)=0, we obtain
_d dy_1/dy)® B(U)=Cy, )
N—E{(l-l-h))ﬁ—g(ﬁ) . (41 1
B(Q)—(G)=C,. (49

The integration of Eq(41) over the plasma wavelength in-

volves the quantityy/d»n taken at the extremum poin{s. Substituting{U), (Q), and(G) from Eqgs.(43)—(45) we find
where it equals zero. We obtain the evident conclusion that ithe relations between the integration constants,

the cold plasma model the average energy density flow of the

nonlinear plasma wave is equal to zero. According to Egs. C,=8ly, (50
(36) and(35) the electron part of the momentum den<@y
is equal toN and hence, the average electron momentum Co=lyg. (51
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It should be emphasized tha®) and(G) in general case v is the group velocity of the laser pulgthe so-called
are rather complicated functions kf, but they always sat- quasistatic approximatiof20]). In contrast with the analysis
isfy Eq. (49). In the limit 1,<1, Egs.(44) and (45) take the  of Ref. [8], we do not neglect the difference between the

forms group velocity of the pulse and the speed of lighThus we
can express all hydrodynamic variables as functions of the
3 otential i,
BQ)=51, (57 ~Poena
2 2 2 -2 2 1/
y=vpl = B’ — v, 2(1+]al?12)}'7], (58)
1
(G)=5lo. (53 Ne _ BYlY—BLY — v, (1+(a]%2)}) 59
Neo (= “(L+[a?2}2
It is evident that these equations are in full agreement with
Eq' (49) Pe _ .2 2 -2 2 1/
In this analysis, we assumed that the nonlinear plasma o= YelBY—{y = v “(1+[al*/2)} 2, (60)

wave had some given amplitude determined by the constant

I, and were not interested in the process of the wave excitayhere Yp= 11— 52 and=vg/c. In the case we are con-
tion. Now, on the basis of the general relations obtainedidering now, the phase velocity of the plasma wayeis
above we consider the conservation laws for the plasmaqual to the group velocity of the laser pulse The expres-
waves that are generated by two different localized sourcegions(21) and(22) for n; andv; remain valid in the problem
propagating into plasmas. under consideration.
Substitutingn, andn; into the Poisson equation we obtain
Ill. GENERATION OF PLASMA WAVES BY SHORT

LASER PULSES a2y Byily—B{w*— v, 2(1+]al?2)}]
d,.2 =2
The low-frequency(as compared to the laser frequency dz {w- Vp (1+]al?2)}
plasma response to the laser pulse action may be described
by means of the set of hydrodynamic equatidese, for _ L (62)
example, Ref[19]) consisting of Egs(1), (3)-(5), and the VB%—2e(p—1)

modified equation of the electron fluid motion
The ultrarelativistic limit 3=1) of this equation was stud-

Pe  IPe mc* dlal? ied in Ref.[8]. For the case of immobile ions&0), Eq.
ot TUegy € T4y oz (54) (61) was investigated in Ref$21,27. (See also Ref[23]
where the Poisson equation is considered including both
wherev,=p./(my), andy is defined as relativistic ion effects and high-frequency ion motipn.

Keeping in mind that the laser pulse is absentyat

pe|? . lal’]* —o, we integrate Eq(61) for a given|a]? and obtain
y=|1+|— — (55
mc 2 1y’
SEYY L2 _ 22 2
Herea is the slowly varying amplitudéhe envelopgof the 2<d77> =~ BrlBY Vi Yp (1+[al*72)]
dimensionless high-frequency electron momentum in the la- P
ser field. The high-frequency ion motion is entirely ne- P B 2e(u=1)
From the set of Eqg1), (3)—(5), and(54), the energy and
momentum conservation laws follol] N B (7 d»'d|al?/dy’ 62
4 . [2_.-2 215
JW 9S  mcn, dlal? (56 VP =y, (1+1al’r2)

ot 9z 4y ot An analytical solution may be found for the square shaped
laser pulse witha|?= const between the leading and trailing
edges of pulse. For such a pulse form in the immobile ion
approximation, the generation of plasma waves and wave-
breaking phenomenon were investigated in Rgf4,27. In
whereW, S P, and T are defined by Eqs(9)—(12). The particular, in Ref[22] it was shown that the wave-breaking
right-hand side terms in the conservation laws determine thelectric field amplitude of the plasma wave in the pulse re-
energy and the momentum that the laser pulse loses to gegion is higher than that behind the pulse in the wake-field
erate the low-frequency plasma respofg region.

If the laser pulse is short enough that its energy and shape In the limit e<1 behind the laser pulse;—), Eq.(62)
change insignificantly over the time of its duration, we cantakes a form identical to Eq26), where instead of the pa-
consider all the variables, characterizing the plasma rerameterl,, determining the amplitude of the plasma wave,
sponse, as functions of the varialde-vt—z only, where  stands the quantity

aP . dT  mcng dlal?
a9z Ay dz°

(57)

036401-5



L. M. GORBUNOV, P. MORA, AND R. R. RAMAZASHVILI PHYSICAL REVIEW E65 036401

B (=  dn'dla¥dy’ d2y LBY— (=7, 2"
4 =Ny+ — , 6
P4 —o\YP =y, X(1+]al?2)’ 63 dn2 T Yp (P, )T (67)

1_where Np=n,/Ng<1 and B=v,/c are the dimensionless
gensity and the velocity of the bunci,= y1— B2. The first
Iintegral of this equation is

that for once is determined by the intensity and the form o
the laser pulse as well as by the potential variation inside th
pulse. In accordance with the determinat{d) the quantity

(63) characterizes the average energy density of the plasma 1/dy\? . dos
wake wave. =) = ' "

As we have reduced the problem to Eg6), all the re-
sults obtained in the preceding section concerning the plasma 2 2 212
wave properties remain valid for the laser wake field. ~ YRl BTy )T (68)

Particularly, integrating conservation 1aws6) and (57)  ggphing the bunch4— =), Eq.(68) takes a form identical to
in the quasistatic approximation and averaging results, W%q (26) wherel , is reple{ced by
obtain in the wake-field region the equations analogous to 0 b
Egs.(48) and(49) whereC, andC, are equal tggl, andl o dy
respectively. These quantities describe the energy and the Ib=f dﬂ'Nb(ﬂ')F- (69
momentum transfer from the laser pulse to the plasma. Note w K
that in a strong nonlinear plasma wave each term of th
left-hand side of Eq(49) is a complicated function df;, but
the difference of their values always equbls

As in the preceding sectioh, cannot exceed the thresh-
old value given by the right-hand side of E@®9), above
which the wave breaking takes place. In the square shap
pulse region this phenomenon was investigated in Rf.

The magnitude of,, depends on the electron bunch form and
on the variation of the potentiaf inside the bunch.

So, the problem is reduced again to E®6). Hence, all
the results obtained in the previous sections concerning the
éadasma wave properties remain valid. The value péleter-
mines all characteristics of the wave generated in the wake
region. The maximum value df is determined by the wave-

breaking threshold and is given by the right-hand side of Eq.
IV. GENERATION OF PLASMA WAVES (29).

BY ELECTRON BUNCHES

In this section we consider plasma waves generated by an V. CONCLUSIONS
electron bunch whose density is much smaller than that in
t_he backgrour_1d pla§ma. To investigate the vyake-ﬁeld 9enerdlasma both an average momentum and an average energy.
tion by one-dimensional electron bunches, it is necessary 9, average energy is contained mainly in the plasma elec-
YPons oscillating in the self-consistent electric field. The av-
erage momentum, in the cold plasma approximation, appears

in the form of a steady currentless plasma drift as a whole.
E=4w(enb+ene+ en), (64) Owing to the larger mass, ion; are the main carriers of the
0z average momentum of a nonlinear plasma wave. In some
sense, this effect is similar to so-called acoustic wind, the
wheren,, is the electron bunch density, which is consideredsteady mass transport in a nonlinear sound wee=, for
as given and unchangeable. As for the other hydrodynamiexample, Ref[24]).

The nonlinear plasma wave excitation transfers into the

(see, for example, Ref6] and references thergin

guantities, they satisfy Eqg1)—(4). These equations to- This result may be extended to the case of a hot plasma.

gether with the Poisson equati¢®4) lead now to the con- Multiplying the electron and the ion continuity equations by
servation laws in the form the electron and ion charges, respectively, and summing the
obtained equations lead to the charge continuity equation.

IW S Integrating it over the plasma wavelength and keeping in

ot + 9z —evpNyE, (65) mind that in the initially neutral plasma the total charge over

the plasma wavelength is equal to zero, one can see that in an
initially currentless plasma the average current density also
P aT : -
—+ —=—en,E, (66) equals zero independently of the plasma temperature. This
ot Jz means that the absolute values of the average electron and
ion current densities are equal to each other. Since the aver-
wherev,, is the velocity of the electron bunch and S P, age electror(ion) momentum density differs from the aver-
and T are defined by Eqs(9)—(12). The right-hand side age electron(ion) current density by a multiplier propor-
terms of these equations determine, respectively, the amoutibnal to the electroriion) mass, it is evident that the average
of the work executed by the bunch over the plasma and thson momentum density is much larger than the average elec-
force acting on the plasma. In the quasistatic approximatiotron momentum density except in the ultrarelativistic case,
and upon conditione<1, the Poisson equation takes the when the effective electron and ion masses may be compa-
form rable. So, we may conclude that even in a hot plasmas the
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average momentum density of plasma waves is carried] (dy ) s oy )
mostly by ions. > (ﬁ) =lot+ 1=yl = B~ v, )"~ (llf 1)~
Note, the plasma drift occurs with respect to the coordi- (A1)

nate frame connected with the rest plasma in the absence of

the wave. In the case of a plasma wave excited by means gthen the dimensionless plasma wavelen@®) is given by
localized sourceglaser pulses or electron buncheke ref-

erence frame is connected with the immobile plasma in front —fﬁ/’*d
of the source. The drift velocity depends on the ratitm; - y 4
and the plasma wave amplitude. In general case the latter

dependence is rather complicatgske Eq.(45)] but it be- 5
comes quite simple in the limit of small plasma wave ampli- - 2_’32(‘/’_ D
tude whenly<1 (|e|Epa<mawp). In such a limit we find

from Egs.(28), (32), and (52) the plasma drift velocityu where the prime in the left-hand side of the equation indi-

lot+ 1= ¥3l = B2 = v, 5

~12
: (A2)

=(v;) as cates that Eq(A2) contains the ion term unlike Ed40),
where this term is omitted. The minimug{_ and maximum
u 3Zm/(|e|Ema? . of the potentialys are determined from the equation
c 4m mcw? (70

lo+ 1= ypl vl = B2 =y, )2+ 2B2<¢+—1>2

The appearance of the plasma drift as well as the other (A3)
nonlinear effects due to the ion mobility are responsible for
an additional nonlinear frequency shift of a plasma wavelntroducing in Eq.(A2) a new variable of integrationx
This problem was investigated in R¢B] for the case of =92[y—p(y?—y,%)"?, we rewrite the formula for the
plasma waves with nonrelativistic phase velocitigs<(1). plasma wavelength in the form’ =\, —\_, where
In the Appendix we calculate the nonlinear plasma wave fre-
guency shift including the ion effects in the linear approxi- ff g

X

mation for an arbitrary wave phase velocity. It has the form A==

(XL —Xx)+ 2,82{(X+

0~ w, 3| E 15 | (1+ 2
=35 A€
wp g0 2 160t 2

—1/2
. (7 iBin—l)z—(x—1rﬂ¢x2—1)2}} . (A9

Taking into consideration the condition<1, we find from
Eq. (A3) for the upper limits of integration in EqA4)

where w, is the modified plasma frequency. Here the first

term arises from the relativistic electron mass variafiéh

the second term is a consequence of the reduced mass €

mm /(m+m,) characterizing the frequency of the linear os- Xe=1+1gp— F('oiﬁ\/mo"‘ 15)%. (AS)

cillations of plasma with mobile ions; the third term results

from the nonlinearity of the plasma wave that is connected ysing the same conditioa<1, we present Eq(A4) in

with the ion mobility. To conform our result to RgB] itis  the form

necessary to repladg by d032/4, whered, is the amplitude

of the plasma wave in Ref9], and consider the limijB o Bx 1

=0. For a relativistic plasma wave with a phase velocity of \/_f dx| 1+ =1

the order of the speed of lightB&=1) the dimensionless x*=1

nonlinear ion correction to the plasma frequency is

(45/16)€el . X
To evaluate the plasma drift velocity, we consider the

plasma wave with the amplitudg,,,=2x10° V/cm propa-

gating in a hydrogen plasma with a density!416m2 (I, —(x=1xByx*~1)%}|.

=1/2). From Eq.(70) we find thatu=1.2x10" cm/s. In

PrinCiple, this VelOCity may be detected by means of scatter- In genera| case the integra|s in EA_G) are quite Comp”-

ing of a probe laser beam. cated functions of,. To simplify our calculations, suppose

thatl,<<1. Then from Eq{(A5) we obtain

X4+ —X

1- 25 (X {(x+ 1+ Bx5—1)?

(A6)

APPENDIX

V2e
_ My
In what follows, we investigate the influence of the ion =1+lo(1+e)* B 15" (A7)

mass finiteness on the frequency of nonlinear plasma oscil-

lations. In the linear approximation with respect to the small Keeping in mind that in the case of sma}l the integra-
parametek determined by the electron to ion mass ratio wetion region in Eq.(A6) is localized near the unity, we find
find from Eq.(24) from Eq. (A6) after some routine calculations
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