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Vortex filament motion under the localized induction approximation
in terms of Weierstrass elliptic functions

H. J. Shin*
Department of Physics and Research Institute of Basic Science, Kyung Hee University, Seoul 130-701, Korea
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We study quasiperiodic solutions of the localized induction approximation in terms of the elliptic functions
of Weierstrass. They describe the Kida-class motion of a thin vortex filament in an incompressible inviscid
fluid. Our solution includes various filament shapes such as the vortex ring, the helicoidal filament, the plane
sinusoidal filament, and the Hasimoto type-1 soliton filament.
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I. INTRODUCTION

The dynamics of a thin vortex filament in an incompre
ible inviscid fluid was first studied by Da Rios@1# and more
recently by Hama@2#. They derived the so-called localize
induction approximation~LIA ! and used it to investigate th
motion of filaments of various shape. In particular, Hasim
@3# has proven the integrability of the LIA by identifying th
vortex equation with the nonlinear Schro¨dinger equation
~NSE!. He also obtained a localized twist wave solution
the LIA which corresponds to the one-soliton solution
NSE. This solution was named the ‘‘Hasimoto soliton.’’ S
the review by Ricca@4,5# for a detailed account of the histor
and development of the LIA and related ideas discusse
the present paper. Experimentally, Hopfingeret al. @6# ob-
served twisting distortions of a slender vortex tube in a
tating tank which resembled the Hasimoto soliton. In an
ditional experiment, these distortions were found to be sta
against a collision@7#. These observations motivated studi
on the N-soliton solutions of the LIA using the theory o
soliton surfaces@8# and the Hirota method@9#.

On the other hand, Kida@10# was able to obtain variou
vortex filaments which move steadily without deformati
using a simple but interesting ansatz. They are expresse
terms of elliptic integrals which correspond to the traveli
wave solution of the NSE. For some special values of par
eters, Kida’s solution reduces to the previously kno
shapes, for example, a circular ring, the Kelvin wave, a h
coidal filament, and the Hasimoto soliton. Unfortunately, t
case of theN-soliton solutions (N>2) was inaccessible by
this technique. In fact, the traveling wave solution, whi
corresponds to Kida’s solution of the LIA, is the simple
case of the so-called~quasi!periodic solutions of the NSE
@11#. However, the construction of general periodic solutio
of the LIA using the Hasimoto map and the periodic so
tions of the NSE is a highly nontrivial task and has not be
achieved yet. The application of the soliton surface theory
this problem can be an effective but also nontrivial task, a
only expressions describing localized excitations of the K
solution were obtained@12#.
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In this paper, we apply the ‘‘finite-band integratio
method’’ to find periodic solutions of the LIA. In mathemat
cal literature, the problem of finding the periodic solutions
integrable equations has been considered for a long tim
was solved first for the case of the Korteweg–de Vries eq
tion and was extended to the case of the sine-Gordon e
tion and the nonlinear Schro¨dinger equation later on@11#.
This method is based upon the theory of the eigenvalue p
lem of the one-dimensional Schro¨dinger equation with a pe
riodic potential. An important class of periodic potentia
consists of those which generate only a finite number of n
degenerate eigenvalues, and these are called finite band
tentials which give periodic solutions.

The following steps are known to be the simplest meth
for generating periodic solutions. We first express the in
grable equation as a compatibility condition of two line
systems. It is known that this condition has a natural geom
ric interpretation and is called a zero-curvature represe
tion. As we deal with the LIA directly rather than the NSE
we develop the zero-curvature formalism of the LIA which
explained in the Appendix. Then we introduce the ‘‘square
eigenfunctions, which are known to simplify many of th
computations. In the course of doing this, we obtain a sys
of partial differential equations on a set of auxiliary variabl
as well as those of the LIA, whose solution is connected w
Jacobi’s inversion problem@13#. Finally, these equations ar
solved using parameters that determine the periods and
plitudes of the solution and are called the main spectra.
explicit one-phase periodic solution is constructed using
Weierstrass elliptic functions. Various vortex filaments a
analyzed by reducing the solution to the special degene
limit.

The parameters of our solution are more explicit and e
to manipulate compared to Kida’s solution. The present
proach does not employ the ansatz of stationary filam
configurations. It also offers a formal method to find a mu
wider class of solutions of the LIA encompassing t
N-phase solutions. Explicit accomplishment of Jacobi’s pro
lem with the help of complex analysis on a Riemann surfa
would result in a solution expressed in closed form in ter
of the Riemannu functions. But there arises a technical d
ficulty in this program, which was called the ‘‘effectiviza
tion’’ problem in @15#. The problem is that the reality cond
tion of the solution should be satisfied, which imposes so
constraints on the auxiliary variables that appear in
©2002 The American Physical Society17-1
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theory. A simple technique was developed to overcome
difficulty. But this technique is still confined to the one-pha
solution of the problem having only four spectral paramete
This difficulty and the complexity in treating the Riemannu
functions limit the availability of explicit solutions in the
present paper. We plan to report the treatment of more g
eral solutions, using numerical methods at least, in a sepa
paper.

In Sec. II, we review the localized induction approxim
tion and introduce its Lax pair. The development of the ze
curvature formalism of the LIA in a suitable form for apply
ing to the finite band integration method is explained in
Appendix. Explicit construction of the one-phase period
solution is followed using a modified version of the fini
integration method in Sec. III. The resulting formulas i
volve Weierstrass’ elliptic functions. In Sec. IV, various vo
tex configurations from the periodic solutions are explain
in terms of functional relations of the Weierstrass functio
In particular, the reduction of the solution to typical vorte
motions is achieved. Section V contains a discussion.

II. LOCALIZED INDUCTION APPROXIMATION

Da Rios and lately Hama have shown that the nonrela
istic motion of a thin vortex filament of fluid mechanics
described by the so-called localized induction approxim
tion:

]tX
i5e i jk]sXj]s

2Xk, i 51,2,3, ~1!

where s is the arc length andt is the time. Here,
Xi(s,t), i 51,2,3 are the vortex coordinates which satis
the quadratic constraints:

~]sXi !251. ~2!

The localized induction approximation can be equally d
scribed in a matrix form, which is suitable for the dualizati
procedure with the nonlinear Schro¨dinger equation. Let us
define a matrixX by

X[(
i 51

3

Xis i , ~3!

wheres i are Pauli matrices. Then it is easy to verify that t
matrix X satisfies the following equation of motion:

]̄X5
1

2i
@]X,]2X#, ~4!

where][]/]z,]̄[]/] z̄,z[s,z̄[t. The constraint equation
~2! can also be rewritten withX as

Tr~]X!252. ~5!

First we notice that the equation of motion~4! can be rewrit-
ten as a zero-curvature condition

@]1 il]X,]̄22il2]X1 il]̄X#50, ~6!
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wherel is an arbitrary spectral parameter. In turn, this ze
curvature condition can be understood as the integrab
condition of the linear system,

~]1U !F50, ~ ]̄1V!F50, ~7!

where

U5 il]X[ ilS a3 a1

a2 2a3
D ,

V522il2]X1 il]̄X

[22il2S a3 a1

a2 2a3
D 1 ilS b3 b1

b2 2b3
D , ~8!

where a1* 5a2 , a3* 5a3 , b1* 5b2 , b3* 5b3. The equa-
tion of motion ~4! is rewritten as

2ib35a1]a22a2]a1 ,

2ib6562a3]a672a6]a3 , ~9!

while the constraint~5! becomesa3
21a1a251. We obtain

the linear equation~7! using the so-calledR transformation
@14#, which is explained in the Appendix. As we will see
the next section, this form is well-suited for the finite-ba
integration method.

III. FINITE-BAND INTEGRATION METHOD

We start with the linear equation~7!. Let the systems~7!
have two basic solutions, (c1 ,c2) and (f1 ,f2), which are
used to build a vector such that

f 52~ i /2!~c1f21c2f1!, g5c1f1 , h52c2f2 .
~10!

Using this definition and the linear equation~7!, it can be
explicitly checked thatP(l)[ f 22gh is independent ofz
and z̄ and is only the function ofl. The N-phase periodic
solution is obtained by specially taking the form of

P~l!5 f 22gh5 )
i 51

2N12

~l2l i !, ~11!

wherel i are zeros of the polynomial which characterize t
periodic solution of the ‘‘Bloch wave’’ problem and ar
called the main spectra. The zerosl i have to consist of com-
plex conjugate pairs l j5lR j1 il I j , l j 1N115lR j
2 il I j , j 51, N11 such that the obtained solutionsX i ,i
51,3 are real. It can be seen that this form is consistent w
the following form of f , g, andh,

f 5a3lN111(
i 50

N

l i f i ,
7-2
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VORTEX FILAMENT MOTION UNDER THE LOCALIZED . . . PHYSICAL REVIEW E65 036317
g52 ila1)
i 51

N

~l2m i !, ~12!

h52 ila2)
i 51

N

~l2m i* !,

wherem i are functions ofz,z̄. From the definition off , g,
andh in Eq. ~10!, we can obtain the following equations:

] f 52la2g1la1h, ]g52la1 f 22ila3g,

]̄ f 52l2a2g22l2a1h2lb2g1lb1h, ~13!

]̄g524l2a1 f 14il2a3g12lb1 f 22ilb3g.

Equations forh are similarly given.
If we evaluate Eq.~11! at mm , which is one of the zeros

of g, then we arrive at the identity

f ~z,z̄;mm!5smAP~mm!, ~14!

where sm indicates the sheet of the Riemann surface
which the complexmm lies. Using Eqs.~12! and~13!, we can
evaluate]g at one of the zeros ofg to find

]mm522ismAP~mm!/ )
iÞm

~mm2m i !, m51, . . . ,N.

~15!

If we look at thelN11 term for ] f in Eq. ~13!, we find

]a352 ia1a2(
i

~m i2m i* !52 i ~12a3
2!(

i
~m i2m i* !.

~16!

Now theO(l2N11) term of P(l) gives

2a3f N2a1a2( ~m i1m i* !52( l i ~17!

and theO(lN11) term of the second of Eqs.~13! gives

]a152ia1 f N12ia3a1( m i . ~18!

Using these results, we obtain

b152a3a1 f N12a3
2a1( m i1a1

2 a2( ~m i2m i* !

5S 2( l i12( m i Da1 . ~19!

Applying the same approach to]̄g and ]̄ f in Eqs. ~13! and
using the results in Eq.~19!, we can show
03631
n

]̄mm52i S 2mm2
b1

a1
DsmAP~mm!/ )

iÞm
~mm2m i !

52i S ( l i22( m i12mmD
3smAP~mm!/ )

iÞm
~mm2m i !, ~20!

]̄a3522ia1a2(
i . j

~m im j2m i* m j* !

2 ia1b2( m i1 ia2b1( m i*

5 ia1a2H 22(
i . j

~m im j2m i* m j* !

1( l i( ~m i2m i* !J a1a2 . ~21!

The remaining problem to solve Eqs.~15!–~21! is beautifully
accomplished by using the solution of what is called Jaco
inversion problem. We will not go into details here b
sketch the broad outlines and occurring difficulties of t
procedure. The following steps are needed to solve the ab
problem. First, take the parametersl i , i 51, . . . ,2N12 as
known. Second, choose initial conditionsm i(0,0) and
a3(0,0) such that they satisfy Eq.~11!. It is at this point that
a technical difficulty arises. An effective method to avoid th
problem was introduced by Kamchatnov@15# to obtain the
one-phase solution. We adopt this method in the follow
section to obtain an explicit periodic solution of the strin
configuration.

IV. ONE-PHASE PERIODIC SOLUTION

As explained in the previous section, in the sine-Gord
and NLS equations, the additional problem of extraction
the ‘‘real’’ solutions arises. The periodic solutions obtain
by this method have a rather complicated form, which p
vents their application to real physical situations. Kamch
nov devised a simple modification of the finite-band integ
tion method which solves the so-called ‘‘effectivization
problem in the simplest and the important one-phase cas
this section, we follow his method to find the periodic sol
tions of the localized induction approximation. The on
phase periodic solution is obtained by taking the simpl
nontrivial N51 case in Eqs.~11! and ~12!, which gives

P~l!5)
i 51

4

~l2l i !, f 5a3l21 f 1l1 f 0 ,

g52 ila1~l2m!, h52 ila2~l2m* !. ~22!

Equation~17! then becomes
7-3
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2a3f 12a1a2~m1m* !52( l i . ~23!

Here we define

V[2( l i . ~24!

The other equations from Eq.~13! for the N51 case can be
expressed as

]a352 ia1a2~m2m* !, ] f 15] f 050,

]m522i ~a3m21 f 1m1 f 0!,

~25!

]̄a35V]a3 , ]̄ f 15 ]̄ f 050, ]̄m5V]m,

]a152ia1 f 112ia3a1m, ]̄a1524i f 0a11V]a1 .

Note thata3 and m are functions ofW[z1Vz̄ only and
f 0 , f 1 are constants.

A. µ, f 1 , f 0 in terms of a3 ,si

To prevent the ‘‘effectivization’’ problem, we start with
Eq. ~11! or Eq. ~22! to solvem, f 1, and f 0. First, we intro-
duce constants of motionsi , i 51,4, which are defined as

P~l!5 f 22gh5l42s1l31s2l22s3l1s4 . ~26!

Insertingf , g, andh in Eq. ~22! into Eq.~26!, we can obtain

s1[( l i522 f 1a31X,

s2[(
i , j

l il j52 f 0a31 f 1
21Y, ~27!

s3[ (
i , j ,k

l il jlk522 f 1f 0 , s4[) l i5 f 0
2 ,

where X[a1a2(m1m* )5(12a3
2)(m1m* ) and Y

[a1a2mm* . Now solving for f 0 , f 1 , m, andm* in Eq.
~27!, we obtain1

f 15
s3

2As4

, f 052As4,

1This is one particular solution, but other solutions give ess
tially the same result. To obtain this solution, we useMATHEMATICA

for symbolic manipulation. In addition,MATHEMATICA was used to
check various formulas appearing in this paper. For example, it
used to check that Eqs.~32! and~48! satisfy the equation of motion
~4!.
03631
m,m* 5
1

2~12a3
2!s4

~As4s3a31s1s47As4R!, ~28!

where

R5~x1l2l31l1l4!~x1l1l31l2l4!

3~x1l1l21l3l4!,

x52As4a3 . ~29!

Note that this solution is consistent with Eq.~25!.

B. Derivation of X3

Using these results, Eq.~25! for a3 becomes

da3

dW
5

i

As4

AR. ~30!

This equation can be integrated in terms of Weierstra
P(u,g2 ,g3) function. As far as Weierstrass elliptic function
are involved, we employ the terminology and notation
Ref. @16# without further explanations. Explicitly

a35
1

2As4
S 2

s2

3
2P~W1w3 ,g2 ,g3! D , ~31!

where w3 is an integration constant andg25 4
3 s2

224s1s3

116s4 ,g35 8
27 s2

32 4
3 s1s2s314s3

22 32
3 s2s414s1

2s4. The inte-
gration constantw3 is determined by the initial condition
which we shall choose as follows:P(w3)5e3 at W50,
wheree3 is the smallest root of the equation 4z32g2z2g3
50. @Two other roots are denoted bye1 and e2 with e1
.e2.e3 . w3 as well asw1 are called the half-period of the
P function. They satisfy P(w1)5e1 ,P(w2)5e2 ,e11e2
1e35w11w21w350.# This condition guaranteesua3u<1.
Now using a35]X3 and b35 ]̄X352s3 /As41V]X3, we
can obtain

X35E a3dW2s3 /As4z̄

5
1

2As4
H z~W1w3 ,g2 ,g3!2

s2

3
W22s3z̄2h3J ,

~32!

wherez(u,g2 ,g3) is the Weierstrass’ zeta function and th
integration constanth3 is taken asz(w3 ,g2 ,g3). @We will
use the notationh i5z(wi ,g2 ,g3),i 51,3 in the following.#

C. Derivation of a¿

Now we try to obtain the solutionX1 of the localized
induction approximation. Using Eq.~28!, we can solve the
last two equations of Eqs.~25! for a1 , which becomes

a15exp~4As4i z̄!ã1~W!, ~33!

-

as
7-4
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whereã1 satisfies the following differential equation:

dã1

dW
52i ã1~ f 11a3m!. ~34!

The following identity, which can be obtained using Eq
~28! and ~30!, is required to integrateã1 :

2i ~ f 11a3m!5
i

~12a3
2!As4

~s31s1As4a3!

1
1

2

d~12a3
2!

~12a3
2!dW

5 iM 1

1

11a3
1 iM 2

1

12a3
1

1

2

d~12a3
2!

~12a3
2!dW

,

~35!

where

M1 ,M25
s3

2As4

7
s1

2
. ~36!

Now using Eqs.~31!,~34!,~35! and the following identities of
the Weierstrass’ elliptic function:

E dW

P~W!2P~k!
5

1

P8~k!
H ln

s~k2W!

s~k1W!
12z~k!WJ

~37!

and

P~W!2P~k!52
s~W1k!s~W2k!

s2~W!s2~k!
, ~38!

we can obtain

ã15
i

2As4

s~W1w31k1!s~W1w31k2!

s~k1!s~k2!s2~W1w3!

3exp$2z~k1!W2z~k2!W1c%, ~39!

where two constantsk1 ,k2 are defined by the following two
relations:

P~k1!,P~k2!52s2/362As4, ~40!
03631
.

P8~k1!,P8~k2!522As4

da3

dW
ua3571522iARua3571

522i ~s1As47s3!564As4iM 1,2. ~41!

We fix the integration constantc by requiring a3
21ua1u2

51. Especially atW50, we find

a3~0!5
1

2As4
S 2

s2

3
2e3D

5
1

2As4
S P~k1!1P~k2!

2
2e3D ,

ã1~0!5
i

2As4

s~k11w3!s~k21w3!

s~k1!s~k2!s2~w3!
exp~c!

5
21

2As4

A@P~k1!2e3#@2P~k2!1e3#

3exp$z~w3!~k11k2!1c%, ~42!

where we have used the identity

P~u!2e35
s2~u1w3!

s2~u!s2~w3!
exp$22z~w3!u%. ~43!

Using these relations together with Eq.~40!, we can obtain
c52h3(k11k2).

D. Derivation of X¿

We now deriveX1 . Using ]X15a1 in Eq. ~8!, we ob-
tain

X15E a1dz1M ~ z̄!5exp~4As4i z̄!E ã1dW1M ~ z̄!,

~44!

whereM ( z̄) is a function to be determined. To evaluate t
integration explicitly and to determineM ( z̄), we substitute
Eq. ~44! into the following equation:

]̄X15b15~2s112m!a1 . ~45!

Then a little algebra with Eqs.~28!, ~30!, ~31!, ~33!, ~39!,
~40!, and~41! givesM ( z̄)50 and
4As4i E ã1dW5
1

a1a2
S s3

As4

a31s12AR

s4
D ã15

i

2 S P8~W1w3!2P8~k1!

P~W1w3!2P~k1!
2

P8~W1w3!2P8~k2!

P~W1w3!2P~k2! D ã1

52
1

2As4

$z~W1w31k1!2z~W1w31k2!2z~k1!1z~k2!%
s~W1w31k1!s~W1w31k2!

s~k1!s~k2!s2~W1w3!

3exp$2z~k1!W2z~k2!W2h3~k11k2!%, ~46!

where we use the following relation in the last part of the derivation:
7-5
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P8~W!2P8~k!

P~W!2P~k!
52z~W1k!22z~W!22z~k!. ~47!

Thus collecting all these results, we finally obtain

X15
i

8s4
$z~W1w31k1!2z~W1w31k2!2z~k1!1z~k2!%

s~W1w31k1!s~W1w31k2!

s~k1!s~k2!s2~W1w3!
exp$2z~k1!W2z~k2!W

2h3~k11k2!14As4i z̄%. ~48!
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V. SPECIAL CASES

In this section, we study some special cases of the
tained solution by taking the degenerate limit of thel i val-
ues. It contains the straight line, the Kelvin wave, and
Hasimoto soliton solution, which were obtained previous
as well as such new configurations as the plane curve,
closed ring, and the point particle.

A. Straight line

The simplest solution that corresponds to the straight
is obtained by takingl15l35a, l25l45g, or more sim-
ply l15l25l35l45a ~real!. In this case,g25g35e3
50. The Weierstrass functions in this limit are given
P(u,0,0)51/u2, z(u,0,0)51/u, s(u,0,0)5u, andw35k1
5`. Using these relations, we can easily obtainX35
2z,X15X12 iX250. The rotational and translational sym
metry of the vortex equation can give a more general c
figuration of the straight line@20#.

B. Kelvin wave or smoke ring

The next example, known as the Kelvin wave, cor
sponds to taking l15l35a, l25a1 ig, and l45a
2 ig (0,a,1, 0,g). In this caseg25 4

3 g4,g35 8
27 g6. As

D[g2
3227g3

250, the Weierstrass functions are given in
simple form,

P~u!52g2/31g2 csc2~gu!,

z~u!5g2u/31g cot~gu!, ~49!

s~u!5exp~g2u2/6!sin~gu!/g,

ande352g2/3, w35 i`,

singk1 ,singk25A g2

62aAa21g222a2
, ~50!

cotgk1 ,cotgk252
i

g
~Aa21g27a!. ~51!

Now, a straightforward calculation gives
03631
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he
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X352
1

Aa21g2
~az12g2z̄!,

X15 i
g

2~a21g2!
exp@2iAa21g2~z22a z̄!#. ~52!

Using the fact thatX15X12 iX2[ iC exp(iD) , we can ob-
tain X15(X11X1* )/252C sinD and X25 i (X12X1* )/25
2C cosD, which describes a smoke ring. Whena50, it
describes a circular ring having a constant radius and tra
ing along thez axis. WhenaÞ0, it describes a helicoida
filament with the radiusg/(2a212g2) and the pitch2ap.
The helix rotates with the angular velocity24aAa21g2

around thez axis and moves with a speed22g2/Aa21g2 in
the z direction. This solution is first discussed in@21#.

C. Hasimoto one-soliton solution

To obtain the one-soliton solution from our periodic sol
tion, we take l15l25a1 ig, l35l45a2 ig in Eqs.
~32! and ~48!. In this case,g25 64

3 g4,g352 512
27 g6, and w3

5 ip/(4g), e35P(w3)528g2/3, h35z(w3)52 igp/3,
and s(w3)5 i exp(p2/24)/(2g). The Weierstrass function
are given by

P~W1w3!528g2/314g2 tanh2~2gW!,

z~W1w3!524g2W/312g tanh~2gW!1h3 , ~53!

s~W1w3!5exp~22g2W2/31h3W!

3cosh~2gW!s~w3!,

and k15`, sinh 2gk25ig/Aa21g2, coth 2gk252ia/g,
andh352 igp/3,s(w3)5 i exp(p2/24)/(2g). It then gives

X352z1
g

a21g2 tanh$2g~z24a z̄!% ~54!

and

X152
ig

a21g2 sech~2gW!exp$2iaz24i ~a22g2!z̄%.

~55!
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FIG. 1. A typical soliton vor-
tex filament drawn with~a! 225
,s,20 at t50 and ~b! 210
,s,40 att510. The parameters
of the vortex filament area
50.2,g50.1.
ith

er

ing
l-

bed

a

This solution can be compared with the known form in@10#
by takingl15l25l3* 5l4* →(CKida1IAaKida)/4. In Fig. 1,
we show one example of the Hasimoto vortex filament w
a50.2,g50.1.

D. Rigid vortex filament

When we take l15l3* 5a1 ig1 ,l25l4* 52a1 ig2,

then (l i50 andW5(z2(l i z̄) becomesz. As we can see
in the following, it gives a configuration of typeX1
5a(s)cos(bt), X25a(s)sin(bt), andX35c(s)1dt. Thus it
describes a rigid filament which rotates around thez axis
with constant angular velocity@54A(a21g1

2)(a21g2
2)#

and moves along thez axis with constant velocity@5

22a(g2
22g1

2)/A(a21g1
2)(a21g2

2)#. This configuration
might be interesting as it can be easily observed in exp
ments.

In this case,

g25 4
3 $16a418~g1

21g2
2!a21g1

41g2
4114g1

2g2
2%,

g35 8
27 $64a6148~g1

21g2
2!a4

112~g1
41g2

4210g1
2g2

2!a21g1
61g2

6233g1
2g2

4

233g1
4g2

2% ~56!

and

e15 2
3 ~4a21g1

21g2
2!,

e25 1
3 ~24a22g1

22g2
216g1g2!, ~57!

e35 2
3 ~24a22g1

22g2
226g1g2!.

Explicitly, the vortex filament is described by
03631
i-

X352
g1

21g2
222a2

6AH
z1

1

2AH
$z~z1w3 ,g2 ,g3!2h3%

2
2a~g2

22g1
2!

AH
z̄,

X15
i

8H
$z~z1w31k1!2z~z1w31k2!

2z~k1!1z~k2!%

3
s~z1w31k1!s~z1w31k2!

s~k1!s~k2!s2~z1w3!

3exp$z~k1!z1z~k2!z14AHiz̄2h3~k11k2!%,

~58!

whereH5(a21g1
2)(a21g2

2).

E. Closed ring

The characteristics of closed rings can be studied us
the following quasiperiodicity properties of Weierstrass’ e
liptic functions:

z~u12wi !5z~u!12h i ,

s~u12wi !52exp$2h i~u1wi !%s~u!. ~59!

As w15K„A(e22e3)/(e12e3)…/Ae12e3,w3

5 iK „A(e12e2)/(e12e3)…/Ae12e3, w1 is real whilew3 is
pure imaginary. Thus physical characteristics are descri
by the real periodDW5Ds52w1. For example,X1 obtains
an additional factor,

exp$2h1~k11k2!22z~k1!w122z~k2!w1% ~60!

after a periodDW52w1. Thus a necessary condition for
closed ring, i.e.,X1(s5mDs)5X1(s50), is

h1~k11k2!2w1$z~k1!1z~k2!%5 i
n

m
p, ~61!
7-7
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FIG. 2. A typical closed ring
plotted for 25,s,5 with pa-
rametersl150.012610.8i , l25
21.69210.5i at ~a! t50, ~b! t
50.15, ~c! t50.3, and ~d! t
50.484~time period!.
es

th

e

s
a

er
wherem,n are arbitrary integers. Another condition com
from the closedness of thez coordinate, i.e.,X3(s5mDs)
5X3(s50), which is

2
s2

3As4

w11
1

As4

h150, ~62!

i.e., s2w153h1.
The quasiperiodic property of the closed ring along

time is the following. During a time periodDt522w1 /s1,
the ring returns to its original shape but rotates around thz
axis by an angle

2n

m
p14As4Dt, ~63!

and moves a distance
03631
e

2
s3

As4

Dt5
2s3w1

As4s1

~64!

along thez axis. The two conditions~61! and ~62! can be
solved numerically using a software package such asMATH-

EMATICA. For example,l15l3* 50.012610.8i , l25l4* 5
21.69210.5i was found to be the solution of the condition
for a choicen52, m55. Figure 2 shows the motion of
closed ring att50, 0.15, 0.3, and 0.484 (5Dt, time pe-
riod!. During a time period Dt, the ring rotates
22.7336 rad and advances20.716 along thez axis. Thes
period isDs521.626 in this configuration.

F. Plane curve

The Weierstrasss function appearing in theX1 solution
in Eq. ~48! can be reduced to Jacobi’s elliptic functions und
a certain limit. For this, we first notice that
s~W1w31k1!s~W1w31k2!

s~W1w3!2 5expS h1

2w1
$k1

21k2
212~k11k2!~W1w3!% D

3
H„Ae12e3~W1w31k1!…H„Ae12e3~W1w31k2!…

H„Ae12e3~W1w3!…2
, ~65!
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FIG. 3. Typical plane curves
drawn with p/3,t,2p/3 and
27,s,7. The parameters of the
curves arer 5

1
2 and ~a! k50.1,

~b! k50.85.
r

e

where H(u)[u1„(p/2K)u…. As snu5(1/Ak)u1

(pu/2K)/u4(pu/2K), dnu5Ak8u3(pu/2K)/u4(pu/2K),
and u1„u1(p/2)…5u2(u), u1„u1(pt/2)…5 iq21/4e2 iu

u4(u), it is required (p/2K)Ae12e3k1,2→p/2, pt/2 to
achieve our goal. In other words,k1,2→w1,3. Here we study
e
te

e

m

03631
the casek1→w1 ,k2→w3. The other case gives a simila
result. Then P(k1)52As42s2/35P(w1)5e15l1l3
1l2l42s2/3 and P(k2)522As42s2/35P(w3)5e3
5l1l21l3l42s2/3. To satisfy this condition, we choos
l15l3* 5reiu, l25l4* 52re2 iu. With this choice, the ex-
pression in Eq.~65! becomes
s~W1w31k1!s~W1w31k2!

s~W1w3!2 5expS h1

2w1
~w1

21w3
222w2w322w2W! Dq23/4

3expS 2 i
p

2w1
WDA k

k8
sn~Ae12e3W!dn~Ae12e3W!. ~66!
ge-
la-
Now using the Legendre relationh1w252 ip/21h2w1 and
k5Ae22e3 /e12e35sinu,k85cosu,q5exp(piw3 /w1), we
can obtain

X1522 exp~4ir 2z̄!E sinu sn~2rW!dn~2rW!dW

5exp~4ir 2z̄!sinu cn~2rW!/r ,

X35E @2112 dn~2rW!2#dW

52W1E~2rWuk!/r , ~67!

with the incomplete elliptic integral of the second kindE.
Note thatW5z5s in this case. This formula shows that th
curve lies on a plane at a fixed time and this plane rota
around thez axis with the angular velocity 4r 2. In Fig. 3, we
show examples of the plane curve withr 5 1

2 and ~a! k
50.1, ~b! k50.85. The curves make surfaces with the tim
p/3, z̄5t,2p/3.

G. Point particle

The vortex filament coalesces into a point under the li
l i→`. To describe this limit, we introduceD→` such that
s

it

l i5Dl̃ i , s5s̃/D2, t5 t̃/D2, for some finite l̃ i ,s̃,t̃.

Then it is easy to find thatg25D4g̃2 , g35D6g̃3 , ei

5D2ẽi , where the notation should be obvious. The homo
neity relations of the Weierstrass functions give useful re
tions, wi5w̃i /D, k i5k̃ i /D, h i5Dh̃ i . We can check these
relations as follows:

ei5P~w̃i /D,D4g̃2 ,D6g̃3!5D2P~w̃i ,g̃2 ,g̃3!5D2ẽi ,

h i5z~w̃i /D,D4g̃2 ,D6g̃3!5Dz~w̃i ,g̃2 ,g̃3!5Dh̃ i .
~68!

Using these relations, we can obtain

X35
1

DH s̃2s̃1

6As̃4

t̃2
1

2As̃4

z~2 s̃1t̃1w̃3 ,g̃2 ,g̃3!

2
s̃3

As̃4

t̃2
h̃3

2As̃4
J ,
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FIG. 4. ~a! A typical open vor-
tex filament at ~a! t50 with
230,s,30 and~b! t50.5 with
230,s,30. The parameters o
the filament arel150.810.7i ,
l250.310.8i .
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X15
i

8s̃4D
$z~2 s̃1t̃1w̃31k̃1!2z~2 s̃1t̃1w̃31k̃2!

2z~k̃1!1z~k̃2!%,

3
s~2 s̃1t̃1w̃31k̃1!s~2 s̃1t̃1w̃31k̃1!

s~2 s̃1t̃1w̃3!2s~k̃1!s~k̃2!

3exp$z~ k̃1!s̃1t̃1z~k̃2!s̃1t̃2h̃3~ k̃11k̃2!14iAs̃4t̃%,

~69!

which describes a point particle moving with the timet̃.

H. General vortex filament

Most generally, the solution in Eqs.~32! and ~48! de-
scribes a vortex of open filament type. Figure 4 shows
example which we obtain usingl15l3* 50.810.7i ,l2

5l4* 50.310.8i . This is one of the most general configur
tions described by the one-phase periodic solution.

VI. CONCLUDING REMARKS

In this paper, we calculate the one-phase periodic solu
of the localized induction approximation, which describ
the motion of a thin vortex filament in an incompressib
inviscid fluid. The solution was explicitly given in terms o
Weierstrass elliptic functions. We study various vortex fi
ment configurations resulting from the degenerate limit
the solution. It contains already known configurations su
as the straight line, the Kelvin wave, the smoke ring, and
Hasimoto one-solitonic solution. In addition, it gives ne
configurations such as the rigid vortex filament, the clos
string, the plane curve, and curling open filaments. Shi
Kida was the first to introduce and investigate this categ
of vortex filament motion using an ansatz of a traveling wa
@10#. But his solution is expressed in terms of elliptic int
grals, having implicit parameters that are roots of a cu
equation. Compared to Kida’s result, our solution via t
elliptic functions has explicit parameters that are easy to
nipulate. Moreover, our result is based upon a solid theo
ical framework of the finite-band integration method, whi
03631
n

n
s

-
f
h
e

d
o
y
e

c

a-
t-

offers the generalization to the case ofN-phase periodic so-
lutions.

The first appearance of Weierstrass elliptic functions
describing the vortex filament motion was in a work of Lev
Civita, see Eq.~66! of @5# or @17#. He used a slightly gener
alized version of the LIA to describe vortex filaments
uniform thickness. In his work, the local curvaturec(z)
5R21(z) of stationary filaments was expressed in terms
Weierstrass’P function. It should be noticed that the equ
tion was possible to be integrated by quadratures only for
case of stationary filament motions and the complete inte
bility of his equation is still not known. Thus it would b
interesting to study the possibility of applying the method
the present paper to his equation and of obtaining vor
configurations of N phase periodic motions includin
N-solitons.

Another development in the study of vortex motion is d
to Fukumoto, who investigated the three-dimensional c
figurations of a thin vortex filament embedded in backgrou
flows, based on the LIA@18#. He found some interesting
configurations using an analogy between stationary confi
rations of a vortex filament in a steady flow with the traje
tories of a charged particle in a steady magnetic field. A
other analogy of the Kida class with a charged spher
pendulum in the field of a magnetic monopoles is also d
cussed and reproduces the result of Kida. It has the ad
tage of requiring less ingenuity to gain the integrals of m
tion by invoking the Lagrangian formalism of classic
mechanics. But this method cannot be directly related to
of the present paper because, like Kida, it also uses an an
for vortex configurations to make the analogies. It would
interesting to find the possibility of complete integrability
motions which were shown to give closed expressions
vortex motions in background flows by Fukumoto.

Our formalism can be adapted to describe relativis
string dynamics in a uniform static field. It is described
the Lund-Regge model,Ẍ2X95X83Ẋ, which is the dy-
namical equation for a stringX(t,s) @19#. Thus we can find
string configurations of superfluid mechanics having quas
eriodic property. This will generalize previous works@20,22#
which gives solitonic configurations using the duality b
tween the Lund-Regge model and the complex sine-Gor
theory @23#.
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Using the result of Sec. III, we can obtainN-phase peri-
odic solutions which should be described in terms of
emann’s theta functions. The difficulty in this program is t
‘‘effectivization’’ problem such that the obtained solutio
should satisfy Eq.~11!. This, together with the difficulty in
treating the Riemannu function, would be the obstacle t
apply it to real physical problems.

The stability analysis of the solution is another importa
physical problem to be done. A rather simple study was c
ducted using the perturbation method in@24#. Our formalism
could be useful in that there exists a method for the anal
of long-time behavior of instabilities using the~quasi!peri-
odic solution of the integrable system@13#.
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APPENDIX: DERIVATION OF THE LINEAR EQUATION

The derivation of the linear equation~7! needs the duality
relation between the nonlinear Schro¨dinger equation and the
localized induction approximation. We first start with th
zero-curvature condition of the nonlinear Schro¨dinger equa-
tion,

@]2E2lT,]̄2T]E2ETE12lE12l2T#50, ~A1!

where E5( 2c*
0

0
c), T5 is3, and s3 is the Pauli matrix.

The zero-curvature condition can be understood as the c
patibility condition for the overdetermined system of equ
tions

~]1Uns!F50, ~ ]̄1Vns!F50, ~A2!

where Uns[2( 2c*
0

0
c)2lT and Vns52 i ( ]c*

ucu2

2ucu2
]c )

2l( 2c*
0

0
22c)12l2T. Equations~A2! and their compatibil-

ity condition ~A1! have a natural geometric interpretation.
fact, the matrix functionsUns andVns may be considered a
local connection coefficients in the trivial bundleR23C2

where the space-timeR2 is the base and the vector functio
F takes values in the fiberC2. Equations~A2! show thatF
is a covariantly constant vector while Eq.~A1! amounts to
saying that the (Uns ,Vns) connection has zero curvature.

Now we introduce the duality relation by writing dow
the vortex variablesX in Eq. ~3! in terms of the nonlinear
Schrödinger variablesE and showing that the nonlinea
Schrödinger equation~A1! implies the localized induction
approximation~4!. This can be achieved easily in terms
the associated linear equations in Eq.~A2! as follows: let
F(z,z̄,l) be a solution of the linear equation of the nonli
ear Schro¨dinger equation. Let us define a matrixF as

F[F21
]

]l
F. ~A3!
03631
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To check that it gives the localized induction approximatio
we first notice that

]F52F21]FF21
]

]l
F1F21

]

]l
~]F!

52F21
]Uns

]l
F5F21TF. ~A4!

In a similar way, we find that ]̄F522F21EF
24lF21TF and]2F5F21@T,E#F. It is now easy to get a
modified localized induction approximation,

]̄F5
1

2
@]F,]2F#24l]F. ~A5!

The localized induction approximation is obtained by taki
l50 in Eq. ~A5!. Thus we takeX5 iF ul50 such that it sat-
isfies the equation]̄X5@]X,]2X#/(2i ). The constraint equa
tion is automatically satisfied,

Tr~]X!252TrT252. ~A6!

We now use the modified form of theR transformation@14#
to obtain the linear equation~7! of the localized induction
approximation. First we defineC[F21F̂, whereF(F̂) is a
solution of the linear equation~A2! with the spectral param
eterl(l̂). Define

M[]CC2152F21]F1F21]F̂F̂21F

5F21~2E2lT!F1F21~E1l̂T!F

5~ l̂2l!]F,

N[]̄CC2152~l22l̂2!F21TF12~l2l̂ !F21EF

52~l22l̂2!]F2~l2l̂ !]̄F24l~l2l̂ !]F. ~A7!

Then the required linear equations are

~]2M !C50, ~ ]̄2N!C50, ~A8!

which atl50 becomes

@]1 i l̂]X,]̄22i l̂2]X1 i l̂ ]̄X#50. ~A9!

Note that the compatibility condition of the linear equation
i.e., @]2M , ]̄2N#50 gives the localized induction ap
proximation in a form of the zero-curvature condition. In th
main text, we changel̂→l for notational simplicity.
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