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Vortex filament motion under the localized induction approximation
in terms of Weierstrass elliptic functions
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We study quasiperiodic solutions of the localized induction approximation in terms of the elliptic functions
of Weierstrass. They describe the Kida-class motion of a thin vortex filament in an incompressible inviscid
fluid. Our solution includes various filament shapes such as the vortex ring, the helicoidal filament, the plane
sinusoidal filament, and the Hasimoto type-1 soliton filament.
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[. INTRODUCTION In this paper, we apply the “finite-band integration
method” to find periodic solutions of the LIA. In mathemati-
The dynamics of a thin vortex filament in an incompress__CEﬂ literature, the_ problem of finding t_he periodic SO|UtiOhS of
ible inviscid fluid was first studied by Da Ri¢4] and more integrable equations has been considered for a long time. It
recently by Hamd2]. They derived the so-called localized Was Solved first for the case of the Korteweg—de Vries equa-
induction approximatiofLIA ) and used it to investigate the tion and was extended to the case of the sine-Gordon equa-

. . . } . tion and the nonlinear Schiinger equation later oh11].
motion of f||aments_of various shape. In part'?”"”’_ H_as'mOtOThis method is based upon the theory of the eigenvalue prob-
[3] has proven the integrability of the LIA by identifying the o of the one-dimensional Schiager equation with a pe-

vortex equation with the nonlinear Schifoger equation ripdic potential. An important class of periodic potentials
(NSE). He also obtained a localized twist wave solution of consists of those which generate only a finite number of non-
the LIA which corresponds to the one-soliton solution of degenerate eigenvalues, and these are called finite band po-
NSE. This solution was named the “Hasimoto soliton.” Seetentials which give periodic solutions.

the review by Ricc4,5] for a detailed account of the history ~ The following steps are known to be the simplest method
and development of the LIA and related ideas discussed ifPr generating periodic solutions. We first express the inte-
the present paper. Experimentally, Hopfinggral. [6] ob- ~ 9rable equation as a compatibility condition of two linear
served twisting distortions of a slender vortex tube in a ro-Systems. Itis known that this condition has a natural geomet-
tating tank which resembled the Hasimoto soliton. In an aglic interpretation and is called a zero-curvature representa-

I ) : . tion. As we deal with the LIA directly rather than the NSE,
ditional experiment, these distortions were found to be stablgve develop the zero-curvature formalism of the LIA which is

against a collisiorf7]. These observations motivated St”diesexplained in the Appendix. Then we introduce the “squared”
on the N-soliton solutions of the LIA using the theory of eigenfunctions, which are known to simplify many of the
soliton surface$8] and the Hirota methof®]. computations. In the course of doing this, we obtain a system
On the other hand, Kidgl0] was able to obtain various of partial differential equations on a set of auxiliary variables
vortex filaments which move steadily without deformation as well as those of the LIA, whose solution is connected with
using a simple but interesting ansatz. They are expressed Jacobi’s inversion probledi3]. Finally, these equations are
terms of elliptic integrals which correspond to the travelingsolved using parameters that determine the periods and am-
wave solution of the NSE. For some special values of paramglitudes of the solution and are called the main spectra. An
eters, Kida's solution reduces to the previously knownexplicit one-phase periodic solution is constructed using the
shapes, for example, a circular ring, the Kelvin wave, a heli\Neierstrass elliptic functions. Various vortex filaments are
coidal filament, and the Hasimoto soliton. Unfortunately, theanalyzed by reducing the solution to the special degenerate
case of the\-soliton solutions N=2) was inaccessible by limit.
this technique. In fact, the traveling wave solution, which  The parameters of our solution are more explicit and easy
corresponds to Kida’s solution of the LIA, is the simplestto manipulate compared to Kida’s solution. The present ap-
case of the so-callequasjperiodic solutions of the NSE proach does not employ the ansatz of stationary filament
[11]. However, the construction of general periodic solutionsconfigurations. It also offers a formal method to find a much
of the LIA using the Hasimoto map and the periodic solu-wider class of solutions of the LIA encompassing the
tions of the NSE is a highly nontrivial task and has not beerN-phase solutions. Explicit accomplishment of Jacobi’s prob-
achieved yet. The application of the soliton surface theory tdem with the help of complex analysis on a Riemann surface
this problem can be an effective but also nontrivial task, andvould result in a solution expressed in closed form in terms
only expressions describing localized excitations of the Kidapf the Riemanry functions. But there arises a technical dif-
solution were obtainefil2]. ficulty in this program, which was called the “effectiviza-
tion” problem in[15]. The problem is that the reality condi-
tion of the solution should be satisfied, which imposes some
*Email address: hjshin@khu.ac.kr constraints on the auxiliary variables that appear in the
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theory. A simple technique was developed to overcome thisvhere\ is an arbitrary spectral parameter. In turn, this zero-
difficulty. But this technique is still confined to the one-phasecurvature condition can be understood as the integrability
solution of the problem having only four spectral parameterscondition of the linear system,
This difficulty and the complexity in treating the Riema#n
functions limit the availability of explicit solutions in the (9+U)D=0, (3+V)<I>=0, @)
present paper. We plan to report the treatment of more gen-
eral solutions, using numerical methods at least, in a separajgnere
paper.

In Sec. Il, we review the localized induction approxima-
tion and introduce its Lax pair. The development of the zero- U :i)\&XEi)\(
curvature formalism of the LIA in a suitable form for apply-
ing to the finite band integration method is explained in the
Appendix. Explicit construction of the one-phase periodic V=—2IN29X+iNaX
solution is followed using a modified version of the finite
integration method in Sec. lll. The resulting formulas in- s . [ B3 B«
volve Weierstrass’ elliptic functions. In Sec. IV, various vor- =—2i\ TIA B. —-B
tex configurations from the periodic solutions are explained N 3
in terms of functional rglatlons of the V\_/elerstras§ functionsypere a*=a_, ai=as, B =p_, B5=ps The equa-
In particular, the reduction of the solution to typical vortex +inn of motion (4) is rewritten as
motions is achieved. Section V contains a discussion.

as  a. )
1

o _ — a3

) . (8

o _ — a3

2iB3=a,da_—a_da,,
II. LOCALIZED INDUCTION APPROXIMATION
Da Rios and lately Hama have shown that the nonrelativ- 2iB.=*2azda.F2a+dag, 9)
istic motion of a thin vortex filament of fluid mechanics is
described by the so-called localized induction approximawhile the constraint5) becomeSang a,a_=1. We obtain
tion: the linear equatiori7) using the so-called transformation
_ _ [14], which is explained in the Appendix. As we will see in
aX'= eijk&”XJaf,Xk, i=1,2,3, (1) the next section, this form is well-suited for the finite-band
integration method.
where o is the arc length andr is the time. Here,
X'(o,7), i=.1,2,3 are the vortex coordinates which satisfy Il FINITE-BAND INTEGRATION METHOD
the quadratic constraints:
_ We start with the linear equatiaf7). Let the systems7)
(9,X)2=1. (2)  have two basic solutionsgf ,¥») and (¢4,,), which are

) ) ) o used to build a vector such that
The localized induction approximation can be equally de-

scribed in a matrix form, which is suitable for the dualization — _ __
procedure with the nonlinear Scliager equation. Let us =-(2)rdot ¥261). 9=thés, h= lﬂzd’z(-lo)
define a matrixxX by
Using this definition and the linear equatidn), it can be
explicitly checked thatP(\)=f?—gh is independent of
andz and is only the function of. The N-phase periodic
solution is obtained by specially taking the form of
whereg; are Pauli matrices. Then it is easy to verify that the
matrix X satisfies the following equation of motion: 2N+2

P(\)=f2—gh= IL (N—N)), (12)

=

3
xE;x%h 3

ﬂzgwxfm, (4)
where\; are zeros of the polynomial which characterize the
— — — ) , periodic solution of the “Bloch wave” problem and are
whered=d/dz,0=0/9z,2=o,z=7. The constraint equation c4|ied the main spectra. The zenoshave to consist of com-
(2) can also be rewritten witlX as plex  conjugate  pairs A;=Ng;+iNij, Ajins1=Agj
) —iNjj, J=1,N+1 such that the obtained solutions§ ,i
Tr(9X)"=2. ) =1,3 are real. It can be seen that this form is consistent with

First we notice that the equation of motiof) can be rewrit- the following form off, g, andh,

ten as a zero-curvature condition N

— — f=aA\N" 1+ > A\
[9+iNIX,d—2iN20X+iNdX]=0, (6) “3 .20 !
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N

g=—i)\a+£[1 (A= pp), (12)

N
h=—ixa_[] (\—p),

i=1

where u; are functions ofz,z. From the definition off, g,
andh in Eq. (10), we can obtain the following equations:

f=—Na_g+Na, h, 9g=2\a f—2iNaz0,
af=2\%a_g—2\%a,h—\B_g+\B,h, (13

9= —4AN2a, f+4iN2asg+ 2N\ B f— 20\ Bag.

Equations forh are similarly given.

If we evaluate Eq(11) at u,,, which is one of the zeros

of g, then we arrive at the identity

f(2,Z; ) = TP (1),

(14
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— : B+ =
Ipm=2i Zﬂm_z Om P(Mm)/il;lm (pem— mi)

:2i(2 N—22 Mi+2ﬂm>

X om\PCum) 11 (=), (20
5a3=—2ia+a7i§>:j (Hipj— pi 1)
—ia+,8,2 Mi+ia75+2 /Uq*
=ia+a-[—2§j (Hipj= pi 1)
+2 N2 (Mi—,ui*)}cua (21)

The remaining problem to solve Eq45)—(21) is beautifully
accomplished by using the solution of what is called Jacobi’s

where o, indicates the sheet of the Riemann surface onpyersion problem. We will not go into details here but

which the complexu, lies. Using Eqs(12) and(13), we can
evaluatedg at one of the zeros dj to find

= _ZiUmVP(/‘Lm)/i];.[m (m—mi), m=1,... N.
(15)

If we look at thexN™?! term for of in Eq. (13), we find

3a3=—ia+a7§i: (Mi—,ui*)=—i(l—a§)§i: (k= ).
(16)
Now the O(A2N*1) term of P(\) gives

2asfy—ara 2 (mitpf)==2 N (17)

and theO(AN'1) term of the second of Eq$13) gives

&a+=2ia+fN+2ia3a+z i - (18)

Using these results, we obtain
Bi=2aza fyt2aba, D mitaia X (ui—pt)
= _2 M+22 Mi |y

(19

Applying the same approach ta and Jf in Eqgs.(13) and
using the results in Eq19), we can show

sketch the broad outlines and occurring difficulties of the
procedure. The following steps are needed to solve the above
problem. First, take the parametexs, i=1,...,N+2 as
known. Second, choose initial conditiong;(0,0) and
a3(0,0) such that they satisfy E€L1). It is at this point that

a technical difficulty arises. An effective method to avoid this
problem was introduced by Kamchatnpi5] to obtain the
one-phase solution. We adopt this method in the following
section to obtain an explicit periodic solution of the string
configuration.

IV. ONE-PHASE PERIODIC SOLUTION

As explained in the previous section, in the sine-Gordon
and NLS equations, the additional problem of extraction of
the “real” solutions arises. The periodic solutions obtained
by this method have a rather complicated form, which pre-
vents their application to real physical situations. Kamchat-
nov devised a simple modification of the finite-band integra-
tion method which solves the so-called “effectivization”
problem in the simplest and the important one-phase case. In
this section, we follow his method to find the periodic solu-
tions of the localized induction approximation. The one-
phase periodic solution is obtained by taking the simplest
nontrivial N=1 case in Eqs(11) and(12), which gives

4
POM=]] (N=\), f=as\2+f\+fg,
i=1

g=—iNa;(A\—pun), h=—iNa_(A—u*). (22

Equation(17) then becomes
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2asfi—a a (ptp*)=—2 \. (23

Here we define

=—> ). (24)

The other equations from E¢L3) for the N=1 case can be

expressed as
(9&’3: —i a+a_(,u—,u*), 5f1:0"f020,

Ip=—_2i(azu®+fiu+fy),
(25

3a3=Vo"a3, 5‘125‘020, 3M:V07/.L,

da,=2ia,fi+2iaza, u, gaur: —4ifga, +Via, .

Note thatas and p are functions ofW=z+Vz only and

fy,f, are constants.

A. W, fq, foin terms of as,s;

To prevent the “effectivization” problem, we start with
Eqg. (11) or Eq.(22) to solveu, f;, andf,. First, we intro-
duce constants of motiog), i=1,4, which are defined as

P(\)=f2—gh=A*—s;A\3+ s, 2—s5\+5s;. (26)

Insertingf, g, andhin Eq.(22) into Eq.(26), we can obtain

SIEE )\i: —2f1a3+ X,
szzi; NiNj=2foas+F2+Y, (27)

S= > NiNjh = —2f4fg, se=[1 \=13,
i<j<k

where X=a,a_(u+up*)=(1—ad)(u+p*) and Y

=a,a_uu*. Now solving forfy, f;, w, andu* in Eq.

(27), we obtairt

S3

o fo=— s
2\/3—4 0 \/—4

fl:
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1

f i = 5 (\SySa3+ 51,7 VS4R),  (28)
2(1 0[3)54

where

R:(X+ )\2)\3"’ )\1)\4)(X+ )\1)\3+ )\2)\4)

X(X+ )\1)\2+ )\3)\4),

X=2+S4a3. (29

Note that this solution is consistent with E@5).

B. Derivation of X3

Using these results, E(R5) for a3 becomes

da3 _ |_
W @Jﬁ. (30)

This equation can be integrated in terms of Weierstrass’
P(u,9,,03) function. As far as Weierstrass elliptic functions
are involved, we employ the terminology and notation of
Ref.[16] without further explanations. Explicitly

1 S,
Qo | = 22—
*2Js,\ 3

where w3 is an integration constant arg12=‘3—‘s§—4sls3
+165,4,03= 2S5 — 55,5, + 455— 25,5, + 4s%s,. The inte-
gration constantvy is determined by the initial condition,
which we shall choose as follows?(w3)=e; at W=0,
wheree; is the smallest root of the equatioz- g,z— g,
=0. [Two other roots are denoted by and e, with e;
>e,>e;. W as well asw, are called the half-period of the
P function. They satisfy P(wi)=e,P(W,)=€,,e;+€e5
+e3=w;+W,+w;=0.] This condition guarantegs;|<1.
Now using az=dX5 and Bs=dX3=—S3//s;+ VX3, we
can obtain

P(W+ws3,05,03) |, (31

X3:f CngW_S3/\/S4Z

1 s, _
= W+Ww;3,05,03) — = W—2S;2— ,
2\/5—4[5( 3,02,03) 3 32— 73

(32

where {(u,g,,03) is the Weierstrass’ zeta function and the
integration constanty; is taken as{(ws,0,,9s). [We will
use the notationy; = {(w; ,g,,093),i =1,3 in the following]

C. Derivation of a.

1 - . . . B -
This is one particular solution, but other solutions give essen- . . .
tially the same result. To obtain this solution, we W8EHEMATICA Now we try to obtain the solutioiX, of the localized

for symbolic manipulation. In additionMATHEMATICA was used to induction appr.OX|mat|on. Using Ed28), V\_’e can solve the
check various formulas appearing in this paper. For example, it wal@St two equations of Eq$25) for a., which becomes
used to check that Eq&32) and(48) satisfy the equation of motion .

(). a,=expl4as,iz) e, (W), (33
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wherea, satisfies the following differential equation:

da

d—v\*/:zia+(fl+agu). (34)

The following identity, which can be obtained using Egs.

(28) and (30), is required to integraté}+ :

i
i(fi+asw) (1_a:23)\/5_4(s3+31\/s4a3)

1 d(1—a3)
+_—
2 (1—a5)dW

M M Y s T aw
(39
where
S3 _$
My My=——F—. (36)
1 2 2\/3—4 2

Now using Eqgs(31),(34),(35) and the following identities of
the Weierstrass’ elliptic function:

J‘ dw 1 Ir\0'(K—W)i2 )W]
PW—P(x) () | Mok 26K
(37
and
oc(W+ k)a(W— k)
7)(V\/) _P( K) = 0_2(w) O'Z(K) ) (38)
we can obtain
~ o(W+wsz+ k1) o(W+ w3+ k5)
o Uss ok oK) TA(WHWg)
X exp{— (k) W—{(kp) W+cH, (39

where two constants,, x, are defined by the following two
relations:

Pk1),P(Ko) = —SpI3+ 215y,

L (s, \/ﬁ
a,a \/5—4 st S,

(40)

4 s4iJZv+dW:

1

2454

Xexp{— {(k)W— (k) W— n3(k1+ K2)},

a+=§

{Z(W+wg+ k1) = {(W+ W3+ Kky) — §(K1)+§(K2)}U(

PHYSICAL REVIEW E65 036317
’ ’ da3 .
P (k1) P (i) = =28y qipilag=51=— 21 VRlgy- 1
—2i(51Vs4 7 83) = £ 4VsiM . (4D)

We fix the integration constartt by requiring a3+ |« |2
=1. Especially aWw=0, we find

2l 5
%(W—WS—4 —3 78
P(x1) +P(ky)

:2\:;3—4( 2

_es) ,

i o(kitWz)o(kyt+Wg)
2\/5—4 o (K1) o( K)o (W3)
_ -1
_2\/5—4
X exp{{(ws) (Kt ko) +C},

where we have used the identity

a?(u+ws)
mexp{—zg(wg)u}.

a,(0)= exp(c)

V[ P(x1) —es][ — Pko) + €3]

(42

P(U)— 5= (43)

Using these relations together with E40), we can obtain
c=—1n3(k1t+K2).
D. Derivation of X

We now deriveX, . Using dX, =« in Eq. (8), we ob-
tain

x;f a,dz+ M(?)zexp(4\/s—4i?)ja+dW+M(?),
(44)

WhereM(?) is a function to be determined. To evaluate the

integration explicitly and to determiné (z), we substitute
Eq. (44) into the following equation:

3X+:,8+:(_51‘|'2,U«)a+- (45

Then a little algebra with Eq928), (30), (31), (33), (39),
(40), and(41) givesM(z)=0 and

(P’(W+W3)—P’(K1) P (W+wz)—P (ky) )\ ~
P(W+wWs)—P(ky)  PWH+wWz)—Plkg) |7

W+ W3+ Kl)O'(W"F W3+ Kz)
o(k1) o (ko) T (W+Ws3)

(46)

where we use the following relation in the last part of the derivation:
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P'(W)—P' (k)

POW) —P() =2{(W+ k) —2L(W) —2{(x). (47)

Thus collecting all these results, we finally obtain

o(W+ws+ k1) o(W+wz+ k5)

[
X, =8—S4{g(w+w3+ k1) = {(W+Ws+ k) — {(k1) + {(k2)} o (x0)0(Rp) (W Wy) exp{ — {(k))W— (k)W
— na(Kk1+ k) +4\S4iz}. (48)
|
V. SPECIAL CASES 1 -
. . . X3=— ———=(az+2v%2),
In this section, we study some special cases of the ob- \/m

tained solution by taking the degenerate limit of theval-

ues. It contains the straight line, the Kelvin wave, and the

Hasimoto soliton solution,_which were obtained previously, X, =i 27’ S ex{ 2i 2+ 12(z2—2a2)]. (52
as well as such new configurations as the plane curve, the 2(a"+ %)

closed ring, and the point particle. ) _ )
Using the fact thaX, =X;—iX,=iC exp(D) , we can ob-

tain X, = (X, +X%)/2=—CsinD and X,=i(X, —X%)/2=
—CcosD, which describes a smoke ring. Wher=0, it

The simplest solution that corresponds to the straight linelescribes a circular ring having a constant radius and travel-
is obtained by taking.;=A3=a, N,=A4=7, Or more sim- ing along thez axis. Whena#0, it describes a helicoidal
ply Ny=N,=A3=Ns=a (rea). In this case,g,=gz=e3 filament with the radiug/(2a?+2y?) and the pitch— ar.
=0. The Weierstrass functions in this limit are given by The helix rotates with the angular velocity 4a\/a?+ »?
P(u,0,0)=1/u?, {(u,0,0)=1/u, o(u,0,0)=u, andws=«;  around thez axis and moves with a speee2 y?/\/a?+ 2 in
=o. Using these relations, we can easily obt3=  the z direction. This solution is first discussed [in1].
—2z,X,=X;—iX,=0. The rotational and translational sym-
metry of the vortex equation can give a more general con-
figuration of the straight lin¢20].

A. Straight line

C. Hasimoto one-soliton solution

To obtain the one-soliton solution from our periodic solu-
tion, we takeN;=N,=a+iy, Nz3=N,=a—iy in Egs.

(32 and (48). In this caseg,=% y*,g3=—3%+°, andw;,

The next example, known as the Kelvin wave, corre-—j /(4y), e,=P(ws)=—892/3, ns={(W3)=—iym/3,
sponds to takingh;=Ag=a, Np=atiy, and Ny=a  and o(ws)=i exp(?/24)/(2y). The Weierstrass functions
—iy (0<a<1, 0<7).Inthis casey,=57%0s=27°. As g given by
A=g3—27y5=0, the Weierstrass functions are given in a

simple form, P(W+w3)=—89%/3+ 4y? tantf(2yW),

B. Kelvin wave or smoke ring

2 2
P(w)= =713+ esc(yu), {(W+Ws) = —4y2W/3+ 2y tanH2yW) + 75,  (53)

§(u)= ‘}/ZU/3+ ’yCOt( yu), (49) O_(W+W3):exq_2,y2w2/3+ 773W)

a(u)=exp( y2u?/6)sin( yu)/y, X cosi2yW) o(ws),

and k=%, sinh2yx,=iy/\a?+»?, coth2yk,=—ialy,

ande;=—»?/3, wz=ix, and 3= —i ym/3,0(W3) =i exp(@?/24)/(2y). It then gives
. . v _ 14 =
sinyxq,SiNyk,= \/iZa\/azTyz—ZaZ, (50) Xz=—2z+ az+y2tanh{27(z—4az)} (54)
. and
cotykq,COtyk,=— I—( \/mi a). (52 .
4 X+=—;;I—yzseck(ZyW)exp[Ziaz—M(az—yz)?}.
Now, a straightforward calculation gives (55

036317-6



VORTEX FILAMENT MOTION UNDER THE LOCALIZED . ..

PHYSICAL REVIEW E65 036317

(a) X (b)) X
1 2
0 1
-1 0
/\ \ (\1
20
0 FIG. 1. A typical soliton vor-
10 tex filament drawn with(a) —25
10 <0o<20 at 7=0 and (b) —10
z z <0<40 at7=10. The parameters
0 _20 of the vortex filament area
< ( ~0.2y=0.1.
-10 -30
2 1 0 1 0 -1

This solution can be compared with the known forn{ 18]

by taking\;=X,=A% =N} —(Cxigat | Vakiga) /4. In Fig. 1,

we show one example of the Hasimoto vortex filament with
a=0.2,y=0.1.

D. Rigid vortex filament

When we take N\i=Ni=a+iy, \o=\}=—a+iy,,
thenZ\;=0 andW=(z—X\;z) becomes. As we can see
in the following, it gives a configuration of typeX;
=a(o)cospr), X,=a(o)sinb7), andXz=c(o)+d7. Thusit
describes a rigid filament which rotates around thaxis
with constant angular velocity =4+/(a?+ y3)(a?+ y5)]
and moves along the axis with constant velocity =
—2a(y3—y3)I\(a?+ y2)(a®+95)]. This configuration
might be interesting as it can be easily observed in experi-
ments.

In this case,

0= 3{16a%+8(y2+ y3) a?+ yi+ ya+ 1423},

Us= 2 {64a®+48(yi+ y5) a*

2, 2
nt y5—2a°

1
3= 6 H Z+2\/ﬁ{§(Z+W3:92,93)_773}
200
0] .

i
X+:8_H{§(Z+W3+ K1) —{(z+ W3+ Ky)
— (k1) +(Kk)}
O'(Z+W3+ K1)0'(2+W3+ K2)
0(K1) 0 Ky) 0%(Z+W3)
X exXp{{(K1)Z+ {(k2)Z+ A\HizZ— na( K1+ K2)},
(58

whereH = (a?+ y}) (a®+ 73).

E. Closed ring

The characteristics of closed rings can be studied using
the following quasiperiodicity properties of Weierstrass’ el-

liptic functions:

+12y1+ 3~ 10¥295) a?+ ¥5+ v5—33y2y3

Z(u+2wy)=Z(u)+27;,

o(u+2w;)=—exp27;(u+w;)}o(u). (59

w;=K(\/(e,—e3)/(e1—e3))/ e —e3,wg

=iK(J(e;—e,)/(e;—e3))/Je,—e;, w; is real whilews is

—33y{73 (56)
and As
e1=5(4a?+ ¥+ 7)),
an
e,=3(—4a’— Yi— ¥5+6y17,), (57)

pure imaginary. Thus physical characteristics are described
by the real period W= Ao =2w,. For exampleX, obtains

additional factor,

exp{271(k1+ ko) —2L(k)W1— 2 (kx)wy}  (60)

after a periodAW=2w,. Thus a necessary condition for a

e3=5(—4a’— y{—¥5—67172).

Explicitly, the vortex filament is described by

036317-7

closed ring, i.e. X, (c=mAcg)=X,(c=0), is

mlk1+ k)WL) + Lk} =i, (6D
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wherem,n are arbitrary integers. Another condition comes

. : S3 253w,
from the closedness of thecoordinate, i.e.X3(c=mAo) ——=AT=—— (64)
=X3(o=0), which is Vs, N
along thez axis. The two conditiong61) and (62) can be
S, N 1 o 62 solved numerically using a software package suchi/asi-
3\/;4""1 Jss 7= 62 Emarica. For example \;=\% =0.0126+ 0.8, A\,=\}=

—1.692+0.5 was found to be the solution of the conditions
i.e., SoWy;=37;. for a choicen=2, m=5. Figure 2 shows the motion of a
The quasiperiodic property of the closed ring along theclosed ring atr=0, 0.15, 0.3, and 0.484<Ar, time pe-
time is the following. During a time period 7=—2w,/s,,  riod). During a time period A7, the ring rotates
the ring returns to its original shape but rotates aroundzthe —2.7336 rad and advances0.716 along the axis. Theo

axis by an angle period isAo=—1.626 in this configuration.
> F. Plane curve
n
HW“LA'\/SZA T (63) The Weierstrasg function appearing in th, solution

in Eq.(48) can be reduced to Jacobi’s elliptic functions under
and moves a distance a certain limit. For this, we first notice that

o(W+wz+ k1) o(WH+ws+ k
(W Wat k) (W Ws+cp) F,(’71{K§+Kg+2<xl+xz>(W+wg>}

o(W+ws)? 2w,
% H(\ el_eg(W+W3+ Kl))H(\/el_e3(W+W3+ Kz))
H (Ve —e3(W+ws))? ’

(65

036317-8
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FIG. 3. Typical plane curves
drawn with 7/3<7<2#/3 and
—7<0<T7.The parameters of the
curves arer:% and (a) k=0.1,
(b) k=0.85.

where  H(u)=6,((7/2K)u). As  snu=(1//k)6;
(wul2K)/ 8,4(mu/2K), dru= Kk’ 63(mul2K)/ 6,(mul2K),
and  0,(u+(7/2))=60,(u), 6,(u+(mwr/2))=iq Ve

04(u), it is required @/2K)\e,—ezkq,—m/2, w7/2 to
achieve our goal. In other words; ,—w, 3. Here we study

o(W+ws+ k1) o(W+w3+ k5) m
B 2w,

O'(W+W3)2

X ex;{ —i lw) \/gsr( ver—esW)dn(Ve;—esW).

2w,

Now using the Legendre relatiom,w,= —i7/2+ n,w,; and

k=+e,—e3le;—e3=sindk' =cosd,q=exp(miws/w,), we
can obtain
X,=—2 exp(4ir2?)f sin 6 sn(2rw)dn(2rw)dw
=exp(4ir?z)sinf cn(2rW)/r,
x3=f [—1+2dn(2rW)?]dwW
=—W+E(2rW|K)/r, (67)

with the incomplete elliptic integral of the second kiid

Note thatW=z= ¢ in this case. This formula shows that the

the casex;—W;,k,—W3. The other case gives a similar
result.  Then P(ky)=2+s,—S,/3=P(W;)=€;=\1\3
+NoAg—S/3  and  P(k,)=—24/s,—S,/3=P(W3)=e5
=N+ N3N ,—S,/3. To satisfy this condition, we choose
N1=A}i=re'? N,=\}=—re '’ With this choice, the ex-
pression in Eq(65) becomes

(W3 +W5— 2w,owy— 2W2W)) q %

(66)

Ni=AX;, o=0/A? 7r=7/A? for some finite \;,o,7.
Then it is easy to find thatg,=A%g,, g3=A°%gs, €

=AZg;, where the notation should be obvious. The homoge-
neity relations of the Weierstrass functions give useful rela-

tions, w;=w; /A, k;=x;/A, 7,.=A7,. We can check these
relations as follows:
& ="P(W;/A,A“g,,A%gs) = A*P(W; 0p,0s) =A%,

7i={(W; /A, A%G,,A%G3) = AL(W;,0,,05) =A7; .
(68)

curve lies on a plane at a fixed time and this plane rotate¥Sing these relations, we can obtain

around thez axis with the angular velocity. In Fig. 3, we
show examples of the plane curve with=-3 and (a) k

=0.1, (b) k=0.85. The curves make surfaces with the time

ml3<z=7<2ml3.

G. Point particle

The vortex filament coalesces into a point under the limit

\j—o. To describe this limit, we introduc& —occ such that

X 1 52’51,., 1 g( -, = ~)
= ——T— —F—= _SlT+W3lg21g3
A 6Vs, 2\/Sr4

S3 ~ 73
-
\/5_4 2VN'sy

036317-9
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FIG. 4. (a) A typical open vor-
tex filament at(a) 7=0 with
—30<0<30 and(b) 7=0.5 with
2 0 —30<¢<30. The parameters of
N the filament arex;=0.8+0.7,
A,=0.3+0.8.
-10
0.5 0 -0.5
Y Y
i o L offers the generalization to the caseMfphase periodic so-
X+: ~ {é’(_slT+W3+Kl)_g(_slT+W3+K2) lutions.
8544 The first appearance of Weierstrass elliptic functions in
~ ~ describing the vortex filament motion was in a work of Levi-
—{(xk0) +{(k2)}, J

Civita, see Eq(66) of [5] or [17]. He used a slightly gener-
0( =S, 7+ Wa+ K1) (=S, 7+ Wa+ K1) alized version of the LIA to describe vortex filaments of
uniform thickness. In his work, the local curvatucéz)
=R 1(2) of stationary filaments was expressed in terms of
~ o~ ~ o~~~ o~ o~ .~ Weierstrass’P function. It should be noticed that the equa-
XeXp{(K1)S17H {(K2)S17= 5Kyt i) + 4 \/5_47}’ tion was possible to be integrated by quadratures only for the
(69 case of stationary filament motions and the complete integra-
bility of his equation is still not known. Thus it would be
which describes a point particle moving with the time interesting to study the possibility of applying the_ rr_iethod of
the present paper to his equation and of obtaining vortex
configurations of N phase periodic motions including
H. General vortex filament N-solitons.
Most generally, the solution in Eq$32) and (48) de- Another development in the study of vortex motion is due

scribes a vortex of open filament type. Figure 4 shows af® Fukumoto, who investigated the three-dimensional con-
example which we obtain using;=\%=0.8+0.7,\, figurations of a thin vortex filament embedded in background

flows, based on the LIA18]. He found some interesting
configurations using an analogy between stationary configu-
rations of a vortex filament in a steady flow with the trajec-
tories of a charged particle in a steady magnetic field. An-
other analogy of the Kida class with a charged spherical

In this paper, we calculate the one-phase periodic solutioRe€ndulum in the field of a magnetic monopoles is also dis-
of the localized induction approximation, which describescussed and reproduces the result of Kida. It has the advan-
the motion of a thin vortex filament in an incompressible tage of requiring less ingenuity to gain the integrals of mo-
inviscid fluid. The solution was explicitly given in terms of tion by invoking the Lagrangian formalism of classical
Weierstrass elliptic functions. We study various vortex fila-mechanics. But this method cannot be directly related to that
ment configurations resulting from the degenerate limit ofof the present paper because, like Kida, it also uses an ansatz
the solution. It contains already known configurations sucHor vortex configurations to make the analogies. It would be
as the straight line, the Kelvin wave, the smoke ring, and thdhteresting to find the possibility of complete integrability of
Hasimoto one-solitonic solution. In addition, it gives new Motions which were shown to give closed expressions for
configurations such as the rigid vortex filament, the closedortex motions in background flows by Fukumoto.
string, the plane curve, and curling open filaments. Shigeo Our formalism can be adapted to describe relativistic
Kida was the first to introduce and investigate this categorytring dynamics in a uniform static field. It is described by
of vortex filament motion using an ansatz of a traveling wavethe Lund-Regge modelX—X"=X'XX, which is the dy-
[10]. But his solution is expressed in terms of elliptic inte- namical equation for a string(r,o) [19]. Thus we can find
grals, having implicit parameters that are roots of a cubicstring configurations of superfluid mechanics having quasip-
equation. Compared to Kida's result, our solution via theeriodic property. This will generalize previous woill&0,22|
elliptic functions has explicit parameters that are easy to mawhich gives solitonic configurations using the duality be-
nipulate. Moreover, our result is based upon a solid theorettween the Lund-Regge model and the complex sine-Gordon
ical framework of the finite-band integration method, whichtheory[23].

o( =S, 7+ Wa) 20 (k1) o (ky)

=\, =0.3+0.8. This is one of the most general configura-
tions described by the one-phase periodic solution.

VI. CONCLUDING REMARKS

036317-10
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Using the result of Sec. Ill, we can obtaNiphase peri- To check that it gives the localized induction approximation,
odic solutions which should be described in terms of Ri-we first notice that
emann’s theta functions. The difficulty in this program is the
“effectivization” problem such that the obtained solution

should satisfy Eq(11). This, together with the difficulty in IF= —(I)‘latbdb‘li(va(I)‘li(ad))
treating the Riemanm function, would be the obstacle to I\ I\
apply it to real physical problems. U e
The stability analysis of the solution is another important = —d)’lWCI):CD*lTCD. (A4)

physical problem to be done. A rather simple study was con-
ducted using the perturbation method 24]. Our formalism o _ — .
could be useful in that there exists a method for the analysif) a similar way, we find that JF=—-20""Ed

of long-time behavior of instabilities using thguasjperi- ~ —4\® " *T® andd’F=d " *{T,E]®. Itis now easy to get a
odic solution of the integrable systeh3]. modified localized induction approximation,
ACKNOWLEDGMENT — 1 9
F=S[9F,0%F]—4\oF. (A5)
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The localized induction approximation is obtained by taking

A=0 in Eq.(A5). Thus we takeX=iF|,_, such that it sat-
The derivation of the linear equatidi) needs the duality  isfies the equationX=[JX,d*X]/(2i). The constraint equa-

relation between the nonlinear Sctimger equation and the tjon is automatically satisfied,

localized induction approximation. We first start with the

zero-curvature condition of the nonlinear Safirmer equa-
tion, Tr(9X)?=—-TrT?=2, (A6)

APPENDIX: DERIVATION OF THE LINEAR EQUATION

We now use the modified form of tHe transformatior{ 14]

to obtain the linear equatiofv) of the localized induction

WhereE=(2¢* g)’ T=ios, and o5 is the Pauli matrix. apprqximation. First we def'in@ECIfch), where® () is a
psolution of the linear equatiof2) with the spectral param-

[0—E—\T,d— TOE—ETE+2\E+2\2T]=0, (Al)

The zero-curvature condition can be understood as the co " _
patibility condition for the overdetermined system of equa-€terA(\). Define
tions

- M=o¥¥ 1=—-d g+ > 19D 1P
d+U,)®=0, (d+V,)P=0, A2 .
(7 Un) (7 ) (A2 =0 (—E-AT)®+® YE+AT)®
0 vt d

where Une= = @) ~AT and Vne= i o ") =(RA—\)oF,
_)‘(zw* 0 )+ 2)\2T. EquationgA2) and their compatibil-
ity condition (A1) have a natural geometric interpretation. In _ R R
fact, the matrix function&) ,s andV,,s may be considered as N=g¥ V¥ 1=2(A\2-\2)D TP+ 2(A\—\)® ED
local connection coefficients in the trivial bundR®x C? ) oy . -
where the space-timg? is the base and the vector function =2(N°=N)IF = (N=N)dF—4N(N=N)dF. (A7)
® takes values in the fibe®?. Equations/A2) show thatd
is a covariantly constant vector while EgA1) amounts to  Then the required linear equations are
saying that the Y ,s,V,, connection has zero curvature.

Now we int_roduce _the duality relation by Writing_down (9—M)¥ =0, (3_ N)¥ =0, (A8)
the vortex variableX in Eq. (3) in terms of the nonlinear
Schralinger variables and showing that the nonlinear
Schralinger equation(Al) implies the localized induction
approximation(4). This can be achieved easily in terms of

which atA =0 becomes

the associated linear equations in E42) as follows: let [9+ikaX,a—2iN20X+ikoX]=0. (A9)
@(Z,Z)\) be a solution of the linear equation of the nonlin-
ear Schrdinger equation. Let us define a matfixas Note that the compatibility condition of the linear equations,
i.e.,, [0—M, d—N]=0 gives the localized induction ap-
cmpfliq) (A3) proximation in a foronf the zero-curvature condition. In the
) main text, we changa —\ for notational simplicity.
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