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Growth of binary fluid convection: Role of the concentration field

C. Fütterer* and M. Lücke
Institut für Theoretische Physik, Universita¨t des Saarlandes, Postfach 151150, D-66041 Saarbru¨cken, Germany

~Received 20 June 2001; published 6 March 2002!

The growth of convection in binary fluid mixtures out of different perturbations of the quiescent conductive
state is investigated using finite-difference numerical simulations for realistic ethanol-water parameters with
strong negative Soret coupling between temperature and concentration fluctuations. Several different analysis
tools are used to elucidate the complex spatiotemporal behavior associated with the dramatic concentration
redistribution during the transients. It shows first the competition between counterpropagating waves that
initially superimpose to form standing wave perturbations. Having reached a critical amplitude an advective
breaking of the concentration wave triggers a very fast flow-induced transition from standing to traveling wave
convection with large phase velocity and large concentration field amplitudes. Strongly nonlinear advective
mixing and weak long-time diffusive homogenization then slow down the waves.
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I. INTRODUCTION

The growth of convection in a shallow layer of room tem
perature water heated from below changes significantl
one adds, say, 5% of alcohol. In pure water there is the w
known smooth~second-order! transition associated with
nonhysteretic forwards bifurcation from the quiescent flu
to stationary, weakly nonlinear convective rolls that are clo
to the convective onset just a mild perturbation of the qui
cent conductive basic state@1,2#. In the aforementioned bi
nary mixture, however, the transition is precipitous~of first
order! and, more important, it shows much more dynami
as well as structural complexity. It is associated with a h
teretic backwards bifurcation at an increased heating rate
a large-amplitude, strongly nonlinear oscillatory structure
rolls that either travel to the left or to the right relative
their axes. Moreover, there is a dramatic redistribution
alcohol during this transition that is the key to understand
the convective properties in such a mixture.

It is the concentration field that is responsible for the
crease in complexity of binary mixture convection compa
to pure fluids and that causes the different spatiotemp
properties of the convective structures, of the bifurcation
havior, and of the transient growth of convection. In t
above mentioned example mixture the concentration fiel
strongly @3# coupled to the temperature field by the So
effect that causes concentration gradients and currents in
ear response to temperature gradients. These Soret gene
concentration variations influence the buoyancy, i.e.,
driving force for convective flow. The latter in turn adve
tively redistributes concentration and mixes the two com
nents thereby evening out concentration variations. This n
linear advective mixing gets in developed convective fl
typically much larger than the smoothening by linear diff
sion. Thus, the concentration balance is strongly nonlin
giving rise to boundary layer behavior, among others, wh
the momentum and heat balances remain weakly nonlin

*Present address: Institut Curie PCC, 11 rue P. et M. Cu
F-75005 Paris, France
1063-651X/2002/65~3!/036315~18!/$20.00 65 0363
if
ll

e
-

l
-
to
f

f
g

-
d
al
-

is
t
in-
ated
e

-
n-

ar
e
ar

close to onset as in pure fluids. To summarize, the feedb
interplay between~i! the Soret generated concentration var
tions that are sustained against mixing and diffusion by
ternally imposed and internal temperature gradients,~ii ! the
resulting changes in the buoyancy,~iii ! the strongly nonlinear
advective transport and mixing, and~iv! the smoothening
dissipative solutal diffusion causes the larger spatiotemp
complexity of binary mixture convection.

The latter has been the subject of many studies@4#. Being
too numerous to be discussed here we pick out some of th
that address the special role of the concentration field.
buoyancy difference in regions with different concentratio
was identified already in Ref.@5# as the cause for traveling
wave ~TW! convection. With increasing heating, i.e., wit
increasing flow the mixing increases and the concentra
variations decrease. This causes a characteristic decrea
the TW frequencyv. Measurements of the variation ofv
with Rayleigh number were shown@6,7# to agree with nu-
merical calculations@8#. The concentration-boundary-laye
model of Bensimonet al. @9# showed the same characterist
decrease ofv near the end of the TW bifurcation branch. F
large flow concentration becomes trapped in regions
closed streamlines where it gets diffusively homogeniz
@8,10# like a weakly diffusing passive scalar for large Pe´clet
numbers@11#. This effect is one part of the explanatio
@10,12,13# that the lateral concentration profile of a TW
trapezoidal with constant, i.e., diffusively smoothened p
teaus in the central roll regions and linear variation betwe
adjacent rolls. Since the latter are fed alternatingly by the
and bottom boundary layers containing concentration at
ferent levels@10,12,13# the aforementioned plateaus are
alternatingly high and low concentration levels. The
co5ncentration variations modify the refractive index of t
mixture and thus cause characteristic variations of shad
graph images. Comparing topview images of TW states@14#
with numerical results@15# allowed to identify the character
istic contribution from the concentration field. This seems
have been the first time that structural properties of the c
centration field—albeit vertically averaged—in binary flu
convection have been observed experimentally. Sub
quently, Winkler and Kolodner@16# extracted more direc
information

e,
©2002 The American Physical Society15-1
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C. FÜTTERER AND M. LÜCKE PHYSICAL REVIEW E65 036315
on the lateral structure of the concentration distribution
TWs from sideview shadowgraph images obtaining go
agreement with numerical results@15#.

The time series of sideview shadowgraph images sho
in Ref. @16# after increasing the Rayleigh number beyond
convective threshold gave also information about the tr
sient spatiotemporal evolution of the concentration field
growing convection and, in particular, about the formation
boundary layers. Also the Lagrangian dynamics of advec
and diffusion of passive fluorescent dye particles that w
photochromically marked in a small spatial region of exp
nentially growing linear TWs and of nonlinear relaxed TW
was visualized@17#. Besides that there have been many e
perimental investigations of transient convection phenom
@7,18–26#. But, unfortunately, the resolutions of the topvie
shadowgraphs were not layed out to measure also the
centration dynamics during the transient growth processe
weakly nonlinear TWs and of linear TW packets@18#, of
weakly nonlinear counterpropagating TWs@19# that are re-
flected from endwalls of rectangular channels, of ‘‘blinkin
states’’ @19,22# with TW amplitude becoming alternatingl
large at the sidewalls before being reflected with redu
amplitude, of the ‘‘dispersive chaos’’@24# produced by er-
ratic burst and decay of TW pulses, and of TW patches
large cylindrical@23,25# or otherwise shaped containers@26#.

On the other hand, numerical simulations@10,27–31#
gave indications that the concentration field is spatiotem
rally quite complex and plays a decisive role in the~transient
growth! behavior of convection. This has to be contras
with weakly nonlinear analytical analyses in the framewo
of amplitude equations@32,33#. Therein the concentration
field is enforced by the construction of this approximation
show the same spatiotemporal behavior as those of velo
and temperature since all of them are described on e
footing by just one common amplitude of a laterally a
temporally harmonic wave@34#.

In this paper we elucidate that the transient growth
binary mixture convection implies a dramatic concentrat
redistribution that causes a very special change in the
tiotemporal behavior. Stepping up the heating across
critical threshold one finds initially the conductive state
horizontal concentration stratification with a large Soret g
erated vertical gradient. Generic perturbations of this s
trigger then growth of the two critical TW modes. Their am
plitudes being typically of roughly the same size these lin
counterpropagating TWs superimpose to a standing w
~SW! that oscillates with the large Hopf frequencyvH while
growing in amplitude. Reaching a critical amplitude the co
centration wave topples and breaks in a very fast advec
driven process. The crests and troughs get rolled in and
SW is transformed advectively into a pure, large-amplitu
TW. The latter has initially a lateral concentration contra
that is almost as large as the vertical one of the conduc
state and consequently its frequencyv is still almost as large
as vH . But then diffusive homogenization causes a lon
time smoothening and decrease of TW frequency and a s
relaxation into a final, well mixed, low-frequency, strong
nonlinear TW.

We provide a detailed numerical investigation of this a
03631
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other related transition scenarios using various analysis to
Calculations are done in a~2D! two-dimensional vertical
cross section of the fluid layer with laterally periodic boun
ary conditions. The periodicity length of twice the lay
thickness is close to the critical wavelength of roll perturb
tions and also close to typical~local! values observed in con
vection experiments. However, imposing the periodic
length of one wavelength precludes some of the instabili
of large systems and the complex spatial structures foun
3D experimental setups@25,31,35–37#.

Our paper is organized as follows: In Sec. II we descr
the system and in Sec. III we give a brief summary of t
properties of nonlinear, fully relaxed TW convection befo
presenting in Sec. IV our results on the transient growth
of different types of perturbations of the quiescent cond
tive state. The last section contains a summary of the m
results.

II. SYSTEM

We consider a binary fluid layer of mean temperatureT̄

and mean concentrationC̄ of the lighter component~e.g.,
ethanol!. It is confined between two perfectly heat condu
ing, impervious, horizontal plates and exposed to a vert
gravitational accelerationg and to a vertical temperature gra
dient DT/d directed from top to bottom whered is the layer
thickness. The variation of the fluid densityr due to tem-
perature and concentration variations is governed by
linear thermal and solutal expansion coefficien
a52(1/r)(]r/]T̄) and b52(1/r)(]r/]C̄), respectively.
Both are positive for ethanol water. The solutal diffusivity
the binary mixture isD, its thermal diffusivity isk, and its
viscosity isn. The thermodiffusion coefficientkT @38# quan-
tifies the Soret coupling that describes the change of con
tration fluctuations due to temperature gradients in the flu

The vertical thermal diffusion time is used as the tim
scaled2/k of the system and all velocities are scaled byk/d.
Temperatures are reduced by the vertical temperature di
enceDT across the layer and concentration deviations fr
the mean concentration by (a/b)DT. The scale for the pres
sure is given by (rk2/d2). Then, the balance equations fo
mass, momentum, heat, and concentration@38,39# read in
Oberbeck–Boussinesq approximation@13#,

052“•u, ~2.1a!

] tu52~u•“!u2“F p1S d3

k2
gD zG1s¹2u1Rs~T1C!ez ,

~2.1b!

] tT52“•Q52“•@uT2“T#, ~2.1c!

] tC52“•J52“•@uC2L“~C2cT!#. ~2.1d!

Here,T andC denote deviations of the temperature and co
centration fields, respectively, from their global mean valu
T̄ andC̄ andQ andJ are the associated currents. The Dufo
effect @40,41# that provides a coupling of concentration gr
5-2
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GROWTH OF BINARY FLUID CONVECTION: ROLE . . . PHYSICAL REVIEW E 65 036315
dients into the heat currentQ and a change of the therma
diffusivity is discarded in Eq.~2.1c! since it is relevant only
in few binary gas mixtures@42# and possibly in liquids nea
the liquid–vapor critical point@43#.

Besides the Rayleigh numberR5(agd3/nk)DT measur-
ing the thermal driving of the fluid three additional numbe
enter into the field equations~2.1!: the Prandtl numbers
5n/k, the Lewis numberL5D/k, and the separation rati
c52(b/a)(kT /T̄). The latter characterizes the sign and t
strength of the Soret effect. Negative Soret couplingc, as is
always assumed here, induces concentration gradients o
lighter component that are antiparallel to temperature gr
ents. In this situation, the buoyancy induced by solu
changes in density is opposed to the thermal buoya
Throughout this paper we consider mixtures withL50.01,
s510, andc520.25 being parameters that are easily a
cessible with ethanol-water experiments.

When the total buoyancy exceeds a threshold, convec
sets in—typically in the form of straight rolls for negativec.
Ignoring field variations along the roll axes we describe h
2D convection in anx-z plane perpendicular to the roll axe
with a velocity field,

u~x,z,t !5u~x,z,t !ex1w~x,z,t !ez . ~2.2!

This 2D type of convection is commonly enforced expe
mentally in convection channels of small extension iny di-
rection since the rolls are oriented preferentially perpend
lar to the channel walls@2#.

To find the time-dependent solutions of the partial diffe
ential equations~2.1! describing convection we performe
numerical simulations with a modification of theSOLA code
that is based on theMAC method@44,45#. This is a finite-
difference method of second order in space formulated
staggered grids for the different fields. An explicit first-ord
Euler step in time was used and the Poisson equation fo
pressure field that results from taking the divergence
~2.1b! was solved iteratively using the artificial viscosi
method@45#. The boundary conditions for the fields were
follows: we used realistic no slip conditions for the top a
bottom plates atz561/2, i.e.,

u~x,z561/2;t !50, ~2.3a!

and we assumed perfect heat conducting plates connect
two heat reservoirs,

T~x,z561/2;t !571/2. ~2.3b!

Furthermore, impermeability of the horizontal boundaries
the concentration was guaranteed by enforcing the ver
concentration currentez•J to vanish at both plates,

ez•J52L]z~C2cT!~x,z561/2;t !50. ~2.3c!

Restricting our investigation to spatially periodicextended
convection structures we imposed lateral perodicity inx di-
rection of periodicity lengthl52p/k52. The associated
wave numberk5p is typically seen in convection exper
03631
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ments done in narrow channels and, furthermore, it is cl
to the critical wave number for the negative Soret coupl
investigated here.

To measure the strength of the thermal driving we use
reduced Rayleigh numberr 5R/Rc

0 that is scaled by the criti-
cal Rayleigh numberRc

0 for onset of pure-fluid convection
with the critical wave numberkc

0 . The analytical values are
Rc

051707.762 andkc
053.116 32. However, to compare ou

finite differences numerical results presented in this pa
with experimental, analytical, or numerical ones we scaleR
by the thresholdRc

0 of our numerical code. The latter wa
generally run with uniform spatial resolution ofD51/20 for
which Rc

051685.8@46#. Test runs withD51/40 showed no
relevant differences of the transient dynamics.

In order to characterize the temporal evolution of conv
tion we made extensive lateral Fourier analyses of the ve
ity, temperature, and concentration fields and we determi
various spatial profiles of these fields. In addition topvie
shadowgraph intensity distributions—as they would be s
in experiments—were evaluated from the temperature
concentration fields. Furthermore, we monitored the evo
tion of the spatial maximum of the vertical velocity fiel
wmax, of the oscillation frequency, and of the reduced va
ance

M5A^C2&/^Ccond
2 & ~2.4!

of the concentration field. Note that 0<M<1 measures to
which extent the binary fluid is mixed. The better it is mixe
the smaller is the spatial mean^C2& of the square of the
concentration deviationC from its mean. The boundary con
dition, however, sustains always small Soret-induced c
centration gradients against the action of advection and
fusion and preventsM from vanishing completely. On the
other hand, in the conductive state~denoted by the subscrip
‘‘cond’’ ! with a Soret-induced vertical concentration strati
cation given byCcond(z)52cz, there is no advective mix-
ing. Its concentration variance,^Ccond

2 &5c2/12, is largest
yielding M cond51 and at the cold top~warm bottom! plate
there is a surplus~deficiency! of magnitude 0.125~20.125!
whenc520.25 as in our case.

III. RELAXED TW CONVECTION

In this section we briefly review properties of the TW an
of the stationary overturning convection~SOC! state that are
discussed at length in the literature, see, e.g.,@13,10,47#. To
that end we show in Fig. 1 with thick lines the bifurcatio
diagrams of maximal vertical flow velocitywmax, TW fre-
quencyv, and mixing numberM vs reduced Rayleigh num
ber r.

A pair of symmetry degenerate left and right travelin
convection wave solutions with wave numberk5p branch
at r osc51.337 out of the conductive state. At this Rayleig
number the system shows a subcritical Hopf bifurcation w
a Hopf frequencyvH(k5p,r osc)511.233. Here two facts
are worth mentioning:~i! the bifurcation threshold and the
5-3
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C. FÜTTERER AND M. LÜCKE PHYSICAL REVIEW E65 036315
frequency are practically the same as for waves with
critical wave numberkc53.1350 and~ii ! TWs with wave-
length l.2 are often observed in large-scale experimen
setups.

The TW solutions in Fig. 1 become stable at the sad
r TW

s 51.213 and they end for the selected parameters ar *
51.65 by merging with vanishing frequency with the SO
solution branch. This point, namelyr * , marks the location of
a drift instability of the SOC solution: forr ,r * stationary
rolls start to propagate and evolve into a TW solution wh
for r .r * the SOC solution is stable. When the Soret co
pling c becomes more negativer * increases and eventuall
seems to diverge so that then the SOC solution remains
stable@13,48#.

FIG. 1. Bifurcation diagrams of maximal vertical flow velocit
wmax ~a!, TW frequencyv ~b!, and mixing numberM ~c! vs r for
relaxed nonlinear convective states with wavelengthl52. Param-
eters areL50.01,s510,c520.25. Full ~dashed! thick lines refer
to stable~unstable! states. The TW solution bifurcates subcritical
with the Hopf frequencyvH at r osc out of the conductive state
becomes stable at the saddler TW

s , and ends with zero frequency a
r * on the SOC branch. The dash-dotted line in~a! refers to station-
ary convection in pure fluids (c50). Vertical arrows indicate the
time evolution ofwmax, v, and M after perturbing the quiescen
conductive state. All quantities are reduced ones~cf. Sec. II!.
03631
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A. Generation, advective mixing, and diffusion
of concentration fluctuations

As the convective flow velocitywmax increases along the
TW solution branch~Fig. 1! the TW frequencyv and the
phase velocityv5v/k, respectively, decrease monotonica
from the large Hopf value all the way to zero since wi
stronger convection the Soret generated concentration g
ents become advectively reduced. Thus, there is a strong
respondence between mixing numberM and TW frequency
v @10,48#. In particular, on the stable part~full lines in Fig.
1! of the TW solution branch the binary fluid gets with in
creasingwmax and thermal drivingr more and more mixed a
M reduces almost to zero. Since the well mixed SOC s
resembles closely the corresponding stationary state in
pure fluid with the sames the bifurcation diagrams of, say
wmax or of the Nusselt number in binary mixtures hard
differ at large r from the c50 solution in the pure fluid
@dash-dotted line in Fig. 1~a!#.

The transition to convection atr osc is hysteretic, i.e., of
first order with the Soret coupling coefficientc520.25 be-
ing sufficiently negative. The associated precipitous grow
of convection is related to an interplay between the So
induced solutal contribution to the buoyancy@10,13# that
tends to stabilize the conductive state and the effect of
vective mixing. The latter enhances convection by reduc
the adverse effect of the Soret generated concentration v
tions. The ‘‘S’’-shaped deformation of the unstable pa
~dashed lines in Fig. 1! of the TW bifurcation branches oc
curs when the advection velocitywmax has grown to become
equal to the TW phase velocity,v5v/p. Then the first
closed streamlines appear@47# in the frame of reference tha
is comoving with the TW phase velocity and in which th
TW solution is time independent. Forwmax,uvu, i.e., closer
to the thresholdr osc all streamlines are open. The conditio
wmax.uvu marks also the threshold beyond which a straig
forward small-amplitude expansion around the convect
onset breaks down@48#. In addition we found that the ge
neric transient growthdynamics of oscillatory convection
~consisting initially of oppositely traveling waves of rough
equal velocity amplitudesuARu.uALu) undergoes a dramati
change that cannot be described at all within an amplit
equation picture when the amplitudesuAR,Lu approachv/p.

For 0,uvu,wmax the open streamlines of relaxed TW
meander between and around the roll-like regions of clo
streamlines~in SOC withv50 the only open streamlines ar
the vertical separation lines between the rolls!. In a right-
propagating TW the regions of closed streamlines for
right ~left! turning fluid domains are rich~poor! in the lighter
component—here ethanol—and they are displaced tow
the upper cold~lower warm! plate, where the Soret effect ha
caused a boundary layer with alcohol surplus~deficiency!.
The open streamlines are such that the top~bottom! bound-
ary layer feeds high~low! concentration only into the righ
~left! turning roll domain at the location of downflow~up-
flow!. Within the regions of closed streamlines the fluid
trapped and diffusively homogenized leading to anharmo
concentration wave profiles of trapezoidal shape. With
creasing wmax and decreasinguvu the regions of closed
5-4



e
he
th
s

th

y
g
G

tr
ry
e

io
al
as
-
on

i

si
de
e
h
th

e
e
e

g
ap

n
te

r o
e

ed

o
ro
he
e

n-
D
n

ior
pa-
of

w

he
and
ps
lly
dis-

l
ses
out

of
the

ity
ter

t

GROWTH OF BINARY FLUID CONVECTION: ROLE . . . PHYSICAL REVIEW E 65 036315
streamlines grow, the asymmetry of the boundary layer fe
ing into oppositely turning rolls decreases and with it t
concentration contrast between adjacent TW rolls until in
SOC state withv50 mirror symmetry between the rolls i
established.

B. Mirror-glide symmetry

All TWs and SOCs discussed in this paper show
mirror-glide ~MG! symmetry@8#,

F~x,z;t !52F~x1l/2,2z;t !, ~3.1!

with F(x,z;t) denotingf, T, or C. Here f is the stream
function defined byu(x,z,t)5(2]zf,0,]xf). We should
like to stress that also all transients investigated here obe
the MG symmetry with the exception of the very early sta
in cases where the imposed initial conditions were not M
symmetric. But even in such a situation the MG symme
was rapidly restored by a fast decay of MG symmet
breaking modes. Also the transient growth seen in the exp
ments in an annular geometry by Winkler and Kolodner@16#
was locally MG symmetric. A time-dependent generalizat
of this symmetry was found to be realized in spatially loc
ized TW states@49# and an extension to 3D patterns w
observed in Ref.@50#. Furthermore, MG symmetric convec
tive structures were not only observed in Soret driven c
vection with only temperature gradients imposed but also
thermosolutal convection@51#.

Thus, the MG symmetry that is displayed by the ba
conductive state and the linear critical convective mo
seems to be quite robust and persistent also in nonlin
convective structures of pure fluids and of mixtures. T
robustness of this symmetry is remarkable given that
nonlinearity in the concentration balance, i.e., the Pe´clet
numberw/L is quite large—of the order of 1000. So on
might already expect a bifurcation that involves undamp
MG symmetry-breaking concentration modes being driv
nonlinearly by interactions with MG symmetric modes@52#.
However, the concentration field is ‘‘tamed’’ by bein
coupled to the velocity and temperature fields. Their sh
remains mostly harmonic in the investigatedr range of small
supercritical thermal driving such as in pure fluid convectio
And thus the increase in structural complexity associa
with a MG symmetry breaking does not occur.

IV. TRANSIENT GROWTH

In this section we elucidate the spatiotemporal behavio
the transition from the quiescent ground state being p
turbed by different types of perturbations to fully relax
nonlinear convection.

A. Generic transition behavior; an overview

We start from the ground state atr ,r osc, disturb
it slightly by adding random numbers in the range
@21024,1024#, and simultaneously increase the cont
parameter tor 51.42 that is 6% above threshold. Unless t
initial perturbation is chosen to be very specific one th
03631
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observes ageneric transition scenario. The specific depe
dence on initial conditions is discussed later on in Sec. IV
including special cases where, e.g., the initial perturbatio
consistspreciselyof a critical TW mode or of two different
ones with equal amplitudes. The generic growth behav
successively displays evolution phases with different s
tiotemporal character. Figures 2 and 3 give an overview
this growth scenario.

In Fig. 2 we show the time evolution of the topvie
shadowgraph intensity@53,14#,

I ~x,t !;]x
2E

21/2

1/2

dz@T~x,z,t !20.919C~x,z,t !# ~4.1!

as it would be observed in experiments. It is given by t
weighted sum of the lateral curvatures of the temperature
of the concentration field. Thus, when the latter develo
strong nonharmonic lateral variations with large, spatia
confined curvatures then the gray-scale coded intensity
tribution in Fig. 2 becomes spiky.

The middle part~b! of this figure covering 20 vertica
thermal diffusion times displays the three evolution pha
that we have found to be generic for convective growth
of small unspecific perturbations:~i! an exponentially grow-
ing SW of high frequency over a time interval the length
which depends on the size of the initial perturbations of

FIG. 2. Time evolution of the topview shadowgraph intens
~4.1! along a line extending laterally over one wavelength af
perturbing the quiescent conductive state. The middle part~b! cov-
ers the time interval~0, 20! with white tics at the left ordinate of~b!
marking one time unit. The left part~a! shows a blow up of the
initial time interval ~0, 2! of ~b! with SW dynamics. The right par
~c! shows a blow up of the interval~8, 11! of ~b! where the SW
transforms into a left-propagating TW. Beyondt.11 this TW slows
down. Parameters areL50.01, s510, c520.25, r 51.42, and
l52.
5-5



ity two
with blue
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FIG. 3. ~Color! Snapshots of the evolution of convection after perturbing the quiescent conductive state. For better visibil
wavelengths are shown. The concentration distribution in a vertical cross section of the fluid layer is displayed by color coded plots
and red denoting high and low concentration, respectively. Wave profiles at midheight are shown for the fields of vertical velocityw ~thin
lines!, 40T ~lines with triangles!, and 400C ~lines with squares!. The final TW propagates to the left. All quantities are reduced ones~cf. Sec.
II !. Parameters areL50.01, s510, c520.25, r 51.42, andl52.
ys
a

ng

W

-
all-
d of
conductive state,~ii ! an intermediate phase that is alwa
very short with a spatiotemporally complicated transform
tion from SW into a high-frequency TW that is propagati
to the left in Figs. 2~b! and 3, and finally~iii ! a long-term TW
transient to a low-frequency, strongly nonlinear, relaxed T
03631
-
state~head of the vertical arrows in Fig. 1!.

Figure 2~a! shows a magnification of the first two diffu
sion times after perturbing the conductive state with sm
amplitude noise. The latter contains besides a narrow ban
growing modes with wave numberk5p and near-criticalz
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dependence also a multitude of other modes that have la
k and/or noncriticalz dependence and that decay under
linear initial dynamics. The surviving and exponential
growing modesgenerically superimpose to form a SW—
which can be seen in Fig. 2~a! already at timet.1/4—since
generic initial perturbations contain the critical eigenmod
of left- and right-propagating TWs with roughly equal am
plitude. Thus, this SW shows initially the very smooth, la
erally harmonic variation of the critical modes.

In Fig. 2~c! the intermediate interaction phase~ii ! is
shown in detail during the time interval 8,t,11. At the
beginning of this interval@bottom of Fig. 2~c!# the concen-
tration field has already developed a sizeable lateral an
monicity that subsequently becomes increasingly stronge
sulting in a shadowgraph intensity distribution becomi
sharper@cf. the time evolution of the stripes in Fig. 2~b! and
~c!#. At t.10.5 the convection pattern almost instantly sta
to propagate to the left. However, there is also transient
tion of some stuctural details to the right to be seen in F
2~c! for a short time interval. This backwards motion is r
lated to the toppling and breaking of the concentration w
that occurs during the SW→TW transition and that is de
scribed in more detail in Sec. IV C. The lateral variation
the shadowgraph intensity of this TW is to an ever increas
extent dominated by the growth in anharmonicity of the co
centration wave profile whereas the temperature wave
mains harmonic@16#. Hence the TW stripes in the top part o
Fig. 2~b! become concentration field dominated and, the
fore, sharper. Note that simultaneously their slope increa
in the space-time plot of Fig. 2~b! indicating that the TW
slows down.

The spatiotemporal evolution of the various fields can
seen in more detail in Fig. 3. Therein we show sidevi
snapshots of the full concentration field—being the most
portant one for understanding the transient grow
behavior—in a vertical cross section of the fluid layer
gether with lateral wave profiles of all fields at midheight
the layer. The selected four snapshot timest56.3, 10.3, 11.3,
and 100 are characteristic for the different evolutiona
phases.

At t56.3 each of the convective fieldsF5w,C,T still has
the formF.cos(v0t1wF)cos(kx) of an exponentially grow-
ing linear SW being mirror symmetric underx→2x. The
oscillation frequencyv0.11.51 is still very close to the fas
Hopf frequency that follows from a linear stability analys
of the conductive state fork5p at r 51.42. Thespatial lo-
cation of the nodes of these three fields coincide and lie
vertical straight lines in a genuine linear SW. However,
temporal phaseswF(z) of the critical SW fields vary withz
and, moreover, are different forw,C,T. Thus, in a linear SW
these fields pass through zero at different times dependin
z @32#. At midheight of the layer one haswC2ww.p/2 and
wT2ww.20.17p @54# for the parameters of Fig. 3.

To discuss the transition from the SW to the TW we d
compose the linear spatiotemporal structure of the ini
growth phase~i! as a superposition of two counterpropag
ing TWs,
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F~x,z,t !;~11h!TWR~x,z,t !1~12h!TWL~x,z,t !.
~4.2!

Here TWR and TWL represent the critical modes for a TW
propagating to the right and left, respectively, being mir
images of each other underx→2x. The asymmetry factor

h5
uARu2uALu
uARu1uALu

~4.3!

in Eq. ~4.2! is defined in terms of the amplitudesAR andAL
of the right and left propagating waves, respectively, su
that h50 denotes a perfectly mirror-symmetric SW andh
561 pure TWs. In fact att56.3 we foundh.20.01 so
that the SW is not a pure one, but the resulting asymmetr
hardly visible.

By the time t510.3 the concentration wave has becom
nonlinear with a deformed lateral profile while velocity an
temperature waves remain practically harmonic. Howev
the profiles show now large spatial phase shifts between
fields. Here theC wave is undergoing a complicated tran
formation ~cf. Secs. IV B and IV C for more details! to a
TW. The transformation is triggered by a wave breaking a
wave toppling process of the crests and troughs of the c
centration wave whereas the waves ofw and T do not un-
dergo substantial structural changes. In this process thex→
2x mirror symmetry of the SW gets visibly broken while th
MG symmetry~3.1! remains intact throughout this compl
cated transformation.

In the short interval of one diffusion time to the ne
snapshot of Fig. 3 att511.3 the transformation from a high
frequency SW to a high-frequency TW with largeC wave
amplitudes takes place: the wave crests~troughs! with high
~low! content of the lighter component bend and topple
Fig. 3 to the right and are advectively ‘‘rolled in’’ in the
breaking process of theC wave. They thereby form plateau
like regions of alternatingly high and low concentration
the resulting propagatingC-wave. The contrast between th
plateaus is att511.3 almost as large as the initial vertic
conductive concentration difference between top and bot
of the fluid layer. This initially large vertical concentratio
stratification is almost preserved up to this time during
relative short SW transient. Therein the horizontal isoco
centration lines of the conductive state are only swinging
and down with growing amplitude. But then, when the S
amplitude reaches a critical size the wave breaks and the
the isoconcentration lines are rolled in. This critical size
reached when the velocity field amplitudes,uARu anduALu, of
the two TW contributions to the SW have grown roughly
about the phase velocityv5v/p. Note that for ‘‘stationary’’
TW solutions the condition of equal flow and phase veloc
marks the appearence of~i! closed streamlines in the comov
ing frame of reference and~ii ! of significant nonlinearities as
discussed in Sec. III A.

In a sense the vertical concentration contrast of the c
ductive state has transformed att511.3 into a lateral one
that forms just after the breaking process. With the late
concentration difference between adjacent roll-like regio
still being very large also the frequency of this TW is n
5-7
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C. FÜTTERER AND M. LÜCKE PHYSICAL REVIEW E65 036315
much smaller thanv0. The phase differencewC2ww is still
aboutp/2 as in the initial SW. However, while being pure
temporal in the SW it now implies in the TW also aspatial
shift of aboutl/4 between the nodes of the travelingC andw
waves.

On the long-time scale up to the last snapshot in Fig. 3
t 5 100 the large lateral and vertical concentration contra
of the TW at t511.3 are degraded diffusively: the spati
extension of the plateaus over whichC is constant at the two
alternating high and low levels increases, the plateau he
decreases, the width of boundary layers between these
teaus shrinks, and the surplus of the lighter~heavier! compo-
nent in the cold top~warm bottom! part of the fluid layer
decreases thus reducing the overall vertical concentra
difference between top and bottom. Note that in Fig. 3
colors blue and red that represent surplus and deficie
respectively, of the lighter component, e.g., alcohol, ha
practically disappeared in the final TW plot att5100 and the
color green representing the mean concentration prev
This long-time degradation of concentration gradients is
flected by a reduction of the mixing numberM @Eq. ~2.4!#
and with it of the frequencyv by a factor of 10 relative to
the initial values. Associated with the decrease inv is also a
decrease in the phase shift between the velocity and the
perature waves@55#. In the relaxed final state TW the fluid i
well mixed andM andv are small but still finite.

This slowly propagating TW develops small concent
tion spikes in the lateral wave profile that precede its plat
regions. The spikes are caused by concentration plumes
alternatingly emanate from the horizontal boundary laye
In these plumes or jets high~low! concentration fluid is ad-
vectively transported downwards~upwards! from the top
~bottom! boundary layer into the regions of left~right! turn-
ing rolls in a TW that is propagating to the left. Within th
rolls—or, more precisely, within the regions of close
streamlines in a frame that is comoving with the TW—t
plumes advectively spiral inwards and simultaneously
diffusively smoothed out and degraded@13,10,47#.

B. Dynamics in Fourier space

To elucidate the spatiotemporal complexity of the tra
sient growth behavior we have also studied lateral Fou
decompositions of all fields at several vertical positio
Here we restrict our discussion to the midheight positionz
50. The behavior of the fields there is representative for
otherz, as can also be seen in Fig. 3. A further reduction
the description results from the fact that often the first mo
F1(t) of the lateral Fourier decomposition atz50,

F~x,t !5F0~ t !1ReF (
n51

`

Fn~ t !einkxG , ~4.4!

being the largest one suffices to characterize the evolut
For example, the initial linear growth dynamics can be d
scribed by the superposition,

F1~ t !.AL~ t !e2 ivLt1AR~ t !e2 ivRt, ~4.5!
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of a left and right propagating wave with amplitude mod
uAL,Ru}egt that grow with a common exponential rateg. The
latter and the oscillation frequenciesvR52vL5v0 are ini-
tially given by the two complex conjugate eigenvalues th
result from a linear stability analysis of the conductive st
performed fork5p at the slightly supercritical Rayleigh
numberr 51.42 @29#.

In Fig. 4~a! we show the time dependence of the modu
uw1(t)u of the first lateral Fourier mode of the vertical velo
ity field together with the trajectory ofw1 in the complex
plane~inset of Fig. 4!. The time evolution ofT1(t) is very
similar to the one ofw1(t) and is, therefore, not shown her
Initially, one has uALu.uARu, i.e., h.0 so that w1(t)
}egt cos(vt) oscillates with growing amplitude along
straight line through the origin in the inset of Fig. 4. Thu
the modulusuw1(t)u becomes periodically very small — onl
whenuALu5uARu, i.e., whenh50 doesuw1(t)u exactlytouch
zero. During this initial phase we have essentially SW d
namics, w(x,t)}egt cos(vt)cos(kx). However, with uALu

FIG. 4. ~a!,~b! Time evolution of lateral Fourier modes in th
decomposition~4.4! of the fields at midheight of the fluid layer. Th
modulusuw1(t)u of the first mode of the vertical velocity field re
duced by its final TW valueuw1

`u is shown in~a!. The inset shows
the trajectory ofw1(t) in the complex mode plane. In~b! we show
uC1(t)/C1

`u and uC3(t)/C1
`u. In ~c! we show the frequencyv(t)

reduced by the initialv0, the mixing numberM (t) @Eq. ~2.4!#, and
the lateral averageC0(z50.5,t) of the concentration field at the
upper plate reduced by its initial valueCcond(z50.5)50.125 in the
conductive state. The flow amplitudesuAR,Lu of the two TWs of
which the original SW is composed reach the respective phase
locites6v/k ~cf. Sec. IV E! roughly at the time 10. Parameters a
L50.01, s510, c520.25, r 51.42, andl52.
5-8
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FIG. 5. ~Color! Snapshots of the concentra
tion redistribution in the SW→TW transforma-
tion. The concentration distribution in a vertica
cross section of the fluid layer is displayed fo
one wavelength by color coded plots~with blue
and red denoting high and low concentration, r
spectively! and by full isoconcentration lines~for
C.0). Dashed lines are streamlines, i.e., ta
gents to the instantaneous velocity field. See t
for a discussion of the plots~a!–~j!. The final TW
~j! propagates to the left. Parameters areL
50.01, s510, c520.25, r 51.42, andl52.
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ÞuARu the complex mode vectorw1 really traces out from the
beginning on an ellipse in the inset of Fig. 4, albeit a narr
one. The associated phase winding behavior causes the
tern to be translated.

Then, the complex mode vectorw1 traces out a trajectory
in the complex plane of the inset of Fig. 4 that becomes m
and more circular. This behavior starts at aboutt510 and
reflects the fact thatuALu continues to grow whileuARu starts
to decrease during the SW→TW transformation phase
Therein the nonlinear interaction between the two coun
propagating TWs that the original SW is made of causes
initially larger amplitudeuALu to win the competition that is
well known from coupled complex amplitude equations@2#.
As a result the elliptic spiral in Fig. 4 transforms into a
outwards moving circular spiral and the minima ofuw1(t)u
are no longer small but grow. After timet.11 we haveAR
.0 and a pure TW: the complex mode vectorw1(t)
5uw1(t)ueiw1(t) is spiralling outwards with slowly growing
radius uw1(t)u and slowly decreasing rotation ratev(t)
5ẇ1(t)52vL(t) that is shown in Fig. 4~c!.

The most conspicuous difference between the behavio
w1 ,T1 on the one hand and ofC1 on the other hand is the
enormous overshooting ofuC1u in Fig. 4~b! by about of fac-
tor of 10 relative to the final TW value ofuC1

`u during the
03631
at-

re

r-
e

of

interaction and transformation phase aroundt510. In con-
trast to this behavior the SW→TW transformation forw and
T is rather smooth and unspectacular with a monotonou
growing amplitude of the left propagatingw- and T wave.
For the concentration wave, however, the SW→TW trans-
formation is triggered by a breaking and toppling of the S
that is also accompanied by a strong growth of anharmo
ity of the wave, i.e., of higher lateral Fourier modes ofC –
see, e.g., the dotted curve foruC3(t)/C1

`u in Fig. 4~b!. In the
toppling and breaking concentration wave the coherence
tween the lateral Fourier modes ofC is lost thus reflecting
the complex, irregular redistribution~cf. Sec. IV C! that
takes place in the short time interval of the SW→TW trans-
formation. Thereafter a slow, long-time diffusive concent
tion relaxation takes place. This can be seen not only in F
4~b! but also in Fig. 4~c!. There we show the mixing numbe
M (t) ~2.4!, i.e., the concentration variance, the frequen
v(t), and the laterally averaged concentration at the up
plate C0(z50.5,t), i.e., half of the total mean vertical con
centration difference across the fluid layer. All these glo
characteristica of the concentration field — the comm
shape of the curves ofv, M, and C0(z50.5) in Fig. 4~c!
reflect the fact that these quantities are strongly tied toge
@10# also in transient processes — show a sharp drop at
end of the SW→TW interval.
5-9
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C. FÜTTERER AND M. LÜCKE PHYSICAL REVIEW E65 036315
C. SW\TW transformation

The SW→TW transformation amounts to a complex co
centration redistribution that involves wave breaking an
competition phase where one of the TWs, of which origina
the SW is composed, survives on cost of the other w
nonlinear advection becomes sufficiently strong. The tra
formation being quite abrupt displays rather complex dyna
ics that is elucidated in more detail in this section. To th
end we show in Fig. 5 a sequence of color coded sidevie
snapshots of the concentration distribution in the layer an
the instantaneous streamlines~dashed lines!.

1. Concentration redistribution

Initially, at time t55 in Fig. 5~a!, we see the SW as it is
typically found in the exponential growth phase. The dash
streamlines giving instantaneous tangential flow directi
show how alcohol is transported upwards and downwards
the SW flow that reverts periodically its direction. The ve
tical concentration gradient is as large as that of the quies
conductive state. The lateral one is still small so that here
lateral SW profile is still harmonic. Att59 @Fig. 5~b!#, how-
ever, the flow amplitude of the SW oscillation has alrea
become so large that the upwards and downwards bul
concentration plumes reach the opposite top and bot
boundary, respectively. Beyond the midplane the streaml
diverge sideways, thereby widening the concentration w
and making it anharmonic. Advective nonlinearities have
now become sufficiently strong to amplify the mirro
symmetry-breaking differences between the original, le
and right-propagating TW constituents of the SW to a le
such that they are clearly visible~in Sec. IV D we show that
perfectlymirror-symmetric initial conditions evolve intoper-
fect SW transients that under otherwise ideal conditions
not lose their mirror symmetry and that end up in an u
stable, mirror-symmetric SOC state!. The advective amplifi-
cation of the mirror-symmetry-breaking causes, in particu
asymmetric deformations of the concentration plumes
can be seen upon close inspection already in Fig. 5~b! and
more clearly so in Fig. 5~c!.

This figure marks the start of the extremely fast, advect
dominated wave breaking process that lasts only about
thermal diffusion times and that is documented for 10.2<t
<10.5 in Figs. 5~c!–5~g!. Therein the flow bends the de
formed red and blue plumes sideways to the right~c!, folds
them ~d!, and then in~e! the red one is pushed downward
and the blue one upwards. In~e! and~f! the relative position
of the streamlines and of the concentration distribution
changed such that now the plume structure of the latte
partially resurrected by the flow. Simultaneously the plum
get ‘‘rolled in.’’ This flow induced sequence of first deform
ing, then bending, and finally rolling in the plumes is tri
gered and associated with a change of thespatial phase be-
tween velocity and concentration field as shown in Figs
and 6. In the SW the spatial location of the nodes ofC andw
coincide while the oscillations ofC and w are only tempo-
rally shifted by about a quarter of an oscillation period, i.
Dt.0.14. This phase differencewC2ww.p/2 does not
change its value but in the TW it implies also a spatial d
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ference of aboutl/4 between the TWs ofC andw.
The advective process~f! and ~g! of rolling the plumes

into the circular regions of closed streamlines produces c
acteristic concentration striations that can still be seen in~g!
and~h!. The latter are the first snapshots of the emerging T
that has still the large concentration gradients of the cond
tive state so that, therefore, its propagation velocityv/k is
almost as fast as the Hopf phase velocityvH /k. Thereafter
the rolled-in striations are degraded and homogenized
slow diffusion leading to a slowing down of the TW unt
finally, in ~j!, the fluid is well mixed to the level of the slow
final-state TW.

A comparison of Fig. 5 with Fig. 4 revealing further in
sight is instructive: The nonlinear advective deformation
the SW concentration plumes in Fig. 5 starts when in Fig
the modulus oscillations of the lateral harmonicsuw1u and
uC1u do no longer go down to zero, that is, when the straig
line SW trace ofw1(t) in the inset of Fig. 4 develops a
sizeable elliptic shape that reflects the growth of the le

FIG. 6. Spatiotemporal evolution of the phases of the waves
vertical velocityw and concentrationC during the SW→TW trans-
formation. Shown are the world lines of the nodes ofw ~open
circles! andC ~filled circles! with positive slope at midheight of the
layer. The half-wavelength jumps of the SW nodes~lower part of
the figure! of w are temporally delayed by about a quarter oscil
tion period relative to those ofC. While the frequency of the wave
decreases slightly@cf. Fig. 4~c!# the value of the phase shift,wc

2ww.p/2, does not change. It implies also a spatial delay of ab
l/4 between the TWs ofw and C in the upper part of the figure
Parameters areL50.01, s510, c520.25, r 51.42, andl52.
5-10
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GROWTH OF BINARY FLUID CONVECTION: ROLE . . . PHYSICAL REVIEW E 65 036315
propagating TW on cost of the right-propagating compon
in the original SW. Thus, the competition of the two cou
terpropagating TWs is related to the boundary-induced
formation and the subsequent toppling of concentrat
plumes caused by a change in the spatial phase relation
tween velocity and concentration wave, cf., Figs. 3 and 6

The toppling, bending, and rolling in of the SW conce
tration plumes is also reflected by and associated with a c
plicated time dependence of the higher lateral concentra
modes – see, e.g.,uC3(t)u in Fig. 4~b! aroundt.10. Higher
C modes are here excited as well with complicated, incoh
ent phase relations relative to each other in the SW→TW
transformation phase.

The moduliuCn(t)u become slowly varying only after th
pure TW has emerged out of the breaking process, say,
t.11. Then, in the relaxing TW, the phase relations betw
the lateral Fourier modes are locked in, their phase veloc
are multiples of the frequencyv(t) of the first harmonic
shown in Fig. 4~c!, and they all decrease with decreasi
concentration varianceM (t) @Fig. 4~c!#. The decrease ofv
andM is correlated also with a decrease of the mean vert
concentration difference between the surplusC0(z50.5) at
the top plate and the deficiency,C0(z520.5)
52C0(z50.5), at the bottom plate as can be seen from
dashed line in Fig. 4~c!.

2. Evolution of concentration profiles

Lateral as well as vertical profiles of the concentrati
wave change significantly during the SW→TW transforma-
tion as it can already be seen in Figs. 3 and 5 and in m
detail in Figs. 7 and 8. In Fig. 7 we show the tempo
evolution of the concentration deviation from its mean
midheight,C(x,z50), by hidden-line plots at various time
increasing from bottom to top. First the profile of the sma
amplitude SW is harmonic and remains so while the am
tude grows, then there appear anharmonicities in the ben
and rolling-in process, and, thereafter, the trapezoidal pro
of a TW emerges with its characteristic plateaus at cons

FIG. 7. Time evolution of the lateral profiles of the concent
tion field at midheight as a hidden-line plot. The profiles of t
initial SW are taken when their amplitude is maximal, the T
propagation is compensated. Thick lines show profiles at~nonequi-
distantly spaced! timest54.56, 5.92, 7.3, 8.74, 11.84, 20.28, 70.0
Lines behind the crests on the left appear on the right as trou
because of the mirror-glide symmetry. Parameters areL50.01, s
510, c520.25, r 51.42, andl52.
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concentration deviation of opposite sign. In the subsequ
evolutionary phase with slow relaxation towards the fin
state TW the lateral extension of the plateaus increases w
their height decreases dramatically.

In Fig. 8 we show the temporal evolution of the vertic
profile of the laterally averaged concentration distributi
C0(z) by hidden-line plots at various times increasing fro
top to bottom. The top line is the linear conductive profi
with its large gradient and large surplus~deficiency! of con-
centration atz50.5 (20.5). The bottom line is the mea
vertical concentration profile of the almost relaxed TW at
570.4. It is characterized by a vanishing ofC0 over most of
the fluid layer~cf. the broad plateau in Fig. 8!. Furthermore,
the final TW has quite narrow top and bottom boundary la
ers and the concentration surplus~deficiency! at the top~bot-
tom! boundary is much smaller than in the conductive st
or in the early SW. These properties again reflect the fact
the slowly propagating final TW is a well mixed state. Du
ing the SW→TW tranformation phase there appear undu
tions on the initially linear profiles that then flatten out in th
bulk to theC050 plateaus. Simultaneously the concentrati
C0(z50.5)52C0(z520.5) at the boundaries is reduce
considerably to the final TW levels as it can also be se
from the dashed curve in Fig. 4~c!.

D. Initial state dependence

The transient growth behavior displays a peculiar sen
tive dependence on the initial state that is absent in
growth of convection in pure fluids. Therein, only one cri
cal mode can grow out of the conductive state after distu
ing it with some unspecified small perturbation. The resu
ing supercritical growth dynamics of pure fluid convectio
shows an exponential growth phase determined by the c
cal mode, a saturation phase, and finally the relaxation
the fixed point of the final state of SOC. The transients
sulting from different generic perturbations that contain t
critical pure-fluid mode with different amplitude are th
same after shifting them in time if one disregards the v
early times that just reflect the respective perturbation

-

hs

FIG. 8. Time evolution of the vertical profiles of the lateral
averaged concentration fieldC0(z) as a hidden-line plot. Thick
lines show profiles at~nonequidistantly spaced! timest54.56, 5.92,
7.3, 8.74, 11.84, 20.28, 70.04. Parameters areL50.01, s510, c
520.25, r 51.42, andl52.
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FIG. 9. ~Color! Dependence of the transient convective growth behavior on the amplitudesuAR,Lu of TWR,L modes contained in the initia
perturbation of the conductive state. The relative amplitudesh ~4.3! are 1 in the first row~pure TW!, 0.01, and 0 in the third row~pure SW!.
Snapshots of instantaneous streamlines~dashed! and color coded concentration distributions~blue and red denotes high and low concent
tion, respectively! together with isoconcentration lines~full ! are shown over one wavelength in a vertical cross section of the layer. T
increase from top to bottom and are chosen to display characteristic field configurations for the respective evolution scenario. Para
L50.01, s510, c520.25, r 51.42, andl52.
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namics. The reason is that after these very early times
transients are governed and slaved by just one grow
mode.

In binary mixture convection with negative Soret co
pling, however, there are two critical modes,TWR(x,z,t) and
TWL(x,z,t) of right and left propagating TW perturbation
@32,54,56#, respectively, that get involved. They are mutu
mirror images with respect to the symmetry operationx→
2x and they both grow above the Hopf bifurcation thresh
with the same growth rate as long as linear theory applies
a generic initial perturbation of the conductive state th
two critical modes will be contained with different nonze
amplitudesAR and AL . Perturbations withuARu5uALu,AR
50, orAL50 are nongeneric special cases with significan
different transient growth behavior than the generic case

We found that the transients can be characterized by
relative amplitude differenceh @Eq. ~4.3!# of the two critical
TW modes contained in the initial perturbation. Their re
tive strength determines the competition of these two wa
when the advective nonlinearities become important. Figu
9 and 10 elucidate the dependence of the transient beha
on the relative content ofTWR and of TWL for the special
case of a pure right-propagating TW perturbation (h51), a
mixed perturbation withh50.01, and a pure SW perturba
03631
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tion (h50). The perturbation withh51 has been imposed
to contain only the criticalTWR mode. In the case ofh50
the numerically determinedTWR and TWL critical modes
@57# for the fieldsu,w,T,C were superimposed with exactl
equal amplitude to form a perfectly mirror-symmetric initi
state. Since our finite-difference integration code was c
structed @58# not to generate mirror-symmetry breakin
round off errors all fields remained mirror symmetric for a
times in the caseh51.

Generic initial perturbations of the conductive state,
the other hand, were generated by 800 uniformly distribu
pseudorandom numbers in the range of@21024,1024#
added to the conductive temperature field on the grid of
simulation. In this way we found thatuhu is generically non-
zero but small compared to 1. This reflects the fact that
mirror symmetry underx→2x is only weakly broken when
constructing the initial perturbation in the above describ
generic way. This also explains that one observes in exp
ments initially a growth phase with SW characteristics wh
the set up and with it the perturbations of the conduct
state are almost mirror symmetric so that a particular T
propagation direction is not favored@16#.

Figure 9 shows instantaneous streamlines~dashed! and
color coded concentration distributions together with isoc
5-12
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GROWTH OF BINARY FLUID CONVECTION: ROLE . . . PHYSICAL REVIEW E 65 036315
centration lines~full ! in a vertical cross section of the layer
four times. The latter were chosen differently for each of
three evolution scenarios such as to display field configu
tions that are characteristic for the respective evolution s
nario. The first row of Fig. 9 shows an evolution stage wh
the noncritical modes that the initial perturbation might ha
contained have already died out but where the nonlinear
have not yet become important. Here the fields, say, at m
height of the layer are well described according to Eqs.~4.4!
and ~4.5! by F5F01uARucos(kx2vt2wF)1uALucos(kx
1vt1wF) sinceAR,L5uAR,Lue7 iwF and vR,L56v. In the
three cases of a pure right-propagating TW (uALu50), a su-
perposition ofTWR andTWL with h50.01, and a perfectly
mirror-symmetric SW (uARu5uALu) the spatial separation be
tween the nodes of the velocity and concentration fields
different because of the different amplitudes.

In the second row the nonlinearities have generated s
able higher modes that are different for the three cases sh
in Fig. 9. The spatial phase difference between velocity
concentration field has already slightly changed in the c
h50.01.

The next row shows for the pure TW evolution scena
(h51) how the concentration bulges that intrude from t
boundaries into the bulk of the fluid are rolled in to for

FIG. 10. Evolution dynamics of the moduli of lateral Fouri
modes at midheight of the layer as indicated, of the frequencyv,
and of the mixing numberM for the three transition scenarios o
Fig. 9 with h51 ~pure TW!, h50.01, andh50 ~pure SW!. The
starting times for the three scenarios have been shifted byDt510
relative to each other for better visibility. The last row shows t
dynamics in the complex mode plane ofT1 ~the velocity modew1

behaving similarly!. Parameters areL50.01, s510, c520.25,
r 51.42, andl52.
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later on patches with alternatingly high and low concent
tion plateaus. The generic case,h50.01, shows in the third
row the wave toppling occuring in the transition~Sec. IV C!
to a genuine TW. In the perfectly symmetric case ofh50
advection has become strong enough to deform the SW
centration distribution into the shape of a symmetric mu
room just before there occurs an abrupt lock-in transition
a stationary field configuration. This sudden locking in of t
mushroomlike configuration terminates the SW oscillatio
Thereafter a very fast relaxation to the mirror-symmet
final-state SOC takes place that is dominated by advec
mixing. The SOC and the previous SW transients are
stable against mirror-symmetry-breaking perturbations t
would drive the system to one of the stable nonlinear T
states. However, by carefully avoiding these perturbation
our code we can trace out the pure SW transition scenario
the way to the final unstable SOC. Here it should be no
that for our control parameters neither a stable nor an
stable nontransient, relaxed SW solution is available: T
nonlinear, unstable SW solution branch bifurcates backwa
out of the conductive state at Hopf bifurcation thresho
r osc, ends on the lower unstable SOC solution branch,
remains always belowr osc @10,59#.

The last row in Fig. 9 shows the final states of the resp
tive evolution: the nonlinear TW state forh51 and h
50.01 and the SOC state for the perfectly symmetric S
(h50).

In Fig. 10 we show the dynamics of the lateral Four
modesT1 , C1, andC3 at midheight of the fluid layer, of the
frequencyv, and of the mixing numberM for the three cases
of Fig. 9. The starting times for the three curves have b
shifted in Figs. 10~a!–10~c! relative to each other for bette
visibility.

The initial conditionh51 with a pure right propagating
TW perturbation leads to an outwards spiraling motion ofT1
in the complex mode plane of Fig. 10~d! with monotonously
increasinguT1u anduw1u @Fig. 10~a!#. On the other hand,uC1u
develops a strong overshoot in Fig. 10~b! when the concen-
tration bulge in the third row of Fig. 9 is rolled in. Thereafte
there is a long-time diffusive relaxation ofuC1u as well as of
M andv in Fig. 10~c!. The transition of the fast TW to the
long-time relaxation phase is associated with the appeara
of higher lateral Fourier modes, e.g.,uC3u in Fig. 10~b!.

The other nongeneric case,h50, triggered by a perfectly
symmetric SW initial perturbation shows oscillatory motio
of T1 along the straight line in Fig. 10~f! until the SW
abruptly stops—cf. the termination of the curve forv in Fig.
10~c!—and is locked into a stationary field configuratio
The latter almost instantaneously evolves into the SOC,
the evolution ofM in Fig. 10~c!. Also here the transition is
associated with the generation of higher lateral Fou
modes of the concentration field some of which surpass
magnitude even the first mode.

The evolution of the Fourier modes, ofv, and ofM for
the generic caseuhu50.01 that has been dicussed at length
Secs. IV A–IV C is included here in Fig. 10 for the sake
better comparison with the nongeneric cases. We only m
tion that the long-time diffusive transients forh51 andh
50.01 are the same.
5-13
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E. Competition between right and left propagating TWs

Here we analyze the competition between the grow
right- and left-propagating TW with the help of the compl
signal F1(t) of the first lateral Fourier mode of differen
fields at midheight of the layer. Since the frequency, i.e.,
rate of change of the phase ofF1 varies considerably we
made a spectral analysis ofF1 that is local in time by mul-
tiplying F1(t) with a Gaussian window whose center is gli
ing along the time axis. The window width was adjusted
get good resolution without too much overlap of the spec
centered at the TW frequenciesvR(t) andvL(t)52vR(t),
respectively. As an aside we mention that the method@60# of
shifting the whole signal in frequency space and applyin
low-pass filter to extract the wave in question could not
applied in our case because of the strong temporal varia
of the wave frequencies.

Figure 11 shows the time evolution ofuC1(v;t)u where
C1(v;t) is the Fourier transform of the time signalC1 evalu-
ated with a Gaussian window centered at timet. Here the
initial state contained the right and left propagating critic
modesTWR,L with relative amplitude differenceh520.01

FIG. 11. Time evolution of the frequency spectrumuC1(v;t)u
obtained as the Fourier transform with a Gaussian window cent
at time t of the first lateral concentration mode at midheight of t
layer. In the generic growth scenario~a! the initial perturbation
contained the right and left propagating critical modesTWR,L with
relative weighth(4.3)520.01. In the pure SW scenario~b! h50.
Parameters areL50.01, s510, c520.25, r 51.42, andl52.
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@Fig. 11~a!# andh50 @Fig. 11~b!#, respectively. The Gauss
ian shaped contribution from the right-~left-! propagating
TW is centered at positive~negative! frequencies. Initially
both grow exponentially and independently from each ot
in agreement with linear theory. But when the convect
nonlinearities have become sufficiently strong the two wa
begin to compete. It leads in the case ofh520.01 to a rapid
decay of the right-propagating minor wave and an enhan
growth of the left-propagating major wave. The latter co
tinues to grow in amplitude before the long-time diffusiv
relaxation to the final low frequency, low amplitude, we
mixed nonlinear TW state begins. In this relaxation phase
crest of the mountain ridge in Fig. 11~a! decreases in heigh
and moves towards 0.

In the perfectly symmetric SW scenario@Fig. 11~b!# the
competition between the counterpropagating waves with p
cisely equal amplitudes (h50) leads to an extinction of the
waves and a lock-in transition to a stationary state. Howe
the stationaryC1 mode in the final SOC state is too small@cf.
Fig. 10~b!# to be resolved in Fig. 11—the uncertainty relatio
does not allow to trace the frequencies down zero. In b
cases shown in Fig. 11 there appear higher-frequency
monics in C1(t) during the interaction and competitio
phase. But because of the mirror-glide symmetry ofC(x,z,t)
they appear at midheight,z50, only for odd multiples of the
basic frequency ofC1(t). The magnitude of these highe
harmonics increases with decreasinguhu, i.e., when the am-
plitudes of the counterpropagating TWs become more
more equal.

In Fig. 12 we show the time evolution of the TW ampl
tudes in the plane spanned byuARu and uALu for various
initial conditions with differenth. These amplitudes were
taken from the frequency decomposition of the window
Fourier transformation ofw1(t) since the vertical velocity
field remains practically harmonic. Thus, the representa
of the wholew field by w1(t) is much better than the one o
C by C1(t). The resulting symbols in Fig. 12 are plotted
equidistantly spaced times to indicate the velocities w
which different parts of the trajectories are traced out. Th
connect the small initial perturbation of the unstable cond
tive state fixed point (AR,L50) to the two TW attractors
whenh5” 0 or to the unstable SOC fixed point whenh50.

Trajectories starting from initial conditions withh561
move straight to the two TW attractors along the axes in F
12. On the other hand, the trajectory originating from t
pure SW initial condition,h50, moves in Fig. 12 to the
unstable SOC fixed point along the diagonal that conne
the unstable conductive state fixed point with the unsta
SOC state. All trajectories withh5” 0 merge with—or, to be
more precise, approach—the pure TW trajectories along
abscissas before ultimately ending in one of the TW attr
tors. But the closerh is to 0 the longer stays the respectiv
trajectory close to the diagonal before it is eventually
tracted to one of the TW attractors. Thus, the diagonal i
separatrix, i.e., a boundary between the basins of attrac
of the two TW attractors—trajectories starting from initi
conditions withh,0 (h.0) get attracted to the TW attrac
tor on the ordinate~abcissa!.

ed
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GROWTH OF BINARY FLUID CONVECTION: ROLE . . . PHYSICAL REVIEW E 65 036315
There is a ‘‘separation point’’ on the diagonal connecti
between the two unstable fixed points in Fig. 12 from wh
trajectories withh5” 0 are repelled and deflected towards o
of the TW attractors. Pure SW trajectories, however, exp
ence beyond this point an extremely large acceleration
wards the SOC fixed point—see also Figs. 10 and 11.
special role that the separation point plays can be unders
with the help of Fig. 13. There, we show trajectories start
from initial conditions withh>0 ~those withh,0 are just
mirror images of the respective ones withh.0) in the plane
spanned by frequencyv and moduliuARu and uALu. Positive
~negative! frequencies and amplitudesuARu (uALu) refer to
right- ~left-! propagating TW contributions tow1(t) as ob-
tained from the windowed Fourier transformation. The sta
ing points uAR,Lu.0 on the absissa atv56v0.11.5 are
small perturbations of the conductive state. Forh.0(h
,0) the right-~left-! propagating TW contribution wins th
competition and the trajectory ofuARu (uALu) ends on the
bifurcation branch@12,48# of nonlinear, right~left! propagat-
ing ‘‘stationary’’ TWs that is included in Fig. 13 as well. Th
losing trajectory ofuALu (uARu), on the other hand, runs mor
or less abruptly~cf. also Fig. 11! back to the abscissauAu
50. For perfect SW initial conditions withh50, however,
the ‘‘pure SW’’ trajectories in Fig. 13 end in the SOC state
v50 tracing out the perfectly symmetric SW scenario w
uARu5uALu.

All winning trajectories starting from initial condition
with h5” 0 enter eventually the pure TW evolution phase
the sooner the closeruhu is to 1 ~which can also be seen i
Fig. 12!. The pureh51 TW evolution trajectory is practi-
cally identical with the small open lozenges~labeled ‘‘almost
pure TW’’! in the right part of Fig. 13. The pure TW evolu

FIG. 12. Time evolution of TW amplitudes for initial condition
with different h. The amplitudes~symbols! of the respective TWs
were determined at equidistantly spaced times by a frequency
composition of the Fourier transformation of the first lateral h
monic,w1(z50,t), of the vertical velocity field using a gliding time
window described in the text. Parameters areL50.01, s510, c
520.25, r 51.42, andl52.
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tion trajectories (h561) trace out an ellipse given by th
relation @29# (v/v0)21uA/A`u251 between frequency an
velocity field intensity. Ifuhu is close to 1 as for the sma
open lozenges and circles the minor amplitude (uALu in Fig.
13! becomes suppressed early during the competition. W
the frequencyvR of the winning TW decreases monoto
nously the frequencyuvLu of the losing TW varies slightly
aroundv0.

In the generic growth scenario that starts from pertur
tions with some finite 0<uhu!1 the trajectories remain in
Fig. 13 initially close together since during the first grow
phase the frequencyv does not deviate much from the initia
Hopf frequencyv0 ~cf. Figs. 4 and 10!. But when the flow
intensitiesuAR,Lu of the right- and left-propagating TW con
stituents reach the respective phase velocities6v/p, which
happens near the separation point, then the evolu
changes: The trajectories of thew-field in Fig. 13 undergo
characteristic changes depending onh when they cross the
lines uAR,Lu56v/p in Fig. 13 ~while in Fig. 12 they get
deflected towards the TW attractor!. With decreasinguhu
they get more and more bent towardsv50, the axis of Fig.
13 ~the absissa or ordinate in Fig. 12!. But finally they

e-
-

FIG. 13. Evolution trajectories in the plane spanned by f
quencyv and TW flow amplitudes obtained from the Fourier d
composition of the first lateral harmonic,w1(z50,t), of the vertical
velocity field using a gliding time window as in Fig. 12.uARu and
v.0 (uALu andv,0) refer to right-~left-! propagating TW con-
tributions tow1. Symbols are plotted at equidistantly spaced tim
starting on the abscissa (uAR,Lu.0, v56v0.611.5) from
small perturbations of the conductive state withh50 @full lines
with filled circles; these pure SW trajectories end in the unsta
SOC state~open square!#, 1027 ~dashed lines marked ‘‘almost pur
SW’’ !, 1026 ~large open lozenges!, 1024 ~open triangles!, 1022

~small open circles!, 0.7 ~small open lozenges marked ‘‘almost pu
TW’’ !. The bifurcation branches of the nonlinear ‘‘stationar
stable and unstable TW solutions are included by full and das
gray lines, respectively. The significance of the straight grey li
labeleduAR,Lu56v/p is explained in the text. Parameters areL
50.01, s510, c520.25, r 51.42, andl52.
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C. FÜTTERER AND M. LÜCKE PHYSICAL REVIEW E65 036315
change direction to merge with the pure TW ellips
(v/v0)21uA/A`u251 in Fig. 13 ~with one of the axes in
Fig. 12!. This happens with decreasinguhu at later and later
times.

This change in the dynamics close to the separation p
is associated with the concentration redistribution that occ
when the fast initial SW-like oscillations of the generic ca
(uARu.uALu, i.e., smalluhu5” 0) are transformed into TW os
cillations ~cf. Secs. IV A and IV C!. This takes roughly place
when the convective flow velocitiesuAR,Lu have reached the
respective phase velocities6v/p. Then the concentration
wave crests and troughs topple; concentration is ‘‘rolled
into regions with alternatingly high and low, plateaulike le
els that are subsequently degraded diffusively on longer t
scales as described in the previous subsections.

V. CONCLUSION

The spatiotemporal evolution of oscillatory convecti
roll structures during the transient growth out of perturb
tions of the quiescent conductive ground state has been
vestigated with finite difference numerical simulations o
laterally periodic fluid layer. To elucidate the spatiotempo
changes in the different transient growth scenarios we h
studied the evolution of various field quantities like, e.
computed topview shadowgraph intensity profiles, late
Fourier modes~and their temporally windowed frequenc
spectra! of the fields and their trajectories in different pha
spaces, sideview field distributions, lateral and vertical w
profiles, frequency and mixing number.

The simulations have been performed for parame
adapted to experiments that use ethanol-water mixtures
sufficiently negative Soret coupling to show a subcritic
Hopf bifurcation. Then two critical modes of right-~R! and
left- ~L! propagating TWs with typically large positive an
negative frequency, respectively, can grow above the H
bifurcation threshold. Thus, the transients show—unlike p
fluid convection—a peculiar sensitive dependence on the
tial state. However, all transients investigated here obe
the mirror-glide~MG! symmetry~3.1! with the exception of
the very early stage when the imposed initial conditions w
not MG symmetric. But, even then the MG symmetry w
rapidly restored. The robustness of this symmetry is rema
able given that the nonlinearity in the concentration balan
i.e., the Pe´clet numberw/L becomes large. However, th
concentration field is ‘‘tamed’’ by being coupled to the M
symmetric velocity and temperature fields that in the inv
tigated range of small supercritical driving remain smoot

We found that the different growth scenarios can con
niently be characterized by the relative amplitude differen
h @Eq. ~4.3!# of the two critical TW modes contained in th
initial perturbation of the conductive state. Their relati
strength~which can easily be determined by Fourier deco
position! determines the outcome of the competition of the
two waves when the advective nonlinearities become imp
tant. Forgeneric, i.e., nonspecific initial perturbations tha
break the mirror symmetryx→2x only weakly one has
uARu.uALu so thatuhu is small compared to 1 but nonzer
Thus, ‘‘almost’’ mirror-symmetric experimental setups th
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do not favor a particular TW propagation direction cause
initial growth phase with SW characteristics. On the oth
hand, thepure SW caseuARu5uALu and the twopure TW
casesAL50 or AR50 with h561 are nongeneric with sig
nificantly different transient growth behavior.

In the perfectly mirror-symmetricpure SW growth sce-
nario (h50) the SW oscillations terminateabruptly once
they have reached a critical amplitude by locking in into t
stationary field configuration of a nonlinear mirro
symmetric SOC state. However, thispure SW growth sce-
nario is unstable against mirror-symmetry-breaking pertur
tions that cause propagation of the growing pattern to
right ~left! if h.0 (h,0). Also for larger Rayleigh num-
bers where only the SOC attractor but no more steady
solution is available as nonlinear final state do the transie
typically show TW competition and phase propagation t
finally slows down. Pure TW growth (uhu51) proceeds in
the amplitude-frequency plane along an ellipse@(v/v0)2

1uA/A`u251# from the ground state perturbed by a pu
TW critical mode all the way to the final, nonlinear TW stat
All trajectories with h5” 0 merge eventually into this pur
TW evolution modus—the later the smalleruhu.

The genericgrowth dynamics is triggered from perturba
tions containing the two critical oscillatory modes wi
roughly equal amplitudes. Initially, i.e., as long as line
theory applies they both grow exponentially with the sa
growth rate thus causing SW-like oscillations with the lar
Hopf frequency. But a competition between the two TW co
stituents sets in when the advective nonlinearities have
come sufficiently strong. They amplify the mirror-symmetr
breaking differences betweenuARu and uALu and cause the
decay of the minority TW. Thus, the SW that still has a lar
frequency is transformed into a fast TW. This SW→TW
transformation being advection driven is spatiotempora
complicated, in particular, for the concentration field and
implies a dramatic redistribution of concentration by adve
tive ‘‘rolling in’’ of concentration. It takes place within less
than one vertical thermal diffusion time and it starts rough
when the flow amplitudes of the two constituent TWs ha
grown to about the phase velocityuvu/k: First concentration
is advected upwards and downwards in the form of plum
by the growing SW-like flow that reverts periodically its d
rection; the vertical concentration gradient being still as la
as that of the quiescent conductive state. The SW→TW
transformation is triggered by an advective wave break
and wave toppling process of the crests and troughs of
concentration wave whereas the waves ofw and T do not
undergo substantial structural changes. Advective nonline
ties have by now become sufficiently strong to make
mirror-symmetry-breaking differences between the origin
left- and right-propagating TW constituents of the S
clearly visible. When the concentration wave crests~troughs!
with high ~low! alcohol content bend and topple they a
advectively ‘‘rolled in.’’ In the toppling and breaking concen
tration wave the coherence between the lateral Fourier mo
of C is temporarilly lost thus reflecting the complex, almo
irregular redistribution dynamics that takes place in the sh
time interval of the SW→TW transformation.

The flow induced sequence of first deforming, then be
5-16
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ing, and finally rolling in the plume-like wave crests an
valleys is associated with and driven by a growth of t
spatial phase shift between velocity and concentration fi
from zero to aboutl/4 during the SW→TW transformation:
In the SW the spatial location of the nodes ofC andw coin-
cide while their oscillations are shifted in time by about
quarter of an oscillation period. The value,wC2ww.p/2, of
this phase difference does not change during the whole t
sition sequence but in the TW it implies also a spatial shift
C andw of l/4.

Rolling the plumes into circular regions of closed strea
lines produces alternatingly high and low concentration p
teaus in the resultingpropagatingand strongly anharmonicC
wave with some characteristic stripes~as an aside: the ap
pearance ofC-wave plateaus when flow and phase velocit
become equal marks for ‘‘stationary’’ TW solutions a cha
acteristic variation in the bifurcation branch that delimits t
applicability of small-amplitude expansions!. The lateral
concentration difference between adjacent roll-like region
in the early TW phase still almost as large as the ini
vertical concentration contrast in the conductive state. Th
frequency and phase velocity of this emerging TW is s
very large, i.e., not much smaller than the critical values. B
g.,

ti-

y

er

ch

tt.

s

v.

.
A

03631
d

n-
f

-
-

s

is
l
s,
l
t

then a long-term TW transient to a low-frequency, strong
nonlinear, strongly anharmonic, relaxed TW state sets
slow diffusion degrades and homogenizes the concentra
striations, the spatial plateau extension over whichC is con-
stant at the two alternating high and low levels increases,
plateau height decreases, the width of boundary layers
tween these plateaus shrinks, theC-wave profile becomes
more and more trapezoidal, and the alcohol surplus~defi-
ciency! in the cold top~warm bottom! part of the fluid layer
decreases, thereby reducing the overall vertical concentra
difference between top and bottom. This long-time degra
tion of concentration gradients is reflected by a dramatic
duction of the mixing numberM and with it of the frequency
v relative to the initial values—the better the fluid becom
mixed the smaller isv.
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