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Growth of binary fluid convection: Role of the concentration field
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The growth of convection in binary fluid mixtures out of different perturbations of the quiescent conductive
state is investigated using finite-difference numerical simulations for realistic ethanol-water parameters with
strong negative Soret coupling between temperature and concentration fluctuations. Several different analysis
tools are used to elucidate the complex spatiotemporal behavior associated with the dramatic concentration
redistribution during the transients. It shows first the competition between counterpropagating waves that
initially superimpose to form standing wave perturbations. Having reached a critical amplitude an advective
breaking of the concentration wave triggers a very fast flow-induced transition from standing to traveling wave
convection with large phase velocity and large concentration field amplitudes. Strongly nonlinear advective
mixing and weak long-time diffusive homogenization then slow down the waves.
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[. INTRODUCTION close to onset as in pure fluids. To summarize, the feedback
interplay betweeii) the Soret generated concentration varia-
The growth of convection in a shallow layer of room tem- tions that are sustained against mixing and diffusion by ex-
perature water heated from below changes significantly ifernally imposed and internal temperature gradieits the
one adds, say, 5% of alcohol. In pure water there is the wefi€Sulting changes in the buoyangyi,) the strongly nonlinear
known smooth(second-order transition associated with a advectn(e transport'and_ mixing, ari@) the smoot.henmg
nonhysteretic forwards bifurcation from the quiescent ﬂuidd|35|patlve solutal diffusion causes the larger spatiotemporal

; . : complexity of binary mixture convection.
to stationary, weakly nonlinear convective rolls that are close The latter has been the subject of many stuf#ésBeing

to the conveqtive onset just a mild perturbation o.f the qu.ies;too numerous to be discussed here we pick out some of those
cent cqnductlve basic sta[@,2]. In .the.aforerr}entlone.d bi- that address the special role of the concentration field. The
nary mixture, however, the transition is precipitds first 5y ancy difference in regions with different concentrations
ordey and, more important, it shows much more dynamicalyas’identified already in Ref5] as the cause for traveling
as well as structural complexity. It is associated with a hysyyaye (TW) convection. With increasing heating, i.e., with
teretic backwards bifurcation at an increased heating rate intﬁ’lcreasing flow the mixing increases and the concentration
a large-amplitude, strongly nonlinear oscillatory structure ofyariations decrease. This causes a characteristic decrease of
rolls that either travel to the left or to the right relative to the TW frequencyw. Measurements of the variation of
their axes. Moreover, there is a dramatic redistribution ofwith Rayleigh number were showi®,7] to agree with nu-
alcohol during this transition that is the key to understandingmerical calculationd8]. The concentration-boundary-layer
the convective properties in such a mixture. model of Bensimoret al.[9] showed the same characteristic
It is the concentration field that is responsible for the in-decrease of near the end of the TW bifurcation branch. For

crease in complexity of binary mixture convection comparedarge flow concentration becomes trapped in regions of
to pure fluids and that causes the different spatiotemporallosed streamlines where it gets diffusively homogenized
properties of the convective structures, of the bifurcation bef8,10] like a weakly diffusing passive scalar for largechs
havior, and of the transient growth of convection. In thenumbers[11]. This effect is one part of the explanation
above mentioned example mixture the concentration field i$10,12,13 that the lateral concentration profile of a TW is
strongly [3] coupled to the temperature field by the Sorettrapezoidal with constant, i.e., diffusively smoothened pla-
effect that causes concentration gradients and currents in lineaus in the central roll regions and linear variation between
ear response to temperature gradients. These Soret generagglacent rolls. Since the latter are fed alternatingly by the top
concentration variations influence the buoyancy, i.e., theand bottom boundary layers containing concentration at dif-
driving force for convective flow. The latter in turn advec- ferent levels[10,12,13 the aforementioned plateaus are at
tively redistributes concentration and mixes the two compoalternatingly high and low concentration levels. These
nents thereby evening out concentration variations. This noneo5ncentration variations modify the refractive index of the
linear advective mixing gets in developed convective flowmixture and thus cause characteristic variations of shadow-
typically much larger than the smoothening by linear diffu- graph images. Comparing topview images of TW stites
sion. Thus, the concentration balance is strongly nonlineawith numerical result§15] allowed to identify the character-
giving rise to boundary layer behavior, among others, whileistic contribution from the concentration field. This seems to
the momentum and heat balances remain weakly nonlinedrave been the first time that structural properties of the con-

centration field—albeit vertically averaged—in binary fluid

convection have been observed experimentally. Subse-
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on the lateral structure of the concentration distribution inother related transition scenarios using various analysis tools.
TWs from sideview shadowgraph images obtaining goodCalculations are done in é&D) two-dimensional vertical
agreement with numerical result$5]. cross section of the fluid layer with laterally periodic bound-
The time series of sideview shadowgraph images showary conditions. The periodicity length of twice the layer
in Ref.[16] after increasing the Rayleigh number beyond thethickness is close to the critical wavelength of roll perturba-
convective threshold gave also information about the trantions and also close to typicébcal) values observed in con-
sient spatiotemporal evolution of the concentration field invection experiments. However, imposing the periodicity
growing convection and, in particular, about the formation oflength of one wavelength precludes some of the |nstab|I|t|e_s
boundary layers. Also the Lagrangian dynamics of advectio®f large systems and the complex spatial structures found in
and diffusion of passive fluorescent dye particles that weréP experimental setug25,31,35-37. _
photochromically marked in a small spatial region of expo- OUr paper is organized as follows: In Sec. Il we describe
nentially growing linear TWs and of nonlinear relaxed Tws the system and in Sec. lil we give a brief summary of the
was visualized 17]. Besides that there have been many ex-Properties Qf nonlinear, fully relaxed TW convection before
perimental investigations of transient convection phenomenB€Senting in Sec. IV our results on the transient growth out
[7,18—28. But, unfortunately, the resolutions of the topview ©f different types of perturbations of the quiescent conduc-
shadowgraphs were not layed out to measure also the coljve state. The last section contains a summary of the main
centration dynamics during the transient growth processes 6ESUlts:
weakly nonlinear TWs and of linear TW packdts8], of
weakly nonlinear counterpropagating TWKS] that are re- Il. SYSTEM
flected from endwalls of rectangular channels, of “blinking i ) ) —
states”[19,27 with TW amplitude becoming alternatingly We consider a binary fluid layer of mean temperatiire
large at the sidewalls before being reflected with reduceénd mean concentratioB of the lighter componente.g.,
amplitude, of the “dispersive chaog24] produced by er- ethana). It is confined between two perfectly heat conduct-
ratic burst and decay of TW pulses, and of TW patches iring, impervious, horizontal plates and exposed to a vertical
large cylindrical[23,25 or otherwise shaped containg¢®6].  gravitational acceleratiog and to a vertical temperature gra-
On the other hand, numerical simulatioh$0,27—31  dientAT/d directed from top to bottom wheieis the layer
gave indications that the concentration field is spatiotempothickness. The variation of the fluid densitydue to tem-
rally quite complex and plays a decisive role in firiansient  perature and concentration variations is governed by the
growth) behavior of convection. This has to be contrastedinear thermal and solutal expansion coefficients

with weakly nonlinear analytical analyses in the framework, = _(1/p)(ap/a?) and B= _(1/p)((9p/(96), respectively.
of amplitude equation$32,33. Therein the concentration Both are positive for ethanol water. The solutal diffusivity of
field is enforced by the construction of this approximation tothe binary mixture i, its thermal diffusivity is«, and its
show the same spatiotemporal behavior as those of velocityiscosity isv. The thermodiffusion coefficierk; [38] quan-
and temperature since all of them are described on equgfies the Soret coupling that describes the change of concen-
footing by just one common amplitude of a laterally andtration fluctuations due to temperature gradients in the fluid.
temporally harmonic wavg34]. The vertical thermal diffusion time is used as the time
In this paper we elucidate that the transient growth ofscaled?/ « of the system and all velocities are scaledusy.
binary mixture convection implies a dramatic concentrationTemperatures are reduced by the vertical temperature differ-
redistribution that causes a very special change in the spanceAT across the layer and concentration deviations from
tiotemporal behavior. Stepping up the heating across thghe mean concentration by(3)AT. The scale for the pres-
critical threshold one finds initially the conductive state’s g e is given by «2/d?). Then, the balance equations for

horizontal concentration stratification with a large Soret genmass, momentum, heat, and concentra{i®d,39 read in
erated vertical gradient. Generic perturbations of this statgyperheck—Boussinesq approximatidrs],

trigger then growth of the two critical TW modes. Their am-
plitudes being typically of roughly the same size these linear 0=-V-u, (2.13
counterpropagating TWs superimpose to a standing wave
(SW) that oscillates with the large Hopf frequeney, while

3
growing in amplitude. Reaching a critical amplitude the con- g,u=—(u- V)u—V| p+ d—zg z|+oV?u+Ro(T+C)e,,
centration wave topples and breaks in a very fast advection K
driven process. The crests and troughs get rolled in and the (2.1b
SW is transformed advectively into a pure, large-amplitude
TW. The latter has initially a lateral concentration contrast T=-V-Q=-V-[uT-VT], (2.19
that is almost as large as the vertical one of the conductive
state and consequently its frequeneys still almost as large #C=—-V-J==V-[uC-LV(C—yT)]. (2.1d

as wy . But then diffusive homogenization causes a long- o

time smoothening and decrease of TW frequency and a S|o\}v|ere,T_and'C denote dev_latlons of the temperature and con-

relaxation into a final, well mixed, low-frequency, strongly centration fields, respectively, from their global mean values

nonlinear TW. T andC andQ andJ are the associated currents. The Dufour
We provide a detailed numerical investigation of this andeffect[40,41] that provides a coupling of concentration gra-
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dients into the heat curre® and a change of the thermal ments done in narrow channels and, furthermore, it is close
diffusivity is discarded in Eq(2.19 since it is relevant only to the critical wave number for the negative Soret coupling
in few binary gas mixturef42] and possibly in liquids near investigated here.
the liquid—vapor critical poinf43]. To measure the strength of the thermal driving we use the
Besides the Rayleigh numbBr= (agd®/v«)AT measur- reduced Rayleigh number R/R? that is scaled by the criti-
ing the thermal driving of the fluid three additional numberscal Rayleigh numbeRg for onset of pure-fluid convection
enter into the field equation®.1): the Prandtl number with the critical wave numbekg. The analytical values are
=vlk, the Lewis numbet =D/, and the separation ratio R0=1707.762 anck?=3.116 32. However, to compare our
y=—(Bla)(ks/T). The latter characterizes the sign and thefinite differences numerical results presented in this paper
strength of the Soret effect. Negative Soret couplings is  with experimental, analytical, or numerical ones we sdle
always assumed here, induces concentration gradients of tihy the threshold?g of our numerical code. The latter was
lighter component that are antiparallel to temperature gradigenerally run with uniform spatial resolution af=1/20 for
ents. In this situation, the buoyancy induced by solutawhich R2=1685.8[46]. Test runs withA =1/40 showed no
changes in density is opposed to the thermal buoyancyelevant differences of the transient dynamics.

Throughout this paper we consider mixtures witk0.01, In order to characterize the temporal evolution of convec-
o=10, andy=—0.25 being parameters that are easily action we made extensive lateral Fourier analyses of the veloc-
cessible with ethanol-water experiments. ity, temperature, and concentration fields and we determined

When the total buoyancy exceeds a threshold, convectionarious spatial profiles of these fields. In addition topview
sets in—typically in the form of straight rolls for negative  shadowgraph intensity distributions—as they would be seen
Ignoring field variations along the roll axes we describe herdn experiments—were evaluated from the temperature and
2D convection in arx-z plane perpendicular to the roll axes concentration fields. Furthermore, we monitored the evolu-

with a velocity field, tion of the spatial maximum of the vertical velocity field
Wnax, Of the oscillation frequency, and of the reduced vari-
u(x,z,t)=u(x,z,t)e+w(x,zt)e,. (22 ance

This 2D type of convection is commonly enforced experi- 5 5
mentally in convection channels of small extensioryidi- M= (CH/{Clond (2.9
rection since the rolls are oriented preferentially perpendicu-
lar to the channel wallg2].

To find the time-dependent solutions of the partial differ-
ential equationg2.1) describing convection we performed

numerical simulations with a modification O_f tmLA pqde concentration deviatio@ from its mean. The boundary con-
that is based on theiac method[44,49. This is a finite-  gjtion however, sustains always small Soret-induced con-
difference method of second order in space formulated ORgnration gradients against the action of advection and dif-
staggered gnd; for the different fields. An explicit f|r.st—orderfusion and prevent$/ from vanishing completely. On the
Euler step in time was used and the I_30|sson equation for t her hand, in the conductive stattenoted by the subscript
pressure field that results from taking the divergence Okcond”) with a Soret-induced vertical concentration stratifi-

(2.1b was solved iteratively using the artificial viscosity cation given b A= — 4z, there is no advective mix-
method[45]. The boundary conditions for the fields were as; 9 YCeond 2) ¥z,

17 . o e trati iancéC2,,)=?/12, is largest
follows: we used realistic no slip conditions for the top and;:gl dinz I(\:/lonceTlraaL(]); a\;atrrlmzngsl dct()gg\/valrpm bottlj maprlitz
bottom plates ax==*1/2, i.e., cond™

there is a surplusdeficiency of magnitude 0.12%5—-0.125
when = —0.25 as in our case.

of the concentration field. Note thatsOM =<1 measures to
which extent the binary fluid is mixed. The better it is mixed
the smaller is the spatial megiC?) of the square of the

u(x,z==*=1/2;t)=0, (2.33

and we assumed perfect heat conducting plates connected to IIl. RELAXED TW CONVECTION
two heat reservoirs,
In this section we briefly review properties of the TW and
T(x,z=x1/2;t)=F1/2. (2.3p  of the stationary overturning convectié8OQO state that are
discussed at length in the literature, see, ¢18,10,47. To
Furthermore, impermeability of the horizontal boundaries forthat end we show in Fig. 1 with thick lines the bifurcation
the concentration was guaranteed by enforcing the verticaliagrams of maximal vertical flow velocity,,,, TW fre-

concentration currerg,- J to vanish at both plates, guencyw, and mixing numbeM vs reduced Rayleigh num-
berr.
e, -J=—Ld,(C—yT)(x,z=*1/2;t)=0. (2.30 A pair of symmetry degenerate left and right traveling

convection wave solutions with wave number 7 branch
Restricting our investigation to spatially periodéxtended atr,,.=1.337 out of the conductive state. At this Rayleigh
convection structures we imposed lateral perodicity id- number the system shows a subcritical Hopf bifurcation with
rection of periodicity lengthh=2m/k=2. The associated a Hopf frequencywy(k=,r,s9=11.233. Here two facts
wave numberk= 7 is typically seen in convection experi- are worth mentioning(i) the bifurcation threshold and the
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1.0 1.2 14 1.6 A. Generation, advective mixing, and diffusion
T T | - T of concentration fluctuations

As the convective flow velocity,,,, increases along the
TW solution branch(Fig. 1) the TW frequencyw and the
phase velocity = w/k, respectively, decrease monotonically
from the large Hopf value all the way to zero since with
stronger convection the Soret generated concentration gradi-
ents become advectively reduced. Thus, there is a strong cor-
respondence between mixing numiérand TW frequency
 [10,48. In particular, on the stable paffull lines in Fig.

1) of the TW solution branch the binary fluid gets with in-

0, — : creasingnv, s, and thermal driving more and more mixed as
10 - : ”~ - M reduces almost to zero. Since the well mixed SOC state
i / : - resembles closely the corresponding stationary state in the
I / ] pure fluid with the samer the bifurcation diagrams of, say,
S - 74 I Wpax OF Of the Nusselt number in binary mixtures hardly
Sr 1 : i~ differ at larger from the ¢»=0 solution in the pure fluid
I i . [dash-dotted line in Fig.(&)].
i - The transition to convection ait,s. is hysteretic, i.e., of

Io;a)

first order with the Soret coupling coefficiefit=—0.25 be-
ing sufficiently negative. The associated precipitous growth
) of convection is related to an interplay between the Soret-
- induced solutal contribution to the buoyanf¥0,13 that
- tends to stabilize the conductive state and the effect of ad-
- vective mixing. The latter enhances convection by reducing
; the adverse effect of the Soret generated concentration varia-
tions. The ‘S’-shaped deformation of the unstable part
(dashed lines in Fig.)lof the TW bifurcation branches oc-
X curs when the advection velocity,,., has grown to become
s i s L equal to the TW phase velocity;= w/7. Then the first
Lo 12 Tose 1.4 16 r closed streamlines appdai7] in the frame of reference that

r is comoving with the TW phase velocity and in which the
TW solution is time independent. Far,,,<|v], i.e., closer
to the threshold .4 all streamlines are open. The condition
Wna=|v| marks also the threshold beyond which a straight-
forward small-amplitude expansion around the convective
onset breaks dowf#8]. In addition we found that the ge-
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FIG. 1. Bifurcation diagrams of maximal vertical flow velocity
Wax (@), TW frequencyw (b), and mixing numbeM (c) vs r for
relaxed nonlinear convective states with wavelength2. Param-
eters ard.=0.01g=10,4/= —0.25. Full(dashedl thick lines refer

to stable(unstable states. The TW solution bifurcates subcritically f . hd . f il :
with the Hopf frequencyw,, at r,s. out of the conductive state, neric transient growthdynamics of oscillatory convection

becomes stable at the saddl,, and ends with zero frequency at (CONSisting initially of oppositely traveling waves of roughly
r* on the SOC branch. The dash-dotted lindanrefers to station- edual velocity amplitudepAg|=|A_[) undergoes a dramatic
ary convection in pure fluidsy=0). Vertical arrows indicate the change that cannot be described at all within an amplitude
time evolution ofw,,, ®, andM after perturbing the quiescent €quation picture when the amplitude | approachw/ .
conductive state. All quantities are reduced ofesSec. 1. For 0<|v|<Wnax the open streamlines of relaxed TWs
meander between and around the roll-like regions of closed
frequency are practically the same as for waves with thetreamlinegin SOC withv =0 the only open streamlines are
critical wave numbeik.=3.1350 and(ii) TWs with wave-  the vertical separation lines between the nolls a right-
lengthA=2 are often observed in large-scale experimentapropagating TW the regions of closed streamlines for the
setups. right (left) turning fluid domains are rickpoor) in the lighter
The TW solutions in Fig. 1 become stable at the saddleomponent—here ethanol—and they are displaced towards
riw=1.213 and they end for the selected parameters‘at the upper coldlower warnj plate, where the Soret effect has
=1.65 by merging with vanishing frequency with the SOC caused a boundary layer with alcohol surpldgficiency.
solution branch. This point, namety , marks the location of The open streamlines are such that the #fopitom bound-
a drift instability of the SOC solution: for<r* stationary ary layer feeds higlllow) concentration only into the right
rolls start to propagate and evolve into a TW solution while(left) turning roll domain at the location of downflogwp-
for r>r* the SOC solution is stable. When the Soret cou-flow). Within the regions of closed streamlines the fluid is
pling s becomes more negativé increases and eventually trapped and diffusively homogenized leading to anharmonic
seems to diverge so that then the SOC solution remains ugoncentration wave profiles of trapezoidal shape. With in-
stable[13,48. creasingwp,,x and decreasindv| the regions of closed
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streamlines grow, the asymmetry of the boundary layer feed- @) c)
ing into oppositely turning rolls decreases and with it the : )
concentration contrast between adjacent TW rolls until in the
SOC state withv =0 mirror symmetry between the rolls is
established.

B. Mirror-glide symmetry

All TWs and SOCs discussed in this paper show the
mirror-glide (MG) symmetry[8],

F(x,z;t)=—F(x+\/2,—z;1), (3.1

with F(x,z;t) denoting¢, T, or C. Here ¢ is the stream
function defined byu(x,z,t)=(—4d,¢,0,0,¢). We should
like to stress that also all transients investigated here obeye
the MG symmetry with the exception of the very early stage
in cases where the imposed initial conditions were not MG ¢
symmetric. But even in such a situation the MG symmetry
was rapidly restored by a fast decay of MG symmetry-
breaking modes. Also the transient growth seen in the experi
ments in an annular geometry by Winkler and Kolodis] x
was _Iocally MG symmetric. Atime-dep.ende_nt gen_eralization FIG. 2. Time evolution of the topview shadowgraph intensity
of this symmetry was found to be realized in spatially local-4 1) ajong a line extending laterally over one wavelength after
ized TW stated49] and an extension to 3D patterns Was perturhing the quiescent conductive state. The middle (Bartov-
observed in Ref|50]. Furthermore, MG symmetric convec- ers the time interval0, 20 with white tics at the left ordinate ab)
tive structures were not only observed in Soret driven conmarking one time unit. The left pafg) shows a blow up of the
vection with only temperature gradients imposed but also innitial time interval (0, 2) of (b) with SW dynamics. The right part
thermosolutal convectiofb1]. (c) shows a blow up of the intervdB, 11) of (b) where the SW
Thus, the MG symmetry that is displayed by the basictransforms into a left-propagating TW. Beyond 11 this TW slows
conductive state and the linear critical convective modeslown. Parameters afe=0.01, o=10, y=—0.25, r=1.42, and
seems to be quite robust and persistent also in nonlinear=2.
convective structures of pure fluids and of mixtures. The

robustness of this symmetry is remarkable given that thpserves ayenerictransition scenario. The specific depen-
nonlinearity in the concentration balance, i.e., thel®e dence on initial conditions is discussed later on in Sec. IV D
numberw/L is quite large—of the order of 1000. So one jncluding special cases where, e.g., the initial perturbation
might already expect a bifurcation that involves undampeconsistspreciselyof a critical TW mode or of two different
MG symmetry-breaking concentration modes being driverpnes with equal amplitudes. The generic growth behavior
nonlinearly by interactions with MG symmetric modé®].  successively displays evolution phases with different spa-
However, the concentration field is “tamed” by being tiotemporal character. Figures 2 and 3 give an overview of
coupled to the velocity and temperature fields. Their shapenis growth scenario.

remains mostly harmonic in the investigatexhnge of small In Fig. 2 we show the time evolution of the topview
supercritical thermal driving such as in pure fluid convection.shadowgraph intensitys3,14),

And thus the increase in structural complexity associated

ith a MG try breaking d t . 12
with a symmetry breaking does not occur I(x,t)~&§J' G T(x.21)—0.91C(x.21)] (4.1)
1/2

IV. TRANSIENT GROWTH

In this section we elucidate the spatiotemporal behavior oS it would be observed in experiments. It is given by the
the transition from the quiescent ground state being perweighted sum of the lateral curvatures of the temperature and

turbed by different types of perturbations to fully relaxed of the concentration field. Thus, when the latter develops
nonlinear convection. strong nonharmonic lateral variations with large, spatially

confined curvatures then the gray-scale coded intensity dis-
tribution in Fig. 2 becomes spiky.

The middle part(b) of this figure covering 20 vertical

We start from the ground state at<r,s., disturb thermal diffusion times displays the three evolution phases
it slightly by adding random numbers in the range ofthat we have found to be generic for convective growth out
[—10 4,10 4], and simultaneously increase the controlof small unspecific perturbation&) an exponentially grow-
parameter to =1.42 that is 6% above threshold. Unless theing SW of high frequency over a time interval the length of
initial perturbation is chosen to be very specific one therwhich depends on the size of the initial perturbations of the

A. Generic transition behavior; an overview
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FIG. 3. (Colorn Snapshots of the evolution of convection after perturbing the quiescent conductive state. For better visibility two
wavelengths are shown. The concentration distribution in a vertical cross section of the fluid layer is displayed by color coded plots with blue
and red denoting high and low concentration, respectively. Wave profiles at midheight are shown for the fields of verticahwéloicity
lines), 40T (lines with triangley and 40 (lines with squares The final TW propagates to the left. All quantities are reduced (rfeSec.

II). Parameters are=0.01, 0=10, /= —0.25,r=1.42, and\=2.

conductive state(ii) an intermediate phase that is always state(head of the vertical arrows in Fig).1

very short with a spatiotemporally complicated transforma- Figure 2a) shows a magnification of the first two diffu-
tion from SW into a high-frequency TW that is propagating sion times after perturbing the conductive state with small-
to the left in Figs. 2b) and 3, and finally(ii) a long-term TW  amplitude noise. The latter contains besides a narrow band of
transient to a low-frequency, strongly nonlinear, relaxed TWgrowing modes with wave numbé= 7 and near-criticak
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dependence also a multitude of other modes that have larger F(x,z,t)~(1+ 7)TWg(X,z,t)+ (1— ) TW_(X,z,t).
k and/or noncriticakz dependence and that decay under the 4.2
linear initial dynamics. The surviving and exponentially
growing modesgenerically superimpose to form a SW— Here 7Wg and 7W, represent the critical modes for a TW
which can be seen in Fig(® already at time=1/4—since ~ Propagating to the right and left, respectively, being mirror
generic initial perturbations contain the critical eigenmodedmages of each other under- —x. The asymmetry factor
of left- and right-propagating TWs with roughly equal am-
plitude. Thus, this SW shows initially the very smooth, lat- 7= |Arl— AL
erally harmonic variation of the critical modes. |Arl+]AL]

In Fig. 2c) the intermediate interaction phasg) is . ] ) .
shown in detail during the time interval<gt<11. At the i Eq.(4.2) is defined in terms of the amplitudég; and A,
beginning of this intervalbottom of Fig. Zc)] the concen- of the right and left propagatmg waves, respectlvely, such
tration field has already developed a sizeable lateral anhaf?@t 7=0 denotes a perfectly mirror-symmetric SW and
monicity that subsequently becomes increasingly stronger re- — L Puré TWSs. In fact at=6.3 we foundp=-0.01 so
sulting in a shadowgraph intensity distribution becomingthat the SW Is not a pure one, but the resulting asymmetry is
sharpelcf. the time evolution of the stripes in Fig() and har:;/ytxslglrﬁét—lo 3 the concentration wave has become
Eg)%rﬁlta;;altg'?Ot?ﬁeclzgvfgng;ttfggrglrizojlgg‘f:::gé r?,:"’:1:[(S)r_1onlinear with a deformed_ lateral .profile while \(elocity and
) o U ~_ “temperature waves remain practically harmonic. However,
tion of some stupturgl details to_the right to be seen in l:'gthe profiles show now large spatial phase shifts between all
2(c) for a short time interval. This backwards motion is re- fie|qs. Here theC wave is undergoing a complicated trans-
lated to the toppllng and breaking of Fhe concentratpn Wav&ormation (cf. Secs. IV B and IV C for more detajlgo a
that occurs during the SWTW transition and that is de- T, The transformation is triggered by a wave breaking and
scribed in more detail in Sec. IV C. The lateral variation Ofwave topp“ng process of the crests and troughs of the con-
the shadowgraph intensity of this TW is to an ever increasingentration wave whereas the wavesvofand T do not un-
extent dominated by the growth in anharmonicity of the condergo substantial structural changes. In this process-the
centration wave profile whereas the temperature wave re-x mirror symmetry of the SW gets visibly broken while the
mains harmoni¢16]. Hence the TW stripes in the top part of MG symmetry(3.1) remains intact throughout this compli-
Fig. 2(b) become concentration field dominated and, therecated transformation.
fore, sharper. Note that simultaneously their slope increases In the short interval of one diffusion time to the next
in the space-time plot of Fig.(B) indicating that the TW snapshot of Fig. 3 &t=11.3 the transformation from a high-
slows down. frequency SW to a high-frequency TW with lar@zwave

The spatiotemporal evolution of the various fields can beamplitudes takes place: the wave cre$tsughg with high
seen in more detail in Fig. 3. Therein we show sideview(low) content of the lighter component bend and topple in
snapshots of the full concentration field—being the most imFig. 3 to the right and are advectively “rolled in” in the
portant one for understanding the transient growthPreaking process of thé wave. They thereby form plateau-
behavior—in a vertical cross section of the fluid layer to-like regions of altemaﬁmgly high and low concentration in
gether with lateral wave profiles of all fields at midheight of € resulting propagating-wave. The contrast between the

the layer. The selected four snapshot time$.3, 10.3, 11.3 plateaus is at=11.3 almost as large as the initial vertical

and 100 are characteristic for the different evolutionaryconductlve concentration difference between top and bottom

phases of the fluid layer. This initially large vertical concentration
' L . stratification is almost preserved up to this time during the
At t=6.3 each of the convective fieléis=w,C, T still has

the f Fe fy f dall relative short SW transient. Therein the horizontal isocon-
the torm _COS@.O ‘DF?COS((X) of an exponentially grow-  cantration lines of the conductive state are only swinging up
ing linear SW being mirror symmetric under— —Xx. The

e TR and down with growing amplitude. But then, when the SW
oscillation frequencyno=11.51is still very close to the fast ampjitude reaches a critical size the wave breaks and thereby
Hopf frequency that follows from a linear stability analysis the jsoconcentration lines are rolled in. This critical size is
of the conductive state fdt=m atr=1.42. Thespatial lo- reached when the Ve|ocity field amp||tudbgR| and|AL|’ of
cation of the nodes of these three fields coincide and lie ofhe two TW contributions to the SW have grown roughly to
vertical straight lines in a genuine linear SW. However, theabout the phase velocity= /7. Note that for “stationary”
temporal phasegg(z) of the critical SW fields vary witle ~ TW solutions the condition of equal flow and phase velocity
and, moreover, are different far,C,T. Thus, in a linear SW marks the appearence @f closed streamlines in the comov-
these fields pass through zero at different times depending dng frame of reference an@) of significant nonlinearities as
z[32]. At midheight of the layer one hagc— ¢,=7/2 and  discussed in Sec. Il A.
o1~ @w=—0.177 [54] for the parameters of Fig. 3. In a sense the vertical concentration contrast of the con-
To discuss the transition from the SW to the TW we de-ductive state has transformed tat 11.3 into a lateral one
compose the linear spatiotemporal structure of the initiathat forms just after the breaking process. With the lateral
growth phasei) as a superposition of two counterpropagat-concentration difference between adjacent roll-like regions
ing TWSs, still being very large also the frequency of this TW is not

4.3
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much smaller tham,. The phase differencec— ¢, is still 5 10 15 20 25 30 35
about7/2 as in the initial SW. However, while being purely . . . . :
temporal in the SW it now implies in the TW alsospatial
shift of about\ /4 between the nodes of the traveli@gndw
waves.

On the long-time scale up to the last snapshot in Fig. 3 aig.5
t = 100 the large lateral and vertical concentration contrasts
of the TW att=11.3 are degraded diffusively: the spatial
extension of the plateaus over whi€his constant at the two
alternating high and low levels increases, the plateau heigh g
decreases, the width of boundary layers between these ple
teaus shrinks, and the surplus of the lightezaviey compo- 6
nent in the cold topgwarm bottom part of the fluid layer 4

2

decreases thus reducing the overall vertical concentratiot
difference between top and bottom. Note that in Fig. 3 the
colors blue and red that represent surplus and deficiency
respectively, of the lighter component, e.g., alcohol, have 0
practically disappeared in the final TW plottat 100 and the 1.0
color green representing the mean concentration prevails -
This long-time degradation of concentration gradients is re-
flected by a reduction of the mixing numbbt [Eq. (2.4)]
and with it of the frequencyw by a factor of 10 relative to
the initial values. Associated with the decreasiis also a
decrease in the phase shift between the velocity and the ten : w w : : : :
perature wavefb5]. In the relaxed final state TW the fluid is 5 10 15 20 25 30 35
well mixed andM and w are small but still finite. t

This slowly propagating TW develops small concentra-
tion spikes in the lateral wave profile that precede its plateau FIG. 4. (@),(b) Time evolution of lateral Fourier modes in the
regions. The spikes are caused by concentration plumes thdgcompositiort4.4) of th(_a fields at midheight c_>f the flum_l Iay_er. The
alternatingly emanate from the horizontal boundary layersmodulus|wi(t)] of the first mode of the vertical velocity field re-
In these plumes or jets higlow) concentration fluid is ad- duced _by its final TW_vaIu¢vv1| is shown in(a). The inset shows
vectively transported downward@&ipward$ from the top the trajeco:otory ofw,(t) in the complex mode plane. Ifb) we show
(bottom boundary layer into the regions of Iefight) turn- C1(t)/C3| and |C5()/Cy]. In (c) we show the frequency(t)
ing rolls in a TW that is propagating to the left. Within the reduced by the |n|t|ah>0,_the mixing numbem (1) [I_Eq. (2.'4)]' and
rolls—or, more precisely, within the regions of closed the lateral averagé:o(zfo._S_x)_ of the concentration fleld_at the
streamlir'les in a frame thét is comoving with the TW—theuIOIoer plate reduced by its initial valt&e{2=0.5)=0.125 in the

; L ) conductive state. The flow amplitud¢ag, | of the two TWs of
plumes advectively spiral inwards and simultaneously A'Gvhich the original SW is composed reach the respective phase ve-

diffusively smoothed out and degradgiB,10,47. locites + w/k (cf. Sec. IV B roughly at the time 10. Parameters are
L=0.01,0=10, ¢y=-0.25,r=1.42, and\=2.

0.5

B. Dynamics in Fourier space of a left and right propagating wave with amplitude moduli

To elucidate the spatiotemporal complexity of the tran-| A gl e that grow with a common exponential rageThe
sient growth behavior we have also studied lateral Fouriefatter and the oscillation frequencieg= — w, = w, are ini-
decompositions of all fields at several vertical positions.ially given by the two complex conjugate eigenvalues that
Here we restrict our discussion to the midheight positon, result from a linear stability analysis of the conductive state
=0. The behavior of the fields there is representative for alperformed fork== at the slightly supercritical Rayleigh
otherz, as can also be seen in Fig. 3. A further reduction innumberr =1.42[29].
the description results from the fact that often the first mode |n Fig. 4(a) we show the time dependence of the modulus
F1(t) of the lateral Fourier decomposition z¢0, |w,(t)| of the first lateral Fourier mode of the vertical veloc-
ity field together with the trajectory ofv; in the complex
plane(inset of Fig. 4. The time evolution ofT,(t) is very
similar to the one ofv,(t) and is, therefore, not shown here.
Initially, one has |A |=|Ag|, i.e., =0 so that w,(t)

” ; . . :
being he argest one suffces o charaierize the evoluiorseboott) ESCHSIES W arowlg ampiude song @
E(?rribee)ijart?yplt%eﬂs](zgalg;gils:![ir]:nar growth dynamics can be de'the modulugw;(t)| becomes periodically very small — only

’ when|A |=|Agl, i.e., whenn=0 doesgw,(t)| exactlytouch
_ _ zero. During this initial phase we have essentially SW dy-
Fi(t)=A (t)e '“t'+ Ag(t)e 'R, (4.5  namics, w(x,t)xe” cost)coskx). However, with |A |

©

F(x,t)=Fo(t)+ Re[ Zl Fa(t)e™, (4.4)
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FIG. 5. (Color) Snapshots of the concentra-
tion redistribution in the SW-TW transforma-
tion. The concentration distribution in a vertical
cross section of the fluid layer is displayed for
one wavelength by color coded plotwith blue
and red denoting high and low concentration, re-
spectively and by full isoconcentration ling$or
C>0). Dashed lines are streamlines, i.e., tan-
gents to the instantaneous velocity field. See text
for a discussion of the plot®)—(j). The final TW
(j) propagates to the left. Parameters dre
=0.01,0=10, y=—0.25,r=1.42, and\ =2.

#|Ag the complex mode vectav, really traces out from the interaction and transformation phase arousdl0. In con-
beginning on an ellipse in the inset of Fig. 4, albeit a narrowtrast to this behavior the SWTW transformation fow and
one. The associated phase winding behavior causes the pdtis rather smooth and unspectacular with a monotonously
tern to be translated. growing amplitude of the left propagating- and T wave.
Then, the complex mode vectar; traces out a trajectory For the concentration wave, however, the SVWWW trans-
in the complex plane of the inset of Fig. 4 that becomes mordormation is triggered by a breaking and toppling of the SW
and more circular. This behavior starts at abbatl0 and  thatis also accompanied by a strong growth of anharmonic-
reflects the fact tha®\ | continues to grow whil¢Ag| starts Ity of the wave, i.e., of higher lateral Fourier modest-
to decrease during the SWTW transformation phase. S€€ €.g., the dotted curve fi@3(t)/C1| in Fig. 4(b). In the
Therein the nonlinear interaction between the two counterlOPPIiNg and breaking concentration wave the coherence be-
propagating TWs that the original SW is made of causes thfV€en the lateral Fourier modes 6fis lost thus reflecting
initially larger amplitude/A, | to win the competition that is the comple, irregular redistributiofcf. Sec. IVQ that

well known from coupled complex amplitude equatid@s takes place in the short time interval of the SWW trans-
o S . formation. Thereafter a slow, long-time diffusive concentra-
As a result the elliptic spiral in Fig. 4 transforms into an

. ! . . tion relaxation takes place. This can be seen not only in Fig.
outwards moving circular spiral and_the minima of, (t)] 4(b) but also in Fig. 4c). There we show the mixing number
are no longer small but grow. After time=11 we haveAr  \1(1) (2.4), i.e., the concentration variance, the frequency
=0 and a pure TW: the complex mode vecter(t)

1) e ) / w(t), and the laterally averaged concentration at the upper
=|w,(t)|e'?1V is spiralling outwards with slowly growing plate Co(z=0.51), i.e., half of the total mean vertical con-

radius [wy(t)| and slowly decreasing rotation ra@(t)  centration difference across the fluid layer. All these global
=¢1(t)=— o (1) that is shown in Fig. &). characteristica of the concentration field — the common

The most conspicuous difference between the behavior afhape of the curves ab, M, and Cy(z=0.5) in Fig. 4c)
wy,T; on the one hand and &, on the other hand is the reflect the fact that these quantities are strongly tied together
enormous overshooting ¢€| in Fig. 4b) by about of fac-  [10] also in transient processes — show a sharp drop at the
tor of 10 relative to the final TW value dC7| during the  end of the SW-TW interval.
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C. SW—TW transformation 12

The SW—TW transformation amounts to a complex con- AT OOOOOOOOO
centration redistribution that involves wave breaking and a '
competition phase where one of the TWSs, of which originally
the SW is composed, survives on cost of the other when
nonlinear advection becomes sufficiently strong. The trans-
formation being quite abrupt displays rather complex dynam-
ics that is elucidated in more detail in this section. To that %006,
end we show in Fig5 a sequence of color coded sideview " ., ]
snapshots of the concentration distribution in the layer and ol 19 L R ?}%OOO o o _
the instantaneous streamlin@kmshed lines .

. . O-
. P
1. Concentration redistribution = . Q%b 5 . T

o]
Initially, at time t=5 in Fig. 5a), we see the SW as it is %7 N
typically found in the exponential growth phase. The dashed 9 [ ° L
streamlines giving instantaneous tangential flow directions o ]

oo
11 1®*e, Oopn ]
0...... OOOOQ

@]
show how alcohol is transported upwards and downwards by %
the SW flow that reverts periodically its direction. The ver- © ,O
tical concentration gradient is as large as that of the quiescer )
conductive state. The lateral one is still small so that here the
lateral SW profile is still harmonic. At=9 [Fig. 5b)], how-
ever, the flow amplitude of the SW oscillation has already
become so large that the upwards and downwards bulging
concentration plumes reach the opposite top and botton %
boundary, respectively. Beyond the midplane the streamlines a4 0 ‘ 1
diverge sideways, thereby widening the concentration wave X
and making it anharmonic. Advective nonlinearities have by
now become Suff|c|ent|y Strong to amp“fy the mlrror_ FlG 6. Spat|0temp0ra| eVOlU'}iOn of the phases of the waves of
symmetry-breaking differences between the original, |eft_vert|ca_l velocityw and concentratloﬁ_: during the SW-TW trans-
and right-propagating TW constituents of the SW to a leveformation. Shown are the world lines of the nodesvof(open
such that they are clearly visiblen Sec. IV D we show that circles andC (filled circleg V\(lth positive slope at midheight of the
perfectlymirror-symmetric initial conditions evolve inper- @Y€l The half-wavelength jumps of the SW nodisver part of
fect SW transients that under otherwise ideal conditions d he figurg of w are temporally delayed by about a quarter oscilla-
not lose their mirror symmetry and that end up in an un- ion period relative to those @. While the frequency of the waves

. : . ... decreases slightlycf. Fig. 4(c)] the value of the phase shifi
stable, mirror-symmetric SOC statdhe advective amplifi-  _ ow=ml2, does not change. It implies also a spatial delay of about

cation of t_he mirror-symmetry-breaking Ca“S?S' in particularM4 between the TWs ofv and C in the upper part of the figure.
asymmetric deformations of the concentration plumes thag_ . neters are=0.01. o= 10 y=—0.25,1=1.42, and\ =2.

can be seen upon close inspection already in Fig) &nd
more clearly so in Fig. &).

This figure marks the start of the extremely fast, advectiorference of abouk/4 between the TWs of andw.
dominated wave breaking process that lasts only about 0.3 The advective procesd) and (g) of rolling the plumes
thermal diffusion times and that is documented for ¥x2 into the circular regions of closed streamlines produces char-
=<10.5 in Figs. 5)-5(g). Therein the flow bends the de- acteristic concentration striations that can still be seef)n
formed red and blue plumes sideways to the right folds ~ and(h). The latter are the first snapshots of the emerging TW
them (d), and then in(e) the red one is pushed downwards that has still the large concentration gradients of the conduc-
and the blue one upwards. (8) and(f) the relative position tive state so that, therefore, its propagation veloeitk is
of the streamlines and of the concentration distribution haglmost as fast as the Hopf phase velocity /k. Thereafter
changed such that now the plume structure of the latter ihe rolled-in striations are degraded and homogenized by
partially resurrected by the flow. Simultaneously the plumesslow diffusion leading to a slowing down of the TW until
get “rolled in.” This flow induced sequence of first deform- finally, in (j), the fluid is well mixed to the level of the slow
ing, then bending, and finally rolling in the plumes is trig- final-state TW.
gered and associated with a change of ghatial phase be- A comparison of Fig. 5 with Fig. 4 revealing further in-
tween velocity and concentration field as shown in Figs. 3sight is instructive: The nonlinear advective deformation of
and 6. In the SW the spatial location of the node€a@ndw  the SW concentration plumes in Fig. 5 starts when in Fig. 4
coincide while the oscillations of andw are only tempo- the modulus oscillations of the lateral harmonjes,| and
rally shifted by about a quarter of an oscillation period, i.e.,|C4| do no longer go down to zero, that is, when the straight-
At=0.14. This phase differencec— ¢,=m/2 does not line SW trace ofw,(t) in the inset of Fig. 4 develops a
change its value but in the TW it implies also a spatial dif-sizeable elliptic shape that reflects the growth of the left-
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concentration-wave profiles mean vertical concentration

—

FIG. 7. Time evolution of the lateral profiles of the concentra-
tion field at midheight as a hidden-line plot. The profiles of the
initial SW are taken when their amplitude is maximal, the TW
propagation is compensated. Thick lines show profilesanequi- -
distantly spacextimest=4.56, 5.92, 7.3, 8.74, 11.84, 20.28,70.04. "> 57 11.8% 2028, 70.04. Parametersiare). 01, =10, ¢
Lines behind the crests on the left appear on the right as troughs ~ ' T '
because of the mirror-glide symmetry. ParametersLar®.01, o
=10, y=-0.25,r=1.42, and\=2. concentration deviation of opposite sign. In the subsequent

evolutionary phase with slow relaxation towards the final-
propagating TW on cost of the right-propagating componenttate TW the lateral extension of the plateaus increases while
in the original SW. Thus, the competition of the two coun-their height decreases dramatically.
terpropagating TWs is related to the boundary-induced de- |n Fig. 8 we show the temporal evolution of the vertical
formation and the subsequent toppling of concentratiorprofile of the laterally averaged concentration distribution
plumes caused by a change in the spatial phase relation bez,(z) by hidden-line plots at various times increasing from
tween velocity and concentration wave, cf., Figs. 3 and 6. top to bottom. The top line is the linear conductive profile

The toppling, bending, and rolling in of the SW concen-ith its large gradient and large surpl(geficiency of con-
tration plumes is also reflected by and associated with a contentration atz=0.5 (—0.5). The bottom line is the mean
plicated time dependence of the higher lateral concentratiopertical concentration profile of the almost relaxed TWt at
modes — see, e.dCs(t)| in Fig. 4b) aroundt=10. Higher  —70.4. It is characterized by a vanishing®§ over most of
C modes are here excited as well with Complicated, inCOherthe fluid |ayer(cf_ the broad p|ateau in Fig_)BFurthermore,
ent phase relations relative to each other in the-SWV  the final TW has quite narrow top and bottom boundary lay-
transformation phase. ers and the concentration surplieficiency at the top(bot-

The moduli|C,,(t)| become slowly varying only after the tom) boundary is much smaller than in the conductive state
pure TW has emerged out of the breaking process, say, aftef in the early SW. These properties again reflect the fact that
t=11. Then, in the relaxing TW, the phase relations betweefhe slowly propagating final TW is a well mixed state. Dur-
the lateral Fourier modes are locked in, their phase velocitiefyg the SW-—TW tranformation phase there appear undula-
are multiples of the frequency(t) of the first harmonic  tions on the initially linear profiles that then flatten out in the
shown in Fig. 4c), and they all decrease with decreasingpuylk to theC,=0 plateaus. Simultaneously the concentration
concentration varianc# (t) [Fig. 4(c)]. The decrease ob Co(z=0.5)= —Cy(z=—0.5) at the boundaries is reduced
andM is correlated also with a decrease of the mean verticatonsiderably to the final TW levels as it can also be seen
concentration difference between the surpliygz=0.5) at  from the dashed curve in Fig(d).
the top plate and the deficiency,Cy(z=—0.5)
=—Cy(z=0.5), at the bottom plate as can be seen from the
dashed line in Fig. &). D. Initial state dependence

FIG. 8. Time evolution of the vertical profiles of the laterally
averaged concentration fiel@,(z) as a hidden-line plot. Thick
lines show profiles atnonequidistantly spacetimest=4.56, 5.92,

The transient growth behavior displays a peculiar sensi-
tive dependence on the initial state that is absent in the

Lateral as well as vertical profiles of the concentrationgrowth of convection in pure fluids. Therein, only one criti-
wave change significantly during the SWI'W transforma-  cal mode can grow out of the conductive state after disturb-
tion as it can already be seen in Figs. 3 and 5 and in mor@g it with some unspecified small perturbation. The result-
detail in Figs. 7 and 8. In Fig. 7 we show the temporaling supercritical growth dynamics of pure fluid convection
evolution of the concentration deviation from its mean atshows an exponential growth phase determined by the criti-
midheight,C(x,z=0), by hidden-line plots at various times cal mode, a saturation phase, and finally the relaxation into
increasing from bottom to top. First the profile of the small-the fixed point of the final state of SOC. The transients re-
amplitude SW is harmonic and remains so while the amplisulting from different generic perturbations that contain the
tude grows, then there appear anharmonicities in the bendingitical pure-fluid mode with different amplitude are the
and rolling-in process, and, thereafter, the trapezoidal profilsame after shifting them in time if one disregards the very
of a TW emerges with its characteristic plateaus at constargarly times that just reflect the respective perturbation dy-

2. Evolution of concentration profiles
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pure TW eta =004

FIG. 9. (Color) Dependence of the transient convective growth behavior on the ampljtigesof TWg,; modes contained in the initial
perturbation of the conductive state. The relative amplituglé4.3) are 1 in the first rowpure TW), 0.01, and 0 in the third roWpure SW.
Snapshots of instantaneous streamlif@ashed and color coded concentration distributididue and red denotes high and low concentra-
tion, respectively together with isoconcentration linékill) are shown over one wavelength in a vertical cross section of the layer. Times
increase from top to bottom and are chosen to display characteristic field configurations for the respective evolution scenario. Parameters are
L=0.01,0=10, 4y=—0.25,r=1.42, and\ =2.

namics. The reason is that after these very early times thion (=0). The perturbation withj=1 has been imposed
transients are governed and slaved by just one growingp contain only the criticalWg mode. In the case of=0
mode. the numerically determinedWg and 7W, critical modes

In binary mixture convection with negative Soret cou- [57] for the fieldsu,w,T,C were superimposed with exactly
pling, however, there are two critical mod@¥V/z(x,z,t) and  equal amplitude to form a perfectly mirror-symmetric initial
TW, (x,z,t) of right and left propagating TW perturbations state. Since our finite-difference integration code was con-
[32,54,58, respectively, that get involved. They are mutual structed [58] not to generate mirror-symmetry breaking
mirror images with respect to the symmetry operation round off errors all fields remained mirror symmetric for all
—x and they both grow above the Hopf bifurcation thresholdtimes in the case;=1.
with the same growth rate as long as linear theory applies. In  Generic initial perturbations of the conductive state, on
a generic initial perturbation of the conductive state thesehe other hand, were generated by 800 uniformly distributed
two critical modes will be contained with different nonzero pseudorandom numbers in the range [0f 104,10 *]
amplitudesAg and A_ . Perturbations withAg|=|A_|,Ax  added to the conductive temperature field on the grid of the
=0, orA_=0 are nongeneric special cases with significantlysimulation. In this way we found that)| is generically non-
different transient growth behavior than the generic case. zero but small compared to 1. This reflects the fact that the

We found that the transients can be characterized by thmirror symmetry undex— —x is only weakly broken when
relative amplitude difference [Eq. (4.3)] of the two critical  constructing the initial perturbation in the above described
TW modes contained in the initial perturbation. Their rela-generic way. This also explains that one observes in experi-
tive strength determines the competition of these two wavements initially a growth phase with SW characteristics when
when the advective nonlinearities become important. Figurethe set up and with it the perturbations of the conductive
9 and 10 elucidate the dependence of the transient behavistate are almost mirror symmetric so that a particular TW
on the relative content ofWg and of 7W, for the special propagation direction is not favorgd6].
case of a pure right-propagating TW perturbation=1), a Figure 9 shows instantaneous streamlii@ashed and
mixed perturbation withp=0.01, and a pure SW perturba- color coded concentration distributions together with isocon-
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later on patches with alternatingly high and low concentra-
] tion plateaus. The generic casgs0.01, shows in the third
row the wave toppling occuring in the transitiéBec. IV Q
] to a genuine TW. In the perfectly symmetric casesof 0
advection has become strong enough to deform the SW con-
‘ centration distribution into the shape of a symmetric mush-
b) 1 room just before there occurs an abrupt lock-in transition to
a stationary field configuration. This sudden locking in of the
mushroomlike configuration terminates the SW oscillations.
Thereafter a very fast relaxation to the mirror-symmetric
final-state SOC takes place that is dominated by advective
mixing. The SOC and the previous SW transients are un-
stable against mirror-symmetry-breaking perturbations that
would drive the system to one of the stable nonlinear TW
states. However, by carefully avoiding these perturbations in
our code we can trace out the pure SW transition scenario all
the way to the final unstable SOC. Here it should be noted
that for our control parameters neither a stable nor an un-
stable nontransient, relaxed SW solution is available: The
nonlinear, unstable SW solution branch bifurcates backwards
] out of the conductive state at Hopf bifurcation threshold
Iosc, €nds on the lower unstable SOC solution branch, and
remains always below,.[10,59.
The last row in Fig. 9 shows the final states of the respec-
tive evolution: the nonlinear TW state fop=1 and %
FIG. 10. Evolution dynamics of the moduli of lateral Fourier =0.01 and the SOC state for the perfectly symmetric SW
modes at midheight of the layer as indicated, of the frequency (7=0).
and of the mixing numbeM for the three transition scenarios of In Fig. 10 we show the dynamics of the lateral Fourier
Fig. 9 with »=1 (pure TW), »=0.01, andp=0 (pure SW. The  modesT;, C,, andC5 at midheight of the fluid layer, of the
starting times for the three scenarios have been shiftedtbyl10 frequencyw, and of the mixing numbeM! for the three cases
relative to each other for better visibility. The last row shows thef Fig. 9. The starting times for the three curves have been
dynamics in the complex mode plane Bf (the velocity moden;  ghjfted in Figs. 108)—10(c) relative to each other for better
behaving similarly. Parameters are=0.01, =10, ¢=—0.25, visibility.
r=1.42, andh=2. The initial conditionn=1 with a pure right propagating
TW perturbation leads to an outwards spiraling motiorT pf
centration linegfull) in a vertical cross section of the layer at in the complex mode plane of Fig. @) with monotonously
four times. The latter were chosen differently for each of theincreasingT;| and|w,| [Fig. 10a]. On the other handC,|
three evolution scenarios such as to display field configuradevelops a strong overshoot in Fig.(lOwhen the concen-
tions that are characteristic for the respective evolution sceiration bulge in the third row of Fig. 9 is rolled in. Thereatfter,
nario. The first row of Fig. 9 shows an evolution stage wherghere is a long-time diffusive relaxation (&,| as well as of
the noncritical modes that the initial perturbation might haveM and w in Fig. 10(c). The transition of the fast TW to the
contained have already died out but where the nonlinearitielng-time relaxation phase is associated with the appearance
have not yet become important. Here the fields, say, at midef higher lateral Fourier modes, e.¢Cs| in Fig. 10b).
height of the layer are well described according to E4<) The other nongeneric case= 0, triggered by a perfectly
and (4.5 by F=Fy+|Ag|coskx— wt—¢@g)+|A|coskx  symmetric SW initial perturbation shows oscillatory motion
+ot+ @) sinceAg | =|Ag |e7'¥F andwg = *w. In the  of T, along the straight line in Fig. 10 until the SW
three cases of a pure right-propagating T\ (=0), a su-  abruptly stops—cf. the termination of the curve fotin Fig.
perposition of7TWg and 7W, with =0.01, and a perfectly 10(c)—and is locked into a stationary field configuration.
mirror-symmetric SW [Ag| =|A_|) the spatial separation be- The latter almost instantaneously evolves into the SOC, cf.
tween the nodes of the velocity and concentration fields ar¢he evolution ofM in Fig. 10c). Also here the transition is
different because of the different amplitudes. associated with the generation of higher lateral Fourier
In the second row the nonlinearities have generated sizenodes of the concentration field some of which surpass in
able higher modes that are different for the three cases shownagnitude even the first mode.
in Fig. 9. The spatial phase difference between velocity and The evolution of the Fourier modes, af, and ofM for
concentration field has already slightly changed in the casthe generic casley|=0.01 that has been dicussed at length in
7=0.01. Secs. IVA-IV C is included here in Fig. 10 for the sake of
The next row shows for the pure TW evolution scenariobetter comparison with the nongeneric cases. We only men-
(n=1) how the concentration bulges that intrude from thetion that the long-time diffusive transients fer=1 and »
boundaries into the bulk of the fluid are rolled in to form =0.01 are the same.
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FIG. 11. Time evolution of the frequency spectry@,(w;t)|

obtained as the Fourier transform with a Gaussian window centereﬂJd
at timet of the first lateral concentration mode at midheight of the.
layer. In the generic growth scenar{@) the initial perturbation

contained the right and left propagating critical modé#y | with
relative weightzn(4.3)= —0.01. In the pure SW scenarib) »=0.
Parameters are=0.01, 0=10, y=—0.25,r=1.42, and\=2.

E. Competition between right and left propagating TWs
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[Fig. 11(a)] and =0 [Fig. 11(b)], respectively. The Gauss-
ian shaped contribution from the rightleft-) propagating
TW is centered at positivénegative frequencies. Initially
both grow exponentially and independently from each other
in agreement with linear theory. But when the convective
nonlinearities have become sufficiently strong the two waves
begin to compete. It leads in the caseref —0.01 to a rapid
decay of the right-propagating minor wave and an enhanced
growth of the left-propagating major wave. The latter con-
tinues to grow in amplitude before the long-time diffusive
relaxation to the final low frequency, low amplitude, well
mixed nonlinear TW state begins. In this relaxation phase the
crest of the mountain ridge in Fig. () decreases in height
and moves towards 0.

In the perfectly symmetric SW scenalibig. 11(b)] the
competition between the counterpropagating waves with pre-
cisely equal amplitudesz{=0) leads to an extinction of the
waves and a lock-in transition to a stationary state. However,
the stationaryC; mode in the final SOC state is too sniaif.

Fig. 10b)] to be resolved in Fig. 11—the uncertainty relation
does not allow to trace the frequencies down zero. In both
cases shown in Fig. 11 there appear higher-frequency har-
monics in C4(t) during the interaction and competition
phase. But because of the mirror-glide symmetr¢x,z,t)

they appear at midheighet= 0, only for odd multiples of the
basic frequency ofC,(t). The magnitude of these higher
harmonics increases with decreas|ng, i.e., when the am-
plitudes of the counterpropagating TWs become more and
more equal.

In Fig. 12 we show the time evolution of the TW ampli-
es in the plane spanned Wg| and |A | for various
initial conditions with differentn. These amplitudes were
taken from the frequency decomposition of the windowed
Fourier transformation ofv,(t) since the vertical velocity
field remains practically harmonic. Thus, the representation
of the wholew field by w,(t) is much better than the one of

C by C4(t). The resulting symbols in Fig. 12 are plotted at
equidistantly spaced times to indicate the velocities with

Here we analyze the competition between the growingvhich different parts of the trajectories are traced out. They
right- and left-propagating TW with the help of the complex connect the small initial perturbation of the unstable conduc-
signal F,(t) of the first lateral Fourier mode of different tive state fixed point Az =0) to the two TW attractors
fields at midheight of the layer. Since the frequency, i.e., thevhen »#0 or to the unstable SOC fixed point wher=0.

rate of change of the phase Bf, varies considerably we
made a spectral analysis Bf, that is local in time by mul-

Trajectories starting from initial conditions with=*1
move straight to the two TW attractors along the axes in Fig.

tiplying F4(t) with a Gaussian window whose center is glid- 12. On the other hand, the trajectory originating from the
ing along the time axis. The window width was adjusted topure SW initial condition,=0, moves in Fig. 12 to the
get good resolution without too much overlap of the spectrainstable SOC fixed point along the diagonal that connects

centered at the TW frequencies(t) and o (t) = — wg(t),
respectively. As an aside we mention that the mefle@j of

the unstable conductive state fixed point with the unstable
SOC state. All trajectories witlp#0 merge with—or, to be

shifting the whole signal in frequency space and applying anore precise, approach—the pure TW trajectories along the
low-pass filter to extract the wave in question could not beabscissas before ultimately ending in one of the TW attrac-
applied in our case because of the strong temporal variatiotors. But the closet; is to 0 the longer stays the respective

of the wave frequencies.

Figure 11 shows the time evolution §€;(w;t)| where
Ci(w;t) is the Fourier transform of the time sigr@} evalu-
ated with a Gaussian window centered at timélere the

trajectory close to the diagonal before it is eventually at-
tracted to one of the TW attractors. Thus, the diagonal is a
separatrix, i.e., a boundary between the basins of attraction
of the two TW attractors—trajectories starting from initial

initial state contained the right and left propagating criticalconditions with»<<0 (7>0) get attracted to the TW attrac-

modes7Wr | with relative amplitude differencgy=—0.01

tor on the ordinatéabcissa
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FIG. 12. Time evolution of TW amplitudes for initial conditions
with different . The amplitudegsymbolg of the respective TWs FIG. 13. Evolution trajectories in the plane spanned by fre-
were determined at equidistantly spaced times by a frequency déuencyw and TW flow amplitudes obtained from the Fourier de-
composition of the Fourier transformation of the first lateral har-composition of the first lateral harmonie, (z=01), of the vertical
monic,w, (z=04), of the vertical velocity field using a gliding time  velocity field using a gliding time window as in Fig. 1@Ag| and
window described in the text. Parameters hre0.01, =10, ¢ »>0 (|A | andw<0) refer to right-(left-) propagating TW con-
=—-0.25,r=1.42, and\=2. tributions tow;. Symbols are plotted at equidistantly spaced times
starting on the abscissalAr |=0, w=*wy==*11.5) from
There is a “separation point” on the diagonal connectionsmall perturbations of the conductive state wigk=0 [full lines
between the two unstable fixed points in Fig. 12 from whichwith filled circles; these pure SW trajectories end in the unstable
trajectories withy+ 0 are repelled and deflected towards oneSOC statéopen squarg, 10" 7 (dashed lines marked "almost pure
of the TW attractors. Pure SW trajectories, however, experiSW’). 10" (large open lozenggs10 " (open triangles 10
ence beyond this point an extremely large acceleration to(small open circles 0.7 (small open lozenges marked “almost pure

wards the SOC fixed point—see also Figs. 10 and 11. Tth"). The bifurcation branches of the nonlinear “stationary”

special role that the separation point plays can be understodgfP!e @nd unstable TW solutions are included by full and dashed
ray lines, respectively. The significance of the straight grey lines

with t.he _help of Flg 13. _There, we show .tra]ectorles S.tartmqgabeledMR L|=*wlm is explained in the text. Parameters &re
from initial conditions with»=0 (those with»<<0 are just ~ _ 75, "¢ Y= —0.25,r=1.42, and\ =2
mirror images of the respective ones wigh>0) in the plane R ' B T '
spanned by frequenay and moduli|Ag| and|A,|. Positive  tion trajectories = +1) trace out an ellipse given by the
(negative frequencies and amplitudesg| (|A|) refer to  relation[29] (w/wo)?+|A/A.|?=1 between frequency and
right- (left-) propagating TW contributions tw(t) as ob-  velocity field intensity. If| 7| is close to 1 as for the small
tained from the windowed Fourier transformation. The start-open lozenges and circles the minor amplituf { in Fig.
ing points|Ar |=0 on the absissa ab=*wy=11.5 are  13) becomes suppressed early during the competition. While
small perturbations of the conductive state. Fpr-O(n»  the frequencywg of the winning TW decreases monoto-
<0) the right-(left-) propagating TW contribution wins the nously the frequencyw, | of the losing TW varies slightly
competition and the trajectory dfg| (|A_|) ends on the aroundw,.
bifurcation branch12,48 of nonlinear, right(left) propagat- In the generic growth scenario that starts from perturba-
ing “stationary” TWs that is included in Fig. 13 as well. The tions with some finite &|5|<1 the trajectories remain in
losing trajectory of A | (|Ag|), on the other hand, runs more Fig. 13 initially close together since during the first growth
or less abruptly(cf. also Fig. 11 back to the abscissp| phase the frequenay does not deviate much from the initial
=0. For perfect SW initial conditions witly=0, however, Hopf frequencyw, (cf. Figs. 4 and 10 But when the flow
the “pure SW” trajectories in Fig. 13 end in the SOC state atintensities|Ag | of the right- and left-propagating TW con-
w=0 tracing out the perfectly symmetric SW scenario with stituents reach the respective phase velocities/ 77, which
|Ag|=]AL]. happens near the separation point, then the evolution
All winning trajectories starting from initial conditions changes: The trajectories of thefield in Fig. 13 undergo
with »+#0 enter eventually the pure TW evolution phase—characteristic changes depending gprwhen they cross the
the sooner the closéty| is to 1 (which can also be seen in lines |Ag |=* /7 in Fig. 13 (while in Fig. 12 they get
Fig. 12. The purep=1 TW evolution trajectory is practi- deflected towards the TW attractoiwith decreasing| 7|
cally identical with the small open lozengéabeled “almost  they get more and more bent towards- 0, the axis of Fig.
pure TW”) in the right part of Fig. 13. The pure TW evolu- 13 (the absissa or ordinate in Fig. )12But finally they
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change direction to merge with the pure TW ellipse,do not favor a particular TW propagation direction cause an
(0l wg)?+|AIA|?=1 in Fig. 13 (with one of the axes in initial growth phase with SW characteristics. On the other
Fig. 12. This happens with decreasifg| at later and later hand, thepure SW case|Ag|=|A.| and the twopure TW
times. casesA; =0 or Ag=0 with »= =1 are nongeneric with sig-
This change in the dynamics close to the separation poimificantly different transient growth behavior.
is associated with the concentration redistribution that occurs In the perfectly mirror-symmetripure SW growth sce-
when the fast initial SW-like oscillations of the generic casenario (»=0) the SW oscillations terminatabruptly once
(|Agl=|A_], i.e., small | #0) are transformed into TW os- they have reached a critical amplitude by locking in into the
cillations (cf. Secs. IV Aand IV @. This takes roughly place stationary field configuration of a nonlinear mirror-
when the convective flow velocitidég , | have reached the Symmetric SOC state. However, thpsire SW growth sce-
respective phase velocities w/7. Then the concentration Nario is unstable against mirror-symmetry-breaking perturba-
wave crests and troughs topple; concentration is “rolled in"tions that cause propagation of the growing patter to the
into regions with alternatingly high and low, plateaulike lev- 9ht (1€ft) if >0 (7<0). Also for larger Rayleigh num-

els that are subsequently degraded diffusively on longer tim8€"S Where only the SOC attractor but no more steady TW
scales as described in the previous subsections. solution is available as nonlinear final state do the transients

typically show TW competition and phase propagation that
finally slows down. Pure TW growth|¢|=1) proceeds in
the amplitude-frequency plane along an elligge/ wo)?
The spatiotemporal evolution of oscillatory convective +|A/A..|?=1] from the ground state perturbed by a pure
roll structures during the transient growth out of perturba-TW critical mode all the way to the final, nonlinear TW state.
tions of the quiescent conductive ground state has been irll trajectories with #0 merge eventually into this pure
vestigated with finite difference numerical simulations of aTW evolution modus—the later the smalley|.
laterally periodic fluid layer. To elucidate the spatiotemporal The genericgrowth dynamics is triggered from perturba-
changes in the different transient growth scenarios we havitons containing the two critical oscillatory modes with
studied the evolution of various field quantities like, e.g.,roughly equal amplitudes. Initially, i.e., as long as linear
computed topview shadowgraph intensity profiles, lateratheory applies they both grow exponentially with the same
Fourier modes(and their temporally windowed frequency growth rate thus causing SW-like oscillations with the large
spectra of the fields and their trajectories in different phaseHopf frequency. But a competition between the two TW con-
spaces, sideview field distributions, lateral and vertical wavsstituents sets in when the advective nonlinearities have be-
profiles, frequency and mixing number. come sufficiently strong. They amplify the mirror-symmetry-
The simulations have been performed for parameterbreaking differences betwedAg| and |A | and cause the
adapted to experiments that use ethanol-water mixtures wittlecay of the minority TW. Thus, the SW that still has a large
sufficiently negative Soret coupling to show a subcriticalfrequency is transformed into a fast TW. This SWW
Hopf bifurcation. Then two critical modes of rightR) and  transformation being advection driven is spatiotemporally
left- (L) propagating TWs with typically large positive and complicated, in particular, for the concentration field and it
negative frequency, respectively, can grow above the Hopimplies a dramatic redistribution of concentration by advec-
bifurcation threshold. Thus, the transients show—unlike pureive “rolling in” of concentration. It takes place within less
fluid convection—a peculiar sensitive dependence on the inithan one vertical thermal diffusion time and it starts roughly
tial state. However, all transients investigated here obeyedhen the flow amplitudes of the two constituent TWs have
the mirror-glide(MG) symmetry(3.1) with the exception of grown to about the phase velocity|/k: First concentration
the very early stage when the imposed initial conditions werés advected upwards and downwards in the form of plumes
not MG symmetric. But, even then the MG symmetry wasby the growing SW-like flow that reverts periodically its di-
rapidly restored. The robustness of this symmetry is remarkrection; the vertical concentration gradient being still as large
able given that the nonlinearity in the concentration balanceas that of the quiescent conductive state. The-SVW
i.e., the Pelet numberw/L becomes large. However, the transformation is triggered by an advective wave breaking
concentration field is “tamed” by being coupled to the MG and wave toppling process of the crests and troughs of the
symmetric velocity and temperature fields that in the invesconcentration wave whereas the wavesaofind T do not
tigated range of small supercritical driving remain smooth. undergo substantial structural changes. Advective nonlineari-
We found that the different growth scenarios can conveties have by now become sufficiently strong to make the
niently be characterized by the relative amplitude differencamirror-symmetry-breaking differences between the original,
7 [Eq. (4.3)] of the two critical TW modes contained in the left- and right-propagating TW constituents of the SW
initial perturbation of the conductive state. Their relative clearly visible. When the concentration wave créssughs
strength(which can easily be determined by Fourier decom-with high (low) alcohol content bend and topple they are
position determines the outcome of the competition of theseadvectively “rolled in.” In the toppling and breaking concen-
two waves when the advective nonlinearities become importration wave the coherence between the lateral Fourier modes
tant. Forgenerig i.e., nonspecific initial perturbations that of C is temporarilly lost thus reflecting the complex, almost
break the mirror symmetrx— —x only weakly one has irregular redistribution dynamics that takes place in the short
|Ag|=|A.| so that|#| is small compared to 1 but nonzero. time interval of the SW-TW transformation.
Thus, “almost” mirror-symmetric experimental setups that The flow induced sequence of first deforming, then bend-

V. CONCLUSION
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ing, and finally rolling in the plume-like wave crests and then a long-term TW transient to a low-frequency, strongly

valleys is associated with and driven by a growth of thenonlinear, strongly anharmonic, relaxed TW state sets in:

spatial phase shift between velocity and concentration fieldslow diffusion degrades and homogenizes the concentration

from zero to abouh/4 during the SW-TW transformation:  striations, the spatial plateau extension over witicis con-

In the SW the spatial location of the nodes@andw coin-  stant at the two alternating high and low levels increases, the

cide while their oscillations are shifted in time by about aplateau height decreases, the width of boundary layers be-

quarter of an oscillation period. The valug; — ¢,,=7/2, of  tween these plateaus shrinks, tBewave profile becomes

this phase difference does not change during the whole tramnore and more trapezoidal, and the alcohol surgblefi-

sition sequence but in the TW it implies also a spatial shift ofciency) in the cold top(warm bottom part of the fluid layer

C andw of N /4. decreases, thereby reducing the overall vertical concentration
Rolling the plumes into circular regions of closed stream-difference between top and bottom. This long-time degrada-

lines produces alternatingly high and low concentration plation of concentration gradients is reflected by a dramatic re-

teaus in the resultingropagatingand strongly anharmonic  duction of the mixing numbew and with it of the frequency

wave with some characteristic stripéss an aside: the ap- o relative to the initial values—the better the fluid becomes

pearance o€-wave plateaus when flow and phase velocitiesmixed the smaller isv.

become equal marks for “stationary” TW solutions a char-

acteristic variation in the b|f_urcat|on bran(_:h that delimits the ACKNOWLEDGMENTS
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