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Nonhydrodynamic modes anda priori construction of shallow water lattice Boltzmann equations
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Lattice Boltzmann equations for the isothermal Navier-Stokes equations have been constructed systemati-
cally using a truncated moment expansion of the equilibrium distribution function from continuum kinetic
theory. Applied to the shallow water equations, with its different equation of state, the same approach yields
discrete equilibria that are subject to a grid scale computational instability. Different and stable equilibria were
previously constructed by Salmon@J. Marine Res.57, 503 ~1999!#. The two sets of equilibria differ through a
nonhydrodynamic or ‘‘ghost’’ mode that has no direct effect on the hydrodynamic behavior derived in the
slowly varying limit. However, Salmon’s equilibria eliminate a coupling between hydrodynamic and ghost
modes, one that leads to instability with a growth rate increasing with wave number. Previous work has usually
assumed that truncated moment expansions lead to stable schemes. Such instabilities have implications for
lattice Boltzmann equations that simulate other nonideal equations of state, or that simulate fully compressible,
nonisothermal fluids using additional particles.

DOI: 10.1103/PhysRevE.65.036309 PACS number~s!: 47.11.1j, 05.20.Dd, 92.20.2h
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I. INTRODUCTION

Methods based on lattice Boltzmann equations~LBE! are
a promising alternative to conventional numerical metho
for simulating fluid flows @1#. The lattice Boltzmann ap
proach replaces the nonlinear differential equations of m
roscopic fluid dynamics with a simplified description mo
eled on the kinetic theory of gases. Hydrodynamic behav
is recovered through the Chapman-Enskog expansion, w
exploits a small mean free path approximation to desc
slowly varying solutions of the underlying kinetic equation
Lattice Boltzmann methods are straightforward to implem
since they involve linear constant coefficient differential o
erators, and have proved especially effective for simulat
flows in complicated geometries and exploiting parallel co
puter architectures. For these reasons, Salmon@2,3# has ad-
vocated the use of lattice Boltzmann methods in oceano
phy, beginning with a lattice Boltzmann formulation of th
shallow water equations@2#. The shallow water equations
describing a thin layer of incompressible fluid with a fr
surface, are commonly used as a prototype for studying p
nomena like wave-vortex interactions that are also presen
more complicated systems@4,5#.

Although lattice Boltzmann equations for the isotherm
Navier-Stokes equations were originally constructed emp
cally as extensions of lattice gas automata@6# to continuous
distribution functions@7,8#, it was eventually realized tha
the most common LBE is equivalent to a systematic trun
tion of the continuum Boltzmann equation in velocity spa
@9,10#. This derivation is equivalent to a moment expans
of the continuum Maxwell-Boltzmann equilibrium distribu
tion in tensor Hermite polynomials@11#.

However, when the same moment expansion is applie
the shallow water equations, it yields lattice Boltzma
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equations that differ from those devised by Salmon@2#, and
turn out to be rendered useless by an instability on the s
of the computational grid, as illustrated in Fig. 1. The ba
difficulty is that the constraints ensuring that a particu
lattice Boltzmann scheme reproduces, say, the isother
Navier-Stokes equations, are insufficient to determine
unique set of equilibrium distributions. In the common tw
dimensional, nine speed case the Navier-Stokes or sha
water equations provide only eight independent constra
for the nine unknown equilibria. We find that the remainin
degree of freedom must be used to eliminate an instab
associated with a nonhydrodynamic mode. This instability
not analytically tractable with the eigenvalue techniques u

t.

FIG. 1. Growth of a density instability in a two-dimension
shallow water lattice Boltzmann scheme using the Hermite exp
sion Eq.~23!. This is a slice along the liney5x. Instability even-
tually develops on the shortest permitted lengthscaleDx, and then
grows rapidly like exp(0.36t/Dt).
©2002 The American Physical Society09-1
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PAUL J. DELLAR PHYSICAL REVIEW E 65 036309
previously@12,13# on the fully discrete system, so we pref
to treat the instability at the partial differential equatio
~PDE! level using the concept of nonhydrodynamic
‘‘ghost’’ variables introduced by Benzi, Succi, and Verga
sola @14,15#. A similar approach appeared independently
about the same time by d’Humie`res@16#. The idea is to aug-
ment the evolution equations for the hydrodynamic qua
ties ~density, momentum, and stress! with additional equa-
tions to give a complete description of the lattice Boltzma
equation, viewed as a PDE system. We then look for in
bilities associated with nonhydrodynamic behavior in the
PDEs.

The existence of such instabilities has implications
using lattice Boltzmann equations with modified equilibria
simulate other nonideal equations of state@17#, or to include
additional physics like magnetic fields@18#. These two pre-
vious treatments assumed that equilibria derived from a tr
cated Hermite expansion with the desired moments wo
lead to a stable scheme. This work should also be releva
lattice Boltzmann equations using moment expansions w
extra particle speeds for compressible, varying tempera
fluids @19–21#. The extra speeds add further undetermin
degrees of freedom, even after the heat flux has been s
fied.

II. SHALLOW WATER EQUATIONS

The two-dimensional shallow water equations are usu
written as

] tu1u•¹u52g¹r1r21¹•S, ] tr1¹•~ru!50,
~1!

where u5(u,v) is the fluid velocity, r the free surface
height, and the constantg the reduced gravity. Dissipativ
effects are included via a deviatoric stress tensorS, whose
precise form is discussed below. These equations descr
thin layer of incompressible fluid with a free surface, a
may be derived by integrating the three-dimensional Nav
Stokes equations in the vertical. We user for the height,
rather thanh as is common in geophysical fluid dynamics,
highlight the similarity with the Navier-Stokes equations.
fact, if Eqs.~1! are rewritten in conservative form

] t~ru!1¹•~P I1ruu2S!50, ] tr1¹•~ru!50, ~2!

P being the pressure, andI the identity matrix. It is also
useful to define a momentum flux or stress tensorP5P I
1ruu2S. In this form, the shallow water equations becom
identical to the two-dimensional compressible Navier-Sto
equations for a fluid with equation of stateP5 1

2 gr2 @22#.
For subsequent flexibility we also consider the general ba
tropic equation of stateP5P(r), sometimes called ‘‘homen
tropic’’ @4# to avoid confusion with the usual oceanograph
sense of ‘‘barotropic’’ as meaning independent of depth.
isothermal gas, as simulated by the most common lat
Boltzmann equations@1#, hasP5cs

2r, with constant sound
speedcs.

Some diffusive behavior is useful for numerical stabili
even though the shallow water equations are normally u
03630
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to simulate nearly inviscid phenomena, and many appli
tions in geophysical fluid dynamics use algebraic drag te
like 2ku ~Rayleigh friction! instead of, or as well as, diffu
sive stresses@4,5#. For an ideal monatomic gas,S5m@¹u
1(¹u)T2 2

3 I¹•u#, wherem is the dynamic viscosity. Vari-
ous different forms have been proposed for the dissipa
stress in the shallow water equations, as surveyed in
@23#, but references@23,24# favor a two-dimensional New-
tonian viscous stress,S5m@¹u1(¹u)T2 1

2 I¹•u#1zI¹•u,
albeit with bulk (z) and shear (m) viscosities proportional to
the densityr to ensure that the dissipation of kinetic ener
1
2 ruuu2 is sign definite.

III. CONTINUUM KINETIC THEORY

Kinetic theory introduces a distribution functionf (x,j,t),
representing the probability density of particles at positionx
moving with speedj at timet. Macroscopic variables such a
fluid densityr, velocity u, and momentum fluxP are recov-
ered from moments of the distribution function with respe
to the microscopic particle velocityj,

r5E f dj, ru5E jf dj, P5E jjf dj. ~3!

The compressible Navier-Stokes equations may be
rived from the continuum Boltzmann Bhatnagar-Gros
Krook ~BGK! equation

] t f 1j•¹ f 52
1

t
~ f 2 f (0)!, ~4!

in a slowly varying limit using the Chapman–Enskog pertu
bation expansion@25–29#. The computational interest in ki
netic theory is largely motivated by the linearity of the d
ferential operator on the left hand side of Eq.~4!. On the
right hand side of Eq.~4! we have used the BGK approx
mation@30# to Boltzmann’s original binary collision term, in
which f relaxes towards an equilibrium distributionf (0) with
a single relaxation timet. The Maxwell-Boltzmann equilib-
rium distribution inD spatial dimensions is

f (0)5
r

~2pQ!D/2
expS 2

~j2u!2

2Q D , ~5!

wherer,u andQ are the dimensionless macroscopic dens
velocity, and temperature determined fromf via Eq. ~3! and

rQ5
1

DE uj2uu2f dj5
1

D
Tr P. ~6!

We work in units in which the particle masses and Bol
mann’s constant are both unity, and velocities are scaled
that the isothermal sound speedcs5Q1/2.

Xu @31,32# showed that the shallow water equations cou
also be cast into continuum kinetic form, using the equil
rium distribution
9-2
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f (0)5
r

~pgr!D/2
expS 2

~j2u!2

gr D , ~7!

or equivalently by settingQ5 1
2 gr in Eq. ~5!. The ideal gas

equation of stateP5Qr then coincides with the shallow
water equation of stateP(r)5 1

2 gr2. Xu @31,32# simulated
the inviscid (m50) shallow water equations using an u
wind finite volume scheme to solve Eqs.~4! and ~7!.

The ‘‘a priori’’ approach@9,10,17,33# attempts to derive
to lattice Boltzmann equations from systematic moment
small Mach number, expansions of the continuum equi
rium distributions such as Eq.~5!. In this paper we try to
apply this approach to the equilibrium in Eq.~7! for the
shallow water equations, and find that the resulting latt
Boltzmann scheme is unstable.

IV. LATTICE BOLTZMANN HYDRODYNAMICS

The simplification leading to the lattice Boltzmann a
proach restricts the particle velocityj, previously a continu-
ous variable, to taking values in a discrete s
$j0 ,j1 , . . . ,jN%. The hydrodynamic quantities are no
given by discrete moments of the distribution functio
f i(x,t)5 f (x,ji ,t),

r5(
i 50

N

f i , ru5(
i 50

N

ji f i , P5(
i 50

N

jiji f i , ~8!

which evolve according to the lattice Boltzmann-BGK equ
tion,

] t f i1ji•¹ f i52
1

et
~ f i2 f i

(0)!, for i 50, . . . ,N. ~9!

The left hand side is a linear, constant coefficient differen
operator obtained by replacingj with ji in the continuum
Boltzmann-BGK equation~4!. We include a formal smal
parametere to facilitate the derivation of continuum equa
tions in the limit of small mean free path (e→0).

The Chapman–Enskog expansion@25–28# seeks
asymptotic solutions of Eq.~9! in the limit e→0 by posing a
multiple scales expansion of bothf and t, but notx, in pow-
ers ofe

f i5 f i
(0)1e f i

(1)1e2f i
(2)1•••, ] t5] t0

1e] t1
1•••.

~10!

We may think oft0 and t1 as advective and diffusive~vis-
cous! time scales, respectively. We impose the two solva
ity conditions

(
i 50

N

f i
(n)5(

i 50

N

ji f i
(n)50, for n51,2, . . . . ~11!

Thus the higher order termsf (1), f (2), . . . , do notcontribute
to the macroscopic density or momentum. These constra
which reflect microscopic mass and momentum conserva
under collisions, lead to evolution equations for the mac
scopic quantities.
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A systematic treatment would substitute the expansi
~10! into Eq. ~9!, collect terms at each order, and then ta
moments. A briefer approach, more in the spirit of this pap
is to take moments of Eq.~9! first

] tr1¹•~ru!50, ] t~ru!1¹•~P(0)1eP(1)1••• !50,

~12!

where P(n)5( i 50
N jiji f i

(n) . The right hand sides vanish i
Eq. ~12!, andr andu require no superscripts, by virtue of th
solvability conditions in Eq.~11!. We evaluateP(1) using the
evolution equation forP derived by applying( i 50

N jiji to
Eq. ~9!

] tP1¹•S (
i 50

N

jijiji f i D 52
1

t
~P2P(0)!. ~13!

At leading order ine this becomes

P(1)52tS ] t0
P(0)1¹•(

i 50

N

jijiji f i
(0)D . ~14!

The multiple scales expansion of the time derivative in E
~10! enables us to replace] tP

(0) by ] t0
P(0) to sufficient

accuracy. The latter may be expressed in terms of the kn
quantities] t0

r and] t0
(ru)

] t0
P(0)5] t0

„P~r!I1ruu…

5I
dP

dr
] t0

r1u] t0
~ru!1] t0

~ru!u2uu] t0
r ~15!

as evaluated in Appendix A. We find thatP(1) is a dissipative
stress, equivalent to that in a Newtonian fluid, for the isoth
mal Navier-Stokes equations, butP(1) is not a Newtonian
viscous stress for other barotropic equations of state.
dynamic viscositym is related to the collision time scalet in
Eq. ~9! via m5tur.

Equation~9! is usually implemented computationally u
ing the fully discrete system@1,33#

f̄ i~x1jiDt,t1Dt !2 f̄ i~x,t !

52
Dt

t1Dt/2
~ f̄ i~x,t !2 f i

(0)~x,t !!, ~16!

where thef̄ i are defined by

f̄ i~x,t !5 f i~x,t !1
Dt

2t
„f i~x,t !2 f i

(0)~x,t !…. ~17!

The solvability conditions imply that this substitution leav
the density and momentum unchanged, so that

r5(
i 50

N

f̄ i , ru5(
i 50

N

ji f̄ i ~18!

so thef i
(0) may be computed directly from thef̄ i , making the

f i redundant. Equation~16! is algebraically identical to a
9-3



.e
de

ow
f

u
s

te

s

o-

s,
ints

ns
17

by
m

for
or

l
rete
n-

s.

ry
-

cale
era-

nt

or-
ous
-
on-

es
in

a
u-
it

PAUL J. DELLAR PHYSICAL REVIEW E 65 036309
discrete form of Eq. 9 with second order accuracy, i
O(Dt2) error, obtained by integrating the right hand si
along characteristics for a time intervalDt using the trape-
zium rule. The change of variables~17! yields an explicit
scheme, expressingf̄ i at time t1Dt explicitly in terms of
quantities known at timet.

V. NINE SPEED EQUILIBRIA

The equilibria f i
(0) and speedsji must be constructed to

recover the desired continuum equations in the limit of sl
variations inx and t. In particular, the first few moments o
the equilibria must be

(
i 50

N

f i
(0)5r, (

i 50

N

ji f i
(0)5ru,

~19!

P(0)5(
i 50

N

jiji f i
(0)5P~r!I1ruu

making the leading order (e50) Eqs.~12! equivalent to the
inviscid (m50) continuum equations.

The most common lattice Boltzmann equations for sim
lating the two-dimensional isothermal Navier-Stokes u
nine particle speeds located on a square lattice@1#, although
earlier work employed six or seven particle speeds loca
on a hexagon@6,7,12#. The equilibria are given by

f i
(0)5wirS 113ji•u1

9

2
~ji•u!22

3

2
u2D ~20!

in units where the~constant! temperatureQ5 1
3 , and the

weight factorswi are @1,8,9#

wi5H 4/9, i50,

1/9, i51,2,3,4,

1/36, i55,6,7,8.

~21!

The components of the particle speedsji take integer values
$21,0,1%, forming a square lattice as shown in Fig. 2. The

FIG. 2. The nine particle speedsji in the two-dimensional
square lattice. We choose units in whichuj1u51, anduj5u5A2.
03630
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distribution functions were originally constructed as polyn
mials in u whose coefficients are arbitrary functions ofr.
The moments~19! impose constraints on the coefficient
and the form of the viscous stress imposes further constra
~see Appendix A!. However, at least one coefficient remai
arbitrary with nine speeds, and more with 13, 16, or
speeds@19#.

More recently, a systematic derivation was proposed
He and Luo@9#, based on the observation that the continuu
Maxwell-Boltzmann equilibrium~5! may be expanded as

f (0)5rw~j!S 11
j•u

Q
1

~j•u!2

2Q2
2

u2

2Q D 1O~u3!, ~22!

where w(j)5(2pQ)2D/2exp@2j2/(2Q)#. This was origi-
nally motivated as a small Mach number expansion, valid
uuu!uju, but it is equivalent to a moment expansion in tens
Hermite polynomials. The equilibria~20! then followed from
Eq. ~22! by replacing the continuum weight functionw(j)
by discrete weightswi obtained from a two-dimensiona
Gaussian quadrature formula, chosen to make every disc
moment appearing in Sec. IV identical in value to its co
tinuum analogue in classical kinetic theory. The choiceQ
5 1

3 causes the Gaussian quadrature points inx and y to be
the integers$21,0,1%, and causes the polynomials in Eq
~22! and ~20! to coincide.

Applied to the shallow water equations, or to an arbitra
barotropic equation of stateP(r), the same moment expan
sion leads to the equilibria

f i
(0)5wiS r1

1

u
~ru!•ji1

1

2u2
@~P~r!2ur!I

1ruu#:~jiji2uI!D . ~23!

We use a lower caseu to emphasize thatu5 1
3 is now a

constant reference temperature, equivalent to a velocity s
set by the particle speeds, rather than a local fluid temp
ture that may be spatially varying. Each term in Eq.~23!
involves one of the tensor Hermite polynomials 1,ji , and
jiji2uI, contracted with the required Hermite mome
r,ru, andP(0)2urI5„P(r)2ur…I1ruu, respectively. The
tensor Hermite polynomials have the property of being
thogonal with respect to both a discrete and a continu
inner product~see Sec. VI!. Since the required Hermite mo
ments are already known, it is actually unnecessary to c
struct a continuum distribution function first, but Eq.~5! with
Q5P(r)/r would suffice. The equilibria in Eq.~23! take a
particularly simple form for the isothermal Navier-Stok
equations, withP(r)5ur, as the isotropic pressure term
square brackets@•# vanishes.

The same expansion~23! may also be obtained through
small Mach number expansion of Xu’s continuum distrib
tion function~7!. As the densityr appears in the exponent
is necessary to consider a nearly uniform density,r5r0
1Ma2r8, as well as scalingu5O(Ma), to obtain
9-4
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r

~pgr!
expS 2

~j2u!2

gr D5r0w~j!S 11
j•u

Q
1

~j•u!2

2Q2
2

u2

2Q

1
~r2r0!j2

2Q D 1O~Ma3!, ~24!

whereQ5 1
2 gr0. Rearranging to replacer0 by r as the pre-

multiplier, we may also obtain

r

~pgr!
expS 2

~j2u!2

gr D5rw~j!S 11
j•u

Q
1

~j•u!2

2Q2
2

u2

2Q

1~r2r0!F j2

2Q
21G D 1O~Ma3!,

~25!

which coincides with the moment expansion~23! above on
substitutingj5ji and w(ji)5wi . In fact, the assumption
that r5r01O(Ma2) turns out to be unduly restrictive, an
the lattice Boltzmann scheme below successfully simula
flows with O(1) density fluctuations.

Unfortunately, the lattice Boltzmann equation for the sh
low water equations (P5 1

2 gr2) with these equilibria turns
out to be linearly unstable to a rapidly growing zigzag mo
at the grid scale, rendering it useless for numerical simu
tions. However, a stable and useful lattice Boltzmann form
lation for shallow water has already been devised by Salm
@2#, that uses the alternative equilibria

f 0
(0)5r1w0rS 2

15

8
gr2

3

2
u2D , ~26a!

f i
(0)5wirS 3

2
gr13ji•u1

9

2
~ji•u!22

3

2
u2D , for iÞ0,

~26b!

where Salmon chose an otherwise arbitrary coefficient
that Eq.~26b! takes the same form for bothuji u51 anduji u
5A2 types of particles~see Fig. 2!.

This casts doubt on the utility of the Hermite polynom
expansion at constructing equilibrium distribution functio
for systems other than the isothermal Navier-Stokes eq
tions. In fact, Salmon’s equilibria~26a,b! may be rewritten in
the form

f i
(0)5wiS r1

1

u
~ru!•ji1

1

2u2

3@~P~r!2ur!I1ruu#:~jiji2uI!D
1wigi S 1

4
r2

3

8
gr2D , ~27!

which differs from the truncated Hermite expansion~23!
only through a multiple of the ‘‘ghost vector’’gi5(1,22,
22,22,22,4,4,4,4)T. This vector is orthogonal in a discret
03630
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sense to the Hermite polynomials appearing in Eqs.~23! and
~27!, so the modification to Eq.~27! leaves the continuity
and momentum Eqs.~12! unchanged up toO(e) in the
Chapman–Enskog expansion. This particular choice for
otherwise arbitrary functionF(r,uuu) multiplying wigi is de-
termined in Sec. VI below, in that it eliminates an instabili
due to cross coupling to some nonhydrodynamic ‘‘gh
modes’’ present in the lattice Boltzmann equation.

VI. NONHYDRODYNAMIC GHOST VARIABLES

In principle the equilibrium distribution functionsf i
(0) for

the nine particle speeds are nine independent arbitrary fu
tions. The constraints~19! on the first three moments com
prise only six independent constraints, since the symme
second rank tensorP(0) has only three independent comp
nents in two dimensions. In this section we develop a tre
ment of the remaining three degrees of freedom, later id
tified with nonhydrodynamic ‘‘ghost’’ variables.

Ghost variables were introduced by Benzi, Succi, and V
gassola@14,15# for an earlier form of lattice Boltzmann equa
tion

] t f i1ji•¹ f i52
1

t
V i j ~ f j2 f j

(0)!, for i 50, . . . ,N,

~28!

where the 939 matrix V i j was obtained by linearizing a
quadratic collision operator of the kind used in lattice g
cellular automata@6#. A similar treatment appeared about th
same time by d’Humie`res @16#. Hydrodynamic and ghos
vectors arose naturally in both these treatments as eigen
tors of the collision matrixV i j . The Bhatnagar-Gross-Kroo
~BGK! approximation@30# used in Eqs.~4! and ~9! takes
V i j 5d i j , so all departures from equilibrium decay at th
same rate. The BGK approximation is now almost univ
sally employed, since it eliminates various artifacts like
velocity-dependent pressure that plagued earlier models@1#.
Any lattice vector is an eigenvector of the BGK collisio
operator, making the choice of basis somewhat arbitrary.
instance, Lallemand and Luo@13#, following Ref. @16#, used
a different basis that is orthogonal with respect to the
weighted inner product̂ f ,h&5( i 50

8 f ihi instead of the
weighted inner product in Eq.~30!. This basis leads to a
rather unnatural equation for the normal stress differe
Pxx2Pyy in place of Eq.~35b!.

The expressions~23! and ~27! for the equilibria involve
the first three tensor Hermite polynomials 1,j and jj2uI,
with coefficients depending on the hydrodynamic variabler
and u. The components of the tensor Hermite polynomi
comprise the six polynomials 1,j ix ,j iy ,j i x

22u,j ixj iy and
j i y

22u, each of which may be regarded as a nin
dimensional lattice vector,p say, with components
(p0 ,p1 , . . . ,p8) corresponding to the polynomial evaluate
at the lattice pointsji . Written out in full, these vectors are

1i5~1,1,1,1,1,1,1,1,1!T,

j ix5~0,1,0,21,0,1,21,21,1!T,
9-5
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PAUL J. DELLAR PHYSICAL REVIEW E 65 036309
j iy5~0,0,1,0,21,1,1,21,21!T,

j i x
22u1i5

1

3
~21,2,21,2,21,2,2,2,2!T, ~29!

j ixj iy5~0,0,0,0,0,1,21,1,21!T,

j i y
22u1i5

1

3
~21,21,2,21,2,2,2,2,2!T.

These six lattice vectors are orthogonal with respect to
inner product defined by the weightswi . In other words

^p,q&5(
i 50

8

wipiqi50 for pÞq, ~30!

where ‘‘p5q’’ means ‘‘pi5qi for i 50, . . .,8.’’ This is the
discrete analogue of the continuous orthogonality relat
satisfied by the original polynomials

E w~j!p~j!q~j!dj50 for pÞq, ~31!

where w(j)5(2pu)21exp@2j2/(2u)# in two dimensions
(D52) as in Sec. V. Equation~30! follows from Eq. ~31!
using the two-dimensional Gaussian quadrature formula

E w~j!p~j!q~j!dj5(
i 50

8

wip~ji !q~ji !5(
i 50

8

wipiqi ,

~32!

provided the productp(j)q(j) is a polynomial of degree five
or less injx andjy @34,9,33#. It may be helpful to draw an
analogy with the trigonometric functions sin(nx) and cos(nx),
as they also satisfy both discrete and continuous orthogo
ity relations on the periodic interval@0,2p#.

The six orthogonal lattice vectors in Eqs.~29! may be
extended to form an orthogonalbasis for R9 with the addi-
tion of three more vectors, conveniently expressed
gi ,gij ix , andgij iy , where

gij ix5~0,22,0,2,0,4,24,24,4!T,

gij iy5~0,0,22,0,2,4,4,24,24!T, ~33!

gi5~1,22,22,22,22,4,4,4,4!T,

with gi as in Sec. V above. Associated with these three e
vectors are three extra moments, named ‘‘ghost variables
Benzi, Succi, and Vergassola@14,15#

N5(
i 50

8

gi f i , J5(
i 50

8

giji f i ~34!

by analogy with the hydrodynamic momentsr,ru and P
defined previously. The hydrodynamic equations

] tr1¹•~ru!50, ] t~ru!1¹•P50, ~35a!
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] tP1¹•S (
i 50

8

jijiji f i D 52
1

t
~P2P(0)! ~35b!

comprising six independent equations sinceP is symmetric,
may thus be augmented by three ghost component equa

] tN1¹•J52
1

t
~N2N(0)!,

] tJ1¹•S (
i 50

8

gijiji f i D 52
1

t
~J2J(0)! ~36!

to give a complete description of the nine speed lattice B
zmann equation~9!. In other words, the nine quantitiesf i
may be reconstructed from the nine independent compon
of r,u,P,N, andJ as

f i5wiS r1
1

u
~ru!•ji1

1

2u2
~P2urI!:~jiji2uI!D

1wigi S 1

4
N1

3

8
ji•JD ~37!

and the lattice Boltzmann equation~9! may be reconstructed
by combining the hydrodynamic equations~35a,b! with the
ghost variable equations~36!. This procedure is thus equiva
lent to a linear change of variables in the lattice Boltzma
equation, one chosen to separate the intended hydrodyn
behavior from unintentional ghost behavior.

The most general equilibria with the required first thr
moments~19! are therefore

f i
(0)5wiS r1

1

u
~ru!•ji1

1

2u2
@ruu1~P~r!2ur!I#:~jiji

2uI!D 1wigi S 1

4
N(0)1

3

8
ji•J(0)D , ~38!

whereN(0) andJ(0) may be arbitrary scalar and vector fun
tions, respectively. The components of the tensorsjijiji and
gijiji appearing in Eqs.~35b! and~36! may be expressed in
terms of the nine basis lattice vectors as

gij ixj ix52~j iyj iy2u1i !1
2

3
gi , gij ixj iy54j ixj iy ,

~39a!

j ixj ixj ix5j ix , j ixj ixj iy5
1

3
j iy1

1

6
gij iy ~39b!

and their permutations inx and y. Recall that we are using
the term ‘‘lattice vector’’ to denote a collection of nine value
at the nine lattice points, so thexx component of a tensor
say, comprises a lattice vector labeled by the indexi. The
relations~39a,b! are responsible for cross coupling betwe
the hydrodynamic and ghost variables. In particularJ ap-
pears in the nonequilibrium stress via Eqs.~39b! and ~35b!
9-6
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] tPxx1]x~rux!1]yS 1

3
ruy1

1

6
JyD52

1

t
~Pxx2Pxx

(0)!,

~40a!

] tPxy1]xS 1

3
ruy1

1

6
JyD1]yS 1

3
rux1

1

6
JxD

52
1

t
~Pxy2Pxy

(0)! ~40b!

~similarly for Pyy), which are equivalent to the componen
Eq. ~13!. Similarly, the second of Eqs.~36! becomes

] tJx1]xS 2Pyy2
2

3
r1

2

3
ND14]yPxy52

1

t
~Jx2Jx

(0)!,

~41a!

] tJy14]xPxy1]yS 2Pxx2
2

3
r1

2

3
ND52

1

t
~Jy2Jy

(0)!.

~41b!

Although the nine speed lattice has sufficient symmetry
recover the isotropic Navier-Stokes equations at the first
orders in the Chapman-Enskog expansion, these ghost e
tions are not themselves isotropic.

To summarize, the lattice Boltzmann equation~9! sepa-
rates into the set of equations~35a, 40a,b, 36, 41a,b! for
r,ru,P,N andJ, respectively, in the orthogonal basis give
by Eqs.~29! and ~33!. The variablesP(0),N(0) andJ(0) ap-
pearing in Eqs.~40a,b, 36, 41a,b! are determined by the equ
librium distribution in Eq. ~38!. The leading order stres
P(0)5P(r)I1ruu is determined by the equation of stat
but N(0) andJ(0) remain arbitrary.

We must chooseJ(0)50 to avoid interfering with the lead
ing order viscous stressP(1) ~see Appendix A below! via the
cross coupling in Eq.~39b! involving j ixj ixj iy . Thus the
leading order equation for the ghost variableJ becomes

¹•S 2ruy
2 4ruxuy

4ruxuy 2rux
2 D 12¹S P~r!2

1

3
r1

1

3
N(0)D

52
1

t
J(1) ~42!

using Eq.~39a!, by analogy with equation Eq.~14! for P(1).
However,N(0) so far remains arbitrary, and must be det
mined by some criterion other than the form of the co
tinuum equations at viscous order in the Chapman-Ens
expansion, sinceN(0) does not appear in these equations.

VII. DENSITY-DRIVEN INSTABILITY MECHANISM

The first term in Eq.~42! is present in the usual lattic
Boltzmann scheme for the isothermal Navier-Stokes eq
tions, as in@8–10,1#, and is found to be innocuous there
the scheme is stable even for high Reynolds numbers~small
viscosity!. More concretely, the first term isO(Ma2) in the
03630
o
o
ua-

-
-
g

a-

usual scaling whereu5O(Ma). The second, gradient term
was not present in the isothermal Navier-Stokes case, s
P5(1/3)r andN(0)50. Since¹r may beO(1) in the shal-
low water equations, this term is also much larger than
first term. These observations strongly suggest that this t
is responsible for the observed instability, which is suppor
by the fact that Salmon’s choice@2# for the undetermined
function N(0)5r2(3/2)gr25r23P(r) in Eq. ~27! elimi-
nates both this additional term and the instability.

To illustrate the instability mechanism, we consider sm
perturbations about a rest state with uniform density. D
carding the first term on the left hand side of Eq.~42!, which
is O(Ma2) smaller than the second term, we obtain

J(1)522t¹S P~r!2
1

3
r1

1

3
N(0)D522t¹Q~r! ~43!

defining Q(r) as a convenient shorthand. Discarding ter
involving ru and] t0

P(0) from Eqs.~40a,b!, we find

Pxx5P~r!1
t2

3

]2Q

]y2
, Pxy5

2t2

3

]2Q

]x]y
,

Pyy5P~r!1
t2

3

]2Q

]x2
. ~44!

These simplifications are only intended to highlight the
stability mechanism associated with the gradient term in
~42!. As explained below, any quantitative treatment m
recognize that the computational system is only a disc
approximation to the PDE system.

The continuity and momentum Eqs.~35a! may be differ-
entiated with respect to time, without further approximatio
to obtain

]2r

]t2
52

]2~rux!

]x]t
2

]2~ruy!

]y]t
5

]2Pxx

]x2
12

]2Pxy

]x]y
1

]2Pyy

]y2

5¹2P~r!12t2
]4Q~r!

]x2]y2
. ~45!

If dQ/dr.0, this equation is linearly unstable to perturb
tions of the formr(x,y,t)5r01r8 exp(st1ixkx1iyky) about
a uniform state with densityr0. The growth rates is deter-
mined by

s252~kx
21ky

2!
dP

dr U
r5r0

12t2kx
2ky

2 dQ

dr U
r5r0

. ~46!

In fact, the equation is ill posed whendQ/dr.0, because
the growth rate increases faster than linearly with wave nu
ber, usu}uku2. If dQ/dr,0 the Q term only leads to high
frequency oscillations, i.e.,s purely imaginary, with fre-
quency proportional tokxky , rather than frequency propor
9-7
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tional to uku like the sound waves associated with the pr
sure term in Eq.~46!. This is the case for the equilibria base
on a Hermite expansion for the shallow water equatio
where Q(r)52 1

3 r1 1
2 gr2, and dQ/dr52 1

3

1O(Ma2/Fr2) is typically negative. However, it is easy t
suppose that the discrete system would in turn be unst
for such high frequency waves, based on a Coura
Friedrichs-Lewy stability criterion, so high frequency wav
in the PDEs would, in fact, appear as growing modes in
discrete system.

The scalingusu}uku2 explains why numerical simulation
exhibit an instability on the scale of the computational gr
since this analysis predicts that the fastest growing mod
the shortest mode permitted, although strictly the descrip
of the discrete computational system as a set of partial
ferential equations breaks down at these scales. The inst
ity associated withQ is only present if bothkx and ky are
nonzero, which explains why the one-dimensional version
the Hermite expansion shallow water lattice Boltzma
scheme is stable.

VIII. EIGENVALUE PROBLEM

For a quantitative treatment of the instability, we consid
an eigenvalue problem as in Refs.@12,13,35# for the the lin-
earized response of the fully discrete system~16! to plane
waves of the form

f̄ i~x,t !5 f i
(0)ur5r0 ,u501hi exp~ ik•x1st !, ~47!

where thehi are small constants. We have linearized arou
a uniform rest state withr5r0 and u50 for simplicity. In
this section we use lattice units in whichDx5Dt51. The
continuum limit then corresponds touku→0, for which pre-
sumablys→0, too. Substituting into Eq.~16! we obtain

@exp~s1 ik•ji !21#hi52
1

t11/2
Li j hj , ~48!

which is an eigenvalue problem fores, with hi the associated
eigenvector. The 939 matrix Li j is the result of linearizing
the BGK collision operatorf̄ i2 f i

(0) around the rest state (r
5r0 ,u50), recalling thatf i

(0) depends implicitly and non

linearly on the f̄ i via r and u. In general, the eigenvalu
problem is not analytically tractable, involving a ninth d
gree polynomial that does not readily factorize, and has to
solved numerically, for instance, by the so-called QR al
rithm @36#. The parameter space is also rather large, invo
ing at least the wave vectork, the relaxation timet ~equiva-
lent to the viscosity!, the derivative of pressuredP/dr
evaluated at the background densityr0, and alsodQ/dr at
r5r0 ~or equivalently the parameterl from Appendix B!.
In principle we should also consider background states w
a nonzero uniform velocityu0 as well, adding another two
parameters. The vectorsk and u0 must be kept as genera
vectors because the ghost equations are anisotropic.
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In the continuum limit, wherek ands are both small, and
t is large~compared with the time stepDt) the eigenvalues
of the discrete system~48! should coincide with the analo
gous eigenvalues of the lattice Boltzmann PDE system~9!

~s1 ik•ji !hi52
1

t
Li j hj . ~49!

Figures 3 and 4 show the real parts of the eigenvalues

FIG. 3. Eigenvalues of the systems~48! and ~49! for kx5ky ,
and parameterst51,P50, andQ52

1
3 r ~as in the Hermite expan

sion!. All modes are stable (Res<0) in both the continuum~—!
and discrete (d) systems.

FIG. 4. Eigenvalues of the systems~48! and ~49! for kx5ky ,
and parameterst51,P50,Q5

1
3 r. One mode is unstable (Res

.0) in both the continuum~—! and discrete (d) systems.
9-8
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both discrete and continuum systems as functions ofkx5ky
~recall that instability only occurs forkxkyÞ0) for the pa-
rameterst51,P50,Q52 1

3 r ~Fig. 3! andQ51 1
3 r ~Fig. 4!.

Three eigenvalues vanish in the long wave (k→0) limit, for
both the discrete and the continuous systems, correspon
to conservation of density and the two components of m
mentum under collisions. The remaining six eigenvalu
emerge from21/t in the continuous system~49!, and from
logu(122t)/(112t)u in the discrete system~48!. Instability,
meaning an eigenvalue with positive real part, only occ
for dQ/dr.0, as predicted by the analysis above, a
shown in Fig. 4. FordQ/dr,0, which includes the Hermite
expansion withdQ/dr'2 1

3 , only stable oscillations occu
~Fig. 3!, again in agreement with the above analysis in S
VII.

However, lattice Boltzmann schemes are typically used
parameter regimes wheret, 1

2 in lattice units. They attain
low net diffusivities, or high Reynolds numbers, through
almost exact cancellation between negative diffusion, fr
the O(Dx) spatial truncation error, and positive diffusio
from collisions. In this instance, instability does arise f
dQ/dr,0 as shown in Fig. 5, but only for wave vectorsk
large enough that the behavior of the discrete system is
longer close to the continuum system. Thus the continu
analysis of Sec. VII serves only to identify a mechanism, a
the criterionQ50 to eliminate the instability. We believ
this approach is more illuminating than a computatio
search for unstable eigenvalues in a five or larger dim
sional parameter space.

IX. CONCLUSION

The most common two-dimensional lattice Boltzma
scheme uses nine particle speeds arranged on a square

FIG. 5. Eigenvalues of the systems~48! and ~49! for kx5ky ,
and parameterst50.2,P50,Q52

1
3 r ~as in the Hermite expan

sion!. One mode becomes unstable (Res.0) in the discrete (d)
system, even though all continuum~—! modes remain stable. Fo
this smaller valuer oft the other six continuum modes have Res
'25, and so are off the bottom of the figure.
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as in Fig. 2. Simulating the viscous compressible Navi
Stokes, shallow water, or general barotropic fluid, equati
impose only eight constraints on the equilibrium distributi
functions. In this paper we have explored an instability as
ciated with the remaining single degree of freedom, iden
fied with a nonhydrodynamic ghost mode. Eliminating th
instability provides one more constraint,Q50 in Eq. ~43!,
and so serves to determine the unique set of equilibria
yield a usable computational scheme. With respect to un
standing the instability mechanism, and a criterion for
moving it, the approximate analytical treatment in Sec. VII
more useful than the numerical solution of eigenvalue pr
lems in Sec. VIII.

The equilibrium distribution functions given by a trun
cated expansion in tensor Hermite polynomials@11#, as ad-
vocated by thea priori approach@9,10,17,33#, coincide with
those determined by the ghost mode stability condition
the isothermal Navier-Stokes equations. For general eq
tions of state the Hermite polynomial expansion leads to
stable schemes, and must be modified in the fashion
scribed above. We are unable to offer an explanation of w
the Hermite expansion happens to work for the isotherm
Navier-Stokes equations.

This scheme may be used for nonideal barotropic eq
tions of state other than the shallow water equations, p
vided the pressureP(r) appears in the Hermite expansion
above, and the functionN(0)(r) is chosen to eliminate the
density gradient term in Eq.~42!. The Enskog equation, a
extension of the Boltzman equation to dense~nondilute!
gases studied recently by Luo@17#, yields a barotropic equa
tion of stateP5ur(11bgr) for small density fluctuations
where the virial coefficientsb andg have been calculated a
perturbation series inr @26,28#. Our approach offers an al
ternative lattice Boltzmann formulation to Luo’s@17# for
gases described by the Enskog equation, and one that
not require a density gradient computed by finite differen
approximation, which in turn complicates the treatment
boundaries. On the other hand, our approach gives a vis
stress that is not quite Newtonian, as calculated in Appen
A, but the deviation will be small for nearly ideal gases.

Returning to geophysical applications, we have used
scheme to simulate Bu¨hler’s modified shallow water equa
tions @37# with P521/(2r2). This equation of state has th
property of allowing steadily propagating one-dimension
simple waves with smooth profiles in the absence of visc
ity, while being equivalent to the conventional shallow wa
equations for small amplitude~linear! waves. This modifica-
tion suppresses the formation of shocks, that are often
unnecessary nuisance when the shallow water equation
used as a prototype for the meteorological primitive eq
tions, say, that do not form shocks.

Other recent work has tried to extend the lattice Bol
mann approach to finite Mach number and nonisother
flows with a correct internal energy equation. Different a
proaches using differing equilibria and numbers of parti
speeds have met with varying degrees of success and s
ity at finite Mach numbers@19–21#. Again, the constraints
needed to derive the viscous, thermally conducting Nav
9-9
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PAUL J. DELLAR PHYSICAL REVIEW E 65 036309
Stokes-Fourier equations do not determine a unique se
equilibria @19#.

Finally, it is interesting to note~see Appendix B for de-
tails! that the shallow water equations provide a counter
ample to the arguments in Ref.@38# for the stability of lattice
Boltzmann schemes where separate particle distribu
functions are restricted to be either always positive or alw
negative, and for the instability of schemes in which dis
bution functions change sign. The equilibria necessary fo
stable shallow water scheme, those that eliminate the g
mode instability, turn out to be precisely those that m
encourage distribution functions to change sign.
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APPENDIX A: THE DISSIPATIVE STRESS

Equation ~14! expresses the dissipative stressP(1) that
appeared in Sec. IV in terms of( ijijiji f i

(0) , and the known
quantities] t0

r and ] t0
(ru). In this appendix we compute

P(1) for a general barotropic equation of stateP(r). In con-
tinuum kinetic theory the third tensor Hermite moment
independent of the lower moments@11,27#, but in the two-
dimensional, nine speed discrete system( ijijiji f i

(0) is deter-
mined completely by the vectorsJ(0) and ru via Eqs.
~39a,b!. For f i

(0) given by Eq.~38! with J(0)50, andN(0)

arbitrary

(
i 50

8

j iaj ibj ig f i
(0)5ur~uadbg1ubdga1ugdab!. ~A1!

We follow Ref.@1# in using Greek indices for vector compo
nents, as Roman indices have been used to label the dis
velocity vectorsji . Using Eq.~15!, the other term] t0

P(0)

contributing to the dissipative stress is

] t0
Pab

(0)52S dP

dr
dab2uaubD¹•~ru!2uaS dP

dr

]r

]xb

1
]

]g
~rubug! D2ubS dP

dr

]r

]xa
1

]

]g
~ruaug! D ,

52
dP

dr S dab¹•~ru!1ua

]r

]xb
1ub

]r

]xa
D

2
]

]g
~ruaubug!. ~A2!

The total dissipative stress is therefore
03630
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Pab
(1)52tFurS ]ua

]xb
1

]ub

]xa
D1S u2

dP

dr D S dab¹•~ru!

1ua

]r

]xb
1ub

]r

]xa
D2

]

]g
~ruaubug!G , ~A3!

where the first term is the usual Navier-Stokes viscous str
with shear viscositym5tur, and bulk viscosity2

3 m @22,35#.
For nonzeroJ(0), Eq. ~A3! becomes

P(1)5P(1) U
J(0)50

2
t

6 S ]yJy
(0) ]xJy

(0)1]yJx
(0)

]xJy
(0)1]yJx

(0) ]xJx
(0) D

~A4!

using Eqs.~40a,b!. ThusJ(0) must vanish to recover the cor
rect continuum behavior, as asserted in Sec. VI, butN(0)

remains undetermined.
The final term¹•(ruuu) in Eq. ~A3! is O(Ma3) in the

usual lattice Boltzmann scalings, so it is usually negligible
comparison with the other terms. It may be eliminated
modifying the equilibrium distributionf i

(0) to add a term
ruaubug to Eq. ~A1!, but this requires a larger lattice wit
13 or more particle speeds instead of nine@19–21#.

The second term in Eq.~A3!, proportional to (u
2dP/dr), vanishes for the isothermal Navier-Stokes ca
whereP5ur, owing to an exact cancellation of the densi
gradient between the two terms in Eq.~14!. Thus the lattice
Boltzmann equation for the isothermal Navier-Stokes c
rectly simulates a Newtonian fluid, with a viscous stress p
portional to the symmetric part of thevelocitygradient@35#.
For the shallow water equations,P5 1

2 gr2, this lattice Bolt-
zmann treatment yields a dissipative stress involving themo-
mentumgradient, plus corrections ofO(Ma2/Fr2). This dis-
tinction is particularly significant for the shallow wate
equations, where density gradients may beO(1), rather than
only O(Ma2) in the weakly compressible Navier-Stoke
equations. The dissipation takes the form@2#

¹•P(1)52tu@¹2~ru!12¹¹•~ru!1O~Ma2/Fr2!#,
~A5!

where the Froude number Fr5u/Agr is the ratio of the fluid
speed to the surface gravity wave speed. TheO(Ma2/Fr2)
term is due to the time derivative] t0

P(0), and may be made
arbitrarily smaller than the other two terms by taking t
Mach number to be sufficiently small, equivalent to taki
sufficiently small time steps. This form of dissipation
somewhat unsatisfactory in principle because it is not G
ilean invariant, and the resulting ‘‘dissipation’’ of the tota
energy density1

2 ruuu21 1
2 gr2 is, in fact, not sign definite.

However, by being the divergence of a symmetric tensor
form of dissipation is at least momentum and angular m
mentum conserving, and so is preferable to just¹2(ru) as
used in some previous ocean models, according to the c
ria of Shchepetkin and O’Brien@23#. In particular, Shchep-
etkin and O’Brien@23# found that asymmetric viscous stre
9-10
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‘tensors could generate spurious vorticity, and by amou
that did not vanish with increasing spatial resolution.

A Newtonian viscous stress could be obtained by mod
ing the equilibriaf i

(0) to make the third moment in Eq.~A1!
equal to P(r)(uadbg1ubdga1ugdab), equivalent to re-
placing what was the isothermal pressureru by the correct
pressureP(r). This change would require 13 or more pa
ticle speeds instead of nine speeds@20#. Equation ~A3!
would then give a Newtonian viscous stress with dynam
viscosity m5P(r)t. The collision ratet may be made a
function of r, for example,t}1/P(r) gives a spatially uni-
form dynamic viscosity@33#. For shallow water,t}1/r gives
m}r as recommended by Refs.@23,24# for a sign definite
energy dissipation.

APPENDIX B: DISTRIBUTION FUNCTION SIGNS

A possible alternative argument for choosing the equi
ria Eq. ~27! in preference to Eq.~23! is that all ninef i

(0) in
Eq. ~27! are positive in a rest state withu50. If we consider
the more general form
tt.

li-
rc

u-

03630
ts

-

c

-

f i
(0)5wiS r1

1

u
~ru!•ji1

1

2u2
@~P~r!2ur!I1ruu#:

~jiji2uI!D 1wigilS 1

4
r2

3

8
gr2D ~B1!

with an adjustable parameterl, the equilibrium distributions
at rest are

f 0
(0)5

81l

9
r2

41l

6
gr2, f 1234

(0) 5
12l

18
r1

11l

12
gr2,

f 5678
(0) 5

l21

36
r1

22l

24
gr2. ~B2!

Since gr5O(uuu2)5O(Ma2)!1 in our scalings,l51 is
the unique choice that makes all thef i

(0) positive in the small
Mach number limit. This has been presumed to be benefi
for stability @38#. However, forl51 and iÞ0 the f i

(0) take
the form f i

(0)53wi ji•u1O(Ma2). The first term is typically
the larger in magnitude, beingO(Ma) rather thanO(Ma2),
and is equally likely to be either positive or negative. T
equilibria in Eqs.~26a,b! are thus of indefinite sign, excep
for rest states withu50.
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