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Nonhydrodynamic modes anda priori construction of shallow water lattice Boltzmann equations
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Lattice Boltzmann equations for the isothermal Navier-Stokes equations have been constructed systemati-
cally using a truncated moment expansion of the equilibrium distribution function from continuum kinetic
theory. Applied to the shallow water equations, with its different equation of state, the same approach yields
discrete equilibria that are subject to a grid scale computational instability. Different and stable equilibria were
previously constructed by Salm@d. Marine Res57, 503 (1999 ]. The two sets of equilibria differ through a
nonhydrodynamic or “ghost” mode that has no direct effect on the hydrodynamic behavior derived in the
slowly varying limit. However, Salmon’s equilibria eliminate a coupling between hydrodynamic and ghost
modes, one that leads to instability with a growth rate increasing with wave number. Previous work has usually
assumed that truncated moment expansions lead to stable schemes. Such instabilities have implications for
lattice Boltzmann equations that simulate other nonideal equations of state, or that simulate fully compressible,
nonisothermal fluids using additional particles.
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[. INTRODUCTION equations that differ from those devised by Salmah and
turn out to be rendered useless by an instability on the scale

Methods based on lattice Boltzmann equatidtBE) are  of the computational grid, as illustrated in Fig. 1. The basic
a promising alternative to conventional numerical methodglifficulty is that the constraints ensuring that a particular
for simulating fluid flows[1]. The lattice Boltzmann ap- lattice Boltzmann scheme reproduces, say, the isothermal
proach replaces the nonlinear differential equations of macNavier-Stokes equations, are insufficient to determine a
roscopic fluid dynamics with a simplified description mod- unique set of equilibrium distributions. In the common two-
eled on the kinetic theory of gases. Hydrodynamic behavioflimensional, nine speed case the Navier-Stokes or shallow
is recovered through the Chapman-Enskog expansion, whiciater equations provide only eight independent constraints
exploits a small mean free path approximation to describdor the nine unknown equilibria. We find that the remaining
slowly varying solutions of the underlying kinetic equations. degree of freedom must be used to eliminate an instability
Lattice Boltzmann methods are straightforward to implemeng@ssociated with a nonhydrodynamic mode. This instability is
since they involve linear constant coefficient differential op-not analytically tractable with the eigenvalue techniques used
erators, and have proved especially effective for simulating
flows in complicated geometries and exploiting parallel com- T
puter architectures. For these reasons, Salfagd| has ad- — 1=50At
vocated the use of lattice Boltzmann methods in oceanogra- v 1=60At
phy, beginning with a lattice Boltzmann formulation of the =674t
shallow water equationg2]. The shallow water equations,
describing a thin layer of incompressible fluid with a free
surface, are commonly used as a prototype for studying phe-
nomena like wave-vortex interactions that are also present in
more complicated systenj4,5].

Although lattice Boltzmann equations for the isothermal
Navier-Stokes equations were originally constructed empiri-
cally as extensions of lattice gas autom@@ato continuous
distribution functions[7,8], it was eventually realized that
the most common LBE is equivalent to a systematic trunca-
tion of the continuum Boltzmann equation in velocity space
[9,10]. This derivation is equivalent to a moment expansion
of the continuum Maxwell-Boltzmann equilibrium distribu-
tion in tensor Hermite polynomialgl1].

However, when the same moment expansion is applied to
the shallow water equations, it yields lattice Boltzmann
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FIG. 1. Growth of a density instability in a two-dimensional
shallow water lattice Boltzmann scheme using the Hermite expan-
*Present address: OCIAM, Mathematical Institute, 24-29 Stsion Eq.(23). This is a slice along the ling=x. Instability even-
Giles’, Oxford OX1 3LB, U.K.; electronic address: pdellar@na- tually develops on the shortest permitted lengthsaate and then
net.ornl.gov grows rapidly like exp(0.3BAt).
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previously[12,13 on the fully discrete system, so we prefer to simulate nearly inviscid phenomena, and many applica-
to treat the instability at the partial differential equation tions in geophysical fluid dynamics use algebraic drag terms
(PDE) level using the concept of nonhydrodynamic orlike —ku (Rayleigh friction instead of, or as well as, diffu-
“ghost” variables introduced by Benzi, Succi, and Vergas-sive stresse$4,5]. For an ideal monatomic ga§=u[Vu
sola[14,15. A similar approach appeared independently at+ (Vu)"— 31V -u], whereu is the dynamic viscosity. Vari-
about the same time by d’Humis[16]. The idea is to aug- ous different forms have been proposed for the dissipative
ment the evolution equations for the hydrodynamic quantistress in the shallow water equations, as surveyed in Ref.
ties (density, momentum, and stre¢ssith additional equa- [23], but reference$23,24 favor a two-dimensional New-
tions to give a complete description of the lattice Boltzmanntonian viscous stressS= u[Vu+ (Vu)"—3IV-u]+¢IV-u,
equation, viewed as a PDE system. We then look for instaalbeit with bulk (¢) and shear &) viscosities proportional to
bilities associated with nonhydrodynamic behavior in thesehe densityp to ensure that the dissipation of kinetic energy
PDEs. 3p|u|? is sign definite.

The existence of such instabilities has implications for
using lattice Boltzmann equations with modified equilibria to
simulate other nonideal equations of stgt#], or to include
additional physics like magnetic field48]. These two pre- Kinetic theory introduces a distribution functidix, &),
vious treatments assumed that equilibria derived from a trunrepresenting the probability density of particles at position
cated Hermite expansion with the desired moments woul@noving with speed at timet. Macroscopic variables such as
lead to a stable scheme. This work should also be relevant fp,id densityp, velocity u, and momentum flufI are recov-
lattice Boltzmann equations using moment expansions witlered from moments of the distribution function with respect
extra particle speeds for compressible, varying temperaturg the microscopic particle velocit,
fluids [19-21]. The extra speeds add further undetermined
degrees of freedom, even after the heat flux has been speci-

fied. p=J fdg, pu=f &de, H=f gfdeé. (3

IIl. CONTINUUM KINETIC THEORY

Il. SHALLOW WATER EQUATIONS The compressible Navier-Stokes equations may be de-

The two-dimensional shallow water equations are usuallyjived from the continuum Boltzmann Bhatnagar-Gross-
written as Krook (BGK) equation

+u-Vu=— +po ly. +V. = 1
du+u-Vu=—-gVp+p "V-S, dp+V-(pu)=0, " 5tf+§.vf:_;(f_f(o)), )

where u=(u,v) is the fluid velocity, p the free surface in a slowly varying limit using the Chapman—Enskog pertur-

e o balon xpansioféo-25. The computaonl ieres -

recise form is discussed below. These equations describenaetIC t_heory 's largely motivated by the linearity of the dif-
prs . . C q ferential operator on the left hand side of Hg). On the
thin layer of incompressible fluid with a free surface, andr. ht hand side of Eq(4) we have used the BGK approxi-
may be derived by integrating the three-dimensional Navier!'9™ : d ,W have U - pproxi
Stokes equations in the vertical. We ugefor the height, ma_tlon[SO] to Boltzmann's 0r|g|_n_al _blnar)_/ cc_)II|S|_on gerr_n, n
rather tharh as is common in geophysical fluid dynamics, to Wh'.Chf relaxes Fowards an equilibrium distributidf? W'Fh
highlight the similarity with the Navier-Stokes equations. In & Singl€ relaxation time. The Maxwell-Boltzmann equilib-
fact, if Egs.(1) are rewritten in conservative form rium distribution inD spatial dimensions is

H(pw+V-(PI+puu—S)=0, ap+V-(pu)=0, (2) (o P (§-w?
_(2W®)D/2ex ~ %o |’ 5)

P being the pressure, andthe identity matrix. It is also

useful to define a momentum flux or stress tenHo: P | . . . .

+puu—S. In this form, the shallow water equations becomeVN€rép,u and® are the dimensionless macroscopic density,

identical to the two-dimensional compressible Navier-Stoked€10City, and temperature determined frémia Eg. (3) and

equations for a fluid with equation of staR=21gp? [22].

For _subseqL_Jent flexibility we also con_sider the ge“neral baro- pO= if |é—u|2fdé= iTrII. 6)

tropic equation of state=P(p), sometimes called “homen- D D

tropic” [4] to avoid confusion with the usual oceanographic

sense of “barotropic” as meaning independent of depth. Am\e work in units in which the particle masses and Boltz-

isothermal gas, as simulated by the most common latticenann’s constant are both unity, and velocities are scaled so

Boltzmann equation§l], hasP=cZp, with constant sound that the isothermal sound speeg-= ©2

speedc;. Xu [31,37 showed that the shallow water equations could
Some diffusive behavior is useful for numerical stability, also be cast into continuum kinetic form, using the equilib-

even though the shallow water equations are normally usedum distribution
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p (£—u)? A systematic treatment would substitute the expansions
fO= = ;{— ) (7)  (10) into Eq. (9), collect terms at each order, and then take
(7gp) gp moments. A briefer approach, more in the spirit of this paper,

. . . . i k f Eq9) fi
or equivalently by settin® =%gp in Eq. (5). The ideal gas 's to take moments of Eq9) first

equation of stateP=0p then coincides with the shallow 5,5+ V.(pu)=0, d,(pu)+V-(IIO+ell®+...)=0,

water equation of stat®(p)=2gp?. Xu [31,39 simulated (12)
the inviscid (w=0) shallow water equations using an up- N - _ _ o
wind finite volume scheme to solve Eqd) and (7). where IM=3N  £&f(" . The right hand sides vanish in

The “a priori” approach[9,10,17,33 attempts to derive EQ.(12), andp andu require no superscripts, by virtue of the
to lattice Boltzmann equations from systematic moment, osolvability conditions in Eq(11). We evaluatdI¥) using the
small Mach number, expansions of the continuum equilib-evolution equation fodl derived by applyingEiN:Oggi to
rium distributions such as Ed5). In this paper we try to Eq. (9)
apply this approach to the equilibrium in E§Z) for the

N
shallow water equations, and find that the resulting lattice 1 )
Boltzmann scheme is unstable. I+ V- iZO gi‘figifi) == (=117, (13
IV. LATTICE BOLTZMANN HYDRODYNAMICS At leading order ine this becomes

The simplification leading to the lattice Boltzmann ap- N
proach restricts the particle velocigy previously a continu- M= -7 g MO+V. > & §i§if§°)) . (14)
ous Vvariable, to taking values in a discrete set =0
{&,&1, ... . &}. The hydrodynamic quantities are now

The multiple scales expansion of the time derivative in Eq.
(10) enables us to replacelIl® by 4, ¥ to sufficient
accuracy. The latter may be expressed in terms of the known
quantitiesﬁtop and ato( pu)

given by discrete moments of the distribution functions

fi(Xit): f(xvgi ,t),

N N N
p=2 fi, pu=> &f, M=2 &&f, (8
= - = a1 = 3, (P(p)1+ puu)

v_vhich evolve according to the lattice Boltzmann-BGK equa- dp
tion, = I%‘?tow Udy(pu) + dy (pu)u—uud p (15)
1
afi+§-Vii=——(fi— ), fori=0,...N. (9 as evaluated in Appendix A. We find thEtY) is a dissipative
stress, equivalent to that in a Newtonian fluid, for the isother-
The left hand side is a linear, constant coefficient differentiamal Navier-Stokes equations, bIEY is not a Newtonian
operator obtained by replacingwith & in the continuum Viscous stress for other barotropic equations of state. The
Boltzmann-BGK equatior(4). We include a formal small dynamic viscosityu is related to the collision time scatein
parametere to facilitate the derivation of continuum equa- Ed. (9) via u=76p.
tions in the limit of small mean free patte0). Equation(9) is usually implemented computationally us-
The Chapman—Enskog expansiofi25—28 seeks ing the fully discrete systerftl,33]

asymptotic solutions of Eq9) in the limit e—0 by posing a

multiple scales expansion of botrandt, but notx, in pow- fix+ &AL, t+A) —fi(x1)
ers of e
=— L(F(x t)—fO(x,1)) (16)
f=fO4 efM4 2@y ... =yt €dy T THAt/20 " Lo
(10

where thef; are defined by
We may think ofty andt; as advective and diffusivévis- At
cous time scales, respectively. We impose the two solvabil- ry _f L2 _£(0)

N N The solvability conditions imply that this substitution leaves
20 fi‘”)=_20 &fM=0, for n=1,2,.... (1)  the density and momentum unchanged, so that
i= i=
N N
Thus the higher order ternf§%),f(®), ... do notcontribute =S T, pu=> &f, (18)
to the macroscopic density or momentum. These constraints, i=0 i=0

which reflect microscopic mass and momentum conservation o
under collisions, lead to evolution equations for the macroso thefi(o) may be computed directly from tHe, making the
scopic quantities. f; redundant. Equatioril6) is algebraically identical to a
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A distribution functions were originally constructed as polyno-
mials in u whose coefficients are arbitrary functions @f

The moments(19) impose constraints on the coefficients,

and the form of the viscous stress imposes further constraints

(2) (see Appendix A However, at least one coefficient remains
arbitrary with nine speeds, and more with 13, 16, or 17
speedg19].

—3) 0 (1 e More recently, a systematic derivation was proposed by

He and Lud 9], based on the observation that the continuum

<> (8) Maxwell-Boltzmann equilibrium(5) may be expanded as

4

Eu (§u?
0) = 2 42 7 3
v fO=pw(é)| 1+ >+ 207 20 +0(u”), (22

where w(&)=(270) P2exd —£/(20)]. This was origi-
nally motivated as a small Mach number expansion, valid for
|u|<|g, but it is equivalent to a moment expansion in tensor
Hermite polynomials. The equilibri20) then followed from
'Eq. (22) by replacing the continuum weight functiom( &)

by discrete weightswy; obtained from a two-dimensional

FIG. 2. The nine particle speeds in the two-dimensional
square lattice. We choose units in whigh|=1, and|&|= 2.

discrete form of Eq. 9 with second order accuracy, i.e.
O(At?) error, obtained by integrating the right hand side

;lgr?]g rﬁ?:rﬁ_cﬁgnsﬁ;s} fgroe; Sz?agg%m i:ﬁ;gga;hee;r?s; ?t' Gaussian quadrature formula, chosen to make every discrete
' ang y P moment appearing in Sec. IV identical in value to its con-

scheme, expressing at time t+ At explicitly in terms of  in,um analogue in classical kinetic theory. The choie

quantities known at time =1 causes the Gaussian quadrature points @mdy to be
the integers{—1,0,1}, and causes the polynomials in Egs.
V. NINE SPEED EQUILIBRIA (22) and (20) to coincide.

Applied to the shallow water equations, or to an arbitrary

The equilibriafi(o) and speedg; must be constructed to barotropic equation of staté(p), the same moment expan-
recover the desired continuum equations in the limit of slow pic €q Pl P

variations inx andt. In particular, the first few moments of sion leads to the equilibria
the equilibria must be

fO=w,

1 1
3 ; +—(pu)- &+ —[(P(p)— Op)!
3 10=p. 3, &10=pu, P AT gl PO
=0 i=0

. (19) + puu]:(ﬁi fi - 9')
H(O):ZO §|§If|(0): P(p)|+puu

. (23

We use a lower casé to emphasize that=3 is now a
making the leading ordere(=0) Egs.(12) equivalent to the  constant reference temperature, equivalent to a velocity scale
inviscid (»=0) continuum equations. set by the particle speeds, rather than a local fluid tempera-

The most common lattice Boltzmann equations for simutyre that may be spatially varying. Each term in E23)
Iating the two-dimensional isothermal Navier-Stokes usgnvolves one of the tensor Hermite po|yn0mia|§il'and
nine particle speeds located on a square laftigealthough &£ — g1, contracted with the required Hermite moment
earlier work employed six or seven particle speeds locateg ,u, andII(®— 6pl= (P(p) — p)I+ puu, respectively. The
on a hexagori6,7,12. The equilibria are given by tensor Hermite polynomials have the property of being or-

9 3 f[hogonal with respect to bqth a discrete_ and a cpntinuous
fO=w,p| 1+3&-u+ = (&-u)?— —u2> (200 inner product(see Sec. VI Since the required Hermite mo-
2 2 ments are already known, it is actually unnecessary to con-
. . 1 struct a continuum distribution function first, but E§) with
in _umts where the(constant temperature® =3, and the ®=P(p)/p would suffice. The equilibria in Eq23) take a
weight factorsw; are[1,8,9) particularly simple form for the isothermal Navier-Stokes

i equations, withP(p) = 6p, as the isotropic pressure term in
4/9, =0, !
) square brackets: ] vanishes.
wi=4 19, 1234, (21) The same expansio23) may also be obtained through a
1/36, i=5,6,7,8. small Mach number expansion of Xu’s continuum distribu-

tion function (7). As the densityp appears in the exponent it
The components of the particle spedgsake integer values is necessary to consider a nearly uniform density; pg
{—1,0,1, forming a square lattice as shown in Fig. 2. These+Ma?p’, as well as scalingi=0(Ma), to obtain
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2

p (§-u)? £u (§w? u

(ng)exp<— gp )=pow(§) e e 20
_ 2

+% +O(Ma®),  (24)

where® = 1gp,. Rearranging to replage, by p as the pre-
multiplier, we may also obtain

p _<§—“>2)_ Fu (B’ v

(wgp)eXp( o | PO et e 20
§2

+(P‘Po)[ﬁ_1 +0(Mad),

(25

which coincides with the moment expansi®@8) above on
substitutingé= & and w(&)=w;. In fact, the assumption
that p=py+ O(Ma?) turns out to be unduly restrictive, and

PHYSICAL REVIEW E65 036309

sense to the Hermite polynomials appearing in Eg8). and
(27), so the modification to Eq27) leaves the continuity
and momentum Eqs(12) unchanged up tdO(e) in the
Chapman—Enskog expansion. This particular choice for the
otherwise arbitrary functiof (p,|u|) multiplying w;g; is de-
termined in Sec. VI below, in that it eliminates an instability
due to cross coupling to some nonhydrodynamic “ghost
modes” present in the lattice Boltzmann equation.

VI. NONHYDRODYNAMIC GHOST VARIABLES

In principle the equilibrium distribution function§® for
the nine particle speeds are nine independent arbitrary func-
tions. The constraint§l9) on the first three moments com-
prise only six independent constraints, since the symmetric
second rank tensdd(®) has only three independent compo-
nents in two dimensions. In this section we develop a treat-
ment of the remaining three degrees of freedom, later iden-
tified with nonhydrodynamic “ghost” variables.

Ghost variables were introduced by Benzi, Succi, and Ver-
gassold 14,15 for an earlier form of lattice Boltzmann equa-

the lattice Boltzmann scheme below successfully simulateggn

flows with O(1) density fluctuations.

Unfortunately, the lattice Boltzmann equation for the shal-
low water equationsR=2gp?) with these equilibria turns
out to be linearly unstable to a rapidly growing zigzag mode
at the grid scale, rendering it useless for numerical simula-
tions. However, a stable and useful lattice Boltzmann formuwhere the %<9 matrix Q;; was obtained by linearizing a
lation for shallow water has already been devised by Salmoguadratic collision operator of the kind used in lattice gas

! (0) i
(?tfi_"fi'Vfi:_;Qij(fj_fj ), for i=0,... N,
(28)

[2], that uses the alternative equilibria

0) 15 3 )
fo’=p+wop| — 5 gp— U7, (269
) 3 9 ) 3 ) )
fi'=wip Egp+3§i-u+ §(§i~u) —Eu , fori#0,
(26b

cellular automat#6]. A similar treatment appeared about the
same time by d’Humiees [16]. Hydrodynamic and ghost
vectors arose naturally in both these treatments as eigenvec-
tors of the collision matrix);; . The Bhatnagar-Gross-Krook
(BGK) approximation[30] used in Egs.(4) and (9) takes
;= 6j;, so all departures from equilibrium decay at the
same rate. The BGK approximation is now almost univer-
sally employed, since it eliminates various artifacts like a
velocity-dependent pressure that plagued earlier mddéls

where Salmon chose an otherwise arbitrary coefficient sa\ny |attice vector is an eigenvector of the BGK collision

that Eq.(26b) takes the same form for botl§;|=1 and|&|
= /2 types of particlegsee Fig. 2

operator, making the choice of basis somewhat arbitrary. For
instance, Lallemand and LJd3], following Ref.[16], used

This casts doubt on the utility of the Hermite polynomial a different basis that is orthogonal with respect to the un-
expansion at constructing equilibrium distribution functionsweighted inner product<f'h>:§?20fihi instead of the
for systems other than the isothermal Navier-Stokes equageighted inner product in Eq30). This basis leads to a

tions. In fact, Salmon’s equilibrie26a,b) may be rewritten in
the form

1

(0) 1
fil=wi| p+ 5 (pu)- &+ 27

X[(P(p)—6p)I+puu]:(§&— 9'))

1 3
Zp—ggp )

which differs from the truncated Hermite expansi@B)
only through a multiple of the “ghost vector§;=(1,—2,
—2,—2,—2,4,4,4,4). This vector is orthogonal in a discrete

+Wigi( (27)

rather unnatural equation for the normal stress difference
I1,—1II, in place of Eq.(35b).

The expression$23) and (27) for the equilibria involve
the first three tensor Hermite polynomials§iand §&— 6,
with coefficients depending on the hydrodynamic variaples
and u. The components of the tensor Hermite polynomials
comprise the six polynomials &X,giy,gif—e,gixgiy and
§i§— 0, each of which may be regarded as a nine-
dimensional lattice vector,p say, with components
(PosP1s - - - .Pg) corresponding to the polynomial evaluated
at the lattice points; . Written out in full, these vectors are

1,=(1,1,1,1,1,1,1,11,

£x=(0,1,0-1,01-1,-1,17,
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£y=(001,0-111-1,-1)T,
oII+V-

=— %(l’[—l’[(o)) (35b)

8
Z §i i ifi
i=0

1
£2-01,=2(-1,2-1,2-1,2,2,227, (29) L _ o _
3 comprising six independent equations sidEés symmetric,

. may thus be augmented by three ghost component equations
fixgiy: (010101010111_ 1111_ 1) )

1
atN+V~J=—;(N—N(°)),

2 1 T
&y 0Li=5(-1-12-122223"

8
2 gifigifi) == %(J—J“”) (36)

These six lattice vectors are orthogonal with respect to the A+ V-
inner product defined by the weightg . In other words
3 to give a complete description of the nine speed lattice Bolt-
=" wpig=0 for p#£q, 30 zmann equatior(9). In other words, the nine quantitids
(p.a) Zo Pidh P=4 (30 may be reconstructed from the nine independent components

of p,u,I,N, andJ as
where “p=q” means “p;=q; for i=0, ...,8.” This is the

discrete analogue of the continuous orthogonality relation 1 1
satisfied by the original polynomials fi=wi| p+5(pu)- &+ 2—02(1_[— Opl):(&§&—01)
— 1 3
| wep@agdeo for pra, @ T -

where w(&) =(276) texd—£%(26)] in two dimensions
(D=2) as in Sec. V. Equatiof30) follows from Eq.(31)
using the two-dimensional Gaussian quadrature formula

and the lattice Boltzmann equatig® may be reconstructed
by combining the hydrodynamic equatio(@5a, with the
ghost variable equatior(86). This procedure is thus equiva-

8 8 lent to a linear change of variables in the lattice Boltzmann
W dé=> wo(& = wipiq equation, one chosen to separate the intended hydrodynamic
J (Hp(Hae)ds Zo P(&)als) i=zo P behavior from unintentional ghost behavior.
(32 The most general equilibria with the required first three

moments(19) are therefore
provided the produqgb($)q(€) is a polynomial of degree five

or less ing, and ¢, [34,9,33. It may be helpful to draw an

analogy with the trigonometric functions sing and cos(x), fi(o)=Wi
as they also satisfy both discrete and continuous orthogonal-

ity relations on the periodic interv@D,27].

1 1
pt5pu)-§i+ ﬁ[PUUHP(p)— Op)I]:(&&;

The six orthogonal lattice vectors in Eq®9) may be — 01 +Wigi<1N(0)+ §§i-\](°)), (38)
extended to form an orthogonhasisfor R® with the addi- 4 8
tion of three more vectors, conveniently expressed as
gi.0iéix, andg; &, , where whereN(©® andJ(® may be arbitrary scalar and vector func-
tions, respectively. The components of the tengp#st, and
0iéx=(0,—2,0,2,0,4-4,—4,4)T, 0;& & appearing in Eq935b) and(36) may be expressed in
terms of the nine basis lattice vectors as
0iéy=(0,0-2,02,4,4-4,-4)T, (33 ,
gi=(1,-2-2-2,-244447, gi§ix§ix:2(§iy§iy_91i)+§giy Qiéix&iy=4&ixSiy »
(393
with g; as in Sec. V above. Associated with these three extra
vectors are three extra moments, named “ghost variables” by 1 1
Benzi, Succi, and Vergassdla4,15 Eix&ix€ix= Eix» gixgixfiyzggiy"‘ ggigiy (39b)

8 8
and their permutations iR andy. Recall that we are using
N:;O 9ifi, J:;O 9i&ifi 34 the term “lattice vector” to denote a collection of nine values
at the nine lattice points, so thex component of a tensor,
by analogy with the hydrodynamic momengspu and I1 say, comprises a lattice vector labeled by the indekhe
defined previously. The hydrodynamic equations relations(39a,h) are responsible for cross coupling between
the hydrodynamic and ghost variables. In particulaap-
dp+V-(pu)=0, d(pu)+V-II=0, (358  pears in the nonequilibrium stress via E¢39b) and (35b)
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1 0) usual scaling wherei=0O(Ma). The second, gradient term
=~ (o150, was not present in the isothermal Navier-Stokes case, since
(409  P=(1/3)p andN(?=0. SinceVp may beO(1) in the shal-
low water equations, this term is also much larger than the
1 1 first term. These observations strongly suggest that this term
ZpUt =J ) is responsible for the observed instability, which is supported
3" 67 by the fact that Salmon’s choide®] for the undetermined
1 function N(O=p—(3/2)gp?=p—3P(p) in Eq. (27) elimi-
= — Z(I1,— 119 (40p  hates both this additional term and the instability.
Xy Xy . . - . .

T To illustrate the instability mechanism, we consider small
perturbations about a rest state with uniform density. Dis-
carding the first term on the left hand side of E4R), which
is O(Ma?) smaller than the second term, we obtain

I+ dy(puy) + (7y

1 1
§puy+€\]y

Lyt +4,

1 1
§puy+ gJy

(similarly for IT,,), which are equivalent to the components
Eqg. (13). Similarly, the second of Eq$36) becomes

ddy+ dy

oM, - 2 pt 2N+ 40,11 =—1(J —3(0) 11
yy 3P 3 yllxy 7T JV=_2.vy P(p)——p+—N(O) =—-27VQ(p) (43
3" 3
(413
defining Q(p) as a convenient shorthand. Discarding terms
2 2 1 - involving pu and 4, I1® from Egs.(40a,b, we find
at‘]y+ 407xny+ dy 211, — §p+ §N =— ;(‘]y_‘]y ).
(41b - 2 5%Q 27 #Q
Although the nine speed lattice has sufficient symmetry to o= Plp) 3 a2 Y 3 axay’
recover the isotropic Navier-Stokes equations at the first two
orders in the Chapman-Enskog expansion, these ghost equa-
tions are not themselves isotropic.  9°Q
To summarize, the lattice Boltzmann equati@) sepa- Iy, =P(p)+ 3?- (44)
rates into the set of equatiori85a, 40a,b, 36, 41a),dor

p,pU,ILN andJ, respectively, in the ogtho%onal ba§|s given These simplifications are only intended to highlight the in-

by Egs.(29) and (33). The variabledI® N'» andJ'® ap-  gtapility mechanism associated with the gradient term in Eq.
pearing in Eqs(40a,b, 36, 41a)mre determined by the equi- (42). As explained below, any quantitative treatment must
librium distribution in Eq.(38). The leading order stress recognize that the computational system is only a discrete
IM©=P(p)I+puu is determined by the equation of state, approximation to the PDE system.

but N and J(® remain arbitrary. The continuity and momentum Eq@5a may be differ-

~ We must choosd®=0 to avoid interfering with the lead-  entiated with respect to time, without further approximation,
ing order viscous stredd™) (see Appendix A beloywia the  tg obtain

cross coupling in Eq(39b) involving &,&ic&, . Thus the
leading order equation for the ghost variallbecomes

(92_p: B 9%(puy) B J*(puy) _ aZHXX+2(92HXy 911,
2pu§ 4pu,u, 1 1 ot? oxXat ayat NG axay ay?
- ) +2V<P(p)——p+—N(0)
4puyuy  2puy 3" 3 V2p(p) 4 2 ,7*Q(p) 45
= +27 .
1 P Ix?ay?

=— ;J(l) (42
If dQ/dp>0, this equation is linearly unstable to perturba-
using Eq.(39a), by analogy with equation Eq14) for [I1),  tions of the formp(x,y,t) =po+p’ explot+ixk,+iyk,) about
However,N(©) so far remains arbitrary, and must be deter-a uniform state with density,. The growth rater is deter-
mined by some criterion other than the form of the con-mined by
tinuum equations at viscous order in the Chapman-Enskog
expansion, sinc®l(®) does not appear in these equations. dP do
2 _ (L2 2 21,212
o“=—(ki+ ky)$ +27 kxkym
VII. DENSITY-DRIVEN INSTABILITY MECHANISM P=ro P=ro

(46)

The first term in Eq.(42) is present in the usual lattice In fact, the equation is ill posed whehQ/dp>0, because
Boltzmann scheme for the isothermal Navier-Stokes equahe growth rate increases faster than linearly with wave num-
tions, as in[8—10,1, and is found to be innocuous there asber, |o|=|k|?. If dQ/dp<0 the Q term only leads to high
the scheme is stable even for high Reynolds numtmmall  frequency oscillations, i.e.g purely imaginary, with fre-
viscosity). More concretely, the first term ©(Ma?) in the  quency proportional .k, , rather than frequency propor-
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tional to |k| like the sound waves associated with the pres-
sure term in Eq(46). This is the case for the equilibria based
on a Hermite expansion for the shallow water equations,
where  Q(p)=—3p+39p°, and  dQ/dp=-—3
+0(Ma?/Fr?) is typically negative. However, it is easy to
suppose that the discrete system would in turn be unstable
for such high frequency waves, based on a Courant-
Friedrichs-Lewy stability criterion, so high frequency waves
in the PDEs would, in fact, appear as growing modes in the
discrete system.

1)
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The scaling o| = |k|? explains why numerical simulations
exhibit an instability on the scale of the computational grid,
since this analysis predicts that the fastest growing mode is @
the shortest mode permitted, although strictly the description
of the discrete computational system as a set of partial dif-
ferential equations breaks down at these scales. The instabil-
ity associated withQ is only present if bottk, andk, are
nonzero, which explains why the one-dimensional version of
the Hermite expansion shallow water lattice Boltzmann

scheme is stable.
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FIG. 3. Eigenvalues of the systen®8) and (49) for k,=k,,

and parameters=1,P=0, andQ=— %p (as in the Hermite expan-

sion). All modes are stable (Re<0) in both the continuunt—)
For a quantitative treatment of the instability, we considerand discrete @) systems.

an eigenvalue problem as in Ref$2,13,33 for the the lin-

earized response of the fully discrete syst€ifi) to plane

waves of the form

VIIl. EIGENVALUE PROBLEM

In the continuum limit, wher& ando are both small, and
7 is large(compared with the time stefpt) the eigenvalues
of the discrete systertd8) should coincide with the analo-
_ gous eigenvalues of the lattice Boltzmann PDE syst@m
fix)=f],_,, u=othiexplik-x+at),  (47)
where theh; are small constants. We have linearized around (o+ik-&)hj=— ELijhj . (49
a uniform rest state withh=py and u=0 for simplicity. In T
this section we use lattice units in whiddk=At=1. The
continuum limit then corresponds t&|— 0, for which pre-

sumablyo— 0, too. Substituting into E¢16) we obtain

Figures 3 and 4 show the real parts of the eigenvalues of

0.2' e0000°l)

) 1
[exp(0'+lk-§i)—1]hi=—T+—1/2Lijhj ) (48) 0 o discrete |
~ PDE
1l
which is an eigenvalue problem fef, with h; the associated -0.2
eigenvector. The 89 matrix L;; is the result of linearizing
the BGK collision operatof; — f(®) around the rest state ( 04 R

=po,u=0), recalling thatf{’) depends implicitly and non-
linearly on thef; via p andu. In general, the eigenvalue
problem is not analytically tractable, involving a ninth de-
gree polynomial that does not readily factorize, and has to be
solved numerically, for instance, by the so-called QR algo-
rithm [36]. The parameter space is also rather large, involv-
ing at least the wave vectdr, the relaxation timer (equiva-

lent to the viscosity, the derivative of pressureP/dp
evaluated at the background density, and alsodQ/dp at
p=pg (or equivalently the parametar from Appendix B.

In principle we should also consider background states with
a nonzero uniform velocityly as well, adding another two FIG. 4. Eigenvalues of the systen#8) and (49) for k,=k,,
parameters. The vectoks and uy must be kept as general and parameters=1,P=0Q=3p. One mode is unstable (Re
vectors because the ghost equations are anisotropic. >0) in both the continuunt—) and discrete @) systems.
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— = as in Fig. 2. Simulating the viscous compressible Navier-

0000900, o discrete i i i
°* % PDE |1 Stokes, shallow water, or general barotropic fluid, equations
impose only eight constraints on the equilibrium distribution
functions. In this paper we have explored an instability asso-
ciated with the remaining single degree of freedom, identi-
fied with a nonhydrodynamic ghost mode. Eliminating this
instability provides one more constraif=0 in Eq. (43),
and so serves to determine the unique set of equilibria that
yield a usable computational scheme. With respect to under-
standing the instability mechanism, and a criterion for re-
moving it, the approximate analytical treatment in Sec. VIl is
more useful than the numerical solution of eigenvalue prob-
lems in Sec. VIII.

The equilibrium distribution functions given by a trun-
cated expansion in tensor Hermite polynomigdlé], as ad-
vocated by the priori approacH9,10,17,33, coincide with

. . . . . . those determined by the ghost mode stability condition for
0 0.5 1o 15 2 25 3 the isothermal Navier-Stokes equations. For general equa-
k (lattice units with Ax=1) . . . .
X tions of state the Hermite polynomial expansion leads to un-

FIG. 5. Eigenvalues of the systen8) and (49) for k,=k, , staple schemes, and must be modified in the fgshion de-
and parameters=0.2P=0Q=—1p (as in the Hermite expan- scribed apove. We are unable to offer an explanat.|on of why
sion). One mode becomes unstable (Re0) in the discrete @) the Hermite expansion happens to work for the isothermal
system, even though all continuu@-) modes remain stable. For Navier-Stokes equations.
this smaller valuer ofr the other six continuum modes have Re This scheme may be used for nonideal barotropic equa-
~—5, and so are off the bottom of the figure. tions of state other than the shallow water equations, pro-
both discrete and continuum systems as functionis, efk, \;E:\?ethaen%riﬁzugsrgg t)ioﬁ(%()a(ar)s ilg g;lils—leenrr?(;teeﬁr);ﬁ):gtselclﬂss
(recall that instability only occurs fok,k,#0) for the pa- o ) X p i
rametersr=1,P=0Q=— +p (Fig. 3 andQ= + L (Fig. 4). densﬂy gradient term in Eq42). Th_e Enskog equat|_on, an
Three eigenvalues vanish in the long wawe<{0) limit, for ~ €xtension of the Boltzman equation to densmndilute
both the discrete and the continuous systems, correspondif@gises studied recently by L{id7], yields a barotropic equa-
to conservation of density and the two components of motion of stateP= 6p(1+bgp) for small density fluctuations,
mentum under collisions. The remaining six eigenvaluegvhere the virial coefficients andg have been calculated as
emerge from— 1/7 in the continuous syster@9), and from  perturbation series ip [26,28. Our approach offers an al-
log|(1-27)/(1+27)| in the discrete systen48). Instability, ternative lattice Boltzmann formulation to Luo[d7] for
meaning an eigenvalue with positive real part, only occurgases described by the Enskog equation, and one that does
for dQ/dp>0, as predicted by the analysis above, andnot require a density gradient computed by finite difference
shown in Fig. 4. FodQ/dp<0, which includes the Hermite approximation, which in turn complicates the treatment of
expansion withdQ/dp~ — 3, only stable oscillations occur boundaries. On the other hand, our approach gives a viscous
(Fig. 3, again in agreement with the above analysis in Secstress that is not quite Newtonian, as calculated in Appendix
VIL. A, but the deviation will be small for nearly ideal gases.

However, lattice Boltzmann schemes are typically used in - Returning to geophysical applications, we have used this
parameter regimes where<; in lattice units. They attain  scheme to simulate Bier's modified shallow water equa-
low net diffusivities, or high Reynolds numbers, through aNtions[37] with P=— 1/(2p?). This equation of state has the

almost exact cancellation between negative diffusion fronb ; ; ; : ;

: . o e roperty of allowing steadily propagating one-dimensional
the O(AX.) . spatial truncation error, and. positive d|f_fu5|on simple waves with smooth profiles in the absence of viscos-
Ijror;wd Cill(')S'onS'hm th!S EstaSrlcg, tmstlab]!hty does a”f’di for ity, while being equivalent to the conventional shallow water

Q/dp as shown in Fig. 5, but only for wave vects equations for small amplitudéinear waves. This modifica-
flon suppresses the formation of shocks, that are often an

Iongler.clofsg to t\r/]ﬁ contlnuurr fy;éemt.. Thus thﬁ Cc.mt'nuumnnecessary nuisance when the shallow water equations are
analysis of Sec. VIl serves only to identify a mechanism, an sed as a prototype for the meteorological primitive equa-

th_e cr|ter|0nQ=_0 to ellnjlnat_e the instability. We behe_ve tions, say, that do not form shocks.
this approach is more illuminating than a computational " e "recent work has tried to extend the lattice Boltz-

sgarch for unstable eigenvalues in a five or larger dimenr"nann approach to finite Mach number and nonisothermal
sional parameter space. flows with a correct internal energy equation. Different ap-
proaches using differing equilibria and numbers of particle
speeds have met with varying degrees of success and stabil-
The most common two-dimensional lattice Boltzmannity at finite Mach number$19-21. Again, the constraints
scheme uses nine particle speeds arranged on a square lattieeeded to derive the viscous, thermally conducting Navier-

1)

Re o (lattice units with At

od";:‘:}?::nooooo

IX. CONCLUSION
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Stokes-Fourier equations do not determine a unique set of U, dug dpP

equilibria[19]. n{)=—r 6p(57+ 37) +( 0— d—) ( eV - (pU)
Finally, it is interesting to notésee Appendix B for de- A “« P

tails) that the shallow water equations provide a counterex- ap ap d

ample to the arguments in R¢&8] for the stability of lattice + uaﬁTB + Usgx |~ E(Puauﬁuy) : (A3)

Boltzmann schemes where separate particle distribution

functions are restricted to be either always positive or alwaygyhere the first term is the usual Navier-Stokes viscous stress,

negative, and for the instability of schemes in which distri-\yith shear viscosity = 76p, and bulk viscosity . [22,35.
bution functions change sign. The equilibria necessary for &q; nonzerai© Eq. (A3) becomes

stable shallow water scheme, those that eliminate the ghost
mode instability, turn out to be precisely those that most

encourage distribution functions to change sign.

0 0 0
o=@ ”( WY a0y ))

61039+ 4,30 3,

- 6
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The final termV - (puuu) in Eq. (A3) is O(Ma®) in the
usual lattice Boltzmann scalings, so it is usually negligible in
comparison with the other terms. It may be eliminated by

Equation (14) expresses the dissipative stred§? that ~ modifying the equilibrium (_jistribu_tionfi(o) to add a term
appeared in Sec. IV in terms &f £ ££f(?), and the known  PU.UgU, to Eq. (A1), but this requires a larger lattice with
quantitiesd, p and &, (pu). In this appendix we compute 13 Or more particle speeds instead of njé—21].

IV for a general barotropic equation of st&ép). In con- B dTQ/ed )Secg?lqsh:eesrrporI?heE'g.c()'tA\hste)}mzlrolgngf:gltoli(;s ecase
tinuum kinetic theory the third tensor Hermite moment is p), van ! Vi '

: : hereP= 6p, owing to an exact cancellation of the density
independent of the lower momenttl,27], but in the two- wher ) i
dimensional, nine speed discrete systrs £ & f(©) is deter- gradient between.the two terms in Ha4). Thu.s the lattice
mined com[’)Ieter by the vectord® andl ")l'J via Eqs Boltzmann equation for the isothermal Navier-Stokes cor-

d _ rectly simulates a Newtonian fluid, with a viscous stress pro-

(39.&1'b' For f‘(O) given by Eq.(38) with J®=0, andN® portional to the symmetric part of theelocity gradient[35].
arbitrary For the shallow water equationB= 2gp?, this lattice Bolt-
zmann treatment yields a dissipative stress involvingioe
mentumgradient, plus corrections @(Ma?/Fr?). This dis-
tinction is particularly significant for the shallow water
equations, where density gradients mayQyd ), rather than
only O(Ma?) in the weakly compressible Navier-Stokes

] . o equations. The dissipation takes the fdrh
We follow Ref.[1] in using Greek indices for vector compo-

nents, as Roman indices have been used to label the discrete i 5 )
velocity vectorsg; . Using Eq.(15), the other termy, I1*) V-IM=—76[V*(pu)+2VV-(pu) + O(Ma?/Fr)],

contributing to the dissipative stress is (AS5)

APPENDIX A: THE DISSIPATIVE STRESS

8
25 Eiabipbi f0=0p(Uu85,+Upd,,+U,8,5). (Al)

where the Froude number£u/+/gp is the ratio of the fluid
speed to the surface gravity wave speed. THda?/Fr?)

5 10)= (Z—P(Saﬁ—uauﬁ)V(pU)—ua(z—P 9P term is due to the time derivativi 11>, and may be made
p p IXp arbitrarily smaller than the other two terms by taking the
9 dP ap 4 Mach number to be sufficiently small, equivalent to taking

+— —Ugl — —+— fficiently small tim . This form of dissipation i
ay(puﬁuy)) Ug dp 2%, ay(puauy)), sufficiently small time steps s form of dissipation is

somewhat unsatisfactory in principle because it is not Gal-
ap ap ilean invariant, and the resulting “dissipation” of the total
=—d—(6aﬁv-(pu)+ua—+uﬁ—) energy densitys p|u|?+ 3gp? is, in fact, not sign definite.
P Mg T OXa However, by being the di f tric tensor thi
, by being the divergence of a symmetric tensor this
9 form of dissipation is at least momentum and angular mo-
- %/(puauﬁuy)- (A2)  mentum conserving, and so is preferable to Usfpu) as
used in some previous ocean models, according to the crite-
ria of Shchepetkin and O'Brief23]. In particular, Shchep-
The total dissipative stress is therefore etkin and O’Brien[23] found that asymmetric viscous stress
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‘tensors could generate spurious vorticity, and by amounts

that did not vanish with increasing spatial resolution. f(0)=
A Newtonian viscous stress could be obtained by modify-

ing the equilibriaf(”) to make the third moment in EGA1) 1 3

equal to P(p)(u,dg,+Ugd,,+U,d,s), equivalent to re- (§&— 0')) +Wigi)\<z - ggpz) (BY)

placing what was the isothermal presspi® by the correct

pressureP(p). This change would require 13 or more par- with an adjustable parametr the equilibrium distributions

ticle speeds instead of nine speeld)|. Equation (A3)  at rest are

would_then_glve a Newtonla_n_wscous stress with dynamic 84n 44 1—) 14\

viscosity u=P(p) 7. The collision rater may be made a f(()O):_p__QPZ, f(1%)34:_p+_gp2,

function of p, for example,r<1/P(p) gives a spatially uni- 9 6 18 12

form dynamic viscosity33]. For shallow wateryx1/p gives A—1 2\

uop as recommended by Ref23,24 for a sign definite fé%%szijt ﬁgpz. (B2)

energy dissipation.

1 1
wil pt+ 5 (pu)- &+ 2—02[(P(p)— p)I+puu]:

Since gp=0(|u|?)=0(Ma?)<1 in our scalingsa=1 is

the unique choice that makes all tH& positive in the small
Mach number limit. This has been presumed to be beneficial
for stability [38]. However, forh=1 andi#0 thefi(o) take

, _ , __the formf(®=3w; &-u+O(Ma?). The first term is typically

A possible alternative argument for choosing the egwllb-the larger in magnitude, bein@(Ma) rather tharO(Ma?),

ria Eq. (27) in preference to Eq(23) is that all ninef(® in  and is equally likely to be either positive or negative. The
Eq. (27) are positive in a rest state with=0. If we consider  equilibria in Egs.(26a, are thus of indefinite sign, except

APPENDIX B: DISTRIBUTION FUNCTION SIGNS

the more general form for rest states withu=0.
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