PHYSICAL REVIEW E, VOLUME 65, 036308
Nonlinear wave dynamics in Faraday instabilities
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Nonlinear wave dynamics in parametrically driven surface waves are studied in numerical simulations of the
two-dimensional Navier-Stokes equation, with an emphasis on the evolution and interaction between different
wave number modes. The dynamics are found to be closely correlated with the single-mode nonlinear saturated
wave amplitudes. Modulating behavior of primary wave modes in a particular parameter range and in time
scales much longer than the underlining wave periods is observed.
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[. INTRODUCTION ent directions are considered. Correct predictions of pattern
selection, i.e., the correspondence between particular patterns
In this paper wave dynamics of parametrically excitedand experimental parameters, then come from calculations of
surface wavedqalso called Faraday waveare studied in the interaction between these plane waves from the basic
numerical simulations of the two-dimensional Navier—fluid equations of motiori8].
Stokes equation. Faraday waves are exditedially subhar- On the other hand, in this paper we would like to consider
monically) when a fluid layer with a free surface is subjectedhow the coupling between different wave numbers affects
to periodic vertical acceleratidd]. In such a system, there is wave dynamics. This approach of nonlinear wave dynamics
a minimum accelerating amplitude at which waves appear af course will only be valid in the weakly nonlinear regime,
a critical wave number. The characteristics of rich phenomwhere the distinction between different plane wave modes is
enology, easily adjustable spatial and temporal scales, mogtill meaningful. Since the primary instability is previously
erate demands on experimental setup, and well establishédund to have a transition from supercritical to subcritical
underlying microscopic equation®] have made Faraday bifurcations at a wave number a little larger tHan 9], it is
waves an ideal system in which to study pattern formation invery likely that the dynamics of nonlinear waves that involve
driving-dissipative systemis3]. Here the microscopic equa- multiple wave numbers arourkd would exhibit interesting
tions refer not to the atomic picture but rather to the generbehavior.
ally accepted continuum description of fluids. In some recent Although the coupling in the pattern selection problems
experiments using non-Newtonian fluif$| the uncertainty was obtained by a systematic analytical expansion of the
in the governing equations rises. Because both gravity anblavier-Stokes equatiof8] of the small parametee=(f
surface tension act as wave restoring forces, there are two f.)/f., the analysis was actually too complicated to be
limiting regimes: those of the gravity waves and those of thedone by hand and symbolic computations were used. In prin-
capillary waves. A number of patterns ranging from spatiallyciple a similar procedure can be followed to calculate cou-
coherent patterns to localized states were observed in diffepling between different wave numbers, and with this infor-
ent parameter rang¢s,6). mation some aspects of the wave dynamics can be predicted.
Considerable attention has been paid to the problem dflowever, we foresee that this process will be even more
pattern formation outside of equilibrium partly due to the complicated than that in the previous case. So for now we
generic features in many different fielfig]. One of these is use numerical simulations to observe wave dynamics and
that very often primary patterns emerge when the externahfer its relationship with wave mode coupling.
energy input(the driving exceeds the outputhe dissipa- Numerical simulations have given results that agree with
tion) in the initial quiescent state. There is usually a controlthe nonlinear expansiof®] with regard to bifurcations, and
parameterf that characterizes the driving strength, such aslso showed good agreement with a recent experiment that
the accelerating amplitude in Faraday waves. Whemaches carefully measured the saturated wave amplitud€s. In
a threshold valué., in many cases the system is excited atsimulations there is more flexibility for control of the wave
a particular wave numbé; (for example, categories | and Il number and the initial conditions. This is somewhat difficult
in Ref.[3]), and a range of wave numbers becomes linearlyto achieve experimentally. We are currently limited to simu-
unstable wherf>f.. lations in two dimensions, one vertical direction inside the
If fis nearf., very often an amplitude equation descrip- fluid plus one of the horizontal directions. Full three-
tion is found to be useful. In such a picture the system igdimensional simulations are beyond our computational ca-
considered to be described by a particular wave number, withacity.
the amplitude varying slowly in time and space. The analog In the simulations we first study the nonlinear saturated
to phonon modes in a crystalline solid may have some truthwave amplitudegdenoted by a*) for an individual wave
As an example, in Faraday waves near threshold, pattermaumberA* (k). Even though the linear instability is symmet-
with different symmetries were observEsl. These patterns ric aroundk, (at least, neak.), the subcritical bifurcations at
are understood by a description in which amplitude evolutiorlarger k make A* (k) very asymmetric betweek>k. and
equations of a number of plane waves alkabut in differ-  k<k.. Second, we observe wave dynamics with multiple
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FIG. 1. (a) Linear instability diagram in the driving amplitude N
and wave numbek plane. The encircled region is the parameter 4H
range in which the wave will be excited subharmonicalty. lllus-
trations of the dependence of nonlinear saturated wave amplitudes I
on driving at different wave numbers. -5
0 1 2 3 4 5 6
wave modes. It will be shown that the dynamics have good x (arb. units)

correlation withA* (k). Near the gravity wave regime, we FIG. 2. Example of numerical grid systems in the simulations
also found interesting temporal modulations in the wave dy- i P i gna syst >
. - . .2 Fewer grids than those used in the simulations are shown for clarity.

namics with a time scale much longer than the wave penoa’.:
This phenomenon has some resemblance to the wave mo
lations observed in water channglkl], although complete
theoretical understanding is still lacking. A

Recently it was demonstrat¢dO] that nice regular rolls —=eA—gAS,

. . . ot
can be obtained in all parameter ranges in a rectangular cell

with a length to width ratio exceeding, say, about five. Theyyere co f — £ measures the distance above the threshold and

waves align perfectly perpendicular to the long side, every he nonlinear coefficient is positive for supercritical bifur-

though the underlining wavelength is still much smaller than.4ion. There is no square term due to the> — A symme-

the cell width. The width could be, for.exampl_e,.ten timestry_ The nonlinear saturated wave amplitud® scales as
larger than the wavelength, thus ensuring negligible boundﬁ as depicted in Fig. (b) (k=k,). Whenk is in-
X ; o . o)
ac}ry effgctsi W'trl] t'th|s setug; éhe trlesults of C?ur two- creased, it was founfB] that the bifurcation becomes sub-
imensional simulations can beé directly compared. critical above a particulgt, which can be called the bicritical

. This paper is organ_ized as fo”f).WS: i_n Sec_. Il we brief.lywave numberk;. The third order coefficienty becomes
discuss the nature of linear instability, bifurcation, a descr'p'negative and atfifth order term is required to saturate the

tion of the amplitude equation, and the numerical methOdS\Nave amplitude. Usuall, is very close tok,, not more
. 1 C

Res.ults.anc.i dlsgussmn are presented in Sec. Ill, and a COthan a few percent different most of the time. The saturated
clusion is given in Sec. IV.

amplitudesA* atk>k. andk<k. are also illustrated in Fig.

dfl’fe amplitude equation for wave amplitu@ds

1(b).
II. INSTABILITY, BIFURCATION, AND NUMERICAL Numerical simulations of wave dynamics are done for the
METHODS incompressible Navier-Stokes equation,

For a liquid layer with a free surface subjected to sinu- oV 1 v .
soidal vertical vibration, linear analysj&82-14 has shown E+(V~V)v= — —Vp+-V—G(t)z (H)
that surface waves grow when the vibration amplitfice- P p

ceeds a frequency-dependent threshold value. A typical ling . ' : :
ear instability diagram is shown in Fig(a in the driving Herev is the flow field,p the pressure, and the viscosity.

mplitude—wave number olane. Th lid line encircles th This equation is written within a comoving framewdrkov-
amplitude—wave number plane. 1he so € encircies ?ng with the vertical vibration such that the effective gravity
region in which waves are excited at half the driving fre-

qguency. Typically the lowest driving threshold is at theseterm G(t)=g, + f cosat.

. o A two-dimensional system with a free upper surface, a flat
subharmomc_excnauons, although t.here are some paramet%id bottom, and periodic boundary conditions in the hori-
ranges in which we expect harmonic resporideis15. '

. S S zontal direction is considered. Large fluid depth is used to
its Iglzt%g'scﬁl Wa.\t/ﬁ t?}ir%?d'(; |sf|rr;d|c:;ed Igof]g:tn?fesart]ge approach the infinite depth limit. The space is discretized by
Id' : Ilp Wi h :.V' '9 f quenay dl utes a boundary conforming grid system, illustrated in Fig. 2,

ISpersion re a_1t|on. In t € lmltg Z€ro wscgus amping andWhich is obtained by solving the Poisson equations,
an infinite fluid depth, it iIswg=g.k.+ok3/p, with wg
= w/2, g, the gravitational acceleratiom; the surface ten- V2&(x,2)=P(x,2), V?2{(x,2)=Q(X,2).
sion, andp the fluid density.
The wave numbek, is expected to be excited whéris Here (X,z) is the physical coordinate and,¢) is the Carte-
increased gradually acros. This instability is a supercriti- sian coordinate in a computational rectangular donha6j.
cal bifurcation ak. [9]. Thus near threshold, a description of The functionsP(x,z) and Q(x,z) control the mapping be-
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tween &,z) and (¢,¢). Since the velocity is most significant 2
near the free surface and decays into the fluid, we use
P(x,z2)=0 and Q(x,z)=aexp(—bjz—z|) (with a and b

some suitable constants amgl the position of the flat sur- >
face to obtain a grid system with denser grid lines near the

free surface.

At each time-marching step, first the free surface is ad-
vanced according to the surface velocity, and then a new grid 0
system is calculated under the new surface. The velocity at
the interior points of the new grid is calculated from the
Navier—Stokes equation. The pressure is determined by solv-
ing a pressure Poisson equation, which is obtained by taking
V- of Eq. (1), and eliminating the time derivative term with 0.5
the incompressibility conditiorV-v=0 [17]. On the free <
surface, the pressure and the horizontal and vertical compo-
nents of velocity are determined by a combination of the
normal stress boundary condition that involves the surface 0
tension o, the tangential stress condition, and the incom-
pressibility condition. On the flat bottom the standard no-slip

condition is used. FIG. 3. (a) Locations of the three regions in tRe-y plane.(b)

The tir_ne-marchipg scheme used i§ Semi-implicit,_ SUCI'\Example in region | with®, =0.47 andy=0.30.(c) Example in the
that the time evolutiow,u=F for a particular variablel is  region Il with S = 0.83 andy=0.08.(d) Example in region Il with

computed by 3 =0 andy=1.97. All units in(b)—(d) are arbitrary.

portion of parameter space. The initiaf — f. scaling ofA*
and the subcritical bifurcation at largkrare clearly seen. At
higherf, A* (k>k.) is larger thanA* (k.), and at the same
Over time, error accumulation if left unchecked will gradu- time A* (k<k.) is generally smaller. The reason for this dif-
ally produce deviation from the incompressibility condition ference is naturally attributed to the subcritical bifurcations.

At
u(thq)—u(ty) = ?[F(tnﬁ—l) +F(ty)].

V-v=0. Thus at each step a correctiém is added tov to Region Il is located near the capillary wave regini® (
maintainV-v=0. This correction is computed by —1) at small damping. ThA* (k) dependences seen in Fig.
3(c) have a similar global picture as those in Figb)3but
sv=-VB, with V?B=V.v. with one significant difference. That is, the ratio between

] ) ) A*(k>k.) [e.g., 1.k in Fig. 3(b)] andA* (k.) is significant
Finally all the Poisson equations are solved by thezrger than in the previous case. These larger amplitudes at

successive-overrelaxatid8OR method. k>k. will later be shown to contribute to the stability of
A(k>k.) in dynamics involving multiple wave numbers.
[ll. RESULTS AND DISCUSSIONS It should also be stressed that, although we have indicated

ree distinct regions in Fig(8), the dashed lines are not
. i . : : eant to be viewed as sharp boundaries. Rather, the depen-
dimensionless by using & as the time scale andkh, with  jence of the saturated amplitude changes gradually with the

. . . . . . . 2
ko defined by the inviscid dispersion relationg=g:Ko  parameters and the dashed lines in Fig) &re only guides
+0k3/p, as the length scale. Since we consider only infinite+g general locations.

depth fluids, the system is characterized by two dimension- For region Ill nears =0, a typical example is given in

less parameters defined As= oky/pw) and y=2vki/wo.  Fig. 3(d). The most significant aspect is that now the differ-

With a range of X=<1, X is the measure of capillarity: ences amongA*(k>k.), A*(k.), and A*(k<k,) are

> =0 being the pure gravity waves ald=1 the pure cap- smaller compared to in the previous two cases. In the follow-

illary waves. The parametey reflects the damping level. ing we will show that in this region the waves exhibit very
First we consider the nonlinear saturated wave amplitudeiiteresting modulated dynamical behavior.

at different wave number&* (k). The wave numbers are set  Now we move on and discuss different dynamics that

in simulations by using different system sizes. It is found thatappear in these three regions. For a particular set of param-

the dependence @&&* (k) on the driving amplitudé can be eters, the size of the system is chosen to Nve, (\.

roughly classified into three regions in tRe-y parameter =2x/k, andN in the range of 5—14 such that the allowed

. h
In Faraday waves, physical parameters are usually maotfﬁ

plane by the relative amplitude amoad (k>k.), A*(k:),  wave numbers ard., ke=Ak, k.*2Ak, ..., with Ak
andA* (k<k.). The locations of these regions are indicated=k_/N. According to Fig. 1a), above threshold we can have
in Fig. 3a. multiple wave numbers all being linearly unstable. In typical

Typical examples oA* (k) as functions of in the differ-  pattern formation systems, the resulting wave number is de-
ent regions are shown in Figs(B3-3(d). An example of termined by some selection mechanisms, for example, rigid
region | is shown in Fig. @) and it occupies the largest side wall, focus singularity in concentric rolls, dislocations,
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with k#k.. Here ¢, and g, are the linear growth rate and
individual-mode nonlinear coefficient, respectively. Cou-
plings Ok, k and Ok k, describe the interaction strengths. The

results in Fig. 4a) imply that for k=k.—Ak, e
—gk,kCA’,f2>0, and sk—gkC,kA:02<O. Without any knowl-
l {11 1 edge of the values ajy , andgy , we consider this to be
0 [ “(l““kl““hA”“M“ lH : ; S Ak — Ak
plausible sinces > e andAkC>Ak .

i
il
0 50 100 ) .
— In the opposite case &=k.+ Ak, the results are similar
I (b) to those ofk,— Ak in region |. However, for the parameters
in region I, we obtain a different result: the saturated ampli-
tudeA;‘C+Ak is stable as a steady state, contrary to in the case

0.5 of k.—AKk. A typical time evolution is shown in Fig.(8) in
I which the component df.+ Ak reaches a steady amplitude
while thek, mode decays to zero.

The stability ofk.+ Ak in region Il we believe is due to
its large amplituddgcf. Fig. 3(c)]. As indicated previously,
| the ratioA* (k.+Ak)/A* (k.) is larger in region Il than in
00 ' 50 region |. If we argue that the coupling constagt does not

Time (arb. units) vary too much at differenk, the largeA* (k.+Ak) could
yield a negative growth rate fo@&kc, which is given byq<C
_gk,kcAf:Z-

Region Il is located near the gravity wave regime, which
usually can be achieved by driving the system at lower fre-
quencies. For example, with water as the working fluid, we
have ~0.07 at a driving frequency of 10 Hz. F&r=0 and
etc. [3]. Here, however, we like to see the competition y=1.97, with a system size of\Z., just above the threshold,
among different wave numbers without any of these externathe wave atk, grows to its saturated value when all other

U

|
i

Amplitude (arb. units)

I

Amplitude (arb. units)

FIG. 4. (a) Time evolutions with the initial condition of a large
amplitude fork<k. in region I. The thin line is forsk, and the
thick line fork. . (b) Time evolutions with the initial condition of a
large amplitude fok> k. in region II. The thin line is for2k, and
the thick line fork. .

influences. modes decay. This is true even when the driving has ex-
The first test is whether a wave nonlinearly saturatdd, at ceededf (k.= AKk).
would shift toward higher or lowek, asf is increased. In When the driving is further increased, we find that the

regions | and I, it is observed that modle maintains its  modes at wave numbeks: k. start to grow undeA? . This

; H H H " c
amplitude with an increase df such that.Fourler cOMPO” is demonstrated in the upper graph of Fig. 5. For clarity only
nents other thak, all decay. Of course this may be due to amplitudes ofk. andk,+ Ak are shown in the upper graph
the restriction of discrete wave numbers resulting from the = "\ alwa SC has tﬁe largest amolitude of all the nqn-.
finiteness of the system. n?odes y 9 P

On the other hand, when modtge— Ak is maintained at . :
: I = : These nork, modes gradually grow to appreciable ampli-
its saturated amplitudgwith > fc(k;—Ak)], we find that tudes. At some poin&kC can no longer maintain its saturated

the modek. grows from a very small amplitude. A typical ) o
time evolution is shown in Fig.(4). TheA, _ ., component value and quickly drops t.o a very small value, as though itis
- Lo suppressed by the growing n&p-modes. Here an interest-

(the thin line reaches a steady amplitude about 0.2 after arilng thing happens. Modie.+ Ak (also for otherk) does not
initial transient period, but the componefydepicted by seize the opportuﬁity of acsmfﬂlk to reach and maintain its
the thick line grows und%:cﬂk' Eventually wave number full nonlinear saturated value, alghough; indeed larger than
k. dominates even when there is a range of unstable modesg,(k.+ Ak). Instead the notk; modes follow the decline of

It should be noted that the process A -« decaying k.. Now it seems that the suppressing effects A are
and ofAkC reaching steady amplitude exhibits modulated begone with diminishing of the nok; modes, an(Akc quickly
havior at more or less regular intervals. A similar tendencyreverts back to its original value. Wimkc back to its full

also occurrs in other situations and_ parameters, although Wg, e andA,., small, the scenario starts all over again with
have not yet understood their possible significance. d ”C .
We can try to understand the results from an amplitudd®+k, 9radually growing.

equation picture. In such a picture the time evolution is de- In the upper graph of Fig. 5, the amplitudes of wave num-
scribed by berk, (the thick ling andk.+ Ak (the thin ling display the

5 5 periodic drop ofAkC accompanied by the growth éfkcﬂk,
TPk, = €k P, ™ Tk Ak, ™ Gk Ak which could continue indefinitely. In the lower graph an en-
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~ ) Spatial location
< L /
00 — 20'00' '40'00' IGOIOO ~ FIG. 7. Surface wave profile around the time/fk.) disrup-
- — 7 — tion for % =0 andy=1.97. The units are arbitrary.
2 k ]
g 0.1- ¢ h accompanied by the significant amplitudes of bagh..
S ] results in a beating envelope which has periodicity of
P ) 2wl Ak, i.e., the size of the system. Conventionally we may
~ g tend to describe such a state by modulation of the wave
< 0 . amplitude: A(K)sink.x, with K the modulation wave num-
3000 3500 4000 ber. In the standard theoretical treatment this form is substi-
Time (1/c,) tuted into the equations of motion to derive a dynamical

equation forA(K,t). However, we believe that this approach
FIG. 5. Time evolutions of different components that exhibit iS not usable here, since it is difficult to obtain the behavior
punctuated behavior. For clarity, only wave numblergthe thick  observed even if we want to artificially construct a dynami-
line) andk,+ Ak (the thin ling are shown in the upper graph. In the cal equation forA(K,t).
expanded plot shown in the lower graph, besiéles the wave The growth ofA._ underAf is a result of two contri-

?numot;zfr ‘Zﬁﬁz i:;’ T&J di';’ ke+ 24k, andk,—2ak in descend- butions. The first ise,, the distance of over the critical
9 P ’ thresholdf (k). The second comes from the interaction be-

larged view of a particular period is shown and the growth offweenA, andA, . Since the simulations take place in a finite
amplitudesA(k#k.) are clearly seen. Among these wave system, the wave numbers closest Ko allowed arek.
numbers A(k.+ AK) is the largest and\(k) decreases ds ~ *Ak. Thus the beating fromk, and k.=Ak necessarily
away fromk,. It should also be stressed that the ratios ofgives an envelope at wave numhik as seen in Fig. 7. Of
these amplitudes remain the same with different initial concourse, if the maximum growth and the largest amplitude
ditions after one or two transient periods. This indicates in-happen ak.*=2Ak, we could have a shorter-period beating
trinsic dynamical behavior and that properties such as thenvelope. This however is unfavorable accordinggtavhich
elapsed timeAT between two disruptions oA(k.) are in- becomes smalleven negativewhenk is away fromk, .
trinsic. Note that the lines in Fig. 5 depict the envelopes of On the other hand, ne&t, €, would increase. If this is
the real wave amplitudes, which oscillate subharmonicallyalso true for the resulting net growth rate, the beating enve-
with the driving frequency(There are roughly 90 wave os- lope will have periodicity that increases with the size of the
cillations inside each periodic modulation for the case insystem. But this is not the case observed. We measure the
Fig. 5) small amplitude growth rater for A, at different sk=k

It is naturally expected that the elapsed tile is deter- —k, underA’k‘c. The results are plotted in Fig.(l§. The

mined mainly by the growth rates 8(k#k;). These growth  growth rater is only positive in a range ok and, more
rates should depend strongly on external driving. Indeed, it i%igniﬁcanﬂy, has a maximum at a particulék,,. This en-
seen in Fig. €) that elapse timaT is shortened with an  gyres that there is a definite period of the beating envelope
increase of. and that the slow modulating time scale is independent of the
So what happens wheky, drops? A wave profile is plot-  system’s size. The reason for a maximum may be understood
ted in Fig. 7 near thei!\kC disruption. The decrease ‘mkc, from the fact that, assk—0, we necessarily need—0,
since wave numbek, is already at its full value. Further-

70— ' . ' ' more, the second contribution tois due tog,_,, whose
,86 (@) __0.005r () values we might take by inference frogp (the cube coeffi-
= go0l ™ 1&g / cient for Ay). Sinceg, changes sign at a particuléy (the
: . e 0 subcriticality such that ak>k,, g, promotes the growth of
< " . A, and the opposite effect &k, .

508.06 008 0T o2 -o.oos0 0'.1 02 As we have shown in Fig.(d), there is the tendency that

in the current case all three wave modées:(k.) and

A* (k.* AK), have comparable single-mode saturated ampli-
tudes. This might be a hint as to the origin of the modulating
tions of A(k.) as a function of driving amplitude (b) Growth rates dynamics. Here we would like t(.) emph§iS|s again that all
(in units of w,) of wave components unde* (k.). There is an components other thaf'\lkC grow at fixed ratios, regardless of
additional point at (0.25;0.041) not shown and the line is just a the initial conditions. Even the system started with the satu-
guide to the eye. rated amplitudea!\ﬁchAk and a very smalAkC, Ak, will gradu-

(£ )/, Sk/k,

FIG. 6. (a) Elapsed tim€in units of 1i,) between two disrup-
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. after a certain point. Nevertheless all the results up to this
point are consistent with the picture described above for

larger vy.

Wave profile
o
o o

o
o
.

o
(3.}
-
o

Spatial location IV. CONCLUSION

_ ) _ In Faraday waves with infinite fluid depth, we have found
_ FIG. 8. Surface wave profile around the timeAfk,) distup- 66 different dependences of nonlinear saturated wave am-
tion at a small damping parametgr-0.16 (. =0). The units are i qes on the driving strengths, classified by the relative
arbitrary. amplitudes among different wave numbers. Distinct wave
dynamics are then observed in these different dependences,
ally grow. Eventually we go back to what is seen in Fig. 5. Itand the dynamics are closely related to the single-mode satu-
differs from what was shown for region Il where bot ~ rated wave amplitudes. In one regime we find that both the

andA . 1 can be the final steady amplitudes, dependmg oreritical and higher wave numbers can be stable as steady
the |n|t|al conditions. states, depending on the initial conditions. In the other re-

If we set the system parameters & 0.16 (again with gime we see the appearance of a new slow time scale that is

2 =0), a similar picture is again seen. However this time at_ uch longer than the original wave period. Finally, we be-
the disruption OfAkCa the wave exhibits a different profile, ieve that this interesting slow modulated dynamics near the

S . gravity wave regime should be looked for in experiments.
which is shown in Fig. 8. One of the waves becomes a

peaked, solitary-like structure. Which one transforms de-
pends on the arbitrarily chosen initial phaser@f. . Unfor-
tunately, the solitary structure causes difficulty in the numeri- This work was supported by the National Science Council
cal simulations and the simulations cannot be run furtheof Taiwan.
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