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Nonlinear wave dynamics in Faraday instabilities
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Nonlinear wave dynamics in parametrically driven surface waves are studied in numerical simulations of the
two-dimensional Navier-Stokes equation, with an emphasis on the evolution and interaction between different
wave number modes. The dynamics are found to be closely correlated with the single-mode nonlinear saturated
wave amplitudes. Modulating behavior of primary wave modes in a particular parameter range and in time
scales much longer than the underlining wave periods is observed.
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I. INTRODUCTION

In this paper wave dynamics of parametrically excit
surface waves~also called Faraday waves! are studied in
numerical simulations of the two-dimensional Navie
Stokes equation. Faraday waves are excited~usually subhar-
monically! when a fluid layer with a free surface is subject
to periodic vertical acceleration@1#. In such a system, there i
a minimum accelerating amplitude at which waves appea
a critical wave number. The characteristics of rich pheno
enology, easily adjustable spatial and temporal scales, m
erate demands on experimental setup, and well establi
underlying microscopic equations@2# have made Farada
waves an ideal system in which to study pattern formation
driving-dissipative systems@3#. Here the microscopic equa
tions refer not to the atomic picture but rather to the gen
ally accepted continuum description of fluids. In some rec
experiments using non-Newtonian fluids@4# the uncertainty
in the governing equations rises. Because both gravity
surface tension act as wave restoring forces, there are
limiting regimes: those of the gravity waves and those of
capillary waves. A number of patterns ranging from spatia
coherent patterns to localized states were observed in di
ent parameter ranges@5,6#.

Considerable attention has been paid to the problem
pattern formation outside of equilibrium partly due to t
generic features in many different fields@7#. One of these is
that very often primary patterns emerge when the exte
energy input~the driving! exceeds the output~the dissipa-
tion! in the initial quiescent state. There is usually a cont
parameterf that characterizes the driving strength, such
the accelerating amplitude in Faraday waves. Whenf reaches
a threshold valuef c , in many cases the system is excited
a particular wave numberkc ~for example, categories I and I
in Ref. @3#!, and a range of wave numbers becomes linea
unstable whenf . f c .

If f is nearf c , very often an amplitude equation descri
tion is found to be useful. In such a picture the system
considered to be described by a particular wave number,
the amplitude varying slowly in time and space. The ana
to phonon modes in a crystalline solid may have some tr
As an example, in Faraday waves near threshold, patt
with different symmetries were observed@5#. These patterns
are understood by a description in which amplitude evolut
equations of a number of plane waves all atkc but in differ-
1063-651X/2002/65~3!/036308~6!/$20.00 65 0363
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ent directions are considered. Correct predictions of pat
selection, i.e., the correspondence between particular pat
and experimental parameters, then come from calculation
the interaction between these plane waves from the b
fluid equations of motion@8#.

On the other hand, in this paper we would like to consid
how the coupling between different wave numbers affe
wave dynamics. This approach of nonlinear wave dynam
of course will only be valid in the weakly nonlinear regim
where the distinction between different plane wave mode
still meaningful. Since the primary instability is previous
found to have a transition from supercritical to subcritic
bifurcations at a wave number a little larger thankc @9#, it is
very likely that the dynamics of nonlinear waves that invol
multiple wave numbers aroundkc would exhibit interesting
behavior.

Although the coupling in the pattern selection problem
was obtained by a systematic analytical expansion of
Navier-Stokes equation@8# of the small parametere[( f
2 f c)/ f c , the analysis was actually too complicated to
done by hand and symbolic computations were used. In p
ciple a similar procedure can be followed to calculate co
pling between different wave numbers, and with this info
mation some aspects of the wave dynamics can be predic
However, we foresee that this process will be even m
complicated than that in the previous case. So for now
use numerical simulations to observe wave dynamics
infer its relationship with wave mode coupling.

Numerical simulations have given results that agree w
the nonlinear expansion@9# with regard to bifurcations, and
also showed good agreement with a recent experiment
carefully measured the saturated wave amplitudes@10#. In
simulations there is more flexibility for control of the wav
number and the initial conditions. This is somewhat diffic
to achieve experimentally. We are currently limited to sim
lations in two dimensions, one vertical direction inside t
fluid plus one of the horizontal directions. Full thre
dimensional simulations are beyond our computational
pacity.

In the simulations we first study the nonlinear satura
wave amplitudes~denoted by a* ) for an individual wave
numberA* (k). Even though the linear instability is symme
ric aroundkc ~at least, nearkc), the subcritical bifurcations a
larger k make A* (k) very asymmetric betweenk.kc and
k,kc . Second, we observe wave dynamics with multip
©2002 The American Physical Society08-1
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wave modes. It will be shown that the dynamics have go
correlation withA* (k). Near the gravity wave regime, w
also found interesting temporal modulations in the wave
namics with a time scale much longer than the wave per
This phenomenon has some resemblance to the wave m
lations observed in water channels@11#, although complete
theoretical understanding is still lacking.

Recently it was demonstrated@10# that nice regular rolls
can be obtained in all parameter ranges in a rectangular
with a length to width ratio exceeding, say, about five. T
waves align perfectly perpendicular to the long side, ev
though the underlining wavelength is still much smaller th
the cell width. The width could be, for example, ten tim
larger than the wavelength, thus ensuring negligible bou
ary effects. With this setup the results of our tw
dimensional simulations can be directly compared.

This paper is organized as follows: in Sec. II we brie
discuss the nature of linear instability, bifurcation, a desc
tion of the amplitude equation, and the numerical metho
Results and discussion are presented in Sec. III, and a
clusion is given in Sec. IV.

II. INSTABILITY, BIFURCATION, AND NUMERICAL
METHODS

For a liquid layer with a free surface subjected to sin
soidal vertical vibration, linear analysis@12–14# has shown
that surface waves grow when the vibration amplitudef ex-
ceeds a frequency-dependent threshold value. A typical
ear instability diagram is shown in Fig. 1~a! in the driving
amplitude–wave number plane. The solid line encircles
region in which waves are excited at half the driving fr
quency. Typically the lowest driving threshold is at the
subharmonic excitations, although there are some param
ranges in which we expect harmonic responses@14,15#.

The critical wave numberkc is indicated in Fig. 1~a! and
its relationship with the driving frequencyv constitutes the
dispersion relation. In the limit of zero viscous damping a
an infinite fluid depth, it isv0

25grkc1skc
3/r, with v0

5v/2, gr the gravitational acceleration,s the surface ten-
sion, andr the fluid density.

The wave numberkc is expected to be excited whenf is
increased gradually acrossf c . This instability is a supercriti-
cal bifurcation atkc @9#. Thus near threshold, a description

FIG. 1. ~a! Linear instability diagram in the driving amplitudef
and wave numberk plane. The encircled region is the parame
range in which the wave will be excited subharmonically.~b! Illus-
trations of the dependence of nonlinear saturated wave amplit
on driving at different wave numbers.
03630
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the amplitude equation for wave amplitudeA is

]A

]t
5eA2gA3.

Heree} f 2 f c measures the distance above the threshold
g, the nonlinear coefficient is positive for supercritical bifu
cation. There is no square term due to theA↔2A symme-
try. The nonlinear saturated wave amplitudeA* scales as
Af 2 f c, as depicted in Fig. 1~b! (k5kc). When k is in-
creased, it was found@9# that the bifurcation becomes sub
critical above a particulark, which can be called the bicritica
wave numberkt . The third order coefficientg becomes
negative and a fifth order term is required to saturate
wave amplitude. Usuallykt is very close tokc , not more
than a few percent different most of the time. The satura
amplitudesA* at k.kc andk,kc are also illustrated in Fig.
1~b!.

Numerical simulations of wave dynamics are done for
incompressible Navier-Stokes equation,

]v

]t
1~v•¹!v52

1

r
¹p1

n

r
¹2v2G~ t !ẑ. ~1!

Herev is the flow field,p the pressure, andn the viscosity.
This equation is written within a comoving framework~mov-
ing with the vertical vibration!, such that the effective gravity
term G(t)5gr1 f cosvt.

A two-dimensional system with a free upper surface, a
rigid bottom, and periodic boundary conditions in the ho
zontal direction is considered. Large fluid depth is used
approach the infinite depth limit. The space is discretized
a boundary conforming grid system, illustrated in Fig.
which is obtained by solving the Poisson equations,

¹2j~x,z!5P~x,z!, ¹2z~x,z!5Q~x,z!.

Here (x,z) is the physical coordinate and (j,z) is the Carte-
sian coordinate in a computational rectangular domain@16#.
The functionsP(x,z) and Q(x,z) control the mapping be-

r

es

FIG. 2. Example of numerical grid systems in the simulatio
Fewer grids than those used in the simulations are shown for cla
8-2
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NONLINEAR WAVE DYNAMICS IN FARADAY INSTABILITIES PHYSICAL REVIEW E 65 036308
tween (x,z) and (j,z). Since the velocity is most significan
near the free surface and decays into the fluid, we
P(x,z)50 and Q(x,z)5a exp(2buz2z0u) ~with a and b
some suitable constants andz0 the position of the flat sur-
face! to obtain a grid system with denser grid lines near
free surface.

At each time-marching step, first the free surface is
vanced according to the surface velocity, and then a new
system is calculated under the new surface. The velocit
the interior points of the new grid is calculated from t
Navier–Stokes equation. The pressure is determined by s
ing a pressure Poisson equation, which is obtained by ta
¹• of Eq. ~1!, and eliminating the time derivative term wit
the incompressibility condition¹•v50 @17#. On the free
surface, the pressure and the horizontal and vertical com
nents of velocity are determined by a combination of
normal stress boundary condition that involves the surf
tension s, the tangential stress condition, and the inco
pressibility condition. On the flat bottom the standard no-s
condition is used.

The time-marching scheme used is semi-implicit, su
that the time evolution] tu5F for a particular variableu is
computed by

u~ tn11!2u~ tn!5
Dt

2
@F~ tn11!1F~ tn!#.

Over time, error accumulation if left unchecked will grad
ally produce deviation from the incompressibility conditio
¹•v50. Thus at each step a correctiondv is added tov to
maintain¹•v50. This correction is computed by

dv52¹B, with ¹2B5¹•v.

Finally all the Poisson equations are solved by
successive-overrelaxation~SOR! method.

III. RESULTS AND DISCUSSIONS

In Faraday waves, physical parameters are usually m
dimensionless by using 1/v0 as the time scale and 1/k0, with
k0 defined by the inviscid dispersion relationv0

25grk0

1sk0
3/r, as the length scale. Since we consider only infin

depth fluids, the system is characterized by two dimens
less parameters defined asS5sk0

3/rv0
2 and g52nk0

2/v0.
With a range of 0<S<1, S is the measure of capillarity
S50 being the pure gravity waves andS51 the pure cap-
illary waves. The parameterg reflects the damping level.

First we consider the nonlinear saturated wave amplitu
at different wave numbers:A* (k). The wave numbers are se
in simulations by using different system sizes. It is found t
the dependence ofA* (k) on the driving amplitudef can be
roughly classified into three regions in theS –g parameter
plane by the relative amplitude amongA* (k.kc), A* (kc),
andA* (k,kc). The locations of these regions are indicat
in Fig. 3a.

Typical examples ofA* (k) as functions off in the differ-
ent regions are shown in Figs. 3~b!–3~d!. An example of
region I is shown in Fig. 3~b! and it occupies the larges
03630
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portion of parameter space. The initialAf 2 f c scaling ofA*
and the subcritical bifurcation at largerk are clearly seen. At
higher f, A* (k.kc) is larger thanA* (kc), and at the same
time A* (k,kc) is generally smaller. The reason for this di
ference is naturally attributed to the subcritical bifurcation

Region II is located near the capillary wave regime (S
→1) at small damping. TheA* (k) dependences seen in Fig
3~c! have a similar global picture as those in Fig. 3~b! but
with one significant difference. That is, the ratio betwe
A* (k.kc) @e.g., 1.1kc in Fig. 3~b!# andA* (kc) is significant
larger than in the previous case. These larger amplitude
k.kc will later be shown to contribute to the stability o
A(k.kc) in dynamics involving multiple wave numbers.

It should also be stressed that, although we have indica
three distinct regions in Fig 3~a!, the dashed lines are no
meant to be viewed as sharp boundaries. Rather, the de
dence of the saturated amplitude changes gradually with
parameters and the dashed lines in Fig. 3~a! are only guides
to general locations.

For region III nearS50, a typical example is given in
Fig. 3~d!. The most significant aspect is that now the diffe
ences amongA* (k.kc), A* (kc), and A* (k,kc) are
smaller compared to in the previous two cases. In the follo
ing we will show that in this region the waves exhibit ve
interesting modulated dynamical behavior.

Now we move on and discuss different dynamics th
appear in these three regions. For a particular set of par
eters, the size of the system is chosen to beNlc (lc
52p/kc andN in the range of 5–14!, such that the allowed
wave numbers arekc , kc6Dk, kc62Dk, . . . , with Dk
[kc /N. According to Fig. 1~a!, above threshold we can hav
multiple wave numbers all being linearly unstable. In typic
pattern formation systems, the resulting wave number is
termined by some selection mechanisms, for example, r
side wall, focus singularity in concentric rolls, dislocation

FIG. 3. ~a! Locations of the three regions in theS –g plane.~b!
Example in region I withS50.47 andg50.30.~c! Example in the
region II with S50.83 andg50.08.~d! Example in region III with
S50 andg51.97. All units in ~b!–~d! are arbitrary.
8-3
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PEILONG CHEN PHYSICAL REVIEW E 65 036308
etc. @3#. Here, however, we like to see the competiti
among different wave numbers without any of these exte
influences.

The first test is whether a wave nonlinearly saturated akc
would shift toward higher or lowerk, as f is increased. In
regions I and II, it is observed that modekc maintains its
amplitude with an increase off, such that Fourier compo
nents other thankc all decay. Of course this may be due
the restriction of discrete wave numbers resulting from
finiteness of the system.

On the other hand, when modekc2Dk is maintained at
its saturated amplitude@with f . f c(kc2Dk)#, we find that
the modekc grows from a very small amplitude. A typica
time evolution is shown in Fig. 4~a!. TheAkc2Dk component

~the thin line! reaches a steady amplitude about 0.2 after
initial transient period, but the componentAkc

depicted by

the thick line grows underAkc2Dk* . Eventually wave numbe

kc dominates even when there is a range of unstable mo
It should be noted that the process ofAkc2Dk decaying

and ofAkc
reaching steady amplitude exhibits modulated

havior at more or less regular intervals. A similar tenden
also occurrs in other situations and parameters, although
have not yet understood their possible significance.

We can try to understand the results from an amplitu
equation picture. In such a picture the time evolution is
scribed by

] tAkc
5ekc

Akc
2gkc

Akc

3 2gk,kc
Ak

2Akc
,

FIG. 4. ~a! Time evolutions with the initial condition of a larg
amplitude fork,kc in region I. The thin line is for6

7 kc and the
thick line for kc . ~b! Time evolutions with the initial condition of a
large amplitude fork.kc in region II. The thin line is for87 kc and
the thick line forkc .
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] tAk5ekAk2gkAk
32gkc ,kAkc

2 Ak ,

with kÞkc . Here ek and gk are the linear growth rate an
individual-mode nonlinear coefficient, respectively. Co
plings gkc ,k andgk,kc

describe the interaction strengths. Th

results in Fig. 4~a! imply that for k5kc2Dk, ekc

2gk,kc
Ak*

2.0, and ek2gkc,kAkc
* 2,0. Without any knowl-

edge of the values ofgk,kc
andgkc ,k , we consider this to be

plausible sinceekc
.ek andAkc

* .Ak* .

In the opposite case ofk5kc1Dk, the results are similar
to those ofkc2Dk in region I. However, for the parameter
in region II, we obtain a different result: the saturated amp
tudeAkc1Dk* is stable as a steady state, contrary to in the c

of kc2Dk. A typical time evolution is shown in Fig. 4~b! in
which the component ofkc1Dk reaches a steady amplitud
while thekc mode decays to zero.

The stability ofkc1Dk in region II we believe is due to
its large amplitude@cf. Fig. 3~c!#. As indicated previously,
the ratioA* (kc1Dk)/A* (kc) is larger in region II than in
region I. If we argue that the coupling constantgk,kc

does not

vary too much at differentk, the largeA* (kc1Dk) could
yield a negative growth rate forAkc

, which is given byekc

2gk,kc
Ak*

2.
Region III is located near the gravity wave regime, whi

usually can be achieved by driving the system at lower f
quencies. For example, with water as the working fluid,
haveS;0.07 at a driving frequency of 10 Hz. ForS50 and
g51.97, with a system size of 7lc , just above the threshold
the wave atkc grows to its saturated value when all oth
modes decay. This is true even when the driving has
ceededf (kc6Dk).

When the driving is further increased, we find that t
modes at wave numberskÞkc start to grow underAkc

* . This

is demonstrated in the upper graph of Fig. 5. For clarity o
amplitudes ofkc andkc1Dk are shown in the upper graph
kc1Dk always has the largest amplitude of all the non-kc
modes.

These non-kc modes gradually grow to appreciable amp
tudes. At some pointAkc

can no longer maintain its saturate
value and quickly drops to a very small value, as though i
suppressed by the growing non-kc modes. Here an interest
ing thing happens. Modekc1Dk ~also for otherk) does not
seize the opportunity of a smallAkc

to reach and maintain its
full nonlinear saturated value, althoughf is indeed larger than
f c(kc1Dk). Instead the non-kc modes follow the decline of
kc . Now it seems that the suppressing effects onAkc

are

gone with diminishing of the non-kc modes, andAkc
quickly

reverts back to its original value. WithAkc
back to its full

value andAkÞkc
small, the scenario starts all over again wi

AkÞkc
gradually growing.

In the upper graph of Fig. 5, the amplitudes of wave nu
ber kc ~the thick line! andkc1Dk ~the thin line! display the
periodic drop ofAkc

accompanied by the growth ofAkc1Dk ,
which could continue indefinitely. In the lower graph an e
8-4
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NONLINEAR WAVE DYNAMICS IN FARADAY INSTABILITIES PHYSICAL REVIEW E 65 036308
larged view of a particular period is shown and the growth
amplitudesA(kÞkc) are clearly seen. Among these wa
numbers,A(kc1Dk) is the largest andA(k) decreases ask
away fromkc . It should also be stressed that the ratios
these amplitudes remain the same with different initial c
ditions after one or two transient periods. This indicates
trinsic dynamical behavior and that properties such as
elapsed timeDT between two disruptions ofA(kc) are in-
trinsic. Note that the lines in Fig. 5 depict the envelopes
the real wave amplitudes, which oscillate subharmonica
with the driving frequency.~There are roughly 90 wave os
cillations inside each periodic modulation for the case
Fig. 5.!

It is naturally expected that the elapsed timeDT is deter-
mined mainly by the growth rates ofA(kÞkc). These growth
rates should depend strongly on external driving. Indeed,
seen in Fig. 6~a! that elapse timeDT is shortened with an
increase off.

So what happens whenAkc
drops? A wave profile is plot-

ted in Fig. 7 near theAkc
disruption. The decrease inAkc

,

FIG. 5. Time evolutions of different components that exhi
punctuated behavior. For clarity, only wave numberskc ~the thick
line! andkc1Dk ~the thin line! are shown in the upper graph. In th
expanded plot shown in the lower graph, besideskc , the wave
numbers arekc1Dk, kc2Dk, kc12Dk, andkc22Dk in descend-
ing order of the amplitudes.

FIG. 6. ~a! Elapsed time~in units of 1/v0) between two disrup-
tions ofA(kc) as a function of driving amplitudef. ~b! Growth rates
~in units of v0) of wave components underA* (kc). There is an
additional point at (0.25,20.041) not shown and the line is just
guide to the eye.
03630
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accompanied by the significant amplitudes of bothAkc6Dk ,
results in a beating envelope which has periodicity
2p/Dk, i.e., the size of the system. Conventionally we m
tend to describe such a state by modulation of the w
amplitude:A(K)sinkcx, with K the modulation wave num
ber. In the standard theoretical treatment this form is sub
tuted into the equations of motion to derive a dynami
equation forA(K,t). However, we believe that this approac
is not usable here, since it is difficult to obtain the behav
observed even if we want to artificially construct a dynam
cal equation forA(K,t).

The growth ofAkÞkc
underAkc

* is a result of two contri-

butions. The first isek , the distance off over the critical
thresholdf c(k). The second comes from the interaction b
tweenAkc

andAk . Since the simulations take place in a fini

system, the wave numbers closest tokc allowed arekc
6Dk. Thus the beating fromkc and kc6Dk necessarily
gives an envelope at wave numberDk as seen in Fig. 7. Of
course, if the maximum growth and the largest amplitu
happen atkc62Dk, we could have a shorter-period beatin
envelope. This however is unfavorable according toek which
becomes small~even negative! whenk is away fromkc .

On the other hand, nearkc , ek would increase. If this is
also true for the resulting net growth rate, the beating en
lope will have periodicity that increases with the size of t
system. But this is not the case observed. We measure
small amplitude growth ratet for Ak at different dk5k
2kc under Akc

* . The results are plotted in Fig. 6~b!. The

growth ratet is only positive in a range ofdk and, more
significantly, has a maximum at a particulardkm . This en-
sures that there is a definite period of the beating envel
and that the slow modulating time scale is independent of
system’s size. The reason for a maximum may be unders
from the fact that, asdk→0, we necessarily needt→0,
since wave numberkc is already at its full value. Further
more, the second contribution tot is due togkc ,k , whose

values we might take by inference fromgk ~the cube coeffi-
cient for Ak). Sincegk changes sign at a particularkt ~the
subcriticality! such that atk.kt , gk promotes the growth of
Ak and the opposite effect atk,kt .

As we have shown in Fig. 3~d!, there is the tendency tha
in the current case all three wave modes,A* (kc) and
A* (kc6Dk), have comparable single-mode saturated am
tudes. This might be a hint as to the origin of the modulat
dynamics. Here we would like to emphasis again that
components other thanAkc

grow at fixed ratios, regardless o
the initial conditions. Even the system started with the sa
rated amplitudeAkc1Dk* and a very smallAkc

, Akc
will gradu-

FIG. 7. Surface wave profile around the time ofA(kc) disrup-
tion for S50 andg51.97. The units are arbitrary.
8-5
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PEILONG CHEN PHYSICAL REVIEW E 65 036308
ally grow. Eventually we go back to what is seen in Fig. 5
differs from what was shown for region II where bothAkc

andAkc1Dk can be the final steady amplitudes, depending
the initial conditions.

If we set the system parameters atg50.16 ~again with
S50), a similar picture is again seen. However this time
the disruption ofAkc

, the wave exhibits a different profile
which is shown in Fig. 8. One of the waves becomes
peaked, solitary-like structure. Which one transforms
pends on the arbitrarily chosen initial phase ofAkÞkc

. Unfor-
tunately, the solitary structure causes difficulty in the nume
cal simulations and the simulations cannot be run furt

FIG. 8. Surface wave profile around the time ofA(kc) disrup-
tion at a small damping parameterg50.16 (S50). The units are
arbitrary.
em
,
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.
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after a certain point. Nevertheless all the results up to
point are consistent with the picture described above
largerg.

IV. CONCLUSION

In Faraday waves with infinite fluid depth, we have fou
three different dependences of nonlinear saturated wave
plitudes on the driving strengths, classified by the relat
amplitudes among different wave numbers. Distinct wa
dynamics are then observed in these different dependen
and the dynamics are closely related to the single-mode s
rated wave amplitudes. In one regime we find that both
critical and higher wave numbers can be stable as ste
states, depending on the initial conditions. In the other
gime we see the appearance of a new slow time scale th
much longer than the original wave period. Finally, we b
lieve that this interesting slow modulated dynamics near
gravity wave regime should be looked for in experiments
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