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Stability analysis of boundary layer flow due to the presence of a small hole on a surface
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A linear, temporal, and viscous stability analysis of the boundary layer induced on a solid plane by a
three-dimensional potential sink flow is considered. The flow is inviscioutrally stable. For axisymmetric
perturbations, one can analyze separately the stability of those perturbations with a purely circumferential
motion, and those with no azimuthal velocity. The first ones are shown to be always stable, a result that is
found analytically. The second ones become unstable in a rangegbj Reynolds numbers that depends on
the radial wave number. Finally, it is shown that all nonaxisymmetric perturbations are linearly stable.
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I. INTRODUCTION nated(if any), or whether it is a linear or a nonlinear insta-
bility, or whether it is an axisymmetric or a nonaxisymmetric
The study of the hydrodynamic stability of the viscous instability. Recent works suggest that self-rotation is a non-
boundary layer induced on a plane wall by a three-axisymmetric phenomenofsee, e.g., Refl5]). But, of the
dimensional potential sink flow, whose velocity and pressurether two questions we have no clear idea. In the present
fields may be written in cylindrical polar coordinates 4, z) work we try to delimit the regions of inquiry by analyzing

as the linear stability of a self-similar solution to the boundary
layer equations that models, for high Reynolds numbers, the

Q flow in the vicinity of the plane where the hole is located,
(Uv,w)=—————2(-1,0,-2), (1a  provided that we are not in the immediate neighborhood of
4m(r°+2z7) the hole. The self-similar solution that constitutes the basic

flow of the stability analysis is given in the next section,
together with the stability equations and a discussion of the
numerical method used to solve them. Section Il describes
the stability results, both for axisymmetric and nonaxisym-
(Q/2 is the flow ratep, a reference pressure, apdhe fluid metric perturbations. Finally, some conclusions are given in
density, is of interest for two reasons. First, because theSec. IV.

stability properties of such a basic solution to the boundary

layer equationgdescribed in the next sectiprthat models Il. FORMULATION OF THE PROBLEM

the boundary layer flow due to the presence of a small hole
on a solid surface sufficiently away from the hole, are not
known (to our knowledge Shusser and WeiHsl] consid- For high Reynolds numbefthe precise Reynolds number
ered the inviscid stability of the potential sirika), finding ~ will be defined below, the viscous flow originated by the
that it is always inviscidly stable. However, no stability interaction of the potential sink flowla), (1b) with a solid
analysis of the viscous boundary layer induced by such @lane located at=0 is governed, near the wall, by the fol-
potential flow on the plane of the sirdk=0 has been given. lowing boundary layer equations and boundary conditions:
Known are the stability properties of the boundary layer in-

1 2 2
p=Po— 5 p(U*+W?), (16

A. Basic flow

duced by a two-dimensional sink flogee, e.g., Ref2], pp. 1 ar_u+(9_wz @)
231-233, but not of its three-dimensional counterpart. ror gz

The second reason, which has been the main motivation
of the present work, is that the stability analysis of that au au Q? 22U
model flow may shed some light on the problem of the self- Ua—r+W5= PN trv—, )
generation of swirl in a sink flow. Well known is the fact that T 9z
a vortex is sometimes formed superimposed to the flow U=w=0 at 7=0 4
through a holdthe so-called “bathtub vortex’ Quantitative '
experiments in open3] and closed[4] sink flows have
shown that the vortex is formed above a critical Reynolds U — as 2/ 8(r)—, (5)

number based on the sink flow rate, suggesting that the phe- Aqrr?
nomenon may be due to an instability of the sink flow. How-

ever, even if that is the case, which we do not know atwherev is the kinematic viscosity, and the boundary layer
present, since the three-dimensional viscous flow through thicknessé(r) is defined below. This problem has a self-
hole is a very complex flow, it is not an easy task to find outsimilar solution, first described by Mangléusing spherical
the nature of the hydrodynamic instability. For instance, werather than cylindrical coordinates; see, e.g., R,

do not know in which part of the flow is the instability origi- p. 428. In fact, defining
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FIG. 1. Self-Similar solution for the basic flow.

__Q f(w __ _[Qvh(m) ®
u= 4 r2 ' W= 41 r3/2,
z 32
=5y A=

\/T’ ()
4y

Egs.(2)—(5) become

3
f+ - pf'—h'=0, )
2
3
£+ 24 hf —f 2f+§7;f’)=0, ©)
f(0)=h(0)=0, f(«)=1, (10)
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whereU,=Q/(4mr?). Thus,

oU
Rlzlo

~0.585 39R. (13)

Comparing Eq(1a with Eq. (5), it is clear that the above
self-similar solution is valid foz<r, so that it is not valid,
obviously, in the close vicinity of the sink €0). In terms
of the self-similar variable and the local Reynolds number,
this condition can be written

7<R. (14)
From Fig. 1, this means th& must bemuch largerthan

approximately 4.

B. Stability equations

To analyze the linear stability of the above base flow, the
flow variables (1,v,w) andp are decomposed, as usual, into
the mean part, Eq$6) and (1b), and small perturbations:

u= 5=t +ul, (15
_ Q-
v—4ﬂ_rzv, (16)
Q [ h(m —
e ] "
p-po 1[ Q| —
; 25(47”2 (—1+p). (18)

The dimensionless independent variabl& 4, ») will be
used instead ofr( 0,z). Making use of the near-parallel flow
approximation R>1), the dimensionless perturbations

where the primes mean differentiation with respectito
Equations(8) and (9) may be reduced further to a single,
third-order differential equation if one uses the self-similarare decomposed in the standard form
form of the stream function instead bandh. In that form,
the resulting equation was first integrated numerically by
Terrill [7]. The numerical solution shown in Fig. 1 is ob- _ _
tained directly from Eqs(8)—(10) using a standard finite In this expression,
difference method with deferred corrections.

s=[u,0,w,p]",

It is convenient to define thimcal Reynolds number F(n)
Sy) G(mn)
r = .
R=%= \/47?”. (12 H(7)
H(7)

One can also define a Reynolds number based on the local
displacement thickness of the boundary layer,

0= [[1- 5| de=an [ 1= tan1ay = ot

=0.58539%(r), (12

is the dimensionless time, and
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S:S(n)eiR(_a+n0_wT).

IS the (compleX amplitude of the perturbations,

(19

(20

(21)

(22
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_0s _n _4mrt o 23 L=Lotial,+ —L +a—2L (26)
a=a (r)1 n_ﬁv w= Q ﬁa ( ) 1 2 R 3 R 0
are the local, order of unity, dimensionless radial wave num- q
ber, azimuthal wave number, and frequency, respectiv&ly ( 0 in — 0
- . . . dn
and o are the dimensional radial wave number and fre-
guency, respectively 0 0 _ ﬂ 0
Substituting Egs. (15—(23) into the incompressible dz
Navier-Stokes equations, neglecting tel@@R 2), in accor- L= in , (27)
dance with the boundary layer approximation, and second- 0 0 0 —
order terms in the small perturbations, one obtains the fol- 2
lowing linear stability equation: 1d
0 0 0 —-—
L-S=iwly-S (24) 2dpy
where 100 0
0O 0 0O 1
10 0 0 oo -3 28
L,= ,
Lo= : (25) 2 (28)
0 1 00 0 f O
0 01 O 0 O
3 d
—1--n— 0 0 0
2dy
4f f 2+D 0 0 2 3,0
+-n—+n —2——n-
L= 274y " ady |, (29
0 f+n?+D, 0 0
dh
0 0 ——+4n? 0
2f d7]+n +D,

3 d d d?

Dnzinfﬁ_hﬁ_d_nz.

(30

This equation has to be solved with the following boundarymean flow has no circumferential motion, positive and nega-

conditions: tive values of the azimuthal wave numbemwill yield the
same results, so that only positive valuesnoivill be con-
F(0)=G(0)=H(0)=0, (B sidered.
F(0)=G(»)=H(*)=0. (32

. . . . C. Numerical method
In the temporal stability analysis that will be carried out

here, for a giverreal radial wave numbetr, and given the To solve Eqgs.(24)—(32) numerically, the eigenfunction
parameter® andn, the systen{24)—(32) constitutes a linear VEClOrSis discretized using a staggered Chebyshev spectral
eigenvalue problem for the complex frequency collocation technique developed by Khorral@], where the
three velocity components and the three momentum equa-
0=, tio;. (33  tions are discretized at the grid collocation points, whereas

the pressure and the continuity equation are enforced at the
The flow is considered unstable when>0. Since we are mid grid points. This method has the advantage of eliminat-
interested in perturbations approaching the gir&k, the evo-  ing the need of two artificial pressure boundary conditions,
lution of perturbations for decreasing valugswhich, ac-  which are not included in Eq$31), (32). To implement the
cording to Eq.(11), corresponds to increasing valuesRY, spectral numerical method, EqR4) is discretized by ex-
only positive values ofr will be considered. Also, since the pandingSin terms of a truncated Chebyshev series. To map
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the interval G< <« into the Chebyshev polynomials do- 1
main —1<s=<1, the transformatiom=c,(1+s)/(c,—5s) is 0.8
used, where, is a constantg; =3 in all the computations |
andc,=1+42c;/nmax- The boundary conditioi32) is ap-
plied at = n,ax, Which is chosen large enough to ensure o
that the results do not depend on that truncated distance. Thi2Jt
transformation concentrates the Chebyshev collocatior o
points near the plang=0, in such a way that approximately n
half of the points are located in the intervakO;<c;.

The domain is thus discretized M points, N being the
number of Chebyshev polynomials in whi€hhas been ex-
panded. For most of the computations reported below, valueos
of N between 40 and 50 were enough to obtain the eigenvalyg 4
ues with at least 6 or 7 significant figures, as it was checkec
out for every result given below by using larger valuesNof _
With this discretization24)—(32) becomes an algebraic lin- % 05 1 15 2 25 3 35 4
ear eigenvalue problem that is solved with double precision n
gSIng an elgenvalug solver' from the IM.SL Il'bra(rslubrou- FIG. 2. Eigenfunctions corresponding to the less stable axisym-
tine DGVCCQG, which prow_des th_e entire elgenvalu_e and etric (n=0) perturbations of typa (a), and typeb (b), for R
eigenvector spectrum. Spurious eigenvalues were discarded,3 551 anda=0.3070. The corresponding eigenvalues are
by comparing the computed spectra for increasing nurhber — 5 4775958%10°2, =0, and w,=3.5442655% 10 2, o,
of collocation points. =-1.976 272 1K 102, respectively. The maximum value of all

the eigenfunction components are normalized to unity. Also shown
Ill. RESULTS as a reference i8( 7).

0.8

From an inviscid point of view, the flow is stable accord-
ing to Rayleigh’s criterion, for the velocity profil§( %) has 3 .d d , d .
no inflexion point. This is corroborated numerically by solv- f+ 2 nt dy hﬂ, tat- d_7}2 G=iwG,
ing the stability equation in the formal limR—o for any (34)
value ofn. Actually, the flow is neutrally stable in this limit
R— o0,

The viscous resultsR large, but finit¢ will be presented G(0)=G(=)=0. (35
for axisymmetric and nonaxisymmetric perturbations sepa-
rately. Using the standard transformatios=gexg—3/(h

—2,f)dy], and defining

.fl
|a’+§

A. Axisymmetric perturbations .
] ] ) . a=aR, w=o0R=w,tiw, (36)
Since the base flow has no circumferential velocity com-
ponent, axisymmetric perturbations= 0) may be classified
within two different kinds: those with no azimuthal velocity
component G=0,F+#0,H+#0,I1#0), which will be re-
ferred to as typea for short, and perturbations with only
azimuthal motion F=H=II=0, G#0), referred to as type g"—
b. Typical eigenfunctions belonging to each one of these two
types of perturbations are plotted in Fig. 2, whéfey) is (37)
also plotted as a reference. Note that the eigenfun&idor
perturbations of typd is much more concentrated near the g(0)=g()=0, (39
plane »=0 than the eigenfunctiorfs andH in perturbations
of type a. Results for perturbations of tygewill be given
first because they are easier to analyze, and because a gen
result on their stability can be obtained analytically.

Egs.(34)—(35) can be written

2 aZ
Fi(af-w)+ s

3flhsf =0
AR 9=5

%\/zlg re the primes denote differentiation with respectyto
ultiplying this equation by the complex conjugagé, in-
tegrating betweem=0 and =, integrating by parts, and
using the boundary conditions, one obtains the following re-

o ] lations for the imaginary and real parts of the resulting ex-
As indicated above, fon=0, there exists a class of solu- pressijon:

tions to Eqs.(24)—(32) that are characterized BFy=H =11

=0. The remaining, nonvanishing componé&hof the am- B

plitude of the perturbations satisfy the following eigenvalue f (af—w,)|g|2d5=0, (39)
problem: 0

1. Purely azimuthal perturbations
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FIG. 3. Real(a) and imaginary(b) parts ofw as functions ofw
of the less stable axisymmetric perturbations of tiyp®r several
Reynolds numbers. All the curves,(a) collapse when plotted in
the formw,(a).

FIG. 4. Real(a) and imaginary(b) parts ofw as functions ofx
of the less stable axisymmetric perturbations of tgp®r several
Reynolds numbergc) Detail of the functionsw;(«) near the criti-
cal values ofe andR.

T =||dg|? )3, 1 2 terms of the local displacement thickness of the boundary
mifo [of d”__fo dy +|g| Zf+Z h— §77f layer (12), the critical Reynolds number and critical wave
number areR;.=25301 and a;.= a.5;=0.585397 a,
a? =0.1797. These values can be compared with those corre-
+ Q d7. (40 sponding to a two-dimensional flow in the boundary layer

along an infinite plane wall due to a line sink at the origin

The first relation(39) tells us that the real part of the disper- (Self7ise§t;s§r\e/£ﬁ],inp.Fizsaziallqég_inzllimSé(:ﬁzcit_r?(')lr7e338u.lts are
sion relation does not depend on the local Reynolds numberiven for R=100 whegﬁ the wave gﬁmbef is small. The

R when written in the new variablg86), i.e., w,(a). More 9 is that R d the eigenfuncti .b
important is the second relatidd0), which says that these reason Is that, agik decreases, the eigeniunctions become

. . more extended in space, reaching higher valueg.dtven-
purely azimuthal perturbations are always staltes<0, for . : .
. . ) . tually, the eigenfunctions are different from zero at such a
every value ofa and R, with the imaginary part of the dis-

persion relationgs;(a), depending slightly o for largeR. high value ofy that the boundary layer approximation of the

) ; asic flow is no longer valid there. In particular, the compu-
All these results are corroborated numerically. Figure ; . .
. . X ; tations show that fowR<15, approximately, the condition
shows the dispersion relation,(a)+iw;i(a) of the less

stable perturbationdargestw;) for several values dR. Note
that w;<0, and that the flow is increasingly more stable, for
these purely azimuthal perturbations,Rslecreases. 03

=]
02

04

2. Meridional perturbations

For axisymmetric perturbations with no azimuthal veloc- %[
ity (perturbations of typa&), there is no general criterion of o
stability, and the results have to be obtained numerically. As  1°
a fundamental difference with the azimuthal perturbations, it
is found that perturbations of tymemay be unstable in some

0.06
ranges of the wave number and the Reynolds numbé. 005
Figure 4 shows the dispersion relationg«) for several 5004
Reynolds numbers. It is observed that the flow is unstable for™ o.03
high Reynolds numbers in a range of wave numherthat 0.02
depends ok (remember that the flow is neutrally stable for 0.0t
R— ), and becomes stable f&<R.=43221. This is bet- T
ter depicted in Fig. 5, where the neutral curves of stability on
the (@,R) and the ,R) planes are plotted. The critical FIG. 5. Curves of marginal stability for axisymmetric perturba-
Reynolds numbeR. corresponds tox,=0.3070 andw,.  tions of typea on the (,R) plane, (&), and on the ¢, ,R)
=5.4776x10 2 [see Fig. 2a) for the eigenfunctioh In plane,(b).

107
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FIG. 6. Real(a) and imaginary(b) parts ofw as functions ofx FIG. 8. As in Fig. 7, but foR=10°.
of the less stable nonaxisymmetric perturbations withl for sev-
eral Reynolds numbers. n=10, together with the dispersion relations for axisymmet-

ric perturbations of typea andb, are plotted for two differ-

(14) is not satisfied. Therefore, no results feR<15, ap-  e€nt Reynolds numbers. For the highest valu®abnsidered
proximately, are given here. in these figuresR=10°, Fig. 8), the results for nonaxisym-
) ) ) metric perturbations witin=10 approach those for tygde-

B. Nonaxisymmetric perturbations axisymmetric perturbations.

For local azimuthal wave numbee# 0, all the eigenfunc-

tion components are always different from zero; i.e., all the IV. CONCLUSIONS
eigenfunctions have azimuthal velocity compon@ént 0, as - ,
well as nonvanishing meridional componeftgand H. Nu- The stability analysis of the boundary layer flow due to

merically, the stability results are intermediate between thosE€ Presence of a small hole on a surface performed in this

for type a and typeb axisymmetric perturbations, but nearer PaPer has shown that the flow is unstable only for axisym-
to typeb. In particular, it is found that, fon=1, the flow is metric perturbations with no azimuthal velocity component.

stable for all Reynolds numbefsee Fig. 6. As n increases In particular, it is shown that the flow becomes unstable for
the flow becomes more stable, particularly Rslecreases. 0c@l Reynolds number® larger thanR.=43221. Thisvis-
This can be observed in Figs. 7 and 8, where the dispersiofPUs instability (the flow is neutrally stable in the limik

relations for nonaxisymmetric perturbations with=1 and —o0) is similar to that found for the two-dimensional version
of this flow, namely, the boundary layer flow due to the pres-

ence of a two-dimensiondline) sink on a plane surface. The
instability appears at a relatively high Reynolds number,

04

— n=0, mode a K X . .
oas) |7, n=0mede 4 marking the onset of turbulence. It has nothing to do with the
R ’ formation of a vortex in the sink, a phenomenon that is

shown experimentally to occur at much lower Reynolds
numbers(e.g., Refs[3,4]). Actually, this is quite clear from
the fact that any perturbation containing an azimuthal veloc-
ity component is always stable. Thus, it is shown analytically
[Eq. (40)] that axisymmetric perturbations with only azi-
muthal motion(called oftype bin Sec. Ill) are always stable.
On the other hand, nonaxisymmetric perturbations, which
always contain an azimuthal velocity component, are also
stable for all values on the azimuthal wave numidn fact,
their stability increase withn. Therefore, although the
present results do not discard, of course, the instability origin
of the vortex formation in a sink, they eliminate some pos-
sibilities. Thus, if the vortex formation is the consequence of
an instability, either it does not come from the viscous
FIG. 7. Comparison between the réal and imaginaryb) parts ~ boundary layer on the solid wall adjacent to, but not in the
of w(a) for the less stable axisymmetric perturbatioms=Q) of immediate neighborhood of, the hole, or, if it is a boundary-
typesa andb, and nonaxisymmetric perturbations with=1 and Iayer instability, it has to be a nonlinear instability. Another
n=10, R=1C. possibility that the present results do not discard is the phe-
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nomenon caused by a near-wall instability, but occurring aties would require a full three-dimensional numerical simu-
such low Reynolds numbers and low wave numkees, at  lation of the sink flow.

such a low value ofaR) that the present boundary layer

analysis cannot be used to find it out because the boundary ACKNOWLEDGMENT
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