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Flow pattern exchange in the Taylor-Couette system with a very small aspect ratio
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Numerical investigation is carried out on the flow pattern exchanges found in Taylor-Couette flows between
two concentric rotating cylinders. The inner cylinder rotates while the outer cylinder and both end walls are
stationary. The aspect rati@golumn length/gap widthis small, and its range is from 0.5 to 1.6. Previous
experimental results for this range of the aspect ratio showed that the steady flow patterns are classified into
three groups: the normal two-cell mode, anomalous one-cell mode and twin-cell mode. All modes found by
experiments are predicted in the present numerical calculation. Besides these three flow modes, an unsteady
mode is predicted, which is time dependent and fully developed. The existence of the unsteady mode is also
confirmed by our experiments. When the inner cylinder starts to rotate from rest, vortices at the corners of the
inner cylinder and both end walls develop, and they induce the normal two-cell mode. The flow of the
anomalous one-cell mode or twin-cell mode appears after an abrupt breakdown of symmetric two-cell mode
flows. During the gradual deceleration of the inner cylinder, the transitions of flow modes occur. We observed
mode transitions between the normal two-cell mode and anomalous one-cell mode and mode transitions from
the twin-cell mode to the normal two-cell mode, anomalous one-cell mode, and unsteady mode. The critical
loci where these mode transitions appear are determined. The numerical confirmation of the twin-cell mode is
a different result obtained in the present study.
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[. INTRODUCTION from small values. The secondary mode occurs when the
inner cylinder is abruptly accelerated above a certain value.
Taylor-Couette flow between two concentric rotating cyl- Both primary and secondary modes have a normal mode and
inders with finite axial length includes various patterns ofan anomalous mode. On each end wall, the flow of the nor-
laminar and turbulent flows, and its behavior has attracte@nal mode has a normal cell that gives an inward flow in the
great interesf1,2]. This flow is not only a classical stability region adjacent to the end wall. The flow of the anomalous
phenomenon in fluid flows but also one of the most impor-mode has an anomalous cell that gives an outward flow near
tant problems of nonlinear sciencdsr example, se¢3,4]).  the end wall. Bolstad and Kell¢®] showed that the station-
For engineering applications, this flow is found in journalary condition of the cylinder end walls may cause the
bearings, various fluid machinery, and chemical reactors. Thanomalous mode. Nakamuea al. [10] and Toyaet al. [11]
unsteady development of flow pattern causes time-dependeobserved the flows with stationary end walls and the flows
variations of property values such as torque and rate of rewith one stationary end wall and one free surface, respec-
action, and it is, therefore, meaningful to investigate the trantively. They clarified bifurcation processes originating from
sient behavior. The main parameters in Taylor-Couette flowthe secondary modes, occasionally via another secondary
are the Reynolds number Re based on the rotation speed pfode, to the primary modes during the deceleration of the
the inner cylinder, the aspect ratid that is the ratio of the rotating inner cylinder. Alziary de Roquefort and Grillaud
length of cylinders to the gap width between cylinders, and12] and Soboliket al. [13] confirmed that when the flow
the radius ratiop of two cylinders. The flow at an infinite or between rotating cylinders with finite length develops from
moderate aspect ratio has provoked a great deal of contreest, a secondary flow generates a vortex on the end wall, and
versy|[5]. Kuo and Ball[14] showed that as the vortex near the end
The seminal paper of Benjam[i6] followed by those of  wall develops, it induces other vortices in the area away from
Benjamin and Mullin[7] and Mullin [8] unveiled a new the end wall. Hil's numerical investigatiofil5] predicted
dynamical aspect in the Taylor-Couette system with stationfour-cell and six-cell transitions found by Benjamin and
ary end walls, and classified the modes of Taylor-Couettéullin [7], and concluded that reasonable agreement with
flow into primary and secondary modes. The primary modehe experimental results was obtained.
appears when the Reynolds number is increased smoothly Some experimental studies on Taylor-Couette flow with
an aspect ratio of about unity have been made. The experi-
mental result of Benjamin and Mullifi7] revealed the exis-

*Email address: hiroyuki@view.human.nagoya-u.ac.jp tence of the single-cell mode, and presented the critical loci
"Email address: watanabe@view.human.nagoya-u.ac.jp for the single-cell mode in thel{, Re) plane. Buzuget al.
*Email address: toya@me.nagano-nct.ac.jp [16] found an oscillatory single-cell flow. Using flow visual-
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th(_a anomalous mode had extra cells. They also found thatthe au o 2 gp 1 [&u 1au
twin-cell flow appeared after the development of the extra r: r + uWﬂLwa— iy + Re\ 72 v ar
cells. While there are a lot of experimental works on mode z %\ ar

transitions at small aspect ratios, few numerical studies seem u Ju

to have been done. CIliffgl 8] used a finite element discreti- -4 _> , (1)
zation for the steady Navier-Stokes equations and deter- 2 9z

mined the critical loci for the single-cell mode in thE,(Re)

plane. Pfisteet al. [19] used the steady equations and com- v v o uw 1 [dv 1

pared the numerical results with the experimental results in a 0 S U TWoo = Reg\ ar2 1 ar

very short annulus. The numerical investigations of Streett

and Hussain{20] and Magee and Deville[21] confirmed v d%

the flow developing from the normal two-cell mode to the “at ) 2

single-cell mode. However, more flow modes and mode ex-
changes are shown by the experimental widrK than those

found in these numerical studies. oW ow ow _ (?_p :

Pw 1w (?2W>

Z—+Uu—+w—= +——+--—+—
Turing’s paper[22] is a pioneering one about the pattern ~ Jt ar 9z 9z Re\ gr2 1 or 572
formation in the nonlinear dynamics, and it suggested the 3
mathematical model of the chemical reaction-diffusion sys-
tems that may develop a pattern or structure due to an insta- } a(ru) f?_W _ (4
bility of the homogeneous equilibrium. After Turing, more ror iz '

and more studies have progressively appeared to analyze

transient dynamicgfor example[23,24)). In the field of the ~ Wheret is time, (u,v,w) is the velocity components in the
Taylor-Couette system, however, in spite of complicated exdirections of ¢,6,z) andp is the pressure.

perimental results about transitional flow staf&e,11], no The basic solution procedure is the marker and cell
detailed numerical study about this transient system is reMAC) method. The Poisson equation for pressure is as
ported within our knowledge. The purpose of the presenfClloWs:

study is to predict the well developed flows and the flow-

2 2
pattern transitions during the deceleration of the inner a_p+1 ap+¢9_p__<0u u oW ow  ouow

I S
ar ar 9z 9z Jz or

cylinder. gz rar - 572
The aspect ratio is of order of unity (6H'<1.6), and )
the inner cylinder rotates while the outer cylinder and both +21 ‘9_0_23 ’9_U+ U_)
end walls are stationary. In the following, Sec. Il describes rdz roar 2
the basic equations and numerical method used in the present
study and Sec. lll presents numerical results. Section IV _Q_UQ_WQ )
gives a discussion on mode transitions and Sec. V gives at ar az’
conclusions.

where D is divergence of the velocity vector. A hybrid
method of successive over-relaxation meth@DR and
conjugate gradient squared method with incomplete lower
and upper triangular matrices decomposition preconditioning
i i ) ... .. (ILUCGSY) is used to solve the Poisson equation. The time
The length of concentric two rotating cylinders is finite. jyioqration is the Euler explicit method, and the spatial dif-
The inner cylinder rotates, and the end walls and the outeferentiation is the quadratic upstream interpolation for con-
cylinder are fixed. All physical parameters are made in digctive kinematicSQUICK) method for convection terms
mensionless form by a reference length that is the gap widting the second-order central difference method for other
between two cylinders and a reference velocity, which is theerms[25].
maximum circumferential velocity of the inner cylinder at-  The boundary conditions for the velocity components on
tained during each run of a calculation. Dimensionless radithe cylinder walls and both end walls are the no-slip condi-
of the inner cylinder and the outer cylinder areandr,, tions. The pressure boundary conditions are the Neumann
respectively, and,—r;=1. The length of the cylinder is conditions that are obtained from the pressure terms of mo-
given byl and the aspect rati® is defined byl/(r,—r;).  mentum equations. The initial values of all velocity compo-
The Reynolds number based on the characteristic velocity isents are zero in the entire domain. &0, the Reynolds
denoted by Rg and the Reynolds number based on an in-number abruptly changes from zero togRe
stantaneous rotation velocity of the inner cylinder is Re. The staggered grid is adopted and the grid interval is uni-
The governing equations are the unsteady axisymmetriform in each direction. The number of grid points in the
Navier-Stokes equations and the equation of continuity exradial direction is 80, and the number of grid points in the
pressed in the cylindrical coordinate systemé(z) that is  axial direction is determined by the proportionality to the
suitable for the present calculation cylinder length with 80 points for the aspect ratio of unity.

II. BASIC EQUATIONS AND NUMERICAL METHOD
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Even though the grids were refined by halving the spacing in 1.0
each direction, the difference of the numerical results is well
less than 1%. This ensures that the number of grid points
used in the present calculation is large enough not to exert «
observable influence on results.

When the time variation of relative torque on cylinders

remains less than 10, a steady state of time-developing 0.0 : :

flow is judged to be attained. For the calculations of the 0.0 - 1.0

decelerating flows, the Reynolds number begins to decrease  (a) Normal (b) Asymmetric normal
when a fully steady state is establishedtatt;, and the two-cell mode two-cell mode
linear decrease continues framt; to t;+t,. After the de- ('=1.0, Re = 800) (Single-cell mode,

celeration, the Reynolds number is kept constant again. I'=1.0, Re=200)

The Stokes’ stream functiof for the flow visualization is
given by

v 1o

, W= .
r oz r Jar

(6)

The results of the present calculation are compared with

experimental results obtained by Nakamura and Tdyd. {eparinmial i (). Anormalos

. . . . . one-cell mode one-cell mode
Their experimental apparatus had an inner cylinder with a (Experimental result, (Single-cell mode,
radius of 20 mm and an outer cylinder with a radius of 30 I'=1.0, Re =659) I'=1.0, Re = 600)

mm, and the radius ratig is 0.667. The dimensionless times
t, andt, correspond to 50 seconds in the dimensional form
when they are evaluated with the physical dimensions of
cylinders and the kinematic viscosity ¥6L0® m?/s) of
aqueous solution of glycerol used in their experiment. The
range of the Reynolds numbers is from 100 to 1500. In the
following, for the purpose of better understanding, #heo-
ordinate is normalized not by the characteristic length but by (e) Twin-cell mode
the axial length of the working fluitl ('=0.8, Re =900)

FIG. 1. Contours of the stream function in the flows with normal

lll. RESULTS two-cell mode, anomalous one-cell and twin-cell modes. Symbols
® and© indicate the clockwise and counterclockwise rotating di-
rections, respectively. The intervals of the stream function are as

In this section, steady-state flows established after a sudollows. (a) 0.01. (b) 0.014 for main vortex and 0.0047 for small
den start of the inner Cy”nder are presented_ Figure 1 Shov\)éi)l’tex at inner lower corne(d) 0.003 for main vortex and 0.0006
three steady modes: normal two-cell mode, anomalous ondar two small vortices at lower cornerge) 0.005 for left large
cell mode, and twin-cell mode. It displays the contours of thevortex at inner upper corner and 0.0023 for other vortices.
stream functiony in the meridional section, and the rotating
inner cylinder is on the left and the stationary outer cylinder Figure 1d) shows an example of the anomalous one-cell
is on the right. The end wall would be refereed as an upper omode. The main cell is anomalous, and it rotates in the coun-
lower wall, if necessary. The contours of the stream functiorterclockwise direction. Two extra cells rotating in the clock-
are accompanied by plus symbals which indicate that the wise direction accompany the anomalous cell: one is at the
rotating direction of vortices is clockwise, and minus sym-inner lower corner and the other is at the outer lower corner.
bols ©, which indicate that the rotating direction is counter- The terminal points of the boundaries between the anoma-
clockwise. lous cell and extra cells are on the inner or outer cylinder

When the Reynolds number is small, stable flows of thewall and the end wall to which the extra cells are attached.
normal two-cell mode are formed. The normal two-cell modeThe calculated flow pattern agrees with the experimental re-
flow in Fig. 1 gives inward flows near the end walls, and thesult shown in Fig. (). Cliffe [18] obtained three distinct
flow is outward between cells. The terminal points of theflow patterns by calculations, which are “stable two-cell
boundary between two cells are on the inner and outer cylmode,” “unstable asymmetric flow,” and “single-cell
inder walls. A symmetric flow pattern and an asymmetricmode.” Both the asymmetric normal two-cell mode shown in
flow pattern appear as shown in Figalland Fig. 1b), re-  Fig. 1(b) and the anomalous one-cell mode shown in Fig.
spectively. The asymmetric pattern is established via a pitchi(d) are what are called “single-cell mode” by Cliffe. The
fork bifurcation from the symmetric floWl19]. Even in the asymmetric two-cell mode has no extra cell and the anoma-
asymmetric flow, each cell extends on the whole region ofous one-cell mode has extra cells at the corners of the an-
one end wall, and it does not reach both end walls. nulus, and they need to be classified as different mode from

A. Steady mode in fully developed flow
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each other. Therefore, the present paper distinguishes the 0.60
asymmetric normal two-cell mode from the anomalous one- i
cell mode. 0.50
When the aspect ratio is from 0.6 to 0.9 and the Reynolds 0.40 I
number is from 1000 to 1500, the twin-cell mode is estab- a A
lished [Fig. 1(e)]. Two large cells and one small extra cell 0.30
appear. The small extra cell is located at the inner lower
corner. One terminal point of the boundary between two 0.20
large cells is on the end wall opposite to the wall to which 1400 1500 1600 1700 1800
the extra cell is attached. :

(a) Time variation in the mean enstrophy
B. Formation process of the steady mode

At the beginning of the mode formation process of the
normal two-cell mode, two vortices appear at the inner upper
and inner lower corners. After they touch with each other at
the midplane in the axial direction, they grow in the radial
direction. Finally, the flow field becomes a stable normal
two-cell mode[Fig. 1(a)].

In the mode formation process of the anomalous one-cell
mode, two large vortices grow, and the normal two-cell
mode, which is mentioned above, is established as an inter-
mediate state. Then, one vortex collapses the other vortex
and reaches both end walls. The collapsed vortex is divided
into two extra cells at the inner and outer cylinder sides, and
the anomalous one-cell mode appédtig. 1(d)].

The mode formation process of the twin-cell mode is as
follows. After the normal two-cell mode flow is formed, one
vortex becomes dominant. The dominant vortex divides the
other vortex into two small vortices. The divided small vor-
tex at the inner cylinder side remains as an extra cell at the

corner between the inner cylinder wall and the end wall. The , F'C- 2. Unsteady motioria) Time variation in the mean enstro-

. . hy of the unsteady mode flowb)—(g) Variations in the stream-
other small vortex at the outer cylinder side does not decaﬁngs of the unstead))// mode flow. Tin?e points are show(ainThe

but develops gradually. The developing vortex touches witl]nain vortex in each figure is accompanied by the symbdhat
the upper and lower end W.a”S' and it bgcgmes fas large as ti dicates the clockwise rotating direction or the sym#blwhich
dominant VQ”GX- The dominant vortex is 'n t_he inner half Ofindicates the counterclockwise direction. The aspect ratio is 0.5 and
the flow region and the developed vortex is in the outer halt;,q Reynolds number is 1500.

region[Fig. 1(e)].

(f) Time Point 5 (g) Time Point 6

C. Unsteady mode in fully developed flow referred to in Figs. @)—2(g). The time variation in the mean

An unsteady and fully developed flow mode appears othegnstrophy is not smooth and the value decreases suddenly
than the normal two-cell mode, anomalous one-cell modefrom the time point 4 to 5. The mean kinetic energy in the
and twin-cell mode mentioned in Sec. Ill A. Here after, this meridional section has variation similar to that of the mean
time-dependent mode is called an unsteady mode. In order instrophy. Figures (B)—2(g) include the contours of the
distinguish various global flow patterns, we need to intro-stream functiony at each time point. At time point fIFig.
duce some measures. The spatially averaged enstrophy apg)], the flow has four vortices and a small vortex appears at
the kinetic energy have clear physical meanings, and they ak@e inner lower corner. The mean enstrophy is minimum at
deserved to be the suitable measures of the flow field. Wﬂus time point_ As the mean enstrophy increasesy the vortex

present the mean enstropkly that is given by closest to the outer cylinder decays and three vortices remain
5 [Fig. 2c)]. When the mean enstrophy increases further, the

= lf l(a_u_ a_W) drdz (7)  inner small vortex and outer vortex merfféig. 2d)]. The

Als2\dz  ar ' enstrophy is maximum at the time point [Fig. 2€)] at

which two large vortices appear. Then each vortex is split by
whereSis an integral domain and is the area of a meridi- the othefFig. 2(f)] and four vortices emerdé&ig. 2(g)]. The
onal section. flow at the time point 6 is almost mirror symmetric with the
Figure 2 shows the profiles of the unsteady mode flowflow at the time point 1. After the time point 6, the flow field
The aspect ratio is 0.5 and the Reynolds number is 1500. THeaces back from the time point 5, via the time points 4, 3,
time variation in the mean enstrophy is shown in Figg)2 and 2, to the time point 1. From this, two periods in the
The numbers from 1 to 6 denote the time points that arevariation of the mean enstrophy in Fig(@® correspond to
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— — — lower limit of the normal two-cell mode

---------- upper limit of the anomalous one-cell mode
0.0 —-—-—lower limit of the anomalous one-cell mode

upper limit of the normal two-cell mode
—--—- - Cliffe [18]

FIG. 3. Development of the flow field from the anomalous one- ~ FIG. 4. Transitions from the anomalous one-cell mode to the
cell mode to the normal two-cell mode. The aspect ratio is 0.8 andiormal one-cell mode and transitions from the normal two-cell

the Reynolds number is decreased from 506=a1500 to 100 at Mmode to the anomalous one-cell mode. A and C, regions where the
t=3000. normal two-cell mode appears. B, region where the anomalous one-

cell mode appears.
one period of the unsteady motion shown in Fig®)22(g).

When the flow traces back from the time point 6 to 1, the@nomalous one-cell mode exists is indicated (By. At a
change in the flow pattern is slow from the time point 6 to 4constant aspect ratio, the flow changes from the normal two-

and it is rapid from the time point 4 to 1. The mean enstro-Cell mode to the anomalous one-cell mode when the Rey-
phy varies at uniform period even after a long time. nolds number on or above the lower limit of the normal
two-cell mode is reduced to the Reynolds number on or be-
low the upper limit of the anomalous one-cell mode. The
difference of the Reynolds number between the upper and

When fully developed flows at specific Reynolds numbersthe lower limits are 10.0 and the deceleration is slowed.
are decelerated, transitions to other mode flows apd@€dr  Similarly, the change from the anomalous one-cell mode to
The mode transitions among the normal two-cell modethe normal two-cell mode occurs when the Reynolds number
anomalous one-cell mode, and twin-cell mode have been olan or above the lower limit of the anomalous one-cell mode
served during or after the gradual decrease in the Reynolds decreased to the Reynolds number on or below the upper
number. limit of the normal two-cell mode. Cliffe’s resultl8] ob-

Figure 3 shows the time variation of the stream lines durtained by using the steady equations is also given in Fig. 4.
ing the mode transition from the anomalous one-cell mode t@Chough the radius ratio of the present stfy667 is larger
the normal two-cell mode. The aspect ratio is 0.8 and thehan that used by Cliffé0.619, the qualitative agreement
Reynolds number is linearly decreased from 500-a1500 demonstrates the validity of the present study. Clifeal.
to 100 att=3000. Though a similar transition has been ob-[26] showed that the lower critical Reynolds numbers at
served during the reduction of the Reynolds number fromwhich the anomalous mode loses its stability becomes larger
350 to 340, Fig. 3 is shown for the better understanding ots the radius ratio increases. The result obtained in the
the transition. Att=1500, the flow field is the anomalous present study is not inconsistent with Cliffe’s results.
one-cell mode that is stable at R600. An anomalous cell Figure 5 shows the mode transition from the twin-cell
accompanies extra cells at the inner and outer cylinder sidemode to the anomalous one-cell mode at the aspect ratio 0.8
As the rotation speed decreases, the extra cells approach eaafd the reduction of the Reynolds number from 1000 to 600.
other and merge into one new normal cell, and the normalt t=3000, the flow mode is the twin-cell mode with an
two-cell mode appeard € 2550). The mode transition from extra cell around the inner lower corner. As the rotation
the normal two-cell mode to the anomalous one-cell modespeed decreases, the separation point on the upper end wall
was also observed when the Reynolds number was decelegradually shifts outward and moves onto the outer cylinder.
ated. The flow pattern traced back the mode formation proThen the flow becomes the anomalous one-cell made (
cess shown in Fig. 3. =4800).

The boundaries between the normal two-cell mode and The mode transition from the twin-cell mode to the nor-
the anomalous one-cell mode in tHe, (Re) plane are shown mal two-cell mode, anomalous one-cell mode and unsteady
in Fig. 4. They are delimited at the left and right hands of themode were observed. Figure 6 denotes the bifurcation loci
range of[" where the mode bifurcations between these twoseparating the twin-cell mode from other modes in the (
modes do not appear. In the regions denoted by A and C, thRe) plane. The bifurcation loci end at the left- and right-hand
normal two-cell mode appears, and the region where theides of the figure where the twin-cell mode does not appear.

D. Mode transition
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t = 3000

|

0.

4500 When the Reynolds number exceeds a certain value,

Taylor-Couette flow forms time-dependent azimuthal waves.
For a relatively small aspect ratio at which the two-cell or
four-cell mode appears, Mullin and Benjanji2i7] presented
the critical Reynolds number for the onset of the wavy mo-
tion. On the other hand, Pfistet al.[19], Eagles[28], and
Gerdtset al.[29] reported an unstable axisymmetric oscilla-
1.0 tion of the two-cell flow. Using the experimental apparatus
mentioned in Toyaet al. work [11], we have investigated
flows with the small aspect ratio 0.5, and found the unsteady
motion. Though the sizes and positions of vortices change,
the flow is not wavy. The unsteady flow motion found by this
experiment has the same order of the period as the one pre-
dicted by the numerical result in Fig(&. Pfisteret al.[19]
¢ ) ) obtained the nondimensionalized frequency for the axisym-

0.0 } } . e ; .

0.0 1.0 metric oscillation. The nondimensional frequency of the un-

r steady mode shown in Fig.(& is 0.047 and the unsteady

mode described in Sec. Il C corresponds to the axisymmet-
h@c oscillation revealed by Pfistest al. While Pfisteret al.
called the oscillation of the flow as “new two-cell flow,”
Figs. 4b) and Zg) show that not only two vortices but more
vortices appear during the unsteady motion.
The flow mode is the twin-cell mode at the Reynolds number The anomalous one-cell mode, twin-cell mode, and un-
above the line A-B. At the Reynolds number below the linessteady mode have flow patterns asymmetric with respect to
C-D, D-E and E-F, the unsteady mode, the normal two-celthe midplane in the axial direction. Pfistet al. [19] de-
mode and the anomalous one-cell mode appear, respectiveBgribed that imperfections of the apparatus would disconnect
When the aspect ratio is constant and the Reynolds numbéne supercritical bifurcations and the single-cell mode has a
changes from the value on or above the line A-B to the valugluality of the flow states in which a large main vortex and a
on or below the line C-D-E-F, the mode transitions from thesmall weak vortex appear near the top or bottom plate, re-
twin-cell mode to the other mode occur. The critical loci spectively. Both states were observed in the experiment al-
have their minima af' =0.74 where the flow mode changes though one state was obtained only by a tricky way such as
from the twin-cell mode to the normal two-cell mode during @ sudden start of the inner cylinder. Besides the imperfec-
the reduction of the Reynolds number from 680 to 670. tions of the apparatus, the candidates of the factors that select
a solution branch in the bifurcation diagram may be a ther-
mal disturbance and an incomplete steadiness of an initial
state. In the calculation, one of the counterparts of the im-

The twin-cell mode has been obtained only by the experiperfections is the residual of the numerical scheme. In the
ment[17], and the numerical confirmation of the twin-cell present calculation, the reversed sequence of pressure vari-
mode is a different evidence obtained in the present studwples in the Poisson equation has resulted in mirror symmet-

The bifurcation loci from the twin-cell mode are also pre- ric images of flow patterns with respect to the midplane.
sented in this paper.

1.0

V4
|

(@
O

0.0

r

4800
1.0 3

/ I
O

FIG. 5. Development of the flow field from the twin-cell mode
to the anomalous one-cell mode. The aspect ratio is 0.8 and t
Reynolds number is decreased from 100G -aB8000 to 600 at
=6000.

IV. DISCUSSION

1400t A B V. CONCLUSIONS
i In order to clarify some aspects of the transitional phase
1200} i/ F : -
e in the nonlinear system, the fully developed Taylor-Couette
e flow between two concentric rotating cylinders with very
& 1000¢ yd short lengths has been investigated by the time-dependent
,/,,/ numerical method. The aspect ratio is of the order of unity,
800} /” and the inner cylinder rotates while the outer cylinder and
\E end walls of the cylinders remain stationary. Developing pro-
600} D cesses of flow modes are predicted. Mode transitions during
the gradual deceleration of the rotation speed of the inner
0.6 0.7 - 08 0.9 cylinder are clarified.

The existence of the normal two-cell mode, anomalous
one-cell mode, and twin-cell mode is confirmed. In the mode

FIG. 6. Transition from the twin-cell mode. A-B : lower limit of
the twin-cell mode. C-D: upper limit of the unsteady mode. D-E: formation processes of the anomalous one-cell mode and
upper limit of the normal two-cell mode. E-F : upper limit of the twin-cell mode, almost symmetric flow patterns are formed
anomalous one-cell mode. at first, and then the symmetries break down.
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An unsteady mode of the fully developed flow, which is  Transitions between the normal two-cell mode and
not wavy Taylor-Couette flow, is obtained. The periods of theanomalous one-cell mode and transitions from the twin-cell
unsteady flow in the experiment and the calculation arenode to the normal two-cell mode, anomalous one-cell mode
of the same order. In this mode, each vortex splits the othesind unsteady mode are predicted, and the bifurcation loci are
vortex at high Reynolds numbers. One period ofobtained. In the transition between the normal two-cell mode
the dynamic movement of flow fields corresponds to twoand anomalous one-cell mode, the growth or decay of the
periods of the time variation of the mean enstrophy. extra cells plays a main role.
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