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Scaling of structure functions in homogeneous shear-flow turbulence

J. Qian
Department of Physics, Graduate School of Chinese Academy of Sciences, P.O. Box 3908, Beijing 100039, China
(Received 7 August 2001; revised manuscript received 12 November 2001; published 7 February 2002

We apply spectral dynamics and non-Gaussian statistical model of velocity difference to study the scaling of
structure functions in homogeneous shear-flow turbulencelL L & the shear length scale andhe viscous
scale. It is found that, whehg/ 7 is finite, due to a combined effect of viscosity and mean shear, the scaling
deviates from normal scaling, and the deviation increasés; 48 decreases. In the presence of a strong shear
(Ls/7<100), the deviation is substantially larger than the prediction of typical intermittency models, in
agreement with recent experiments. Ag/n—, the normal scaling is valid in the inertial range where
viscous and shear effects are negligible.
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. INTRODUCTION tion of &, or S, from p/3 (substantially larger than the pre-

) ) diction of typical intermittency models of K62s a universal
According to Kolmogoro\ 1], the fine structure of turbu-  property of turbulence with a strong shear. How to under-
lence is described by structure functions. The structure funcstand the scaling behavior in shear-flow turbulence becomes
tion of orderpis (|Auy[?) or (Au,P), Au is the longitudinal g jmportant topic of turbulence physics. The shear effect,
velocity difference across a distanceand() means a statis- e the effect of large-scale shear motion on small-scale sta-

tical average. In the inertial range, where viscous and larg&istics of turbulence, is an important ingredient of FRN ef-
scale effects are negligible, we have scaling kwu,|?)  fects, and the study of shear effects is indispensable for set-
~rf or (AuP)~ré, and ¢, is the inertial range scaling tling the issue of K41 and K62.

exponent Of Ordep [l] The Kolmogorov 1941 theor@(41) In this paper, we app'y Spectra| dynamics and non-
predicts{,= p/3 (normal scaling but his 1962 theoryK62)  Gaussian model of probability density functi@RDF) of the
predicts that{,>2/3 and {,<p/3 if p>3 [1,2]. Strictly  velocity difference to study the scaling of structure functions
speaking, Kolmogorov’s inertial-range scaling is valid onlyin a homogeneous shear-flow turbulence, and the results are
in the limit of R, —, here R is the Taylor-microscale Rey- given in Figs. 1-5. We find that the large deviationégfor
nolds number. Experiments and numerical simulations ar&, from p/3 can be explained in the framework of K41 nor-
made at finite R. For a finite-R turbulence, we uség, to mal scaling ¢,=p/3). Let » be the Kolmogorov scale, and
represent the absolute scaling exponer({ i, |P) againstr,  Lg be the shear length scale at which shear and viscous ef-
and useS, to represent the relative scaling exponent offects are equal. Whehs/7 is finite, due to a combined
(|Au,|P) against(|Au,|3) or D (r)=(Au®) by Benzi's effect of viscosity and mean shed, and S; deviate from
extended self-similarity)ESS method[3]. Experiments and £p=P/3, and the deviation increases las/ 7 decreases. In
numerical simulations show thaj, andS, deviate fromp/3, ~ the presence of a strong shedrs(7<100), the deviation
which have been interpreted as evidence against K41 normiip=P/3| or |Sy-p/3| is larger than the prediction of typical
scaling based on the assumptigp=¢, and S,=¢,, and intermittency mo_dels_ of K62. In the fqllowmg, we desqnbe
various intermittency models are developed to explain thé'0W the results in Figs. 1-5 are derived, and then discuss
deviation[2]. Since the finite Reynolds numbé&RN) ef-  their physical meaning and some relevant issues.

fects are not negligible, the scaling range observed at experi-

mental R (which is called “inertial range” in literaturgeis T ' '
not the real inertial rangpt]. In general ¢, andS; are flow
dependent as well as\Riependent, the assumptiép= ¢,

and S,=¢,, is disputable, and the deviation &, and S,
from p/3 cannot be interpreted as evidence against K41 nor-

Dyy(n)fer

mal scaling[5]. This highlights the issue of K41 and K62. 73 i
Recently much interest and effort have been directed to

study shear effects on the scaling of structure functions in

turbulencesee[6—9], and references thergjrand it is found ,

that the deviationé,-p/3| or |S,-p/3| is substantially larger
than the prediction of typical intermittency models of K62 0.01
when there is a strong shear. In the case of wall bounded

shear-flow turbulence, Benat al. [9] observed a distinct FIG. 1. =D (r)/(er) vsr/Lgfor Ls/ 7=50, 100, 200, 1000,
violation of the refined similarity hypothesis of K62 together and «. Lg is shear length scaley is Kolmogorov scale—,

with the simultaneous persistence of scaling laws. ToschiKolmogorov constantK,=1.2; --- K,=1.5. 4/5 law (9) corre-
Leveque, and Chavarr{#®] pointed out that the large devia- sponds tog/7=<.
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) FIG. 4. Relative scaling expone8}, vs Ls/7 (p=2, 4, 6, and
FIG. 2. " Structure  functions  for Lg/ﬁ’?: 100. —  g) over two different ESS ranges.—, ESS range is 0.356r/L
([Au[P)/ (ve)P", p=2to 7;000, =Dy (r)/(ve)™ - r=Loat  <316;000, ESS range is 28r/5=<300.
which — D (r) takes its maximum.

Il. SPECTRAL DYNAMIC EQUATIONS pend onr or k only. Many popular relations of isotropic
turbulence are also valid for these average functjd@é In

In a real shear-flow turbulence, shear effects coexist wittgq. (1), E(k) is the energy spectrum afdk) is the energy
other large-scale effects such as nonhomogeneous and nafansfer spectrum. If Kolmogorov's local isotropy concept is
stationary effects. In this paper, we study shear effects onlyalid, E(k) andT(k) approach quantities of isotropic turbu-
and neglect the other large-scale effects. For this purpose, Wence when R is high enough. In a stationary state,
study the simplest type of shear-flow turbulence: a homogesg (k)/4t=0, Eq.(1) becomes
neous shear-flow turbulence. Without loss of generality, it is
supposed that the mean velocity {,0,0) is along thex; 5
direction and there is a constant mean sl (x,)/dx,, T(k)=S0(k)+2vk°E(k), S=dUy(xx)/dx,.  (3)
then we havg10]

JE(K)/Jt+ O (k)dU Jdxo=T(K)— 2 vk2E (k 1 The energy input by the mean sheé&compensates the en-
(k) (K)dUy(x2)/dx=T(k) = 2vk°E(k), (1) erqy dissipation.

O (K) =47k Eqp)av— 2K [K19E;; 1 Ky ay- (2

L2
Here v is the kinematic viscosityi;; is the spectrum tensor,
E;,=E;;+Ey+Esg is its contraction, and[ ],, means 1.0
Batchelor’'s average. In isotropic turbulence, the correlation 0.8
and spectrum functions depend on one single scalar only,

namely, the distance or the wave numbek. That is no 0.6
longer valid in the anisotropic case. Batchelor suggested av-
eraging the correlation or spectrum functions over all direc-
tions of r or k, and then the resultant average functions de-
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FIG. 3. £p-¢, vsp for Ls/ =50, 120, ande. §, is the absolute
scaling exponent{,=p/3 is the inertial-range scaling exponent. FIG. 5.2,/(p/3) vsr/Lgfor p=2, 4, 6, and 8. Her&; is the
Relative scaling exponer®, has the same behavior §swhen the  local slope defined by Eq18). (a) Ls/»=100; (b) Ls/7=1000;
ESS range is around=Lg. (©) Lg/p=10% -, r=Lgy at which— D (r) takes its maximum.
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. . _ - —4/3__ 4/3
g=21}JO CEOdK, @ Dy o(r)/(er)=0.8=Cy(r/n) Cq(r/Lg) .(13)

A plot of =D (r)/(er) vsr/Lgis given in Fig. 1, which
clearly shows that Kolmogorov’s 4/5 lai®) is valid only in

the limit of Lg/ p—o. WhenLg/ » is finite, D (r)/(er) is

ot a constant, so the scaligy | ((r)~r is not exact. By
using Eqs(11)—(13), we find that— D, (r)/(er) attains its
maximum atr =Lg, and the maximum is

so a statistically stationary turbulence is possjilé].

The spectral equatiof8) implies an energy cascade from
larger scales to smaller scales, the shear t8énik) plays
the role of energy source, and the viscous term plays the rol
of energy sink. From Eq.3), we obtain[1,10]

DLLL(r):_(4/5)8r+’\P+(D, \IfZGVdDLL(I')/dI',

(5) [—DriL(N)/(e1)Ima=0.8-2Cy(Ls/7) " "% (14)

® Obviously the scaling range is around=Lg, where

<D=—128f 0 (k)[ 2% sin(z) + 3z coq z) —Dy.(r)/(er) changes withr slowly, and the scaling
0 D .(r)~r is approximately valid.

—3sin2)]/2°dz, z=kr. (6) According to Fig. 1 and Eq.14), strictly speaking, Kol-

mogorov’'s 4/5 law(9) is not valid in the scaling range
Here ¥ and ® represent viscous and shear effects, respecaroundr=Lg when Lg/7 is finite. Therefore, the scaling
tively, D, (r)=(Au,?) is the second-order structure func- range(which is usually called “inertial range” in literatuye
tion. In the universal equilibrium range, the shear effects arés not the real inertial range. Only in the limit dfs/»

negligible, Egs(3) and(5) become —oo, the scaling range becomes the inertial range where
viscous and shear effects are absent and Kolmogorov's 4/5
T(k)=2vk?E(k), (7)  law (9) is valid.
D|_|_|_(r)=—(4/5)8r+6VdD|_|_(r)/dr, (8)

IV. CALCULATE STRUCTURE FUNCTIONS

which is the Kolmogorov equation. In the inertial range, both BY NON-GAUSSIAN STATISTICAL MODEL

viscous and shear terms are negligible, from Egs.or (8) With some modifications, the mathematical procedure de-
we obtain Kolmogorov’s 4/5 law veloped in Ref[5] can be applied here to calculate structure
function (|Au,|P). The main modification is that here
Diic(r)=—(4/5er or =Dy (r)/(er)=08. (9  p  (r) should satisfy Eq(13) in the scaling range around
r=Ls. The outline of the mathematical procedure of calcu-
[ll. THIRD-ORDER STRUCTURE FUNCTION lating (|Au,|P) is as follows. For a giveh g/ 7, first we use
IN SCALING RANGE (7), (8), and(13) to determineD  (r) andD, (r), then by
using a non-Gaussian PDF model of the velocity difference,
7 k : , - . we calculate high-order structure functions. A systematic jus-
observed in experiments and numerical simulaiondiich  iication of the non-Gaussian PDF model of velocity differ-

is usually called “inertial range” in literature, is not the real 5.4 is given in Ref5]. Let P(x) be the PDF of normalized
inertial range 4]. Now we derive the expression Bf (1) velocity differencex=|Au,|/D,, (r)¥2 and we have
valid in the scaling range of a homogeneous shear-flow tur-

bulence. Much effort has been made to study the decay of o

shear effect in small-scale rangsee[11], and references (JAu,[Py=Dy,(r)PZxP), <Xp)=f xPP(x)dx. (15)
therein, and it is found that, the shear stress cospectrum is 0

proportional tok™ 73 in the scaling range. Therefore, from
Egs.(2) and(6), in the scaling range we obta{eee Ref[4])

The scaling range of a finitesRurbulence(for example

The tail of P(x) has the form of stretched exponentifis,

®/(er)=Cy(r/Lo)*e, (10) P(x)=Pgyexp(—Bx*) while x>2, (16

here u is the stretching exponent. Asdecreases from the
large scale to the viscous scaledecreases from 2 to around
0.5. For smallr, P(x) is far from Gaussian, and intersects

W/(er)=Cy(rln)~*3, Cy=(324/55T (4/3)Ko, with Gaussian PDF
(11) PG(X)Z(Z/W)UZEXK_XZ/Z), 0<x<

where Cg is a coefficient. It is easy to show that, in the
scaling range, we havesee Ref[4])

whereKg is the Kolmogorov constant anld is the gamma )
function. By definition, viscous ter¥ and shear ter are @t two pointsx; andx,. HenceP(x;) =Pg(x;) andP(xp)
equal at the shear length scalg, so we have =Pg(Xp), x;<1 and 2<x, [5]. Let P(x) =exf —f(x)], f(x)
is fitted by low-order polynomials over the narrow intervals
Cs=Cy( 77/|-s)4/3=(324/55F(4/3)Ko( ,7/|_S)4/3_ (12 0<x=x; andx;<Xx<X,. The coefficients of these polyno-
mials are determined by the cubic spline method and some
In the scaling range, by Eg&l0) and(11), Eq. (5) becomes conditions atx=0, so P(x) are completely determined by
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the four parameterB, w, X;, andx,, which depend on the
distancer. Ther dependence oB, u, X;, andx, are deter-
mined by the following four conditionstx®)=1, (x?)=1,
(X3 =(]Au,3)/D_ (r)%? and (x®)=C(x*)*. HereC is a
coefficient, and the exponent is around 2.8[5]. By the
relation (|Au,|3)~D_,(r) that is valid in the dissipation
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is shown in Fig. 5 forLg/7»=10?, 10°, and 16. When
r/Ls—0, =Dy (r)~r2, and(|Au,|P)~rP, soX —p/3 as
r/lLs—0. Whenr/Lg—, (|Au,|P) approaches a positive
constant, but-D(r)—0, soX,—» asr—Lg as shown
in Fig. 5, herelL is ther value at which—D | (r) takes its
maximum. We havé o/~ (Ls/7)? and R~ (Lo/7)%°. As

range and the scaling range, and the asymptotic conditioshown in Fig. %c), the viscous effect increaseés, and de-

(|Au 3y —2(2/m) YD (r)®? as r—x, we determine
{|Au,|®) from D (r) andD_,(r). While the P(x) is de-
termined, by using Eq(15) we calculate{|Au,|P). As an

crease& , (p>3), giving rise to a positive bump fa, and
negative bumps forx, (p>3) over the range 4r/7y
<10*. Similarly the shear effect increasBs and decreases

illustration, Fig. 2 shows the structure functions obtained inX, (p>3) in the range/L,<0.1. Figure 5 shows that vis-
this way for the case ofg/7=100. In order to save the cous and shear effects are of long range. Whet7 is
reader from having to look up previous papers, a descriptiofiinite, the range of viscous effect and the range of shear
of the non-Gaussian PDF model is given in the Appendix. effect penetrate into each otHg¢hne penetration is obvious in

V. SCALING EXPONENTS. LONG-RANGE VISCOUS
AND SHEAR EFFECTS

Figs. 5a) and §b)], and the combination of the viscous and
shear effects leads to an increas&pand a decrease B,
(p>3) in the scaling range around=Lg. The scaling ex-
ponentsé, andS, are equal to some mean value of the local

So long ag|Au|P) is obtained by the mathematical pro- sjope 3. Hence, the deviation of, and S, from the

nents &£, and S,. The log-log plot of(|Au,|P) againstr

4 is a combined effect of viscosity and mean shear, and in-

within the Sca”ng range is fitted by a Straight line Using thecreases aES/n decreases.
least-square method, and its slope is the absolute scaling ex-

ponenté, . While Lg/ 7 is finite, the scaling|Au,|P)~re is

not exact, and, depend on how to define the scaling range.

In this paper, the scaling range<r <r, is around the maxi-

VI. DISCUSSION AND SUMMARY

As mentioned above, Fig. 5 clearly shows that the viscous

mum point of—D | (r)/(er), and is defined as the widest effect is not negligible in the range 20/7<300 due to it

range satisfying the following conditions:

absolute scaling exponent d,, (r) over

r{<r=<r, isequalto 1, (178
—Drin(r)/er=C[=DyL(r)/er]max
when r;srs<r,, C<1. (17b

being of long range. This explain why tHg, over range
20<r/7=<300 deviates from;,=p/3 even in the limit of
Ls/p— (see Fig. 4 although the shear effects is negli-
gible in the range 28r/%=<300 while Lg/p—x, the vis-
cous effect cannot be neglected. The so-called homogeneous
isotropic turbulencegHIT) data of S, reported in Ref/[3]
deviate substantially frorp/3, and do not correspond to the
limit case of Lg/np— (Ly/np—o and R—). In these

HIT measurements, although the mean shear is negligible at
measurement point@&t the axis of a jet flow or in the core

The smallerC is, the wider the scaling range is, and theregion of a wall turbulende there are other large-scale ef-
worse the quality of the scaling is. Figure 3 shows the deviafects due to the macrostructure of the flows being not homo-

tion of absolute scaling exponegy from inertial-range scal-
ing exponent{, for Ls/7=50, 120, and», and the “error

geneous and stationary, and the ESS range is within 4
<r/n<10®[3,12], where the viscous and large-scale effects

bar” corresponds tcC changing from 0.9 to 0.9999. Since are not negligible. Hence these HIT dataSyf deviate sub-

{|Au,|3~D_ () in the scaling range,;<r<r,, we have

stantially from the inertial-range scaling exponeht=p/3

¢3=1 over the range, so the relative scaling exponent of5].

{|Au,|P) against|Au,|3) [or =D (r)] over the range will

Recently, interesting work13] has been done to disen-

have the same behavior §s shown in Fig. 3. The relative tangle{, from effects of large-scale shear motion. Aestchl.
scaling exponen§; is determined by Benzi's ESS method [13] apply an S@3) symmetry group method to analyze data
[3], and depends upon the limits of the ESS range. In Fig. 4¢f atmospheric boundary layéABL ) flow at R, =10*. They
we showsS, over two different ESS ranges. The first ESSadopt the assumption of cylindrical symmetry about the

range is around=Lg (0.316<r/L¢=3.16), the resultars,
approach the inertial-range scaling expongit=p/3 as
Ls/p—o. The second ESS range is20/ =300, which is
suggested by Arneodet al. [12], and S, deviates from{,
=p/3 even in the limit ofL g/ 7— .

mean-wind direction and obtaif,=0.69 if {, is equal to

their leading scaling exponent in the isotropic sector. Kurien
et al. [13] apply the same method but do not assume cylin-
drical symmetry, and obtaif,=0.68. The resulf,=0.68 of

Kurien et al. (smaller than 0.69 of Araét al.) is nearer the

It is interesting to explore the physical meaning of theK41 value 0.67 than the K62 value 0.70. They have largely
results of Figs. 3 and 4. For this purpose, the local slope oflisregarded the inhomogeneity of ABL flow. Supposing we

the log-log plot of(|Au,|P) against—D,(r),

3 p=dlogo((|Au[P))/dlog;d =Dy (r)], (18

know how to take into account the inhomogeneity of the

ABL flow and the ABL flow is at higher R=1C, it is not
absurd to expect thai,=0.67 will possibly be obtained,
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which favors Kolmogorov’'s 2/3 law rather than the K62 pG(X):(z/W)lﬂexp(_xZ/z) 0=x<o, (A2)
anomalous scalingle=0.70).

Finally we summarize. We apply spectral dynamics andBy the definition ofP(x) andPg(x), we have
non-Gaussian PDF model of velocity difference to study the
scaling of structure functions in a homogeneous shear-flow me(x)dx: fwPG(x)dx=1 (A3)
turbulence. From Fig. 5, it is clear that viscous and shear 0 0
effects are of long range. Whelng/ » is finite, due to a
combined effect of viscosity and mean shear, Kolmogorov’s
4/5 law (9) is not valid in the scaling range aroumd-Lg
(see Fig. 1, and the scaling exponents, (or S,) deviate
from the inertial-range scaling exponefjt=p/3 (see Figs. 3 Whenr is in the small-scale range, th(x) is far from
and 4. The deviatior|£,-p/3| or |S,-p/3| increases ass/#  Gaussian, having a shape characteristic of a strongly inter-
decreases, and is larger than the prediction of typical intemmittent random variable: thE(x) of very smallx and very
mittency models of K62 while there is a strong shearlargexis considerably greater than the corresponding Gauss-
(Ls/7<<100). As Lg/np—o, the scaling range around ian Pg(x), while the P(x) of intermediatex is smaller than
=Lg becomes the inertial range, where Kolmogorov's 4/5P5(x). HenceP(x) andPs(x) intersect at two points; and
law (9) and K41 normal scaling{(,=p/3) are valid. There- x,,
fore, we demonstrate that the anomalous scaling, observed in
a shear-flow turbulence as well as in HIT, can be explained P(x1)=Pg(x1) and P(xz)=Pg(Xz). (AS)

in the framework of K41 normal scaling’¢=p/3), without Our numerical calculations indicate thaj<1l and 2<x
i i i i 2
appealing to K62 theory. This author do not intend to reV|ve<3, which is in agreement with experimental déi)]. By

K41 in its entirety, so we do not use the simple dimensional .
argument of K41 to derive the inertial-range scaling expo- gs. (A2) and (A5), the parameteP, in (A1) can be ex-

nents. In this author’s opinion, the pearls of K41 are Kol-Pressed in terms of;, B, and .,

mogorov’s 4/5 law forD | (r) and 2/3 law forD (r) (or Po=(2/m) Y2 exp(Bx,"— x,2/2). (A6)

—5/3 law for energy spectrumwhich are valid in the real

inertial range of homogeneous isotropic turbulence. The 4/§vhen the four parameters, x,, B, andu in Egs.(Al) and

law is an exact statistical result of Navier-StokBES) equa-  (A5) are known, theP(x) of large x (x=x,>2) can be

tions [1], and the—5/3 law of energy spectrum can be de- calculated by using EqgA1) and (A6), and theP(x) of

rived from NS equations by reasonable statistical closurgmallx (x<x,) can be determined by proper boundary con-

methods([14], and references therginBased upon the 4/5 (dition atx=0 and the mathematical conditions of continuity

law and the—5/3 law, we apply the non-Gaussian PDF gnd smoothness.

model of velocity difference to obtain high-order scaling ex- | et f(x)=—In[P(¥)], f(x) changes withx much slower

ponents5]. than P(x). SinceP(x) should become the stretching expo-
nentials(Al) for largex, we have

and fwsz(x)dx= fxszG(x)dx= 1. (A4
0 0
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+B(X*=Xx,*) if x=X,. (A8)

APPENDIX: NON-GAUSSIAN PROBABILITY DENSITY

FUNCTION (PDF) MODEL Hence we only need to fi2(x) or f(x) over the interval 0
<X=X,. In order to reduce the fitting error, we divide the
interval 0<x=<x, into two smaller subintervals, i.e.,<0x
<Xy andx;<x=<X,. Sincef(x) change withx smoothly and
slowly, it is reasonable to use a low-order polynomial to fit
f(x) over the narrow intervals9x<x; andx;<x<X,, S0
we have

SupposeD | (r) andD(r) have been determined by
solving spectral dynamic equations or other methidds If
P(x) is known, we can use E@15) to calculate the structure
function (|Au,|P). Although we are not able to drive the
expression ofP(x) from the Navier-Stokes equations, we
know the basic properties &(x), which can be applied to
derive the form oﬂ3(x)._ The tail of P(x) can be well fitted F(X)=Ag+ A+ AN+ AN if Xy<X<X,, (A9)
by stretched exponentials of the fofrh5],

f(X)=Bg+Bx+Byx?+B3x® if 0=<x=<x;. (A10)
P(x)=Pgyexp(—Bx*) while x>2, (A1)

P(x) and f(x) are continuous and smooth &f and x,.
and the parameterB,, B, and x are functions ofr. The  Following the cubic spline method of applied mathematics,
stretching exponent decreases from 2 to around 0.5 as theby using Eq.(A5) and some proper boundary condition at
distancer decreases from the large scdldo the Kolmog- x=0, the coefficientg\; andB; (i=0,1,2,3) in Eqs(A9) and
orov scalen. The PDF of the absolute value of a Gaussian(A10) can be calculated so long as the paramelerg, X,
random variable is andx, are known. Therefore, thB(x) have four indepen-
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dent parameterB, w, X;, andx, only, other parametera;

andB; (i=0,1,2,3) can be expressed in terms of them.
Various boundary conditiofBC) atx=0 have been tried

and compared. Three typical boundary conditions are

B;=0 and no BC is needed at=0, (Alla

df(x)/dx=0 at x=0, (Allb)

P(0) or f(0) is given by some empirical formula.
(Allo)
By using experimental data of Tabelieg al.[15], it is easy

to determine howf(0) and u change withr, and then to
obtain the empirical formula ofA11c). Our numerical cal-

PHYSICAL REVIEW E 65 036301

(xMy=C{xmMeM™m, x=[|Au|/D, (NY%  (A13)

En—N&/2= a(n,m)(Em—mé,/2). (A14)

HereC is a coefficient. For example, in the casenef 6 and
m= 4, the exponent(6, 4) is around 2.8. Whenapproaches
the large scaleL, the P(x) approaches the Gaussian
Ps(x), and(x™) approachess(m)=[;x"Pg(x)dx, G(3)
=2(2i7)*? G(4)=3, G(5)=8(2/m)*?, G(6)=15, and so
on. The stretching exponeptis equal to 2 for the Gaussian
Ps(x). A convenient way of determining the coefficigdin
(A13) is by the requirement tha¢x")—G(n) and (x™)

culations show that different boundary conditions lead to the—G(m) asu—2. In fact, the behavior of scaling exponents

same behavior of the high-order scaling exponés¢g Ref.
[5].

When the four independent paramet8su, X;, andx,
are determined, we can use Efj5) to calculate the structure

does depend upon how to determi@eso we can choose a
convenient way. With a particular choice @f,m), for ex-
ample f,m)=(6,4), Eq.(A13) is the fourth condition. The
four conditions(A3), (A4), (A12), and (A13) are used to

function (JAu,|P). Four independent conditions are neededdetermined the four independent parameBera, x;, andx,

to determine the four parameteBs w, x;, andx,. We al-
ready have two condition®3) and(A4), we need two more
conditions. The third condition is

<|Aur|3>/DLL(r)3’2:<x3>=f:x3p(x)dx. (A12)

In the scaling rangep<r<L of finite- R, turbulence,
{|Au,|Py~rér, so we have

of the P(x). In this way, we can determine how th¥x)
changes with the distaneefor any given R, so long as we
know the second and third structure functiddg, (r) and
({|Au,|®). For more topics of the non-Gaussian PDF model,
e.g. how to determiné)=(|Au,|3)/D | (r)*?in third con-
dition (A12), the consistency problem of different choices of
(n,m in (A13), and the validity of fourth conditiofA13)
over the whole range 0s5u<2 due to the important prop-
erty of general similarity of the PDF model, please Fgfe
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