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Arithmetical signatures of the dynamics of the Heon map
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We report a fourth-degree polynomial that parametrizes analytically all period-4 orbits of tian Heap
and use it to investigate arithmetical signatures of the symbolic coding for this prototypical multidimensional
system. A discontinuity in the symbolic dynamics observed by Hansen while following numerically a period-
6 orbit along a closed loop in parameter space is shown to exist already for period 4. We obtain an analytical
expression for the locus of all such discontinuities in parameter space and explain their origin. Our analytical
results allow the accurate location of all discontinuities, in contrast with topological methods based on ho-
moclinic tangencies that exist over continuous intervals.
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I. INTRODUCTION Riemann and Weierstrass, we do not expect such smooth
variations to work, in general, for arbitrary deformations.
An outstanding problem in chaotic dynamics is to specifylndeed, while studying his,box-within-box structuring, Mira
generating partitions for symbolic dynamics in dimensiong15] observed that for the H@n map
larger than ongl]. It has been known that the infinite num-
ber of unstable periodic orbits embedded in the chaotic in- (X,y)—>(a—x2+Dby,x). ()
variant set provides sufficient information for estimating the
generating partition. However, the extraction of this informa-“There exist a set of boxes such that starting from a box of
tion is a quite difficult task that is currently the subject of theb=0 axis belonging to this set, and following a correctly
much work[1-12]. Knowledge of the generating partitions selected continuous path in the,b) [parametefplane, it is
is of fundamental importance to understand the evolution opossible to get to a different box bf=0.” Later on, Hansen
such systems by encoding arbitrary trajectories as an infinitgl6] (see also Giovannini and PoljtL7]), investigated a spe-
sequence of symbols. cific period-6 orbit of the Heon map which, when followed
Partitions are “generating” when they do not assign thealong closed paths in parameter space, is transformed into a
same symbolic sequence to different orbits. A comparison oflifferent orbit, thus signaling to unavoidable ambiguities in
several possible generating partitions for the paradigmatithe symbolic coding. Such transformation into a different
guinea pig, the Heon map, has been recently reported byorbit means that somewhere along the deformation path, the
Eisele[13] where the difficulties of them are discussed in symbolic coding of the orbit has to be somehow modified
detail. The main problem is that we only know how to con-discontinuously in order to yield the final coding.
struct generating partitions for the most simple dynamical The discontinuities reported in Refsl6,17 were found
systems, namely, one-dimensional maps and uniformly hyby numerical calculations. Hansé¢m6] considered the dy-
perbolic systems. Even for two-dimensional dissipative mapsamical changes undergone by two of the nine possible
there is no systematic way to construct generating partitiongeriod-6 orbits. As recently found, the set of nine period-6
in general. orbits has the remarkable property of containing nonlinearly
Various approaches have been introduced to encode iaterdependent orbits that display a generic “orbit-within-
given trajectory in phase spa¢&—13. A popular way of orbit” stratification [18,19.
obtaining binary partitions is by using the concept of ho- The discontinuity in the symbolic coding reported by
moclinic tangencie$14], i.e., points on the attractor where Hansen [16] was observed while circulating around a
the stable and unstable manifolds are parallel. The basic idgseriod-6 cuspidal structure in parameter space. Hansen stated
is that the binary coding assigned to each periodic orbit rethat period 6 would be the simplest example leading to such
mains unchanged when parameters of the dynamical systediscontinuous symbolic change. However, a cuspidal struc-
are varied smoothly. The key aspect of this is the identificature is known[15,20,2] to appear already for period 4. This
tion of some parametgr, such that the corresponding dy- fact and the very interesting results of Hang&6] and Gio-
namics is characterized by a complete horseshoe. The encoghannini and Polit{ 17] raise the question whether the simpler
ing of each periodic orbit for any desired parametés then  and less numerou®nly threg period-4 orbits would allow
obtained by smoothly deforming the orbit fropp to p. one to gain insight about the difficulties of establishing gen-
From classic works of Cauchy and Puiseux and, speciallyerating partitions for multidimensional systems.
Apart from the aforementioned interest for practical ap-
plications, an additional motivation for investigating the ori-
*Email address: aendler@if.ufrgs.br gin of discontinuous changes is provided by a number of
TEmail address: http://www.if.ufrgs.brjgallas questions of concerning tharithmetical nature of periodic
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orbits and their evolution as parameter changes. For instancetraints may be used to express all coefficidmts in terms
it would be very useful for applications to know whether or of any one of them, say,,. The same constraints may be
not the Galois group associated with minimal polynomialsalso used to obtain an additional equation from which all
defining periodic trajectories are preserved upon changes @fossible values of the choseh, may be determined. In
parameters. Is there amithmetical codingcapable of label-  other words, it is always possible to reduce the equations of
ing different trajectories unambiguously, based possibly ofmotion to: (i) a polynomial that parameterizes simulta-
the number-theoretical structure of the orbital points’? Cal’heou5|ya|| orbits of any gi\/en periodn terms of an arbi-
we hope to devise algorithms capable of generating sucttarily selectedd,,,, (i) a polynomial from which all allowed
structuring and labeling? From a mathematical point of viewyalues of6,, may be derived. This general procedure is valid
a direct arithmetic labeling would be the most basic that ongor any dynamical system with equations of motion defined
could possibly use. The answers to these and similar quegy algebraic equations.
tions [18,19,2] presuppose detailed arithmetical investiga- ~ As an illustration of the general procedure above, we
tions of both orbit{phase spageand parameterphase dia- present now explicit results of a parameterization of all
grams and this paper may be regarded as a step toward su@eriod-4 motions for the Heon map, Eq(1). The convenient
goals. coefficient 6, chosen here for this parameterization is the
Although the familiar topological approach is very useful gym o=X;+X,+X3+X, of the orbital points.
to describe the relatively tame changes that occur as param- Using Eq.(1) to obtain relations interconnecting the or-
eters are varied smoothly, the most interesting physical phesital points, one finds that all period-4 orbits of théride

nomena appear invariably along curves and wrinkles thagap have their orbital points defined necessarily by the roots
cannot be ironed away. The analytical determination of alf the polynomial

period-4 wrinkles(nonhyperbolic parametersvas reported

recently in Ref.[21]. For particular eigenvalues, such P(X)=x*—oX3+ 0,(0)X?— 01( o)X+ bp( o), 2
wrinkles define boundaries of stability and multistability do-
mains. where
The aim of the present paper is to consider the very rich 1
dynamics along wrinkles and several additional loci that un- 0(c)= E[U(U+ 1-b)—4a], (3)

derly period-4 orbits. More precisely, we report an investiga-

tion of the changes undergone by all three period-4 orbits of 1

the Henon map[Eq. (1)] when the parametersa(b) are R P _ 2_ _ 2
changed adiabatically. We derive an exact analytical expres?l(o)_ 24[40 +121-b)o" 400 +8(1-b)(1+b)7,
sion for the critical parameter locus characterized by orbital (4)
discontinuities. In addition, we explain tlwigin of the or-
bital discontinuities responsible for ambiguities in the sym-
bolic coding.

In the following section, we show how to obtain explicitly ) 5 5
an exact analytical expression parameterizing all possible —(1-b)[122—14(1+Db)"Jo+24a"—24(1+D)
period-4 orbits of the Hgon map, their solutions and discuss X (a—b)}. (5)
several parameter loci underlying them, pointing out the ex-
istence of a cusp in parameter space. In Sec. lll, we considethe possible values af are defined by the roots of the cubic
a circulation along a closed triangular parameter path enclos-
ing the cusp, pointing out the existence of three changes in 0®-3Uo—2V=0, (6)
the orbital labeling during the circulation. In Sec. IV, we _ 5 _ 5
derive the conditions for the existence of discontinuities, lo-¥hereU=4a/3—(1+b)’ a_ndV2=32(12— b)gl+b) and the
cate precisely where the discontinuity occurs along the triandiScriminant of the cubic is-2°3°(V*—U"). Equation(6)
gular path and explain the origin of all such discontinuities.SNOWS at once that, for any given paa,b) of parameters,
Finally, in Sec. V, we present our conclusions. The Appendix€ Heon map contains a total dfiree period-4 orbits.
contains a plethora of algebraic details concerning the sym-

1
Op(0)= Zl{a‘br 6(1—b)o+[3(1+b)?>—16a]o?

metries of period-4 orbits and identitiésutomorphismysim- A. The orbital points
plied by them. To have a period-4 orbit for the Hen map means to deal
with four numbersx;, X,, X3, X4 interconnected by Eqg.
Il. PARAMETERIZATION OF ALL PERIOD-FOUR (1) in the following way:
ORBITS X, X, X3 Xs X,
Any k-periodic orbit consists of a set{x}, j %ol \xe) \xo) \xg) xg) @)

=1,2,... Kk, of k points that may be used to build a polyno-

mial of degreek whose coefficients, sayg,}, are given by a very specific ordering that repeats forever as time evolves.

the well-knownsymmetric functionsf the points in{x;}. In the Hamiltonian case, when= =1, the orbital points
Now, the equation of motion implies additional relations, x; may be easily obtained sindé=0 along both linedb=

constraints, among th& orbital points {x;}. These con- *1. Then, Eq(6) simplifies considerably,
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FIG. 1. Structure of the three orbi@®,, for n=1,2,3, whena=2 andb=0. OrbitsO, and O5 look quite similar, despite the strong
dissimilarities of their analytical expressions, shown in E49) and(20).

o(c?—4a+12)=0 for b=1, (8) For (a,b)=(2,0), the well-studied limit in which the map
is known to contain generating partitions, Ef) reduces to
o(c®*—4a)=0 for b=-1. (99 (o?—0—4)(c+1)=0, giving us three roots, (1

, _ _ ~ +\17)/2, (1~ 17)/2, and—1 which, substituted in Eq.
These interesting equations show that the nondissipativey) yield the orbits

(Hamiltonian limit contains always an orbit for whicthe

sum of orbital points is identically zerd'he corresponding O,(x)=x*— 1 (1+V17)x3— % (3— 172
orbital equations simplify to
—(2—V17)x—1, 18
(x?>+2x+a—2)(x*—2x+a—2)=0 (b=1), (10 (2-417) 18
—y4_ 1 _ 3_1 2
(XZ_a)ZZO (b:_l) (11) OZ(X)_X 2(1 \/1_7) 2(3+\/1—7)X
In the dissipative case, whdn# +1 (and o #0) the or- —(2+17)x-1, (19
bital equations may be obtained by eliminatangmong Egs. 04(X) = X4+ x3— 4x2— Ax+ 1 (20)
3 - ’

(2) and (6). This procedure yields a fourth-degree polyno-
mial in x, with coefficients that depend only dnando and  respectively. Here and below, all square roots denote the

whose roots give the following orbital points: positivevalue of the root. The orbital points for these three
1 orbits are given in the Appendix.
Xl:Z[U_Sl_ [S)(S;+0)], (12) Figure 1 shows the phase-space structure of the three or-

bits O;(x), from which one may read directly the corre-
1 sponding symbolic codings.
_ _ — Notice that, for any choice of parameters, just a single
=—[o+ N
X2 4[0 SImVS(S o), (13 equation, Egq.(2), correctly parameterizes all possible
period-4 orbits. In particular, Eq2) yields at once in factor-
1 ized form the pair of conjugate orbits “interlaced” in the
X3=7[0=S1+VS(S+0)], (4 jrreducible octic studied in Ref19],
1 04(X)0(x) =x8—x"—7x8+ 6x°+ 15x*— 10x>— 10x?
=—[0+S,+VS,(S;—0)], 15
X4 4[0 1+ VS (S —0) ] (19 At 1. (21)

where . )
B. General solution of the cubic

S;=Vo’+4(1+b)?, (16) For arbitrary parameter values, the solution of ).
depends essentially on a single numbier:

L 19 N, =IV+ A, (22)

Eliminating o between Eqgs(2) and (6) one obtains a whereA=V2—U3, a quantity that may also be written as
12th-degree polynomial ix with coefficients depending

(0‘—2(1—b)
S=2| ———]s

. . 3
only ona andb. The three period-4 orbits are formed by the _ 2 4_ f _ 2
roots of three fourth-degree polynomials that compose this A=4(1=b)%(1+b) 3a (1+b)
12th-degree polynomial. 16
In thg remaln_der of the paper we explore E@.and(6), = 2a2[9(1+b)?—4a]— (1+b)*A,, 23)
our main analytical results. 27
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TABLE |. Three possible choices af in the generating parti- 2 —
tion limit, depending on the value chosen for the cubic rdat.
We fix N, =N

1

N, o o5 o3

NG eI -V -1 b oot

N 3(1-V17) -1 3(1+17) i /

NE? -1 3(1+417) 2(1-417) gL

A,;=4a—(5b?>—6b+5)=4a—4(1—b)?>—(1+b)> Y S

(29 -2 -1

Fixing now the auxiliary quantities FIG. 2. Bifurcation curveaA =0 andA;=0, the wrinkles along

N_=U/N (25) which period-4 orbit is created whem increases. For reference,
- o light curves indicate the location of well-known loci. The line indi-

w=—(1—i\/§)/2 and w2=—(1+i\/§)/2 one may write cated by an asterisk corresponds to the locus wheret+®j
the three roots of Eq(6) as —4a=0 [see Eq(23)].

o1=N,+N_, (260  —3N20—2N°=0, with rootse=—N, —N,2N. Along the lo-
cus A=0 one finds the cuspidal structure shown in Fig. 3.
The cusp is centered along the=1 “Hamiltonian axis.” In
this figure, Greek letters represent interesting intersections
points discussed in Reff21].
N_ (2) The locusA;=0: As seen in Fig. 2, tha;=0 locus is
o3=0’N, + —=w’N,+oN_, (28)  the parabolic curve along which the period doubling:2
@ occurs. The intersection oA;=0 and A=0 occurs at
(a,b)=(—97%,7)=(1.5441558;-0.171572 8), where;=
—3+/2. This point is one of the vertices marking a domain
where two different stable orbits of period four exist. For a
discussion of this interesting domain see Refl].
i (3) The locusU=0: As Egs.(22)—(25) show, U=4a/3
1+ 5\/5-) (29  —(1+b)2=0 implies eitherN_=0 and N, =J[2V or
N_=J[2V and N, =0, depending on the sign of, i.e.,
N@=uND (300  whetherb<1 orb>1, respectively.
Two points along the curv& =0 are particularly note-
N(f)=w2N(+l). (31  worthy, namely &,b)=(3,1) and (0s-1), points where Eq.
(6) has a triply degenerate root=0. As shown in Fig. 3, at
These different choices simply show that there are three difthe first point there is cusp along thel eigenvalue locus.
ferent possibilities for fixing the initial labelings of the in  The curvesU=0 and A;=0 intersect at (Bg,,b,’)) and
Egs. (26)-(28). The actual labelings underlying each pos-(6b/,b,), where b,’):3—2\/§~—vo.171 572 and b,=3
sible choice are shown explicitly in Table I.

As it is not difficult to realize, the main wrinkles defining
the stability of the system are those obtained when0 and
A,=0. Of interest also is the parameter locus along which
U=0. All these loci are shown in Fig. 2

N_
0'2=wN++j=wN++w2N_, (27

In the generating partition limitg,b)=(2,0), Eq.(22)
gives N =(18+i/51)/9, allowing three possible choices
for N, , namely,

1

101 [

C. The critical loci b 100 |

From Eg.(6) one recognizes that interesting changes in
the dynamics occur for parameters such thatV2—U3
=0. Although this condition represents a simple curve in the
UXV space, it implies rather different situations in tae 099 Lot e NN
X Db space. We consider them now. 285 290 295 3.00 3.05 310 3.15

(1) The locusA=0: As seen from Fig. 2A=0 is the a
main wrinkle along which period-4 orbit is created, when FIG. 3. Cuspidal structure along the “Hamiltonian axis=1.

H H —_— —_— 3 . .
Increases. This locus has N.=N_=N=JV  The numberst1 and—1 refer to the eigenvalues characterizing

=\3/2(1—b)(1+b)2 a fact that reduces Eq(6) to ¢ the loci.
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2

segmenfAB meets the locud = 0. Arithmetically, this inter-
section is characterized by sextic numbers easily derived
from the analytical expressions above. Fob
>0.036 698 448 10 there is one real and two complex orbits.
This situation persists until the segm@&tt crosses again the
A=0 locus, when all three orbits are real once again. There-
fore, only one of the three period-4 orbits remains real dur-
ing the whole clockwise circulatioA—B—C—A.

Figure 5 shows in detail the evolution of the real orbit
during the circulation fromA—B—C—A. In this figure,
numbers denote points of the orbit while dashed lines are
used to help visualize how the points move in phase space.
In Fig. 5(@) one sees clearly a crossing of the dashed lines, a
crossing absent in Figs.(H—5(d). In addition, comparing
Figs. 5a) and 5d), which correspond to the vertex at the
%eginning and at the end of the circulation, one sees that the
period-4 orbit changed continuously fro@®y(x) to O,(x),
moving out of the generating partition parabola where com-
plete binary tree exist and returning back to it laata dif-
+2,/2=5.828 427, both quantities beingits[22] in )(v2)  ferent location Notice that the point 3, which at the begin-
with norm +1. ning of the circulation was between points 1 and 4 on the

The curve indicated by an asterisk in Fig. 2 signals theparabola, finished the circulation at a point lying between 4
location of the locus whereat9(1+b)?=0 and, as Eq. and 2 on the parabola.

(23) shows, signals the locus whetg is the quantity ruling From Fig. 5 one recognizes an additional rather curious
the square root that appears b, . There are two points phenomenon happening along the path followed by the or-
where the asterisk curve meets the curve=0: bital point labeled by the number 3his point crosses the
(=9b,,b,) and (=9b,,b,), where b,= —3+2\2= diagonal in three different locationS§ince the Heon map is
—0.171572 andb,= —3—22=-5.828427, both num- two dimensional, such crossings imply the existence of non-
bers being also units ir@(\/i) with norm +1. The point trivial orbits havingy;=x;. This means that the minimal
where A=0 meetsA; coincides with the point where the polynomials defining orbital points of multidimensional sys-
curve indicated by an asterisk meets the cutye=0. The temsmay have multiple zerpsn sharp contrast with the
perfect symmetry of all four intersections above reflects thaisual Abelian equations[23], characteristic of one-
remarkable property that all coordinates of intersections ar@imensional systems, which are not allowed to contain mul-
functions of specific units in the field(1/2). tiple roots[19]. Therefore, although by elimination of vari-

We proceed now to investigate the Changes observeables one may eﬁectively reduce a multidimensional set of

while circulating along generic paths in parameter space. €quations to an one-dimensional equivalent system, such re-
duced systemallow multiple rootsa fact that may be used to

IIl. A CIRCULATION AROUND THE CUSP segregate those one-dimensional equations of motion ca-
pable of representing higher-dimensional dynamical systems,
In this section we investigate orbital changes under a quite useful result.
smooth clockwise circulation along the triangieBCA The specific parameter values and orbital points of the
shown in Fig. 4. We start and return to the verfex (2,0),  three orbits having pointg;=x; on the diagonal are summa-
the limit of complete binary trees and well-defined symbolicrized in Table 1. Both orbits lying on the segme&aB have
dynamics. The triangl&BCA encloses the cuspidal struc- their parametea defined by a zero of the sextic
ture shown in Fig. 3, which is triply degenerate=0, for
(a,b)=(3,0). The three segments defining the triangle are  729a®—7776a°+ 34 668a*—83952a3+ 117 93632
AB: b=3a/2-3, BC: b=-al4+9/4, CA: b=a/3
—2/3. A similar adiabatic circulation in parameter space was —91392a+30208-0, (32
considered earlier by Hans¢h6] and Giovannini and Politi
[17], who considered numerically two of the nine possible
period-6 orbits of the Heon map, showing the existence of
discontinuities in the symbolic dynamics. Profiting from the
analytical results obtained for the much simpler period-4 or-
bits, our main purpose here {§ to characterizarithmeti- +1184473=0. (33
cally the origin of such discontinuity as well i) to locate
in parameter space where exactly such discontinuity occurs. Figure 6 shows the evolution of the four orbital points as
At the vertexA, located at &,b)=(2, 0), there are three a function ofa and, in particular, what happens in the vicin-
real orbits. Moving upwards alor§B one arrives quickly at ity of the three locations where the orbit contains points lo-
the pointa=2.024 465 632,b=0.036 698 448 10 where the cated on the diagonal=Xx;, i.e., wherxz=x,. As it is clear,

-1

-2 A
-2 -1
FIG. 4. Clockwise circulation along the triangheB CA enclos-
ing the cuspidal structure shown in Fig. 3. The vertices are locate

at (a,b)=(2,0), (3,3/2), and (5,1). The dotted parabbla0 is
where discontinuous jumps occur whier 1 [see Eq(45), below].

while the remaining orbit lies oBC and has its parametar
defined by a zero of

a®—62a%+1607a%*—23108a%+ 187 775%— 773 150
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FIG. 5. Phase-space evolution, frady(x) to O,(x), of the orbit that remains real during the clockwise circulation frAmB—C
— A along the triangle as shown in Fig. 4. Orbits start and finish on the logistic pardbolhe dashed line indicates the position of the
initial orbit O; when departing from verte&; (b) The orbit at vertexB; (c) The orbit at vertexC; (d) Arrival at A, with the final orbitO,.
The crossing of the dashed lines seeranis topologically different from the situation itb)—(d). Compare the orbital points 1,2,3,4 with
the corresponding ones in Fig. 1. The scales shown apply to all figure parts.

two intersections occur along the bransB, one alongBC,  and the degree of the number fields underlying model param-
and none alongC A. Recall that the brancB@A is fully con-  eters. This, however, seems to be a hard task.
tained in the domain where all three period-4 orbits are real. Figure 7 shows the topological structure of the orbits that
As Fig. 6 shows, along this branch there is a relatively mildcontain diagonal pointy;=x%;. Comparing Figs. & and
variation of the orbital points. In particular, one of them re- 6(a) it is not difficult to realize that whea increases froni\
mains essentially constant froe=5 back toa=2, along to B along the segmemB, there is a very interesting situa-
CA. tion in whichthree orbital points lie on a same straight line

Figure 6 shows clearly that @schanges from 2:5 and  The alignment of these three points marks the transition from
back,the ordering of the orbital labels changes three times “crossing” to “noncrossing” of the dashed lines, a significa-
the greatest variation happening in the segn#®Bt where tive change. The three-in-a-line alignment of the points 1, 3,
two orbits are defined by complex numbers. The possibilityand 4 happens for the parameters and orbit defined in the first
of having “oscillations” in the symbolic dynamics seems not column of Table Ill, which shows approximate values. The
to have been noticed before. It would be nice to checkexact value ob is a root of
whether or not there is any relation between such oscillations

pg(b)=9 b8+ 54b’+105b%— 162b°—524b*— 21003

TABLE II. Approximate numerical values of the three period-4 2

orbits shown in Fig. 7 having a point on the diagogal x. Exact +249b°—90b+9, (34)

| ts of pol ials gi in the text. . .
values are roots of polynomiais given in fhe fex derived from Eqs(12), (14), and(15), from which one may

P, P, Py obtain the other values exactly. Table Il gives the location of
another similar triple alignmenh being now a root of

a 2.347056 1315 2.838563 2635 3.4785937435

b 0.520584 197 2 1.2578448953  1.3803515641 p7(b)=b"+7b%—74b*— 7003+ 9b—1. (35)
2.129326 7509 —1.0450080961 —1.5612688827

X, —1.6165475778 —2.4464370758 —2.6952633453 Equationg34) and(35) have the symmetric groug; andS;

X, 0.824 9554740 —0.3935816003 —0.5904586593 and discriminants involving remarkably large primes for this

X3 0.824 9554740 —0.3935816003 —05904586593  context: —240x 318x 223x 315496 661 and $x 8 176 981,

X4 2.0959633805  2.1885921804  2.314911 781 2 respectively. Thesignature[24] of pg(b) is (2,3) while that
of p;(b) is (3,2).
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FIG. 6. Evolution of the four orbital points as functionafThe
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TABLE Ill. Approximate numerical values defining the two
period-4 orbits characterized by three points lying on a straight line
in phase space. Notice the occurrence of wmwmlues of the same
magnitude. Exact values are roots of polynomials given in the text.

Points 1,3,4 aligned Points 2,3,4 aligned

a 2.1021361633 2.696 3243137
b 0.153204 2449 0.2321081045

2.494 8791018 —1.9638293467
X1 1.8240416733 2.191568 8275
Xo —1.1222167212 —2.1915688275
X3 1.1222167212 —1.597 968 725 6
X4 0.670837 4284 —0.3658606210

Giovannini and Polit{17] find a homoclinic tangency for
a=1.3569288, [b=0.372981 29, (38

where brackets were used to indicate th&bot given in Ref.
[17]) was computed here so as to lie on the triangle. This
tangency lies between those in E¢36) and(37). However,

ordering of the labeling changes three times during the circulationy,en comparing the values above, recall that as shown by
The location of the three crossings is given in Table Il while the Newhousd 25], homoclinic tangenci’es occur intervalsin

corresponding orbits are shown in Fig. 7.

For period six, the case discussed in REf§,17], we find
similar alignments at

parameter space, not points, in sharp contrast with the arith-
metical events discussed here that are intrinsically discrete.

IV. WHERE AND WHY DISCONTINUITIES OCCUR

a=1.40268, b=0.34800392, (36) In this section, we show how the orbital discontinuity
and appears and compute the precise location on the triangle
where such discontinuity happens. Although the argumenta-
a=1.2455525668, b=0.3772237165. (37) tion here is for period-4 orbits, the same methodology ap-
3 __ T T T T = 3 _— T T T 4I T T T T __
2 F AN - 2 r T
T Toal ]
Yol 3N T Yol 2 3 ]
r I s )
=2 | - -2+ 4
- - 1
-3 -3 1 !
3 - T ! T |
: 4
2 - _
1 - .
Yol 2 3 .
-1+ _
-2 1 -
-3 J L | | | ] | | |
-3 -2 -1 0 1 2 3
X

FIG. 7. Three orbits that have an orbital point on the diaggrak. They are all topologically equivalent since the polygons obtained by
connecting successive orbital points with line segments do not exhibit the crossing that exists i@Figh& scales shown apply to all

figure parts.
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plies to orbits of any arbitrary periodicity. 3

To see how discontinuities appear, we start from the so- f // i /U= ]
lutions of Eq.(22), writing them in polar coordinates 0 ]

1 El: P

0 0 -2 1  Im(o) 1

N =r co%+isin§)w”‘1, n=1,23, (39 3~ . :

2 L - Le -

where H! 1L ]

-1F 1 F 4

=V T I ) 5

and 2 F 1F a0 el

oL a0 AERE, U

cosf=ReV+ JA)/r, 40 PNV Ao 1 F ]

-2 I Re(o,) 1 [ Im(o,) ]

sinf=Im(V+A)/r, 4y T 2 3 4 5 2 3 4 5

a a

where Ref) and Im(z) denote the real and imaginary parts

of z, respectively. The corresponding new formeaf is FIG. 8. The evolution of the three values when moving from

A—B—C in the triangle in Fig. 4. The discontinuity occurs for the
0 0 parameters g,b) given in Egs.(46)—(47), when (o1,0,,03) is
on= N(f)-i- U/N(f)= r ( CO% +i Sin—) 0"t permuted into §,,03,01).

3
U P 0) 1 ghe orbit corresponding to these parameters is shown in Fig.
+ —| coss —i sing . 42 .
%% 3wt 42 A significative point is that the discriminat=0 of Eq.
o (45), although obtained in a rather different way, behaves
WhenA>0, Egs.(40)—(41) simplify to precisely as the locus discussed by Giovannini and Politi
[17] for period-6, in that both curves contain the cuspidal
cosf= Ve V3 =sgnV+A) (43  Point.
[V+ VA ’ WhenA <0 all three values of are real and there are no
discontinuities.
sing=0. (44

, _ V. CONCLUSIONS
From Eq.(43) one sees thafl undergoes a discontinuous

jump of = wheneveN + A changes sign. The effect inof This paper reported a fourth-degree polynomial capable
this jump is to promote a permutation among thevalues,  Of parametrizing simultaneously all three period-4 orbits of
implying a corresponding permutation of the orbits. the Henon map in terms of the sum of orbital points, for

The aforementioned jump occurs foN+ A=V arbitrary values of model parameters. The present analysis in
+VZ=U3=0, that is, forU=0 andV+VZ=V+|v|=0  Phase space complements the corresponding parameter-space
where V= (1—b)(1+b)2. Therefore, the condition for the analysis done in Ref21] providing now a complete analyti-

existence of a period-4 discontinuity is to have simulta-cal descripti(_)n of all period-4 motions, valid for any real or
neously complex orbit.

The parameterization described in this paper is very gen-
U=0 and b>1. (45) eral and, in principle, may be done for orbits of any arbitrary
periodicity of dynamical systems ruled by algebraic equa-
Figure 8 shows the evolution of the threg values from
A—B—C, where one can see where the discontinuity oc- 3 - T T T T T T T A

curs. The jump occurs precisely at s L 4 - — i
l 1 __ I’,' \\‘ - __
a;==(71—8./55)=3.890 137 37, (46) I / < ]
3 Yot 2 3 .

1 1L =:I::::</\— -

bj=3(—11+ 2./55)=1.277 465 658, (47) oL / .
_3 L L /I/ L 1
when -3 ) -1
on=— EWn71‘3/_3748+ 508\/5—5. FIG. 9. Orbital. strugture e}ta(j ,b;), defined in Eqgs(46) and
3 (47), where there is a discontinuous change of ¢healues.
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tions of motion. This means that the investigation of periodicresults and equations for which general mathematical algo-
motions, for arbitrary perio&t and for any dynamical system rithms and theories are still lacking. In particular, since for
ruled by algebraic equations of motion, may be effectivelyeven moderate periodicities the number fields underlying
reduced to the investigation of just two polynomials: oneconjugate orbits already involve relatively high degrees, their
defining all k-periodic orbits, similar to Eq(2) above, and investigation allows one to understand the intricate origins of
other defining the corresponding valuescofor each orbit, ~Many “miraculous” identities that exist in number fields of
similar to Eq.(6). In particular, we already computd@é] lower degrees and which are very hard to justify within the

analytical expressions for the quintic and sextic polynomialdramework of the low fields where they live and where they
that rule orbits of periods 5 and 6. appear to be just accidental events. Such identities are simply

From a theoretical point of view, an interesting and gen- €chos” of symmetries living in much higher fields. In some
eral result reported in this paper is the fact that minimaliS€nse, the arithmetical determination of orbital points may be

polynomials defining orbital points for multidimensional sys- "égarded as a procedure inverse to that normally used in
tems may have multiple zerpsn sharp contrast with the Mathematics, where one moves from number fields of lower-

well-known Abelian equation$23] characteristic of one- degree to higher-degree fields. Orbital symmetries become

dimensional systems that are by no means allowed to contaffven more striking when the period increaf28].

multiple roots[19]. Therefore, one sees that the familiar

Abelian equations underlying one-dimensional systems be- ACKNOWLEDGMENTS

long to the just thesimplestclass of equations of motion .

since there is a whole class of much more symmetrical equa- J-A-C.G. thanks Professor Hansgen Herrmann(Stut-

tions still waiting to be properly characterized and classified{gart and Paris Professor Dietrich Wolf(Duisburg, and
Interesting analytical aspects of the orbits where considP rofes_sor P_eter _Grassl_Derg(éthh) for their kind interest

ered in detail. In particular, we studied what happens wit@nd stimulating discussions. This work was supported by the

the three period-4 orbits when they move adiabaticallyPilateral project PROBRAL 0133/2001 sponsored by CAPES

around continuous circuits in parameter space that includes ®@razil) and DAAD (Germany. J.A.C.G. is a Senior Re-

cuspidal structure. We find that when departing from well-S€arch Fellow of the CNPq, Brazil.

known generating partition limitg,b) = (2,0) with the orbit

01(x) and moving clockwise along the triangle shown in APPENDIX: THE ARITHMETICAL STRUCTURE

Fig. 4 one ends up on orb@,(x) upon arrival back at (2,0). OF ORBITAL POINTS IN THE GENERATING

This phenomenon is similar to what was observed numeri- PARTITION LIMIT

cally for period-6 orbits by Hansefl6] who associated it ) ] ) )

with the existence of homoclinic tangencies. Such tangencies ' NS appendix collects exact analytical expressions for the

occur over interval§25] and no exact analytical methods are ©'Pital points of Eqs(18)—(20) and summarizes their main

known to locate them. In contrast, the analytical expression&fithmetical characteristics. As will become clear, the arith-

obtained in this paper opened the possibility of characterizMetic structure of the orbital points and the number fields

ing arithmetically with precisiorti) the parameter loci along Underlying the equations of motion raise a number of inter-

which discontinuities occur as well &) the origin of such ~ €Sting questions not only in dynamics but also in number

orbital discontinuities that induce ambiguities in the sym-theory. .
bolic coding. As before, square roots are to be taken as positive. As

Since discontinuities arise while circulating around cuspi-S€€n from Eq(l), in the generating partition limit all three
dal structures, it seems of interest to point out here a recef@bits obeyx.;=2—x.
work of Carcasse and Kawakam{27] where the generic
problem concerning the existence of a cusp point on a fold 1. The quartic orbit O4(x)
bifurcation curve was addressed fedimensional maps.

By adiabatically following trajectories we observed a phe-
nomenon that is markedly different from what happens with
the familiar Abelian equations that rule one-dimensional dy- 1
namical systems when compared with the more intrincate Xl:_[_l_ﬁ_ \/30—6\/5], (A1)
one-dimensional equations obtained by eliminating variables 4
that represent higher-dimensional dynamics: higher-
dimensional systems may now contain ofmr several 1
points located on the diagonal in phase space. For the two- XzZz[—l+ \5-V30+61/5], (A2)
dimensional Heon map under consideration this implies the
existence of orbits containing points with=x;. Three ex- L
amples are shown in Fig. 7. =

Last but not least, as hinted by results in the Appendix, X3:Z[_1_ 5+ 30_6\/5]’ (A3)
the great symmetry that interconnects the equations of con-
jugate orbits interconnects also physics and number theory in

. ; : : 1
a r_lovel and dl_rect way. The analytlc computation of trajec- Xy=—[—1+ \/g+ /30+6\/§]. (A%)
tories automatically generates interesting number-theoretical 4

In this simpler case we have=—1 with the orbital
points composing;(x), in Eq. (20), being
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By introducing two convenient quantities, closely related to 1 1
units in ((y/5), r=sla=(1t+a)e]+ 7Vp+dae,  (A18)
1+5 1-5
= = 1 1
¢=—g— and n=—75—, (A5) =5lat(lta)elt 7VB—4ag,  (A19)
the orbital points above may also be written as
—1 1 1\/ 4 A20
X,= — £~ 3(1-£9)= 1827090916, (A6) fa=pla-(Ataje]=gVp+aae, (A0
Xo=—n—+3(1—7?)=—-1.338261213, (A7) 1

1
r4=§[a+(1+ a)e]— Z\/B—4a(,o. (A21)

Xz=—&+3(1—¢2)=0.209056 9265, (A8)

X,=—n+3(1— %) =1.956295202.  (A9)

This remarkable symmetry exists due to automorphisms in-
volving the outermost square roots

Analogously, forO,(x) we use the conjugate unit

=%(1—J1_7), (A22)

N

obtaining the orbital points

26J1- 2= 1- 47, (A10)
— 1 — 1 =/——=
—29\1-9?=1-¢&2, (A11) n=slat(l-a)e]+ VB+(B-4)e, (AZ3)
which have the net effect of greatly simplifying the orbital 1 1
dynamics. ro=5la=(1-a)e]- ZVB—(B=4)e, (A24)

2. The conjugate octic orbitsO;(x) and O,(x) 1 1
The decomposition into quadratic factors of b@h(x) r_3=§[;+(1—;)<p]— Z\/EJr (B—4)¢, (A25)
andO,(x), in Eqs.(18) and(19), may be easily done by first
decomposing/17, a quadratic number, into a product of two

. — 1 — 1 —/——
quartic factors, namelw/17= ¢, where r4=§[a—(1— a)e]+ Z\/,B— (B—4)¢, (A26)
=\17+4y17, =\17-4y17. Al12 — . . .
v ¢ (A12) where=17+3/17 is the conjugate 8. Equivalently, the

Then, both orbits may be decomposed using eitpef) or ~ Points above may be written as
Q(e).

. . . - . _ 1 _ — 1 ——
After conveniently introducing an auxiliary unit, rlzi[a+(l+ @)+ 7 /3_4 ¥, (A27)
T 1
a=§:2(1+\/17), (A13)

— 1 — 1 —/——
rzzi[a—(1+a)1/;]—2\/,8+4al//, (A28)
closely connected witlor; defined in Table I, we obtain the
following representation for the orbital points 6f(x):

) . 73:%[2+<1+Z) vl- %JE— 4ay,  (A29)
ri=sla+(1-a)y]+ 7B+ (B=4)y,  (AL9)

. ) E:%[Z—(HZ) Y1+ %\/E+ 4ap.  (A30)
r=5la=(1-a)yl+ 7VB—(B=4)y, (A1)

The symmetry enforced by the equations of motion de-
1 1 pends critically on several unsuspected interconnections
Fa=—Ta+(1— — =BT (B-2)y, A16 among octic numbers, Wh|'ch_"propagate do_wnwards," af-
3 2[a (1= a)y] 4 BH(B=Dy (A16) fecting quartic and quadratic fields when their members are
suitably combined. For instance, in the quartic field contain-

itabl bined. For i in th ic field i

1 1 in
ri=gla—(1-@yl-7VB-(B=49, a1 7
V17+417 and V17-4\17,
whereB=17—3/17. These points may be equivalently writ-
ten in the form we find
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(—3+ V17 V17+4\17=(5+ 17 V17— 417,
(13- 317)V17+4\17=(1+ V17 V17— 417,

which imply, analogously to Eq$A10) and (A11),

(— 4+ \17)V17+417=\17-4\17, (A3D)
(A+\1V17-a17=\17+ 417,  (A32)

PHYSICAL REVIEW E 65 036231

Notice that, since

(—4+17)(1+17)=13-317, (A35)
(4+V17)(~3+17)=5+17, (A36)

Equation(A34) is obtained from Eq(A33) by suitably mul-
tiplying it with 1=(—4+ /17)(4+ y17). In general, finding
multiple decompositions implies having to deal with hard

results that depend on the nonuniqueness of the decompogiroblems in Diophantine analysj24,28. What is particu-

tion in Q(\17)=Q(¢¢) of the number

14-217=(1+J17)(- 3+ 17 (A33)
=(13-3\17)(5+ J17). (A34)

larly attractive here is that thectic dynamics underlying the
equations of motion ‘explains’ tricky identities and nonu-
niqueness irquadratic number fields. In number theory, no
systematic way of uncovering such identities is known yet
[24].
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