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Bifurcations of synchronized responses in synaptically coupled Bonlifl@r —van der Pol neurons
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The Bonhdfer—van der PolBvdP) equation is considered as an important model for studying dynamics in
a single neuron. In this paper, we investigate bifurcations of periodic solutions in model equations of four and
five BvdP neurons coupled through the characteristics of synaptic transmissions with a time delay. The model
can be considered as a dynamical system whose solution includes jumps depending on a condition related to
the behavior of the trajectory. Although the solution is discontinuous, we can define the Ponaaras a
synthesis of successive submaps, and give its derivatives for obtaining periodic points and their bifurcations.
Using our proposed numerical method, we clarify mechanisms of bifurcations among synchronized oscillations
with phase-locking patterns by analyzing periodic solutions observed in the coupling system and its sub-
systems. Moreover, we show that a global behavior of chaotic itinerancy or a phenomenon of chaotic transi-
tions among several quasiattracting states can be observed in higher-dimensional systems of the synaptically
four and five coupled neurons.
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[. INTRODUCTION similar in a bifurcational point of view. In this paper, we
investigate bifurcations of periodic solutions in model equa-

Synchronization of oscillatory phenomena in globally tions of synaptically coupled BvdP neurons with coupling
coupled neuronal models have been investigated extensivefjumbers four and five. Because of all-to-all coupling struc-
to understand information processing in the bifdir2]. The  ture having the same coupling coefficients, the system has
Bonhdfer—van der Pol(BvdP) or the FitzHugh—Nagumo Symmetric properties. We formulate all kinds of subsystems
[3—5] neuron is considered as an important model for studyWith delayed mutual- and self-coupling and analyze symmet-
ing dynamics in a single neuron. Although there are lots offic solutions with phase-locking patterns, which behave in
papers on synchronization phenomena in linearly coupledvariant subspaces.
neuronal oscillators, relatively little has been investigated for In the four- and five-coupled-neuron systems, we observe
a more realistic model describing the time-dependent cond global behavior of the chaotic itinerani8—15, which is
ductance of the synap$é—8]. We consider a model of neu- known as a phenomenon of chaotic transitions among sev-
rons coupled through delayedfunctions[9] for describing ~ €ral quasiattracting states, regarded as a model phenomenon
the characteristics of synaptic transmissions with a time defor interpreting an associative dynamics or a memory search-
lay. ing process[16,17 in the brain. The bifurcation analysis

In Ref.[10], we have formalized the model as a dynami-gives rise to this observation for the Hodgkin-Huxley type
cal system whose solution includes jumps depending on Beuronal network with synaptic coupling.
condition related to the behavior of the trajectory; and then
we have proposed a numerical method for calculating bifur- Il. COUPLED BvdP EQUATIONS
cations of periodic solutions observed in a coupling system
with arbitrary number of Hodgkin-HuxleyHH) neurons
[11]. The validity was illustrated using two coupled H
equations. From the analysis, we have clarified mechanisms dxlil
of transitions of in-phase and antiphase periodic solutions,

Let us consider th&l-coupled BvdP system consisting of
H theith BvdP equation

= (x4 yll— 1x[1%4 i)

chaotic oscillations and so on. However, in considering the dt

method for applying to the system with a large number of ND 1

coupling, the BvdP neuronal model, which is considered as a yo_ — (x4 pylil+a) 2.1
simplified equation of the four-dimensional HH equation, has dt c '

an advantage. In Rdf12], we have shown a parameter set of o i ) )
the BvdP system, such that the two kinds of models with@"d theith linear differential equations

coupling of two and three neurons are qualitatively very dalil  glil
ot o
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FIG. 1. A schematic diagram of discontinuous trajectory.

fori=1,2,...N. Note that the solution of the variabté'! in

Eq. (2.2 with initial condition (aI'), 81"y =(0,1) att=0 rep-
, Which is a
model for describing the time-dependent conductance of th

resents thex function[9] or al'l(t)=(t/7)e V"

synapse. In Eq(2.1), the following definition is used:

A=

j#i

(xl=5)alll (2.3

whereX represents the synaptic reversal poterial which
depends on the type of synaptic transmitter released from a
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A. Poincare map

Figure 1 shows a schematic diagram of a discontinuous
trajectory with jumps in the state space. A local sectibp
of the subspacél, in Fig. 1 and its local coordinate, for
k=0,1,...m—1 are, respectively, denoted by

M ={XeR"g(X)=0g,:R"—R}
he:M— I, CR" 1 X —u,. (3.2
Then, the Poincarenap
T:1Iy—1I1y; ug—T(ug), (3.3

can be defined by =T,,, whereT,, is given by the follow-
ing successive formula fdt=0,1,...m—1:

T+ 1(Ug) =S Ty(Uo), (3.4

}g/ith T, as the identical map. The maf, in Eq. (3.4) is
given by

Sc: =1l 4
U= Ny 1o (T (U)) + b mg+ by

Pre@(rg+ti it hy H(uy)),
(3.5

presynaptic neuron and their receptors. The coupling bewhere 7(h, *(uy)) is the time in which the trajectory ema-

comes excitatory and inhibitory witk>Xqq andX<Xeq, re-

nating from a pointh;l(uk) on the local sectiorM, at t

spectively, where,q denotes an equilibrium potential of ev- —t, will hit the next local sectiorM ;. Moreover,P, is

ery neuron.

the map such that a set of the elements Xpe R™

We assume that a firing of the membrane potential of thq(a[ki] ”3{(1]):1- eJy}, for someJ,C[1,2,...N], is mapped to
ith neuron occurs when the state variaklié crosses zero as the constant vecta(0, 1), i.e.
a threshold value with changing its sign from negative to

positive. Each vectord!'), ') jumps to the constar(d, 1)

at t=th!+ 74 whereth! is the time whenxl!) changes to
xl1>0. Namely, the firing information of a neuron trans-

forms to all other neurons with the time delay.

Ill. METHOD OF ANALYSIS

P R'—R"
X (4 v ol B, 00 y0.0,1,.. N,
yi! el gt

for any jeJy. (3.6

We summarize methods for calculating bifurcations in a  For calculating bifurcation sets of a fixed point observed
class of dynamical systems including the coupled BvdFn the PoincarenapT, it is required to obtain the first and the
equations defined in the preceding section. We treat the Sy§.eC0nd derivatives with respect to the initial state and/or the

tem such that its solution jumps to a constant value,atast

system parameter.

the time when the solution crosses one of several local sec- The first derivative ofT with respect to the initial state

tions in the state space.

Consider a set of general autonomous differential equa-
tions consisting of Eqg2.1) and(2.2), fori=1,2,...N, such

that

dX

—=1(X), (3.2

dt

where X is the

state X=(x[ yl ol gl
xINL yINI oINT BIN]Y" & R with n=4N, where () denotes

Ug, Or
oT  ITp,
duy  dup’

is given by obtaining the derivatives of the submaps, succes-
sively, fork=0,1,..m—1,

OTesr IS¢ dTy t aTo
dUg AUy dug aug

[ (3.7

where the derivatives 08,’'s are obtained by solving the

the transpose. We assume that there exists a solution wifirst-order variational equations, see Appendix.

initial condition X=X,
= o(t;tg,Xo), for all t.

at t=ty, denoted by X(t)

Moreover, the first and the second derivativesTolvith
respect to the parameterand the initial statesi; andv,
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BIFURCATIONS OF SYNCHRONIZED RESPONSES IN . . . PHYSICAL REVIEWE5 036230
whereD and | denote the type of the fixed point and the
subscript integer indicates the dimension of the unstable sub-
space:k=dimE". This classification is also obtained from
are given by obtaining the derivatives of the submaps, sucthe distribution of characteristic multipliers of E¢3.10.
cessively, fork=0,1,..m—1, That is,D and| correspond to the even and odd number of
characteristic multipliers on the real axis«~, —1), andk
ITs1 0S¢ 95 dTy indicates the number of characteristic multiplier outside the
N ON | aug o\ unit circle in the complex plane.
Bifurcation occurs when the topological type of a fixed
point is changed by the variation of a system parameter. The
codimension-one bifurcations that the coupled BvdP system

aT T
IN O\

T T PT T
gdvg  dUgdvg’  AUgIN U\’

PTeer S T dTy 39S 97Ty

odvo  IUkduy dug g Uk IUodvo has a possibility to occur are: tangent bifurcation, period-
JT 2S. aT. 9S. 32T P JTo oT doubling blfurgatlon, the Nglmark_—Sacker bifurcation, dand
k1 7S¢ 9T 0S¢ 97Tk S 9T i type of branching. These bifurcations are observed when the
dUgd\  JURIN Uy~ JUy JUgdN  JUxdvy dUg IN hyperbolicity is destroyed. The conditions for the former
(3.8 three bifurcations correspond to the critical distribution of
with the characteristic multiplieru=+1, u=—1, and|u|=1,
respectively. While, &b type of branching or a pitchfork
e e 8T, B T, o b_ifurcation appears in the_system that possess some symmet-
o T IN D Gugdug O dugan O ric property. This type of bifurcation occurs when a real char-

acteristic multiplier passes through the poidt 0) in the
complex plane. Thus the bifurcation condition is a degener-
ate case of the tangent bifurcation.

The numerical determination of the bifurcation set is ac-
complished by solving the system of equations that represent
the relation of fixed point, i.e., E¢3.9), and the bifurcation

If a solution of the coupled BvdP system is periodic, thencondition, i.e., Eq(3.10 with the corresponding value ¢f.
the pointu satisfying For this purpose, Newton's method is used. The principle
idea of this procedure for finding bifurcation parameters was
presented by Kawakani8]. The Jacobian matrix of the set
of equations is derived from the derivatives of the niap
given in the preceding subsection.

The derivatives ofS;’s in Eq. (3.8) are obtained by solving
the first- and the second-order variational equations.

B. Bifurcation of a periodic solution

u—T(u)=0 (3.9
becomes a fixed point of. Hence the study of a periodic
solution observed in the coupled BvdP system is topologi
cally equivalent to the study of a fixed point satisfying Eq.
(3.9). Note that anmm-periodic point can be studied by replac-
ing T with T™, mth iterates ofT, in Eq. (3.9). Therefore, in In this subsection, we summarize notations on symmetric
the following we consider only properties of a fixed point of properties of the system in E¢3.1). A symmetric property

T and its bifurcations. Similar argument can be applied to the the state space for E¢8.1) is defined by the invariance of

periodic point ofT. f under the action of a grou®, i.e.,
Let uelly be a fixed point ofT. Then the characteristic
gf(X)=1(gX), (3.1)

equation of the fixed point is defined by
det wul aT o Then, the functionf satisfying Eq.(3.11) is said to beG
Slul= (9—uo(u) s equivarian{19,20. The orbit of the action o6 on X e R" is
the set

C. Symmetrical properties

VY geG.

(3.10

where | is the (—1)X(n—1) identity matrix, and

dT(u)/duy denotes the derivative af(u) with respect to the Gx={gX:geG}. (3.12
initial stateuy. We callu hyperbolic if all absolute values of

the eigenvalues of T(u)/du, are different from unity. The The groupGy is called aG orbit of X.

topological type of a hyperbolic fixed point is determined by  The isotropy subgroup x of X is defined by

the dinrE" and det.", whereE" is the intersection ofl, and

the direct sum of the generalized eigenspacesTgii)/du, Sx={geGigX=X}. (3.13

corresponding to the eigenvalugs such that|u|>1 and

Lu: (9T(U)/(?U0|Eu.
A hyperbolic fixed point is calle® type, if detL">0, and
| type if detL"<0. By this definition we have 2(— 1) topo-

The elements of the isotropy subgroup Xfare called the

stabilizers ofX. We point out that a subgroup & may not
be an isotropy subgroup. The isotropy subgroup defines the

logically different types of hyperbolic fixed points. These Symmetry of a poini in the state space. Two points on the

types are

D (k=0,1,.n—-1), I (k=1,..n—2),

same G orbit have conjugate isotropy subgroupsgyx
=g 13 4g. Two different elements of points have conjugate
isotropy subgroups. It& equivariant force$ to have invari-
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ant linear subspaces corresponding to certain subgroups ¢ 3d
G. The fixed point subspace of a subgrddpf G is defined

by
Six(H)={XeRhX=X, VheH!. (3.19

2d 3d
The subspacg;,(H) is always a linear subspace R since (@‘@
d

Six(H)= N kerth—1,), (3.19
heH

(@WO)

(b) Sgx(Xa2) (d) Sgy(Xaa)

FIG. 2. Schematic diagrams of subsystems with delayed mutual-
and self-coupling in the four coupled neurons. In the diagram, N
denotes théth BvdP neuron for=1,2,3,4. The coupling coefficient
. . . . . is denoted beside the arrow head indicating the direction of cou-

In this section, we consider symmetric properties depend;;

. : : ) pling.
ing on the symmetry of the invariant subspace in the state

space of four- and five-coupled-neuron systems. ; Lo
Before considering concrete systems, let us define a phaérg‘e symmetric group has five isotropy subgroubs,

eAS 2 .3 _ 2 —
difference of a periodic solution. We assume a periodic SO_—{gl,gz,gz,gz}, 2427{91,93.03}), 243={01.0a}, Zas

lution of Eqg.(3.1) with initial condition X,:=X(0) exists: =1{01,9s}, and 24_5:{91}' We can define invariant sub-
spaces as follows:

(c) Sgx(Eas)

wherel,, is thenXn identity matrix.

IV. ANALYSIS OF SYMMETRY

X(t)=(t;0,Xp). (4.0
; ={[X. X, X, X.]'eR¥X,eR%,
If there exists a matrixy and a timeT,, such that Si(Za)={[Xa Xa Xa Xa]' eRIXa<RY

Si(Za2 ={[XaXy Xp Xp]" eR¥Xa, XpeRY,

for all t, then we call it a ¢,T,)-symmetric periodic solu-

tion. Note that the symmetric periodic solution has two kinds
of symmetries, i.e., spatial and temporal symmetries. The
temporal symmetry involves a phase difference of wave

Si(Za9 ={[Xa Xy X X{1' e R¥IXq, Xp Xoe RY,

forms among neurons.

A. Four coupled neurons

Six(Zaa) ={[X4 X4 Xi Xp]" e RYX, XpeRY,

We note that the behavior of a symmetric periodic solution

We first consider the system of four coupled BvdP neu-with a phase-locking pattern is restricted to an invariant sub-
rons. Equation3.1) with N=4 is invariant under the pos- space. One of analyses for phase-locked periodic solutions
sible permutations of the state variables, forming a symmetean be reduced to an analysis for periodic solutions observed
ric group. The matrices constituting the symmetric group arén simplified systems with delayed mutual- and self-

as follows: coupling, as shown in Fig. 2. For example, an entirely in-
_ - _ _ phase and an antiphase periodic solutions, which are possibly
la, 000 0 I, 00 observed in the system, appear 3p (2 41) and Sy (2 44),
I, 0 O 0O 0 I, O respectively. The antiphase response ig%ﬂ(/Z) -symmetric
0= v 02 periodic solution, wheré& is the period of the periodic solu-
0 l, O 0 l4 i
ion.
| 0 O l4 L 1y 0]
_ _ _ _ B. Five coupled neurons
I, 0 O l, O 0 , ,
0 1. 0 0 | 0 Next, we consider the system of five coupled BvdP neu-
_ 4 _ 4 rons. The functiorf in Eq. (3.1) with N=5 is commutative
9 g
3 0 4|’ 4 0 O I4 with respect to an element of the symmetric group. Accord-
ing to the similar discussion of symmetric properties in the
0 I, 0 0O 0 I, O ) ; AR
- - - - previous coupling case, we obtain simplified systems for the
0L, 0 o analysis of entirely and partially in-phase periodic solutions,
4 as shown in Fig. 3, which behave in the following invariant
l, 0 0 O subspaces:
910 0 o0 I,
0 0 I, O Si(Zs) ={[X5 X3 Xi X5 X3l eR¥IX.eRY,
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FIG. 4. Bifurcation diagram for periodic solutions in four
(d) Sﬁx(zfﬂi) (¢) Sgx(Ess) (f) SﬁX(E%) coupled BvdP neurons.

FIG. 3. Schematic diagrams of subsystems with delayed mutuakide the unit circle in the complex planen indicates
and self-coupling in the five coupled neurons. In the diagriim, m-periodic point, and indicates the number to distinguish

denotes theth BvdP neuron foi=1,2,...,5. the several same sets, if necessary. In the bifurcation dia-
gram, we use notations3", 1", N[", andD" for tangent
Six(Zs) ={[XL X X X{ X1 e RX,,Xpe RY, bifurcation, period-doubling bifurcation, the Neimark—

Sacker bifurcation, and type of branching, respectively,
wherem indicates a bifurcation set fan-periodic point and

Si(Zsa) ={[ XL Xp XL XL X.]" e R%9YX,4,Xp, X e RY, I indicates the number to distinguish the several same sets, if
they exist.
Six(Xsa) ={[X5 Xp X¢ Xg Xgl’ A. Bifurcations in four coupled BvdP neurons

We consider a system of four coupled BvdP neurons. By
analyzing periodic solutions observed in several subsystems
as shown in Fig. 2, we obtained a bifurcation diagram for
periodic solutions, see Fig. 4. In this figure, the shaded
portions denote parameters at which various types of stable
periodic solutions exist: backward diagor@) for an en-

_ 1Y’ X! XY Y~ P20 4 tirely in-phase solution irS;,(24,), vertical (|||) for a par-
Si(Zse)={1Xa Xp XpXe Xo]" €RTIXa Xy, Xo e R} tially in-phase solution inSy, (S ,4,), forward diagonal(\\\)
for an antiphase solution i8,(244), and dotted portion for
V. ANALYSIS OF BIFURCATION a two-periodic solution irS, (2 44). The regions overlapped

This section is devoted to showing numerical results ob DY several patterns denote coexistence of the corresponding
tained from bifurcation analysis of four- and five-coupled- SO"_J“O”S’_ depending on the _|n|t|al condltlo_n. Examples of
BvdP-neuron systems. In order to view results of two- ang’arious kinds of attractors with phase-locking patterns are

three-coupled-BvdP-neuron systems, see Ref]. shown in Fig. 5. . . .

In the following, we fix several system parameters in Eqs. l\/_\/hen the value ofy increases across the -b|furc.at|on set
(2.1—(2.3 asa=0.3,b=0.8,c=3, 7=2, andX= — 0.3, and D5 in Fig. 4, we observe th® type of branching with for-
change the values of the coupling coefficigrand the time MUl
delay 74. We remark that the following results were calcu-
lated by the fourth-order Runge-Kutta method with the Di+2 DI— D},
double precision numbers. We used the method of bisection
for detecting threshold crossing and checked if both propertyvhere the left- and right-hand sides of the arrow indicate the
of solutions and global structure of bifurcation diagrams didperiodic points before and after the bifurcation, respectively.
not change qualitatively, due to the variation of the tolerancelhis bifurcation formula represents a transition between a
of the bisection as well as the step size of numerical integrapartially in-phase {D3) and an antiphasg1) periodic so-
tion. lutions as shown in Figs.(8) and (e), respectively. On the

Before showing results, we summarize some notationsother hand, th@® type of branchingd} causes a bifurcation
The symbols D" and I|" denote hyperbolic periodic points, between unstable partially in-phase periodic solutions in
wherek indicates the number of characteristic multiplier out- S, (2 44) and inSq, (2 43).

e RYYX,,Xp Xe . Xge RY,

Si(Zs9) ={[Xa Xa XpXh Xpl' € R¥IXq, XpeRY,

036230-5



TSUMOTO, YOSHINAGA, AND KAWAKAMI PHYSICAL REVIEW E 65 036230
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. . o Ver i FIG. 6. Bifurcation diagram for periodic solutions in five
{c) partlally in-phase (d) partially in-phase coupled BvdP neurons.
solution in Sg, (¥a3) solution in Sgy (Z4s)
(74 = 1.844819, d = 0.9) (14 =1.85,d=10.9)

'
T v

— ’ g ' '
= 4 4

=, / 4

2l

R P

(a) entirely in-phase {b) partially in-phase
(e) anti-phase (f) 2-periodic solution ’
solution in Sg, (¥s51) solution in Sgy (Es2)
solution in Sgy (344) in Sgy(Xas)
(ra=1,d=12) (r4=0.5, d = 0.4)
(Td:2.3, d—_—‘Og) (Td: 1, d= 195)

FIG. 5. Examples of periodic solutions observed in four coupled
neurons. The circled points denote iterated points by Poiroage

O

I

8 3 i }’/ i \"/‘r" L "/‘ Y
5 10 15 20 25 30

Next, we consider a system of five coupled BvdP neurons. t— t—r

B. Bifurcations in five coupled BvdP neurons

Figure 6 shows a bifurcation diagram obtained from the (c) partially in-phase (d) partially in-phase
analysis of periodic solutions observed in several subsystem:

as shown in Fig. 3. The parameter regions at which stable solution in Sg, (Xs5) solution in Sy (Ese)
periodic solutions exist are marked by the shading: backwarc )

diagonal(///) for an entirely in-phase solution 8 (2 5;), (rg =2.3,d=12) (4 =15,d=08)
vertical (|||) for a partially in-phase solution i, (2 s,), for- 2 2

ward diagonal (\\\) for a partially in-phase solution in .
Six(2s5), dark shaded portion for a nearly triphase solution
in S (X s6), and dotted protion for a two-periodic solution in
Six(2s5). Examples of various kinds of attractors with
phase-locking patterns are shown in Fig. 7.

okl-

1
i

=
B

P

)
-2 -2 L I ' 1

0 100 200 300 400 500

When the value ofry increases across the bifurcation set _ t - .t -
D1 in Fig. 6, we observe th® type of branching with for- (e) 2-periodic solution (f) chaotic oscillation
mUIa: in Sﬁx(255) n SﬁX(Z55>

D1 Di+2 D}, (ra=10,d=18) (ra = 1.75, d = 1.76)

FIG. 7. Examples of attractors observed in five coupled neurons.
wherelD2 is an unstable partially in-phase periodic solution The circled points denote iterated points by Poinaaap.
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FIG. 8. A chaotic itinerancy observed in the four-coupled-
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neuron system atr(;,d)=(0.35,1.8036).
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L.75

1.7

1.65

1.

(=)

1.55

FIG. 9. Enlarged bifurcation diagram of Fig. 4.

quasiattracting states in the neighborhoods of invariant sub-
spaces.

The parameter at which the chaos can be seen is deter-
mined as follows. Figure 9 shows an enlarged bifurcation
diagram of Fig. 4. To see the relation among bifurcation sets
and the property of periodic points, we show a schematic
one-parameter bifurcation diagram with variation of the pa-
rameterd for fixed 4=0.5, in Fig. 10. In the figureon
indicates a two-periodic solution restricted in the invariant
subspaceS; (2 ,44). By decreasing the value af continu-
ously, a couple of stable asymmetric two-periodic solutions
oD3 caused by th® type of branching of,D? bifurcates to
1D3 and ,13 through the bifurcation®3 and 13, respec-
tively. We have a cascade of period-doubling bifurcations
toward chaotic itinerancy, by further decreasingdfThe
parameter range in which the chaos can be seen is very small
and additionally the attractor coexists with a stable periodic
solution as shown in Fig. 9. Hence we assert that bifurcation
analysis of periodic solutions is very useful for detecting
chaotic attractor.

Similar phenomenon of global chaotic behavior can be

in Si(Ss9). In the triangle region without shading in Fig. 6, observed for the five—pogpled—neuron system, see Fig. 11 for
we observe chaotic attractors which behave in various kindgn example. From this figure, the quasiattracting states that
of invariant subspaces, see Fig. 7 for an example of chaos in

Sfix(ESS)-

In this subsection, to illustrate differences on dynamics

C. Global behavior of chaotic attractor

Bifurcations: G} D?13 D} |2

IZD31? D} D}
|

between low- and high-dimensional coupled systems, we
show a global behavior observed in the high-dimensional
systems of four- and five coupled BvdP neurons.

Figure 8 shows wave forms of a chaotic attractor in the
four-coupled-neuron system. The attractor exhibits a tempo-
ral partial synchronization with switching clusters: one in
which both [x[*1—x[2]] ‘and [x[3]—x[4]| are small, and an-
other in which both|x!2/—x[3| and [x!4/—x[1]] are small.
Recall that the state space includes the invariant subspac
Six(244) and its conjugate subspaces. Therefore, this phe-

Periodic points:

2
217

2 2
1D D3

2
D1

2
1Dy

2
oDy

2
2 Di

2
3Di

nomenon is considered as a chaotic itinerancy among several FIG. 10. A schematic diagram of one-parameter bifurcations.
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transitions among not only various types of periodic solu-
tions but also chaotic oscillations.

(3) Chaaotic attractor appearing in this paper is essentially
caused by the effect of coupling. This is easily understood by
the fact that the single BvdP equation cannot generate a
chaos.

(4) Moreover, we have shown a phenomenon of chaotic

@ _ 3] itinerancy for both four and five coupled neurons. It is con-
(a) 2 L jectured that the four-coupled-neuron system, which is con-
sidered as a mutual coupling system of two chaotic neurons
in certain parameter setting, is the minimal system generat-
ing a chaotic itinerancy. We note that the bifurcation analysis
plays an essential role for finding this type of global chaotic
attractor, because the chaos can be seen in a very small pa-
rameter region and coexists with a stable periodic solution.

0 2000 4000 6000 8000 10000

L - R
2000 4000 6000 8000 10000

t—»

L8 _ gl

‘ The synaptically coupled BvdP model with rich global
(b) Pl — 2l dynamics is adequate to reproduce various types of synchro-
nized oscillations in a neuronal network. Further analyses are

3
I 2F needed for clarifying a mechanism of the generation of glo-
= oF bal chaotic behavior.
RS
_2 _
l B e S ' - APPENDIX: THE DERIVATIVES OF SUBMAPS
F;g 0 2000 4000 6000 8000 10000

t— From the definition of5, in Eq. (3.5), the derivative ofS,
with respect to the initial state, is given by

T 0S¢ _ dhii1 [ de
—X= (et toX
_ g Xy q axk(Tk 6t Xio
=
| . . ar\ dhet
B0 2000 4000 6000 8000 10000 +f(hk+1(uk+1))7xk au,
g PR
(d) 33[5] — x[l] _ é)hk+l _ 1
X+ 1 f99k+1f b1
FIG. 11. A chaotic itinerancy observed in the five-coupled- Xy 1 (M F1(U+))
neuron system atr(;,d)=(0.585,1.8).
-1
_ IGk+1)\ do k
. . _ 1 .
the trajectory itinerants are near subspaces satisfyifhy ><f(h|<+1(U|<+1))(9Xk+l Txk(Tk"'tk:tklxk)Tuk,

=x121=x[3] and x!*1=x[%] for t in around[0, 340Q; x!!!
=x[3 and xt?!=x1*1=x[%] for t in around[3400, 6800
xIH=x[31=xI5] gnd xt21=xI4] for t in around[6800, 8900

Al
and so on. (A1)

where the second equation is obtained by eliminating
VI. CONCLUDING REMARKS dtl 9%, in the first equation, which comes from the relation

We have investigated mechanisms of various bifurcation
phenomena observed in BvdP neurons coupled through the J
characteristics of synaptic transmissions with a time delay. ng+1[‘»p(7k(xk)+tk;tkrxk)]zoy
The main results obtained from the analysis are summarized K

as follows since Xy4 1= (7 (%) + ;1 , X)) € My 41 holds for anyx,

(1) We formulated all kinds of subsystems with delayed € Mi- Note that, in Eq.(Al), the transversability of the
mutual-and self-coupling and analyzed symmetric solution$olution with respect td/, ; guarantees
with phase-locking patterns, which behave in invariant sub-
spaces. 5
. . . . . i1
(2) We calculated bifurcations of periodic solutions with f(he (U 1)) #O0.

various kinds of synchronization. We found mechanisms of X+ 1

036230-8
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On the other hand, to avoid the discontinuity of the solution d 9 9f do dp
= ——=—— with —| =1, (A2)
att=r4+t,, we have dt ox, X 9%y Xl _,
Tk
de d do df 9 d
(?T(Tk'i'tk;tkvxk) S~ wit 7 =1, (A3)
k dt gy,  Ix dyy Yk ——
do _ de ]
:a—w(gtkﬂkﬁd“k’yk)a_)q((Tde’tk'Xk)- and puttingt=74+t, and 7+t in the solutions of Egs.

(A2) and (A3), respectively. The derivation of the first and
The right-hand side of the above equation is obtained byhe second derivatives & with respect to\, u, andv,, in
solving the first-order variational equations: Eq. (3.8) is similar.
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