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Achronal generalized synchronization in mutually coupled semiconductor lasers
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Heil et al. [Phys. Rev. Lett86, 795 (2001)] recently discovered achronal synchronization of chaos in
mutually coupled semiconductor lasers. This paper offers an analytic interpretation of their experiment using a
simple rate equation model. Local eigenvalue analysis shows that isochronal synchronization is unstable;
achronal synchronization, on the other hand, is stable if a generalized synchronization function is introduced.
Single- and multimode simulations have substantiated this rate equation interpretation. Finally, there is a brief
examination of “chaos pass filtering.”
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Pecora and Carrol's influential papgt] set in motion dey A1) _
work synchronizing chaotic electroni@] and optical[3] qr - lallnid —ny]—ian, (1)}
systems. Optical systems are especially interesting as they
can have infinite-dimension§4,5] and spatiotempordb, 6] X ey (t)—ajner )+ meyq(t—17),

chaos. Most optical systems use a feedback detay {0
drive the oscillator into a chaotic state and a coupling delay
(7,) to couple the light into another oscillat¢7]. If =,
# 7, then achronal synchronization, where the driven oscil-
lator’s dynamics lag or anticipate the driving oscillator’s dy- dny A1)
namics, occurg8,9]. Mutually coupled lasers, where each 127 _
laser’s feedback is symmetrically replaced by the delayed
electric field from the other, were not expected to have ach-
ronal synchronization since;=7,. However, Heilet al.
[10] recently discovered achronal synchronization in mutu-
ally coupled lasers. Numerical models also possessed achro-
nal synchronizatio10,11] but did not explain the lack of Here e; (t) is the complex electric-field amplitude and
isochronal synchronization—that is, both lasers having than, )(t) is the carrier density for either the first or second
same dynamicat the same time laser. The usual rate equation coefficients are ubdd:the
This paper offers an analytic interpretation of achronalconfinement factor is the linear differential gaim,, is the
synchronization in mutually coupled lasers. Isochronal syniransparency carrier density,is the linewidth enhancement
chronization can be described intuitively: each laser profactor, a;,, is the internal lossincluding the facet lossgs)
duces oscillations in its identical Companion as if there WerqS the current pump|ng density, an-q is the eﬁective Carrier

feedback with a time delay equal to the coupling delay. Thigitetime. The coupling term consists of an attenuatipand
solution is unstable. Achronal synchronization is stable, bug delayr.

it has a counter-intuitive construction: stable synchronization riist isochronal synchronization is shown to be unstable
requires feedback with a delay time twice that of the cou- ' : - '
Ii?"n delay. This construction ?/s an exact solution for only S = €2()=e(t) exactly solves Eq(1) if e(t) is also the
ping Y. ! - ' ONY solution of an identical laser with feedbaekt— 7). This
one laser, the other laser’s oscillations are not described b . . \ .
. . . oes not imply the existence of an external cavity but links,
this solution and a small error determined by the constructe ) .
y analogy, the synchronized solutie{t) to the Lang-

solution will always exist. Boccaletti, Pecora, and Pelaez’ ob hi solution13]. Anal b q |
framework for synchronizatiofl2] classifies systems with obayashi solutioj13]. Analogy betweere(t) and externa

these characteristics as generalized synchronization inste&8Vity 1asers permits the use of established results, associates
of the simpler identical synchronization. a physical interpretation to a mathematical abstraction, and

The analysis begins with the standard single-mode ratgenerally iIIuminat_es the analysis. _
equations for a semiconductor laser with delayed injection Small perturbationgdenoted bys) may drive the system
[13] from synchronization. Stability is governed by

t
T: J- nl;_Z(n ) a[nl,z(t)_ntr]|el,2(t)|2- «h)
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- ne(;(_t;) (1+e M) 0 la(l-iea)
56* e*(t—17) B ) 56*
N oe* | = 0 —n**—t(1+e Ay Ta(l+ia) oe* |, 2)
on e*(t) on
1
—aln®—nglle®l*  —aln®)-nylle®* - ——ale(t)?
The uncoupled casep=0) has solutions
)\QZO,
1 1 2
- T—+a|e(t>|2}r\/ T—+a|e(t)|2} —8ra’{n(t)—ny]e(t)]?
_— n n ) (3)

- 2

N . has a nonpositive real part providing th&t) —n,,>0. n* e*(t—1)
The time-averaged local eigenvalues determine stability: {)‘ﬁzm Ter(t)

Theorem 1Suppose dAdt=A(t)y and At) is always
diagonalizable. If every eigenvalua of A(t) satisfies
Re(\)=<—f(t) for some {t)>0 then

[Ta*(1—ia)[n(t)—ny]le(t)|’]

n e(t—r7)
>\1+2m—e(t)

X[Ta*(1+ia)[n(t)—ny ] e(t)|?]

+

yo <e Jof(9ds. 4) =0. ®
y(0) _ |
Taking 7=|p|e'“o” ande(t) =A(t)e'*" gives
This is not a rigorous stability criterion. Rigorous stability L A(t—1) N
calculations are difficult, often tailored to a specific system 1= A(t) @
(see[14] and references therginEasier, nonrigorous meth-
ods can calculate stability without a loss of accuracy. One Xcogwortarctana+ ¢(t—7m)—¢(t)]. ()

common method uses the Lyapunov exponents along a tra-
jectory, with the system being stable if all Lyapunov expo-
nents are negativgl], but it does not relate stability along

the many possible trajectories in a chaotic attractor. How
ever, the eigenvalues of the Jacobian determine th

Lyapunov exponents along a trajectory, so showing that th‘Fermines the external cavity fixed poirlts7] and their sta-

Qacoblan has no positive eigenvalues is equwalent to ShOVB’ility [18]. Specifically, near an equivalent unstable external
ing that the Lyapunov exponents are negafil®. This con- cavity fixed point

nection establishes local eigenvalue analysis as a credible,

nonrigorous tool for evaluating synchronization stability. Al- 1
though Corron[16] found counterexamples to local eigen- 1+« cod wor+arctana+ ¢(t—7)— d(1)]<— 5.
value stability analysis, he concluded that such stability 7l
analysis is still effective for most systems. All things consid-

ered, a system is unstable if a local eigenvalue is positive. o1y apnroaches an unstable fixed point prior to an external
~ Small values ofr|7| (7, is the laser cavity round-trip  cayity mode hop in the Lang-Kobayashi solution. As external
time) perturb the eigenvalues from their=0 values. This  cayity mode hops are a necessary condition for chaos in the
does not affect the stability of.. but the marginally stable | ang-Kobayashi system, E¢6) inevitably becomes positive
phase eigenvalug, is now either stable or unstable. Assum- and isochronal synchronization turns unstable. On startup
ing the perturbation takes the formv=\Ao+7[7/\;  there will be an initial period of isochronal synchronization
+ 72| 7|?N,+- -+, whereg=0 and 7,|5|<1, then to first lasting until immediately after the first equivalent external
order in | 7| cavity mode hop ire(t).

The delayed phase differenggt — 7) — ¢(t) determines
the isochronal synchronization stability. An upper bound on
the delayed phase difference may be established by analogy
etweere(t) and the equivalent Lang-Kobayashi solution. In
e Lang-Kobayashi system, the delayed phase difference de-

)
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When isochronal synchronization loses stability a secondeedback ofe(t— 7) is a solution for neither subsystem. The
solution may be chosen. Experiment and simulation suggesiquivalent Lang-Kobayashi solution requires a feedback
that achronal synchronization, consisting of a laggard soluterm ofe(t—27). Secondg(t) only satisfies the equation of

tion e (t)=[1+ Se,(t)]e(t) and a leader solutiore,(t)
=[1+ de,(t+ 7)]e(t+ 7), is selected. Direct substitution of
the synchronous solutiog(t) for e;(t) ande,(t) yields

de(t) .
ar a{[n(t)—ny]—ian(t)}e(t) — aj,e(t)

e(t)
+ .
K e(t—27) (subsysteme,)

(subsysteme;)

8

Two differences from isochronal synchronization are im-
mediately obvious. First, a Lang-Kobayashi solution with

e(t—27)
‘4”?0
oe,
N 685 | = 0 —n*
on,

—a[n(t)—ngJle(t)|?

As before, for| 7|=0 Eq.(3) governs the stability. The mar-

ginally stable eigenvalua,=0 may become unstable for

nonzero values dfy|. Using the previous eigenvalue expan-
sion and solving foi\; gives the stability condition

N1=—21+ a?| co§ 2wy 7+ arctana]

A(t—27)

AD co§2wqgr+arctane+ ¢(t—27)— (1) ]|.

(10)
This expression is identical to E¢) with the addition of

a time-independent term d@s, 7+arctana]. The choice of
arctana’s branch guarantees that €Pe,r+arctana] is

motion for the subsystera,; e(t) is not an exact solution
for the subsystene;. Such a situation, where the synchro-
nized solution solves one subsystem exactly but not the
other, is best classified as generalized synchronization, which
“associates the output of one system to a given function of
the output of the other systen{’12]. The linearized sub-
systems are of two different typede, is homogeneous
(which determines stabilijy and de; is inhomogeneous
(which determines the generalized synchronization fungtion
The homogeneous subsystei®, is

0 Fa(l—ia)
* [+ __ 56‘2
1+Lt27) Fa(l+ia) || oe} ©
e (v on,
1
—a[n(t)—ny]le(t)|? - ——ale(t)]?
[
t t ¢
5D(t):eftoD(§)d§f e*ItOD(f)defl(g)
to
e({—27)
_’7(1_ e(0) )
x| *(1_e*<§—2r)> dz
7 e (0)
0
+ 5 (ty) e/ 1P e
=Q L D[6le(t)]+ dey(to) /M%) (11)

D is the diagonal matrix containing the local eigenvalues for
the subsystende; [Egs.(3) and(6) with 7—27], Jp is the
state vector of the subsystefe; expressed in the basis Df
and Q is the change of coordinate matrix consisting of the

greater than zero and furnishes a continually stabilizingocal eigenvectorg] e(t)] is the generalized synchronization

force. As¢(t—27) — ¢(t) is a chaotic variable with fluctua-
tions greater thanz2, f% co§ H({—27)— p(£)]d goes to zero

function in the original basis. Botlb and Q are time-
dependent matrices, making the exact calculation of the gen-

for large times. Hence, the time-independent term dominatesralized synchronization function impractid#l not imprac-
the stability for long times and achronal synchronization isticable.

stable.
The inhomogeneous subsystei®, defines a generalized
synchronization function

Numerical integration of Eq.1) has verified the interpre-
tation presented here. Both lasers have been started from the
same state and noise has driven them apart. This initializa-

036229-3



J. K. WHITE, M. MATUS, AND J. V. MOLONEY PHYSICAL REVIEW E65 036229

L e I B e B s e m e 1

A, (10°s™)

Intensity (Arb. Units)

Time (ns) Phase Difference (radians)
FIG. 2. Phase-space trajectory for the single-mode system.
b) ] Equivalent stablgunstable external-cavity modes have been de-
1 noted as diamond&rosses Up to 80 ns(solid line) the trajectory
had remained near the first stable external cavity mode. After 80 ns
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E ] (dashed ling the trajectory has jumped to the next stable external
5 i cavity mode and isochronal synchronization has become unstable.
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FIG. 1. Startup of the mutually coupled single-mode system. <% r
Both lasers have been started from the same initial conditions and

noise has continuously driven the system away from an identical -400 [

state.(a) Dashed line, eigenvalue; calculated for isochronal syn-

chronization. Solid line, smoothed fit ¥, . Inset, enlarged view of 600 L U )
the smoothed fit tov;. (b) Error function|A,(t) —A,(t)|. Dimen- 0 20 40 80 80 100
sionless parameterd’=1.1, a=1, n,=1, a=4, @;,;=0.27,J Time (ns)

=4.7x10"3, 7,=333.3,7=0.21xe ™, andr=1515.15(5 ns.

1_---|---|---|---|-

tion assured that the system began in the isochronal synchro- L ]
nization state. After the first external cavity mode hop, iso- I ]
chronal synchronization became unstable. When the
instability occurs has been estimated from the error function
|A;(t)—A,(t)|. For isochronal synchronization, the pertur-
bation eigenvalue.; and the error function are plotted in
Fig. 1. Both have been averaged with af@ll width at half
maximum (FWHM) Gaussian filter, which(1) simulates a
finite detector respons€2) averages the inhomogeneous
contribution from #[e(t)], and (3) satisfies the conditions
for local eigenvalue stability analysis. For a delay of 5 ns, the
effective bandwidth of the simulated detector is 100 MHz.
Chaotic oscillations had set in by 40 ns, and the system was
showing isochronal synchronizatidas measured by the er- FIG. 3. As in Fig. 1 but for the multimode systefa) Dashed
ror function u_ntll 80 ns. Prior to 80 n9§l had some positive line, eigenvalue\; calculated for isochronal synchronization. Solid
spikes but still had an overall negative value. At 80MS jine, smoothed fit to., . Inset, enlarged view of the smoothed fit to
oscillates about 0, clearly violating the conditions for stabil-) , . (b): Error function|A;(t)—A,(t)|. A many-body mode[11]

ity, and e(t) has had its first external cavity mode h@fig.  with the same parameters as the single-mode model has been used.

-A2 (Arb. Units)

1

A

Time (ns)
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2). After 80 ns achronal synchronization is stable and itstions made to the laggard laser altered the leader laser’s re-
associated eigenvalue ;=—2s 1. This eigenvalue is sponse while periodic perturbations made to the leader laser
larger than the isochronal eigenvalue 108 s71), is time  did not disturb the laggard. The effect was labeled “chaos
independent, and is suitable for standard linear stabilitypass filtering” and from this the researchers concluded that
analysis. So, in a single-mode simulation, the external cavitchronal synchronization acted as a unidirectional coupled
modes have destabilized isochronal synchronization whildystem: the leader laser was the driving subsystem and the
achronal synchronization has not been affected. laggard laser was the driven subsystem.

Mutually coupled lasers are not likely to run single mode, In achronal synchronization, the difference between the

even if the solitary laser runs nominally single mode. FeedWO 1asers is

back[19] and external injectiori20] excite multimode dy- se(t)=e(t)—ey(t—r7)

namics in single-mode lasers and multimode dynamics can

change the synchronization stabilif§]. Luckily, in many =e‘f{o”“>d45e1(t0)

instances multimode systems conserve the single-mode

structure, but such requires verification before affixing a —e“lte*f{&@)dgﬁez(to)—0[e(t)]
single-mode interpretation to a potentially multimode sys- .

tem. Previous work established that achronal synchronization =[Se;(tg) —e Misey(ty)]e M —gle(t)].

is stable for the multimode ca§#l]. The perturbation eigen- (12)
value A, and the error functiofA,(t)—A,(t)| have also
been calculated for the multimode system and are plotted iff the leader system is perturbgéde;(ty) =0 and de,(ty)
Fig. 3. Initially isochronal synchronization predominated but+0], Se(t) decays toé[e(t)], achronal generalized syn-
had lost stability within the first 100 ns, switching to achro- chronization is unaffected, and “chaos pass filtering” is ob-
nal synchronization. As in the single-mode case the eigenserved. If the laggard system is perturlefe; (t,) #0 and
value \; had initially been negative, turning positive when de,(t;)=0], achronal synchronization is affected and the
isochronal synchronization lost stability. Unlike the single-system may be driven to a different solution such as ob-
mode situation, following the onset of chans had brief  served in[10].
periods where it became positive, hampering isochronal syn- This paper has shown that, because of a phase instability,
chronization. This relates to the increased difficulty of syn-achronal synchronization is preferred over isochronal syn-
chronizing infinite-dimensional spatiotemporal chaos, whichchronization in mutually coupled lasers. Achronal synchroni-
is present in the multimode systef]. Still the multimode  zation requires a construction that results in the two lasers
laser has yielded to achronal synchronization by 80 ns antlaving different dynamics; viewed as such it is the first ex-
N\, has become positivéhe onset of the first power dropout ample of generalized synchronization in optical systems.
drives\ ; negative at 100 nsThus the single-mode interpre- Single- and multimode simulations explicitly show the phase
tation applies to multimode systems as well. instability’s onset. Finally, “chaos pass filtering” is under-
Finally, the interpretation developed here can shed lighstood as a natural consequence of achronal generalized syn-
on a surprising result from10]. In [10], periodic perturba- chronization.

[1]L. M. Pecora and T. L. Carroll, Phys. Rev. Lefi4, 821 [10] T. Heil et al, Phys. Rev. Lett86, 795 (2001).

(1990. [11] C. R. Mirassocet al, Phys. Rev. A65, 013805(2001).

[2] K. M. Cuomo and A. V. Oppenheim, Phys. Rev. Létf, 65 [12] S. Boccaletti, L. M. Pecora, and A. Pelaez, Phys. Re®3E
(1993. 066219(2001).

[3] R. Roy and K. S. Thornburg Jr., Phys. Rev. Lét2, 2009  [13] R. Lang and K. Kobayashi, IEEE J. Quantum Electrb$).347
(1994. (1980.

[4] H. D. I. Abarbanel and M. B. Kennel, Phys. Rev. LeD, [14] R. Brown and N. F. Rulkov, Chaog 395 (1997.
3153(1998. [15] G. A. Johnsoret al,, Phys. Rev. Lett80, 3956(1998.

[5] J. K. White and J. V. Moloney, Phys. Rev.59, 2422(1999. [16] N. J. Corron, Phys. Rev. B3, 055203(2002.
[6] J. Garcia-Ojalvo and R. Roy, Phys. Rev. L&&, 5204(2002). [17] G. H. M. van Tartwijk, A. M. Levine, D. Lenstra, IEEE J. Sel.

[7] G. D. Van Wiggeren and R. Roy, Scien2&9, 1198 (1998; Top. Quantum Electrori, 466 (1995; I. Fischeret al, Phys.
J.-P. Goedgebuer, L. Larger, and H. Porte, Phys. Rev. 8@tt. Rev. Lett.76, 220(1996.
2249(1998; I. Fischer, Y. Liu, and P. Davis, Phys. Rev6g, [18] J. Mark, M. Semkow, and B. Tromborg, Electron. L&, 609
011801(2000. (1990.

[8] H. U. Voss, Phys. Rev. B1, 5115(2000. [19] G. Huyetet al, Phys. Rev. A60, 1534(1999.

[9] C. Masoller, Phys. Rev. Let86, 2782(2002. [20] J. K. Whiteet al,, IEEE J. Quantum Electro4, 1469(1998.

036229-5



