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Microscopic chaos from Brownian motion in a one-dimensional anharmonic oscillator chain

M. Romero-Bastida* and E. Braun
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~Received 23 October 2001; published 5 March 2002!

The problem of relating microscopic chaos to macroscopic behavior in a many-degrees-of-freedom system
is numerically investigated by analyzing statistical properties associated to the position and momentum of a
heavy impurity embedded in a chain of nearest-neighbor anharmonic Fermi-Pasta-Ulam oscillators. For this
model we have found that the behavior of the relaxation time of the momentum autocorrelation function of the
impurity is different depending on the dynamical regime~either regular or chaotic! of the lattice.
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I. INTRODUCTION

A physically relevant and still not satisfactorily solve
problem is the question of how the underlying chaotic m
croscopic dynamics of many-particle systems is related
the observed macroscopic behavior. Assuming that the m
features observed at the macroscopic level can be accou
for by the microscopic dynamics, one would expect th
some characteristics of the latter, specifically its chaotic
should be detected, in principle, at the macroscopic leve
description.

Recent empirical evidence suggesting microscopic ch
on a molecular scale has been presented in an experime
the position of a Brownian particle~BP! in a fluid @1#. The
measurements were made at regular time intervals and
experimental time series data was then interpreted u
standard techniques of chaotic time series analysis, sug
ing a positive lower bound on the Kolmogorov-Sinai e
tropy, hence, microscopic chaos. However, a similar bo
has been obtained with computer experiments on the non
otic Eherenfest wind-tree model where a single particle
fuses in a plane due to collisions with randomly place
fixed, oriented square scatterers@2#, rendering doubts abou
the conclusion that microscopic chaos has been experim
taly detected. Further comparisons with the chaotic Lore
model, which has circular scatterers and has a diffusive
havior that is undistinguishable from the one exhibited by
Eherenfest model, have confirmed that the standard met
of chaotic time series analysis are ill suited to the problem
distinguishing between chaotic and nonchaotic microsco
dynamics, although some alternatives have been propos
order to overcome this situation@3#.

The results in Ref.@1# were attributed to the physica
issue of time scales—the time intervalDt'1/60 s between
measurements was vastly greater than the typical collis
times tc'10212 s of the BP with the solvent particles in th
fluid, which make the diffusive behavior in the experimen
data and in the computer experiments virtually identical@2#.
However, there is a time scale in Brownian motion, not m
tioned in the previous works, that is characterized by
relaxation timet'1028 s of the momentum autocorrelatio
function~MACF! of the BP. SinceDt@t.tc , this relaxation
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time could, in principle, be used to probe the microsco
dynamics of the system, but so far this possibility has
been explored experimentally. Moreover, the simplicity
the models used in Refs.@2,3# precludes a study in the mo
mentum space from the very beginning, and therefore, a
ferent kind of model is needed to address the problem
hand.

We propose to reconsider a simple Hamiltonian mo
that has been studied extensively in the past, namely, a
dimensional chain of harmonic oscillators of unitary ma
coupled to a heavy oscillator~impurity!. Many-body effects
in Brownian motion can be analytically investigated wi
this model, and it was proved that the impurity of massM
@1 satisfies a Langevin equation when the thermodyna
limit N→` is taken and random initial conditions are give
to all the oscillators of the system@4#. However, in its origi-
nal formulation this model is useless to address the propo
problem because of the lack of chaoticity in the lattic
which nevertheless behaves as a heat bath.

In this paper we extend the above-mentioned harmo
model with an anharmonic potential, which makes the res
ing Hamiltonian very similar to the Fermi-Pasta-Ulam~FPU!
model @5#. With this modification we explore, for this par
ticular model, the possible effect of microscopic chaos in
statistical behavior of the heavy impurity. We note that t
problem of an harmonic oscillator coupled linearly to a FP
chain has already been studied@6#. Diatomic and disordered
mass versions of the FPU model have been applied to
problem of energy equipartition@7# and heat conduction@8#,
but not with a single heavy impurity in the context of Brow
ian motion, as is our case.

II. THE MODEL

The Hamiltonian of the model we are considering can
written, in terms of dimensionless variables, as

H5 (
i 52N/2

N/2 F pi
2

2mi
1

1

2
~xi 112xi !

21
1

4
b~xi 112xi !

4G ,
~1!

wheremi51 if iÞ0 andm05M ; periodic boundary condi-
tions are assumed (x(N/2)115x2N/2). The model describes a
system of one-dimensionalN coupled nonlinear oscillators o
unit mass with nearest-neighbor interactions and a cen
©2002 The American Physical Society28-1
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oscillator ~impurity! of massM, with displacementx0[X
and momentump0[P. The quadratic part of Eq.~1! was the
one studied in connection with Brownian motion in Ref.@4#.
The valueb50.1 was used in all the numerical experimen
hereafter reported. We call this model the modified F
~MFPU! model.

III. DYNAMICS IN PHASE SPACE

It is known that, for high values of the total energy p
degree of freedome, the homogeneous~uniform mass! FPU
model @obtained from Eq.~1! by taking M51# is chaotic
whereas, for smalle values, the model behaves as a chain
harmonic oscillators@9#. It is then important to corroborate i
these dynamical regimes are in some way affected by
presence of the impurity at lattice sitei 50. To this end we
employ the following distance in phase space:

d~ t !5A(
i

@$xi
1~ t !2xi

2~ t !%21$pi
1~ t !2pi

2~ t !%2#, ~2!

where the sum runs over all theN11 oscillators of the sys-
tem, the superscripts 1 and 2 refer to two states that at
t50 differ by an infinitesimal quantityd(0)51026 or less.
In our simulations we prepared a system withN5300 000
unit mass oscillators in their equilibrium positions. Then w
distributed the momenta of the oscillators according to
Maxwell-Boltzmann distribution at a temperatureT consis-
tent with the chosen value ofe and let the system evolve i
time by solving the equations of motion with an improv
leap-frog algorithm. All computations were carried out
double precision. At each temperature an average^^d(t)&&
over ten different realizations was taken to avoid fluctuatio
that come from a particular choice of the initial condition
This calculation was performed for different values ofe and
M51, 40, 60, 80, and 100. The results forM51 ~shown for
comparison! and 60 are exhibited in Fig. 1. As can be see
an exponential divergence corresponds to valuese>1
whereas fore,1 the distance is found to be bounded with
the same order of magnitude. This happens independent
the value ofM for all the cases studied. Thus we can co
clude that the qualitative dynamical behavior of the system
only weakly affected by the presence of the heavy impur
Hence, for small values ofe, which correspond to the valu
range 0.01<e,1 in Fig. 1, we find regular~i.e., almost pe-
riodic! behavior in phase space whereas for largee values,
which we have studied in the range 1<e<10, the dynamics
in phase space is chaotic@10#.

IV. STATISTICAL BEHAVIOR OF THE HEAVY IMPURITY

Thermal equilibrium between the impurity and the FP
chain was attained within the time scalet553105. Time
averageŝ •••& t necessary to obtain the relevant correlati
functions were computed afterwards over the character
time scalet523105. The first quantity to be studied was th
mean-square displacement. An example is shown in Fig
the temperature~i.e., mean kinetic energy per degree of fre
dom! T511.61 was computed, which is the same value
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ported in Ref.@11# for the homogeneous FPU model ande
510. For short times (t,100) the ballistic behavior of the
impurity is evident, whereas, for long times, the diffusiv
effect of the bath of light oscillators has been establish
The noise in the curves reported is negligible for the tim
interval 100,t,300, so we can be confident of the values
the ‘‘diffusion coefficients’’DM obtained from the slope o
eachM curve in the aforementioned time interval.

An important issue at this point is to check if the devi
tions of the individualDM values from their arithmetic mea
D̄ are statistically significant for any givene; if so, then there
is a dependence of the diffusion coefficient on the mass
the heavy oscillator. For a system of coupled harmonic
cillators it is well known that the diffusion coefficient is in
deed independent of the mass of the impurity. Howeve
different situation arises in another type of models. In R

FIG. 1. Average distance in phase space between pairs of
jectories corresponding to initial conditions such thatd(0)<1026

ande50.01 ~circle!, 0.1 ~square!, 1 ~plus!, 2 ~cross!, and 10~aster-
isk! for M51 andM560 with N5300 000. Time is measured in
natural units.

FIG. 2. Mean-square displacement of the impurity fore510.
The solid line, with slope 2D57.95, has been added for referenc
8-2
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@12# it was shown that for a system of noninteracting ma
points moving on a line and colliding with a heavy partic
there is a mass dependence that increases with the ma
the heavy test particle. For the MFPU model our resu
show that the deviationsDM2D̄ are negligible for smalle
values and more pronounced for largee values. Neverthe-
less, in both regimes (e,1 ande>1) the deviations neve
exceeded a few percent in all the cases considered, wit
systematic drift. Thus we can consider that the diffusion
efficient is given byD;D̄. For e50.01 we have obtained
the relationship 2D50.0104'T, which corresponds to the
exact result for the harmonic chain@4#. In Fig. 3 we plot the
value of the diffusion coefficientD vs the energy densitye.
By a least-squares fit we obtain a power-law scaling w
respect to e of the form D5D0em, where m50.964
60.008 andD050.46660.008. From the validity of this
relationship throughout the entiree value range studied
(0.01<e<10), from regular to chaotic, we conclude that,
far as our results allow us to infer, no evidence of the mic
scopic dynamics can be detected in the behavior of the
fusion coefficient, in agreement with the known results of
Eherenfest and Lorentz models@2,3#.

The MACF r0(t)[^P(t)P(0)& t /^P2(0)& t of the impu-
rity can also be straightforwardly computed. Figure 4 sho
the time dependence ofr0(t) in linear-logarithmic scale for
all values ofM considered ande510; othere values yield
similar results. It is evident that, for the relevant time sc
(0<t<50), the MACF exhibits an almost exponential d

FIG. 3. Diffusion coefficient vs energy density. The straight li
is the power-law fit explained in the text.

FIG. 4. Logarithm of the MACF of the impurity fore510.
Symbols have the same meaning as in Fig. 2. The straight line
each value ofM correspond to the fit exp(2t/t).
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cay, which allows us to obtain the relaxation timet from the
slope of each curve. The straight lines plotted correspon
the exponential fit exp(2t/t). The observed accuracy of thi
fit is a clear signature that the impurity indeed perform
Brownian motion. The behavior of the MACF is smoother
the massM increases, so this fact can be considered as
other evidence that the more physically relevant results
obtained with larger values ofM. The magnitude ofr0(t) is
negligible fort.50 in all cases, and consequently its cont
bution was not considered in the computation oft.

A very interesting result can be obtained if we plot t
relaxation timet vs the energy densitye for the entiree
value range, from regular to chaotic, and all the conside
M values, as shown in Fig. 5 in log-log scale. We obse
that the data points are separated into two different and w
defined regions, depending on thee value. In all cases the
dependence oft on the energy density is weak whene,1.
On the contrary, whene>1, t decreases steeply with in
creasinge. In each of these regimest has a power-law scal
ing with respect toe as

tM~e!5H t0,MeaM, 0.01<e,1

t̃0,MeãM, 1<e<10.
~3!

For all the data points corresponding to a fixedM value,
t0,MÞt̃0,M andaMÞãM. This feature contrasts with the be
havior of D as seen in Fig. 3, where a single scaling law
valid for the entiree value range. In thee,1 regime the
accuracy of the power-law scaling oftM can be tested by
noticing that, fore50.01, t0,M must coincide with the exac
value M /2 of the relaxation time of the MACF for the har
monic chain@4#. This is indeed the case with an accura
better than 1%.

We notice that the slopes of each of the fits in Fig. 5 a
approximately the same for thee,1 regime. Furthermore
the same thing happens fore>1, though with other slope
value. These facts imply that the scaling exponents in Eq.~3!
for each regime are approximately the same, independen
the particularM value to which they correspond. It is the
reasonable to expect the existence of a mass-indepen
scaling exponenta* (ã* ) for the e,1 (e>1) regime. In
order to computea* (ã* ) we rescale the data of Fig. 5 o

or

FIG. 5. Relaxation time vs energy density. The dashed~dotted!
lines correspond to the least-squares power-law fit~3! for the e
,1 (e>1) regime and allM values.
8-3
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M. ROMERO-BASTIDA AND E. BRAUN PHYSICAL REVIEW E65 036228
e,1 (e>1) with their correspondingt0,M ( t̃0,M) value to
obtain the new datae* [ ln e/ln t0,M (e* [ ln e/ln t̃0,M) and
t* [ ln t/ln t0,M (t* [ ln t/ln t̃0,M). The result is reported in
Fig. 6.

As can be seen, we have found a common scaling for
the data points in each regime,e,1 ande>1. The dashed
lines correspond to the best fit of the data in each reg
which allow us to calculate the mass-independent sca
exponentsa* and ã* . The result is

t* ~e* !;H ~e* !20.01760.004, 21.575 41<e* ,ec*

~e* !20.13660.007, ec* <e* <0.801 21.
~4!

ec* '0 is the critical value at which the change of scali
occurs and is indicated by the dotted vertical line. T
change in behavior when going from low to highe value is
quite pronounced since the scaling exponents differ by
order of magnitude.

V. DISCUSSION

After the presentation of our results we would want
make some remarks. First of all, it could be argued that
diffusion coefficient can be obtained from the MACF by em
ploying the Green-Kubo relation@13# that can be written, in
terms of the MACF, as@14#

DM5
T

ME
0

`

r0~ t !dt. ~5!

This identity implies thatD andt are not independent vari
ables. More precisely, if we substitute the exponential
r0(t)5exp(2t/t) in Eq. ~5! we obtain the relationDM
5(T/M )t, and therefore, the behavior oft and DM as e
increases should be similar. However, we haveT/M!1 for
all M values considered, e.g.,T/M52.531024 for e50.01
and 0.290 45 fore510 with M540. Thus the behavior ofe
vs t depicted in Fig. 5 is lost whent is multiplied by the
factor T/M to obtainDM. In fact, if we rescale each of th

FIG. 6. Same data as in Fig. 5, but in rescaled unitst* ande* .
Dashed lines are the least-squares fit in each region.
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data points displayed in Fig. 5 with the corresponding fac
T/M , the result are data sets$DM%, one for eachM value,
spanning the entiree value range. Furthermore, if we take
for a certaine, the arithmetic mean of all theDM values, we
recover the data points displayed in Fig. 3. Thus there is
contradiction between the data in Figs. 3 and 5 and
Green-Kubo relation~5!.

To address the problem of the origin of the change in
scaling oft as depicted in Fig. 5 we consider the dynamic
behavior of the system as described in Fig. 1. We notice t
for the particular value ofM560 ~the following observations
are valid for otherM values as well!, whene,1 the system
is in a regular region of phase space, whereas, fore>1, the
dynamics is chaotic. Thise value range is approximately th
same as that obtained from Fig. 5 for the change in beha
of t as a function ofe. From this observation we conclud
that the change of scaling int may be attributed to the quali
tative change, from regular to chaotic, in the microsco
dynamics of the whole system.

It is important to point out that similar numerical resul
were obtained from the behavior of the relaxation timetR of
the spectral entropy, a function used to study the relaxa
to equilibrium of a many-degrees-of-freedom Hamiltoni
system starting with far-from-equilibrium initial conditions
For high values ofe ~total energy per degree of freedom!
tR;const, buttR suddenly increases below a certain thres
old, eR;1 for the homogeneous FPU model@9#. This result
bears some resemblance to the change of scaling int for our
model, although the details of behavior ase decreases are
different for both relaxation timest andtR. Another differ-
ence worth stressing is that the relaxation timetR for the
homogeneous FPU model is associated to the equilibra
process, but the relaxation timet reported in Fig. 5 is the
time that characterizes the decay of the MACF of our MFP
model, which is computed in the thermodynamic equilibriu
state@15#. Moreover, it should be noted that numerical ana
sis of the dynamics of the homogeneous FPU@9# and other
one-dimensional models@16# has shown that the change o
behavior intR ase increases is related to a transition, com
mon to these models, from weak~i.e., almost periodic! to
strongly chaotic regimes. It remains an open probl
whether the behavior oft as reported in Fig. 5 can be ob
tained or not when the impurity is coupled to some oth
system, such as those studied in Ref.@16#. The sudden
change in the scaling oft clearly observed in Fig. 5 could
very well be related to some particular characteristic of
aforementioned transition in the case of the FPU chain.
will address this problem in a future communication.

VI. CONCLUSIONS

We have found, for the particular model studied, that
diffusion coefficient, related to the position of the heavy im
purity, is useless as a probe of the microscopic dynamic
the system to which it is coupled. On the contrary, we ha
presented evidence that the relaxation time of the MAC
related to the momentum of the heavy oscillator, show
different behavior in going from the regular to the chao
dynamical regime of the FPU chain ase increases. To the
8-4
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best of our knowledge this is the first time that such a ma
festation of the microscopic dynamics of the FPU model c
be observed in the behavior of a physical macroscopic
rameter characteristic of Brownian motion. So far we can
generalize this result to other models. This task will be l
for future research.
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