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Microscopic chaos from Brownian motion in a one-dimensional anharmonic oscillator chain
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The problem of relating microscopic chaos to macroscopic behavior in a many-degrees-of-freedom system
is numerically investigated by analyzing statistical properties associated to the position and momentum of a
heavy impurity embedded in a chain of nearest-neighbor anharmonic Fermi-Pasta-Ulam oscillators. For this
model we have found that the behavior of the relaxation time of the momentum autocorrelation function of the
impurity is different depending on the dynamical regifeéher regular or chaotioof the lattice.
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[. INTRODUCTION time could, in principle, be used to probe the microscopic
dynamics of the system, but so far this possibility has not
A physically relevant and still not satisfactorily solved been explored experimentally. Moreover, the simplicity of
problem is the question of how the underlying chaotic mi-the models used in Reff2,3] precludes a study in the mo-
croscopic dynamics of many-particle systems is related tenentum space from the very beginning, and therefore, a dif-
the observed macroscopic behavior. Assuming that the maiferent kind of model is needed to address the problem at
features observed at the macroscopic level can be accountbdnd.
for by the microscopic dynamics, one would expect that We propose to reconsider a simple Hamiltonian model
some characteristics of the latter, specifically its chaoticitythat has been studied extensively in the past, namely, a one-
should be detected, in principle, at the macroscopic level oflimensional chain of harmonic oscillators of unitary mass
description. coupled to a heavy oscillatgimpurity). Many-body effects
Recent empirical evidence suggesting microscopic chaok Brownian motion can be analytically investigated with
on a molecular scale has been presented in an experiment #tis model, and it was proved that the impurity of mass
the position of a Brownian particléBP) in a fluid [1]. The  >1 satisfies a Langevin equation when the thermodynamic
measurements were made at regular time intervals and tHinit N—oo is taken and random initial conditions are given
experimental time series data was then interpreted usintp all the oscillators of the systefd]. However, in its origi-
standard techniques of chaotic time series analysis, suggestal formulation this model is useless to address the proposed
ing a positive lower bound on the Kolmogorov-Sinai en-problem because of the lack of chaoticity in the lattice,
tropy, hence, microscopic chaos. However, a similar boundvhich nevertheless behaves as a heat bath.
has been obtained with computer experiments on the noncha- In this paper we extend the above-mentioned harmonic
otic Eherenfest wind-tree model where a single particle dif-nodel with an anharmonic potential, which makes the result-
fuses in a plane due to collisions with randomly placed,ng Hamiltonian very similar to the Fermi-Pasta-Ul&RrPU)
fixed, oriented square scatterg¢®q, rendering doubts about model[5]. With this modification we explore, for this par-
the conclusion that microscopic chaos has been experimeticular model, the possible effect of microscopic chaos in the
taly detected. Further comparisons with the chaotic Lorentstatistical behavior of the heavy impurity. We note that the
model, which has circular scatterers and has a diffusive begroblem of an harmonic oscillator coupled linearly to a FPU
havior that is undistinguishable from the one exhibited by thechain has already been studigg]. Diatomic and disordered
Eherenfest model, have confirmed that the standard methodsass versions of the FPU model have been applied to the
of chaotic time series analysis are ill suited to the problem oproblem of energy equipartitiofv] and heat conductiof8],
distinguishing between chaotic and nonchaotic microscopibut not with a single heavy impurity in the context of Brown-
dynamics, although some alternatives have been proposed i@n motion, as is our case.
order to overcome this situatidi3].
The results in Ref[1] were attributed to the physical Il. THE MODEL
issue of time scales—the time intervat~1/60 s between o o
measurements was vastly greater than the typical collision The Hamiltonian of the model we are considering can be
timest.~10"12s of the BP with the solvent particles in the Written, in terms of dimensionless variables, as
fluid, which make the diffusive behavior in the experimental

. . . . N/2 2
data and in the computer experiments virtually identj@al B P_i+ - )24 E Y
However, there is a time scale in Brownian motion, not men- e [ 2m, 2(X”1 Xi) 460(i+l X"
tioned in the previous works, that is characterized by the (1)

relaxation timer~10~8 s of the momentum autocorrelation
function(MACF) of the BP. Since\t> r>t., this relaxation ~wherem;=1 if i #0 andmy= M} periodic boundary condi-
tions are assumed (/) +1=X_n2)- The model describes a
system of one-dimensionbl coupled nonlinear oscillators of
*Email address: rbom@xanum.uam.mx unit mass with nearest-neighbor interactions and a central
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oscillator (impurity) of massM, with displacementxy=X 10°
and momentunp,= P. The quadratic part of Eq1l) was the
one studied in connection with Brownian motion in Ref]. 10°

The valueB=0.1 was used in all the numerical experiments
hereafter reported. We call this model the modified FPU 10
(MFPU) model.

IIl. DYNAMICS IN PHASE SPACE

It is known that, for high values of the total energy per
degree of freedona, the homogeneouainiform masg FPU 10° | M=60 ]
model [obtained from Eq(1) by taking M=1] is chaotic E ]
whereas, for smak values, the model behaves as a chain of 192 [ 1
harmonic oscillator§9]. It is then important to corroborate if .
these dynamical regimes are in some way affected by the 10™ |
presence of the impurity at lattice site0. To this end we 3

employ the following distance in phase space: 10° o 5'0 ‘ 1(‘)0 ' 15‘0 " 200
time
— Lrey 2/ 4112 14y n2(4\12
d(t)= \/EI [ () —x (O +H{pi () —pi(D}], (2 FIG. 1. Average distance in phase space between pairs of tra-

jectories corresponding to initial conditions such td&0)<10"©
ande=0.01(circle), 0.1 (squarg, 1 (plus), 2 (crossg, and 10(aster-
ié‘k) for M=1 andM =60 with N=300 000. Time is measured in
natural units.

where the sum runs over all tié+ 1 oscillators of the sys-
tem, the superscripts 1 and 2 refer to two states that at tim
t=0 differ by an infinitesimal quantitgl(0)=10"° or less.

In our simulations we prepared a system whh-300 000 ported in Ref[11] for the homogeneous FPU model aad

unit mass oscillators in their equmbrlgm positions. Then W€_10. For short timest100) the ballistic behavior of the
distributed the momenta of the oscillators according to a I . . e

o 7 Impurity is evident, whereas, for long times, the diffusive
Maxwell-Boltzmann distribution at a temperatufeconsis-

tent with the chosen value afand let the system evolve in effect of the bath of light oscillators has been established.

) . . . . . The noise in the curves reported is negligible for the time
time by solving the equations of motion with an improved. .

4 : ! . “interval 100<t<300, so we can be confident of the values of
leap-frog algorithm. All computations were carried out in

o the “diffusion coefficients”D), obtained from the slope of
double precision. At each temperature an averggit))) . . L
; N . . eachM curve in the aforementioned time interval.
over ten different realizations was taken to avoid fluctuations : . . o ) .
An important issue at this point is to check if the devia-

that come from a particular choice of the initial conditions. . R T :

. ; : tions of the individuaD, values from their arithmetic mean
This calculation was performed for different valuesechind  — o o . )
M =1, 40, 60, 80, and 100. The results fdr=1 (shown for D are statistically significant for any given if so, then there

comparisoh and 60 are exhibited in Fig. 1. As can be seen is a dependence of the diffusion coefficient on the mass of
an exponential divergence corresponds to valuesl the heavy oscillator. For a system of coupled harmonic os-

whereas fore< 1 the distance is found to be bounded within cillators it is well known that the diffusion coefficient is in-

the same order of magnitude. This happens independently §€€d independent of the mass of the impurity. However, a
the value ofM for all the cases studied. Thus we can con-different situation arises in another type of models. In Ref.

clude that the qualitative dynamical behavior of the system is

only weakly affected by the presence of the heavy impurity. 2400 | ' ' ' '
Hence, for small values of, which correspond to the value 2000 -
range 0.0%e<1 in Fig. 1, we find regulafi.e., almost pe- |
riodic) behavior in phase space whereas for latgealues, 1600 |
which we have studied in the rangesk=<10, the dynamics s
in phase space is chaofit0]. S I
P P (i20] S 1200 |
| L
IV. STATISTICAL BEHAVIOR OF THE HEAVY IMPURITY §:’ 800 |
Thermal equilibrium between the impurity and the FPU
chain was attained within the time scale5x10°. Time 400
averagey - - - ); necessary to obtain the relevant correlation [ .8
. . 0 mﬁ_@ 1 1
functions were computed afterwards over the characteristic 0 100 200 300

time scalet=2x 10°. The first quantity to be studied was the
mean-square displacement. An example is shown in Fig. 2;
the temperaturé.e., mean kinetic energy per degree of free-  FIG. 2. Mean-square displacement of the impurity & 10.
dom) T=11.61 was computed, which is the same value reThe solid line, with slope B =7.95, has been added for reference.

time
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FIG. 3. Diffusion coefficient vs energy density. The straight line

is the power-law fit explained in the text. FIG. 5. Relaxation time vs energy density. The dasfuzdted

) ] ) lines correspond to the least-squares power-law3jitfor the e
[12] it was shown that for a system of noninteracting mass< 1 (e=1) regime and alM values.

points moving on a line and colliding with a heavy particle

there is a mass dependence that increases with the massdaly, which allows us to obtain the relaxation timérom the

the heavy test particle. For the MFPU model our resultssiope of each curve. The straight lines plotted correspond to
show that the deviationB,,—D are negligible for smale  the exponential fit exp{t/7). The observed accuracy of this
values and more pronounced for largevalues. Neverthe- fit is a clear signature that the impurity indeed performs
less, in both regimese<1 ande=1) the deviations never Brownian motion. The behavior of the MACF is smoother as
exceeded a few percent in all the cases considered, with ribe massM increases, so this fact can be considered as an-
systematic drift. Thus we can consider that the diffusion coother evidence that the more physically relevant results are
efficient is given byD~D. For e=0.01 we have obtained Obtained with larger values dfl. The magnitude opo(t) is
the relationship ®=0.0104=T, which corresponds to the neg_hglble fort>50 in all cases, and conseq.uently its contri-
exact result for the harmonic chaji]. In Fig. 3 we plot the ~Pution was not considered in the computationrof

value of the diffusion coefficiend vs the energy density. A very interesting result can be obtained if we plot the
By a least-squares fit we obtain a power-law scaling withélaxation timer vs the energy density for the entiree
respect toe of the form D=Dye™ where m=0.964 value range, from regular to chaotic, and all the considered

+0.008 andDy=0.466+0.008. From the validity of this M values, as ShOW” in Fig. 5 in '99409 sca}le. We observe
relationship throughout the entire value range studied thaF the datg points are geparated into two different and well-
(0.01=< e<10), from regular to chaotic, we conclude that, asdefined regions, depending on teevalue. In all cases the
far as our results allow us to infer, no evidence of the micro-dépendence of on the energy density is weak wher1.
scopic dynamics can be detected in the behavior of the difon the contrary, wher=1, 7 decreases steeply with in-
fusion coefficient, in agreement with the known results of thecréasinge. In each of these regimeshas a power-law scal-
Eherenfest and Lorentz modé,3]. ing with respect tce as

The MACF po(t)=(P(t)P(0))/(P?(0)); of the impu- e 0.0k<e<]
rity can also be straightforwardly computed. Figure 4 shows (€)= ~°"V' o
the time dependence @fy(t) in linear-logarithmic scale for tome™™, 1l=se<I0.
all values ofM considered an@=10; othere values yield
similar results. It is evident that, for the relevant time scaleFor all the data points corresponding to a fixgdvalue,
(0=t=50), the MACF exhibits an almost exponential de- 74, # 79y andaM # a,. This feature contrasts with the be-

havior of D as seen in Fig. 3, where a single scaling law is

)

10° frmger—— . T . valid for the entiree value range. In the<<1 regime the
"::Qi\g-sg:-é_.ﬁ accuracy of the power-law scaling af, can be tested by
T ®‘~ﬁ:§:3‘;i\$,ﬂ_ noticing that, fore=0.01, 7o), must coincide with the exact
"""" o e el value M/2 of the relaxation time of the MACF for the har-
= e - T T monic chain[4]. This is indeed the case with an accuracy
107 | g Tp. 3 better than 1%.
§\{2 We notice that the slopes of each of the fits in Fig. 5 are
....... . approximately the same for the<1 regime. Furthermore
% ~~~~ the same thing happens fee=1, though with other slope
- . . . . value. These facts imply that the scaling exponents in(8q.
0 10 20 30 40 50 for each regime are approximately the same, independent of

time the particularM value to which they correspond. It is then
FIG. 4. Logarithm of the MACF of the impurity foe—10. reasonable to expect the existence of a mass-independent

Symbols have the same meaning as in Fig. 2. The straight lines fgic@ling exponentr* (f*) for the e<1 (e=1) regime. In
each value oM correspond to the fit exp(t/7). order to computex* (a*) we rescale the data of Fig. 5 on
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1.05 . . data points displayed in Fig. 5 with the corresponding factor
T/M, the result are data sef{®}, one for eachM value,
" ‘*~\QE<>£Q> spanning the entire value range. Furthermore, if we take,
- for a certaine, the arithmetic mean of all thB, values, we
\ recover the data points displayed in Fig. 3. Thus there is no
LN contradiction between the data in Figs. 3 and 5 and the
"o 095 | Y _ Green-Kubo relatiori5).
\© To address the problem of the origin of the change in the
scaling of r as depicted in Fig. 5 we consider the dynamical
behavior of the system as described in Fig. 1. We notice that,
for the particular value oM =60 (the following observations
are valid for otheM values as well whene<1 the system
is in a regular region of phase space, wherease$ol, the
0.85 : : 9 . . . :
-2 -1 . 0 1 dynamics is chaotic. This value range is approximately the
€ same as that obtained from Fig. 5 for the change in behavior
of 7 as a function ofe. From this observation we conclude
that the change of scaling inmay be attributed to the quali-
tative change, from regular to chaotic, in the microscopic
. . . ~ dynamics of the whole system.
€ 1. (e=1) with their correspondingou (7om) value to yIt is important to pointyout that similar numerical results
obtain the new data*=Inelln o (e*=Inen7y) and  \yere obtained from the behavior of the relaxation tirgeof
™=Indinry (7*=In7In7y). The result is reported in the spectral entropy, a function used to study the relaxation
Fig. 6. to equilibrium of a many-degrees-of-freedom Hamiltonian
As can be seen, we have found a common scaling for abystem starting with far-from-equilibrium initial conditions.
the data points in each regime<1 ande=1. The dashed For high values ofe (total energy per degree of freedpm
lines correspond to the best fit of the data in each regionsy~ const, butrg suddenly increases below a certain thresh-
which allow us to calculate the mass-independent scalingld, ex~ 1 for the homogeneous FPU mod8l. This result
exponentse* anda*. The result is bears some resemblance to the change of scalimgon our
model, although the details of behavior aslecreases are
different for both relaxation times and 7. Another differ-
o (e*) 00170004 1 5754k % <€} ence worth stressing is that the relaxation timefor the
T (e")~ (e%)~0136:0007  ox < x <0 801 21. (4 homogeneous FPU model is associated to the equilibration
e process, but the relaxation timereported in Fig. 5 is the
€*~0 is the critical value at which the change of scalingtime that characterizes the decay of the MACF of our MFPU
occurs and is indicated by the dotted vertical line. Themodel, which is computed in the thermodynamic equilibrium
change in behavior when going from low to highvalue is  State[15]. Moreover, it should be noted that numerical analy-

quite pronounced since the scaling exponents differ by ongis of the dynamics of the homogeneous FRJand other
order of magnitude. one-dimensional modeld 6] has shown that the change of

behavior in7g as e increases is related to a transition, com-
V. DISCUSSION mon to these r_nodels_, from Wee(ke.,_ almost periodicto
strongly chaotic regimes. It remains an open problem
After the presentation of our results we would want towhether the behavior of as reported in Fig. 5 can be ob-
make some remarks. First of all, it could be argued that theained or not when the impurity is coupled to some other
diffusion coefficient can be obtained from the MACF by em- system, such as those studied in REf6]. The sudden
ploying the Green-Kubo relatiofi 3] that can be written, in  change in the scaling of clearly observed in Fig. 5 could

09 OE\ B

O

FIG. 6. Same data as in Fig. 5, but in rescaled urfitande*.
Dashed lines are the least-squares fit in each region.

terms of the MACF, a$14] very well be related to some particular characteristic of the
- aforementioned transition in the case of the FPU chain. We
Dy = Mfo po(t)dt. (5) will address this problem in a future communication.

This identity implies thaD and 7 are not independent vari- VI CONCLUSIONS

ables. More precisely, if we substitute the exponential fit We have found, for the particular model studied, that the
po(t)=exp(~t/7) in Eq. (5) we obtain the relationD,,  diffusion coefficient, related to the position of the heavy im-

=(T/M)r, and therefore, the behavior efand D\, ase  purity, is useless as a probe of the microscopic dynamics of
increases should be similar. However, we hav# <1 for  the system to which it is coupled. On the contrary, we have
all M values considered, e.gi/M=2.5x10"% for e=0.01  presented evidence that the relaxation time of the MACF,
and 0.290 45 foe= 10 with M =40. Thus the behavior of  related to the momentum of the heavy oscillator, shows a
vs 7 depicted in Fig. 5 is lost whem is multiplied by the different behavior in going from the regular to the chaotic

factor T/M to obtainD),. In fact, if we rescale each of the dynamical regime of the FPU chain asincreases. To the
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