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Controlling dynamics in spatially extended systems
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Spatially extended systems exhibit a variety of spatiotemporal dynamics—from stable to chaotic. These
dynamics can change under pathological conditions and impair normal functions. Thus, having the ability to
control the altered dynamics for improved functioning has the potential for wide ranging applications in real
and artificial systems. Here we propose a simple and general method that can be used to target the spatiotem-
poral dynamics, both globally and in spatially localized regions, in either direction—i.e., towards the stable or
unstable manifold—by simply changing the strength and the sign of an externally appliedperturbation or
pinning. The method is applicable to both chaotic and nonchaotic systems, with discrete and continuous local
dynamics, and for different topologies of interactions. We also apply it to simulate an experiment on epilep-
togenic neuronal activity in rat hippocampal tissue@B. J. Gluckmanet al., J. Neurophys.76, 6202~1996!#. This
unified approach for differential targeting of global and local dynamics promises to be useful for systems
spanning large spatial scales and having structural and functional heterogeneity.
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I. INTRODUCTION

Along with homeostasis, periodic, complex, and ev
chaotic spatiotemporal dynamics are shown to be abunda
present in a variety of real and artificial systems, such a
arrays of semiconductors, lasers, plasmas, and chemica
actors, fluid flow, and in cardiac and neural tissues@2–8#.
Many systemic or environmental factors can change the
mal dynamics and abnormalities or disease can set in.
amples are instabilities in lasers, charge density wave
plasmas, and arrays of Josephson junctions@9#; desynchroni-
zation in coupled chemical reactors; defective biochem
functions; cardiac arrhythmia, epileptogenic neural activ
and pathological physiology@4,10#; and, large population
fluctuations and epidemics in metapopulation@11,12#. Engi-
neering complex dynamics is also becoming increasin
useful for improved functioning—for information transmi
sion in communication sciences@13#, mixing flows in phys-
ics of fluids @14#, and, in many branches of biological sc
ences with medical applications, such as, in the treatmen
cardiac and neural diseases@15#. Thus possessing the abilit
to modify or have control over the dynamics of spatiote
poral systems have important applications.

It is clear from the above that there are two aspects
‘‘control’’—it can indicate, on one hand, suppressing cha
in the dynamics and restoring the system to its regular
havior; or involve inducing/maintaining complexity in th
dynamics depending on the desired performance of the
tem. Several ingenious theoretical approaches have been
posed for control@16#, and a few have also been applied
experimental systems@4–6,17,18#. However, these method
either requirea priori knowledge of the system dynamic
such as, the stable or unstable fixed points and periodic
bits; or, involve direct modification or tracking of the syste
parameters, and monitoring of time-series data for calcu
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ing representative dynamical quantities~e.g., Lyapunov ex-
ponents!. This requires fairly intricate, sensitive and soph
ticated experimental methodology, thereby making it diffic
for implementation. This is particularly true when the sy
tems are heterogeneous and large such as, ecological sys
@19#.

Any approach that is not system dependent and which
also be applied locally or globally, would offer a major a
vancement in real world applications. With this aim we pr
pose here a simple and general approach that can modify
spatiotemporal dynamics of a system based on the exte
application of a constant perturbation orpinning signalin the
spatial domain. Here, the sign and the strength of the pinn
signal alone determine the control of the spatiotemporal
namics to desired target states, and no prior information
the system parameters or their modification is required
addition to effecting global control, this method is also a
plicable for controlling dynamics in spatially localized re
gions leaving the rest of the system undisturbed. Furtherm
we show that, simply by pinning a small region at rando
one can confer global control of dynamics in a spatially e
tended system having few nonlocal connections. In a p
liminary study@20# we had described the efficacy of the pi
ning approach for suppressing chaos in a specific mo
system. We now show the generality of the approach for b
suppressing and inducing/maintaining spatiotemporal ch
for a variety of discrete and continuous local nonlinear p
cesses:~a! a single discrete equation~the Logistic map!, ~b!
coupled discrete equations~the Host-parasitoid system!, and
~c! coupled differential equations~the Lorenz system!. We,
then, use a reverse approach and simulate an experime
neurophysiology@1# to show that this simple method ca
successfully reproduce the experimental data.

The importance and usefulness of this approach st
from the fact that it can target the system dynamics~both
locally and globally! in either direction—stable or
unstable—by simply changing the strength and sign of p
ning. This is of importance in systems where evolution
spatiotemporal heterogeneity requires differential targetingrg
©2002 The American Physical Society27-1
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retain normal functionality~e.g., in ecology or physiology!.
Also, synchronization of dynamics across space and tim
coupled systems has shown to confer both a positive rol
maintaining functions@21# and a negative role in increasin
risk of extinction@12#. Thus any approach that can differe
tially control dynamics in space and time will be useful.

II. THE METHOD

Many spatially extended systems are composed of
crete entities governed by their local dynamics, which
coupled to each other through diffusion, convection, cond
tion, etc.,@8,22,23#. Thus the spatiotemporal system cons
ered here is given by the one-dimensional diffusive
coupled lattice model with periodic boundary conditions

xk~ i ,n11![Fk~xk~ i ,n!…5~12e! f k„xm~ i ,n!…

1e/2@ f k„xm~ i 21,n!…1 f k„xm~ i 11,n!…#,

~1!

where f defines the local nonlinear dynamics~described
by m variables andk coupled equations! on the discrete lat-
tice sitesi 51,2, . . . ,L. The continuous state variablex( i ,n)
is evaluated in discrete time stepsn51,2, . . . ,N, and,e is
the diffusive coupling strength of the nearest neighbors.

The proposed method for controlling the spatiotempo
dynamics involves applying a constant perturbation orpin-
ning to the state space variable on the lattice sites in
following manner:

x~ i ,n11!5F„x~ i ,n!…1p~ i ,n!, ~2!

where p( i ,n) represents the strength of pinning on thei th
site atnth time step. We have considered two types of p
ning for achieving the desired target dynamics:~a! uniform
pinning—perturbation of the same strength applied to all
sites at all time steps, i.e.,p( i ,n)5p, and ~b! nonuniform
pinning—pinning applied to the sites in a spatially inhom
geneous manner. Here we definep( i ,n)5d( i 2mip)p, for
m51,2, . . . ,L/ i p , such that, ifd( i 2mip)51, then every
site that is a multiple ofi p is ‘‘pinned’’ and takes a finite
value p, elsep( i ,n)50. Thus wheni p52, every alternate
site of the lattice is pinned. Control of the dynamics can
achieved by varying the strength and sign ofp( i ,n), which
depend on the local functional formf @24#, the initial dy-
namical state, and the desired target state of the system
the following sections, we first show the results of imp
menting this simple, unified approach in detail for t
coupled map lattice~CML! with the logistic map as the loca
nonlinear function and then describe its application
higher-dimensional systems.

III. RESULTS AND DISCUSSION

A. Case I: Controlling the logistic CML

The logistic map given byf (x)5rx(12x), for 1<r<4
and 0<x<1, exhibits dynamics progressing from equili
rium to chaos through a sequence of period-doubling bi
03622
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cations with increasing values ofr. The constant pinningp is
applied to the map in the following form:

x~n11!5rx~n!@x~n!21#6p.

On scaling outp, the above equation can be written as

x~n11!5Rx~n!@x~n!21#,

where

~R21!25~r 21!264rp. ~3!

It is clear from the above expression that1p effectively
increases and2p decreases the parameterr, thereby chang-
ing the dynamics of the logistic map towards increas
complexity with positive pinning and towards decreasi
complexity with negative pinning@25#.

The diffusively coupled lattice@Eq. ~1!# with logistic map
defined on each lattice site~logistic CML or LCML! is com-
monly used as a prototype model for spatially extended s
tems. It exhibits a wide variety of novel and complex sp
tiotemporal behaviors including spatiotemporal chaos~STC!
for different values ofr and coupling strengthe @26#. A
rough estimate of the strength of pinning required to con
the dynamics in LCML can be obtained by linear stabil
analysis. In the case of uniform pinning, to control sp
tiotemporal chaos and bring the whole lattice to a fixed po
state „x* 5@(r 21)6A(r 21)214rp#/2r …, the strength of
pinning required is given by

p,
1

4r F S e

12e D 2

2~r 21!2G . ~4!

Thus, forr 54, e50.6, p,20.42. In a similar manner, an
estimate of the strength ofp required to control the system t
any higher periodic states can also be obtained.

The iterates of the logistic map diverge under strong ne
tive pinning@20#. This problem of divergence has been tak
care of by applying pinning based on a threshold valuexc
<modp) of the state variable such that ifx>xc , pinning is
not applied. Below we describe the implementation of t
control method in the LCML under different conditions.

1. Effect of pinning strength

The salient features of the control approach are sum
rized in Fig. 1. Figure 1~a! depicts the global dynamic re
sponse of theuniformly pinnedLCML for a range of values
of the nonlinear parameterr and pinning strengthp. The gray
region in this (r -p) plot shows the parameter values at whi
the lattice exhibits nonchaotic dynamics as indicated
negative maximum Lyapunov exponent~MLE! s. The re-
gions of different stable dynamical behaviors are mark
within the gray region. The black region~positive MLE! in-
dicates chaotic spatiotemporal dynamics. Figure 1~a! clearly
shows that, under the influence of negative pinning, the s
tiotemporally chaotic dynamics at higher values ofr in the
LCML are suppressed to lower periodic and fixed-po
states and periodic, complex, and chaotic dynamics can
induced in the lattice, at low values ofr, by the application
7-2
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FIG. 1. Global spatiotemporal behavior o
LCML under uniform pinning. ~a! Dynamics
of the LCML in r 2p parameter space calculate
for r and p in steps of 0.01. The region
markedp51, p52, andp54 in the gray area
(2veMLE) exhibit equilibrium, period-2, and
period-4 behavior, and the dark region~1ve
MLE! exhibits chaotic dynamics. Bifurcation dia
gram of sitei 530 in the CML for ~b! r 54 as a
function of negativep; and ~c! r 52.8 as a func-
tion of positivep. In ~b! and~c!, e50.6 and data
for 100 consecutive time steps are superimpos
after eliminating 1000 time steps. Space-tim
amplitude plots of the CML (r 53.6,e50.3), ~d!
p50, ~e! p520.25, and~f! p50.15. Initial con-
ditions are randomly chosen from~0,1! for i
51,2, . . . ,L.
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of positive pinning. Thus it is possible to target any desir
spatiotemporal dynamical states in this CML by approp
ately choosing the strength and sign of pinning.

The typical local response of a lattice site, to oppos
pinning strengths, is plotted in the bifurcation diagrams
Figs. 1~b! and 1~c!. In Fig. 1~b! the initial chaotic dynamics
of a chosen site exhibits period reversals leading to perio
and fixed-point dynamics under increasing amounts of c
stantnegativepinning strength. Conversely, a clear perio
doubling behavior to chaos, with increasing strength
positive pis observed in a LCML that is initially in a spa
tiotemporally equilibrium state@Fig. 1~c!#. Similar qualita-
tive behavior is observed at other lattice sites also. Analy
of these local bifurcation plots help in determining t
strength and sign of the pinning required for attaining
desired state. The space-time-amplitude plots of a wea
chaotic lattice@Fig. 1~d!# also show complete suppression
chaos under uniform negative pinning@Fig. 1~e!#, and en-
hancement of chaoticity under positive pinning@Fig. 1~f!#.
Thus uniform negative and positive pinning can be used
globally control the dynamics of the LCML to desired sp
tiotemporal behavior.

2. Effect of pinning density

In many real situations it is not possible to have cont
probes over the entire spatial domain. A useful algorit
should then have the ability to exert control even when
plied in lesser density. The effect of spatiallynonuniform
pinning on the spatiotemporal dynamics of the LCML
shown in Fig. 2.

The periodic and weakly chaotic lattices can be ea
controlled to the stable state by applying negative pinning
fairly low density~e.g., at every tenth site for a weakly ch
otic lattice!. But strongly chaotic lattices require a dens
distribution of pinning. In Fig. 2~a!, the left panel showing a
highly turbulent LCML is controlled to temporally equilib
03622
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rium but spatially periodic dynamics (s520.229) by pin-
ning every alternate site~central panel!. Here the pinned and
unpinned sites assume fixed but different values ofx ~higher
for the unpinned site!. The right panel shows the controlle
nonchaotic dynamics when every third site is pinned (s5
20.0008). Suppression of STC is not possible fori p.3 in
this highly chaotic lattice even with higher pinning streng
Most real systems do not operate in such highly chaotic s
and thus it is possible to control them using this method w
low pinning strength applied sparsely over the lattice.

The effect of pinning density in inducing/enhancing cha
is shown for two different values ofr in Figs. 2~b! and 2~c!.
The left panel of Fig. 2~b! shows a stable CML, which, on
pinning the alternate sites with positivep, exhibits chaotic
dynamics ~right panel, s50.179). Similarly, a LCML
@left panel of Fig. 2~c!# exhibiting weak, two-band
chaos (s50.098) clearly becomes more chaot
(s50.409)—spanning larger area in phase space—w
pinned at every alternate site~right panel!. We observed that
much smaller perturbation was required to enhance chao
a weakly chaotic lattice in comparison to inducing chaos i
stable lattice. Also it was not possible to destabilize a LCM
at equilibrium by pinning fewer than alternate sites.

3. Effect of coupling strength

The coupling strengthe is an important parameter whos
variation alone can give rise to a wide range of comp
spatiotemporal patterns in the system@26#. Thus, for our
method to be successful in effecting control over the s
tiotemporal system, it would be advantageous to have kno
edge of the optimal range ofe, especially when the pinning
density is low. In Fig. 3 we show the role ofe in suppressing
fully developed STC@Figs. 3~a!–3~c!#, and inducing chaos in
a stable lattice@Figs. 3~d!–3~f!# in an alternately pinned
LCML, as e is varied from zero~no coupling! to 1 ~strongly
coupled!.
7-3
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FIG. 2. Space-amplitude plots for LCML un
der nonuniform pinning.~a! Left, fully developed
STC for r 53.9; center, temporally stable an
spatially periodic dynamics atp520.16 for i p

52; right, periodic dynamics withp520.4 for
i p53. Heree50.7 andxc50.1. ~b! Left, stable
LCML with r 52.8; right, induced chaotic dy-
namics forp50.5.~c! Left, weakly chaotic lattice
for r 53.6; right, enhanced chaos withp50.24.
For both~b! and ~c! i p52 ande50.3.
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The bifurcation diagrams in Figs. 3~a! and 3~b! show the
temporal behavior of an unpinned~in ‘‘gray’’ ! site and a
neighboring negatively pinned~in ‘‘black’’ ! site, respec-
tively, in a spatiotemporally chaotic LCML. In absence
any interaction (e50), the unpinned site shows STC and t
neighboring pinned site is controlled to equilibrium sta
The neighboring sites interact to influence their respec
dynamics ase is increased. At both low and highe, the
highly chaotic dynamics in the unpinned site offsets the
fect of pinning and the CML is not controllable by th
strength of pinning. But at intermediate values ofe, a clear
period-halving behavior is observed at both the unpinn
03622
.
e

f-

d

@Fig. 3~a!# and the pinned@Fig. 3~b!# sites. The typical spatia
behavior of this CML, obtained by superimposing data
all the lattice sites at a given time, is shown in Fig. 3~c!. This
also shows that suppression of chaos is observed onl
intermediate coupling strengths for the chosen values of
ning strength and pinning density. It may be recalled t
control can always be achieved in a CML by pinning all t
sites irrespective of coupling strength.

In order to find the range ofe for inducing chaos, we
consider a stable LCML whose alternate sites are pin
with positive p @Figs. 3~d!–3~f!#. As in Figs. 3~a!–3~c!, in
this case also the stable dynamics exerts its influence m
-

e

er-
FIG. 3. Effect of coupling strength in a non
uniformly pinned (i p52) LCML: Suppressing
fully developed STC (r 54, p520.4, and xc

50.4) in ~a!–~c!, and inducing chaos in a stabl
CML ( r 52.8, p50.5) in ~d!–~f!. Temporal be-
havior of an unpinned site@in ‘‘gray’’ in ~a! and
~d!#, and a pinned site@in ‘‘black’’ in ~b! and~e!#
from the central region of the CML.~c! and ~f!
Spatial behavior of the lattices obtained by sup
imposing data for all the lattice sites at timen
51100.
7-4
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FIG. 4. Space-time-amplitude plots for loca
control in a LCML (e50.6): ~a! In a stable CML
(r 52.8), r is changed to 3.0 in the central te
sites resulting in periodic oscillations. The altere
dynamics is suppressed withp520.04 applied
locally to those sites.~b! In a spatiotemporally
chaotic CML (r 53.7), the central ten sites un
dergo a parameter change (r 53.2) resulting in
local reduction in complexity. Application of lo-
cal positive pinning (p50.21) restores the cha
otic dynamics in the lattice.
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mally on moderate values ofe. It is clear from the Figs.
3~d!–3~f! that it is possible to induce chaos in a stable LCM
only at low and high coupling strengths. In contrast, enha
ing the complexity is indeed easier to accomplish in a p
odic or weakly chaotic lattice for a larger range ofe. The
strength of pinning also affects the desired range ofe, and
stronger pinning strengths allow control over an extend
range of coupling strengths.

4. Effect of local pinning

(i) Local control. Global control may not always be th
aim of many applications. For example, a diseased state
induce spatially localized changes in biological tissues~e.g.,
ectopic node in heart or epileptic focus!, which then affect
their normal functional dynamics@27#. The therapeutic mea
sures involve suppressing such ectopic activities locally
Fig. 4 we show that our method is quite suitable for restor
spatially localized changes in dynamics to the original st
leaving the rest of the system undisturbed.

As shown in Fig. 4~a!, localized alteration in the dynam
ics of a stable lattice was induced by increasing the par
eter r slightly in the central ten sites. This introduced sm
oscillations in that region. On applying a small negative p
ning to these sites, complete suppression of the local o
latory behavior was observed and equilibrium dynamics
stored in the whole lattice again. In Fig. 4~b!, we consider a
chaotic lattice whose central ten sites started exhibiting p
odic oscillations due to reduction inr. Application of local
positive pinning to these sites allowed the entire lattice
restore its original chaotic behavior. The effect of pinning
quite firmly localized whene is not very high. Thus it is
clear that this approach can also be used to induce de
local alterations in spatially extended systems.

(ii) Global control in lattice with nonlocal coupling.
Many large spatiotemporal systems possess both local
nonlocal interactions among its different parts, and pinn
the entire system to achieve global control is practically i
possible. A typical example is a metapopulation in ecolo
where multiple subpopulations interact through migratio
03622
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We now show that, using our approach, we can effectiv
achieve global control over such multiply coupled syste
by localized pinning—a property that can have importa
applications in both real and engineered systems. In Tab
we summarize the results of a large number of trials
global control of a spatiotemporally chaotic LCML~having
increasing number of random, nonlocal, diffusive links! by
randomly pinning a small block of sites. It shows that loca
pinning a block of 15 sites, chosen randomly on the latti
can confer global control in more than 85% cases in latti
with few ~about 200! nonlocal connections. Larger pinnin
region and/or more nonlocal connections are needed for c
trolling strongly chaotic systems. Similar results are obtain
for inducing/enhancing chaos in the lattice, though stron
positive p or larger pinning region is required for lattice
with more nonlocal connections as they tend to stabilize
dynamics.

All the results described above for the one-dimensio
lattice can be generalized to higher spatial dimensions w
appropriate changes in pinning strengths and pinning de
ties.

B. Case II: Controlling the host-parasitoid CML

The ‘‘pinning’’ approach is equally effective for highe
dimensional dynamical systems. Here we show its imp

TABLE I. Global control by local pinning in LCML with non-
local coupling: Along with their nearest neighbors,m randomly
chosen sites in the lattice (L560) are diffusively coupled to an
othern randomly chosen sites in a spatiotemporally chaotic LCM
(r 53.6, e50.2). Pinning (p520.2) is applied to a block of 15
sites spanning the whole lattice for each (m andn). The MLE ~s! is
calculated before~to ensure1ve MLE! and after pinning. Results
are averaged over 25 random trials for each (m andn).

m n % of 2ve MLE

25 5 29
40 5 86
50 5 98
7-5



or

in
ed
-
-

NITA PAREKH AND SOMDATTA SINHA PHYSICAL REVIEW E 65 036227
FIG. 5. Control in host-parasitoid CML (e
50.2) on pinning the host: phase plane plots f
H andP in a site for~a! p50, ~b! 0.03, and~c!
p520.02. The corresponding lattice dynamics
space amplitude plots showing that the unpinn
quasiperiodic dynamics~d! is suppressed by posi
tive pinning~e!, and enhanced with negative pin
ning ~f! of the host.
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mentation for the host-parasitoid~HP! system@28# in ecol-
ogy, which is described by two coupled discrete equation

H~n11![ f 15rH ~n!@12H~n!#exp@2bP~n!#

P~n11![ f 25H~n!@12exp$2bP~n!%#, ~5!

whereH(n) andP(n) are the densities of the host and pa
site populations at thenth generation. The density-depende
logistic growth of the host population is modulated by pa
sitism „exp@2bP(n)#…, and the parasites grow only by in
fecting the hosts. The parametersr and b represent the in-
trinsic growth rate of the host and the searching efficiency
the parasitoid.

We consider a model metapopulation of the ho
parasitoid system on a one-dimensional lattice where b
03622
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the hosts and parasitoids diffuse to the nearest neighbo
sites. This system exhibits a variety of complex spatiote
poral patterns@28#. Here we present only the results o
implementing our control method for the case of unifor
pinning to the host variable. The long-term dynamics of t
host and parasite at a chosen lattice site in the~HP! phase
plane is shown in Figs. 5~a!–~c! and the spatiotemporal dy
namics of the host in the lattice is depicted in the spa
amplitude plot in Figs. 5~d!–~f!. Both the host and the
parasite are known to exhibit quasiperiodic dynamics in
vidually and collectively for the parameter valuesr 54 and
b53.5 as shown in Fig. 5~a! and 5~d!. Figures 5~b! and 5~e!
show that a small positive pinning~immigration/addition! to
the host population can lead to suppression of the comp
dynamics at all lattice sites to a fixed-point state. Convers
-

w-
FIG. 6. Control in the spatially extended Lo
renz system (e50.3). Phase plane plots forX and
Z in a site for ~a! p50, ~b! 0.5, and ~c! p5
20.5. The corresponding lattice dynamics sho
ing the unpinned chaotic dynamics~d! being sup-
pressed by positive pinning~e!, and enhanced
with negative pinning~f!.
7-6
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CONTROLLING DYNAMICS IN SPATIALLY EXTENDED . . . PHYSICAL REVIEW E65 036227
Figs. 5~c! and 5~f! show that a small negative pinnin
~harvesting/removal! of the host enhances the complexity
dynamics, with both the host and parasitoid exhibiting co
plex and higher amplitude oscillations. One can implem
this control method by pinning the parasitoid populati
also.

C. Case III: Controlling the Lorenz system

As a prototype for a higher-dimensional continuous s
tem exhibiting chaotic dynamics, we choose the Lorenz s
tem @29# described by three coupled differential equation

ẋ[ f 15s~y2x!,

ẏ[ f 252xz1rx2y,

ż[ f 35xy2bz. ~6!

This system shows low-dimensional chaos for the param
valuesr 528, b52.67, ands510. We use this dynamica
system on a spatially discrete one-dimensional lattice w
all three variables diffusing to the nearest neighbors with
same strength. This spatially extended system exhibits
tiotemporally chaotic dynamics for the same parameter
ues as is shown in thex-z phase plane plot of a represent
tive site @Fig. 6~a!#, and the space-amplitude plot of th
whole lattice for the variablez @Fig. 6~d!#. Figures 6~b! and
6~e! show that, with a small, uniform, positive pinning tof 3,
the chaos in Lorenz system is completely suppressed loc
and the lattice also exhibits equilibrium dynamics. And
small negative pinning enhances the amplitude of the cha
oscillations both locally@Fig. 6~c!# and globally@Fig. 6~f!#.
Thus we show that this method can effectively be applied
spatially extended systems with local continuous dynam
systems.

D. Case IV: Simulation of an experimental result

In experimental situations ‘‘pinning’’ implies perturbin
the variable/signal that is being measured. Here we refe
an experimental study@1# that shows the effect of polarity o
external electric field on the neuronal electrical activity
hippocampal slices of rats. In this experiment, small exter
electric fields of opposing polarity were used to modulate
spontaneous burst activity in the pyramidal cell layer in
CA1 and CA3 region of the rat hippocampus. The relatio
ship between both the electric field polarity and the mag
tude on the CA3 burst frequency is reproduced in Fig. 7~a!.
The experiment showed that the burst frequency alterna
increased and decreased as a direct result of changes in
polarity—negative field amplitudes accelerating and posit
amplitudes suppressing the burst rate.

At a microscopic scale the neuronal tissue can be re
sented as a discrete network of individual cells with lo
electrical and chemical processes coupled through gap j
tions. We use the logistic map as a formal description of
local complex dynamics of bursting neurons and model
system at base line with a weakly chaotic LCML. We sim
late the results shown in Fig. 7~a! by pinning this LCML for
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different strengths of opposing signs@Fig. 7~b!#. The upper
panel in Fig. 7~b! shows the strength of pinning and th
lower panel gives the average amplitude of oscillations in
lattice sites. It is indeed obvious that positive pinning clea
induces higher amplitude oscillations mimicking the high
neuronal activity, and negative pinning suppresses the b
ground activity to differing extents depending on the pinni
strength.

IV. CONCLUSION

Most dynamical systems manifest parameter regim
where bifurcation between dynamical states can generat
tered dynamics that can be associated with the onse
pathological behavior. Both suppression and preservatio
chaotic or complex dynamics are thus important in restor
normalcy. By using our simple approach, we have sho
that it is possible to target the spatiotemporal dynamics,
wide variety of systems under many realistic conditions,
any desired stable fixed-point/periodic or chaotic states
simply applying constant pinning signal of opposite signs
the spatial domain.

In situations where a tractable mathematical model for
system is available, linear stability analysis can be used

FIG. 7. ~a! Effect of polarity of external electric field on burstin
neurons~reproduced from Ref.@1# with permission!. Burst rate
~connected dots! from transverse CA3 under the influence of exte
nal electric field~solid line in upper trace! aligned parallel to the
dendritic-somatic axis of the pyramidal cells. Burst rate is de
mined from number of bursts occurring within nonoverlapping 1
time windows upon switching the polarity of the field. At base lin
without applied field, pyramidal cells synchronously discharge
;1 Hz. ~b! Simulation of @1# with a weakly chaotic LCML (r
53.6,e50.3). The amplitude~Amp! is determined by taking the
differencexmax( i )2xmin( i ) and averaging for all sites for 100 con
secutive time steps after eliminating the transients. On switch
from negative to positive pinning (p in upper trace!, the amplitude
changes from a large value to a lower value, similar to the burs
neurons. Here, switching from positive to negative pinning is
continuous and appropriate pinning is applied after eliminating tr
sients (500 time steps! for the CML with identical random initial
conditions for each case.
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obtain a rough estimate of the strength and sign of pinn
required for control, as is shown in Eqs.~3! and ~4!. Alter-
natively, a few short test experiments on the local functio
form can help determine the sign and the range of pinn
strength required to achieve the desired performance. S
larly, in the case of experimental systems, one can carry
a few trial experiments by applying external perturbation,
opposing sign and differing strengths, to the signal be
measured to get an indication of the efficacy of the con
method. The experimental result@1# elaborated above is
representative example of this method as it involves appl
tion of external electic field to suppress and enhance
electrical bursting of the neuronal tissue. Similar experim
tal studies exist where alteration in dynamics is effected s
ply by perturbing the variable/signal that is being measu
directly or through controllers@18,30#. This indicates that
this method of control is quite effective and applicable
many fields of science and engineering.

The pinning effectively reduces/increases t
nonlinearity/parameter causing the dynamics to move
wards stable or unstable manifold in single maps and C
@20,24#. We believe that pinning has a similar effect on oth
dynamical systems. Persistence of pinning is required in
method which makes the controlled state robust against
turbations. This is a common feature in therapeutic meas
.
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of controlling pathologies, where regular application
drugs or the presence ofin situ pacemakers are required ti
the diseased part is physically altered or removed. An imp
tant aspect of this approach is that it controls the dynam
both locally and globally~for systems with nonlocal cou
plings! through the application of spatially localized pinnin
Such properties allow differential control, i.e., targeting d
ferent dynamics in different regions in space and time, a
can be very useful in large, heterogeneous, multiply c
nected systems~e.g., metapopulation in ecology or large a
rays of coupled oscillators! for modulating foci of activity,
epidemic centers, waves of disturbances or to desynchro
a spatially extended system. Thus, this simple and gen
approach can be used as a powerful tool to target both st
and complex spatiotemporal dynamics at different spa
and temporal scales allowing possibilities for wide-rangi
applications.
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