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Controlling dynamics in spatially extended systems
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Spatially extended systems exhibit a variety of spatiotemporal dynamics—from stable to chaotic. These
dynamics can change under pathological conditions and impair normal functions. Thus, having the ability to
control the altered dynamics for improved functioning has the potential for wide ranging applications in real
and artificial systems. Here we propose a simple and general method that can be used to target the spatiotem-
poral dynamics, both globally and in spatially localized regions, in either direction—i.e., towards the stable or
unstable manifold—by simply changing the strength and the sign of an externally appliratbation or
pinning The method is applicable to both chaotic and nonchaotic systems, with discrete and continuous local
dynamics, and for different topologies of interactions. We also apply it to simulate an experiment on epilep-
togenic neuronal activity in rat hippocampal tis§Be J. Gluckmaret al,, J. Neurophys76, 6202(1996)]. This
unified approach for differential targeting of global and local dynamics promises to be useful for systems
spanning large spatial scales and having structural and functional heterogeneity.
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I. INTRODUCTION ing representative dynamical quantitiesg., Lyapunov ex-
ponents. This requires fairly intricate, sensitive and sophis-

Along with homeostasis, periodic, complex, and eventicated experimental methodology, thereby making it difficult
chaotic spatiotemporal dynamics are shown to be abundantfpr implementation. This is particularly true when the sys-
present in a variety of real and artificial systems, such as items are heterogeneous and large such as, ecological systems
arrays of semiconductors, lasers, plasmas, and chemical rgt9].
actors, fluid flow, and in cardiac and neural tiss{i2s §|. Any approach that is not system dependent and which can
Many systemic or environmental factors can change the nomlso be applied locally or globally, would offer a major ad-
mal dynamics and abnormalities or disease can set in. Ex-ancement in real world applications. With this aim we pro-
amples are instabilities in lasers, charge density waves ipose here a simple and general approach that can modify the
plasmas, and arrays of Josephson junct[@hsdesynchroni-  spatiotemporal dynamics of a system based on the external
zation in coupled chemical reactors; defective biochemicahpplication of a constant perturbationginning signalin the
functions; cardiac arrhythmia, epileptogenic neural activity,spatial domain. Here, the sign and the strength of the pinning
and pathological physiology4,10]; and, large population signal alone determine the control of the spatiotemporal dy-
fluctuations and epidemics in metapopulatidd,12. Engi-  namics to desired target states, and no prior information of
neering complex dynamics is also becoming increasinglythe system parameters or their modification is required. In
useful for improved functioning—for information transmis- addition to effecting global control, this method is also ap-
sion in communication scienc¢$3], mixing flows in phys-  plicable for controlling dynamics in spatially localized re-
ics of fluids[14], and, in many branches of biological sci- gions leaving the rest of the system undisturbed. Furthermore
ences with medical applications, such as, in the treatment afie show that, simply by pinning a small region at random,
cardiac and neural diseagd$]. Thus possessing the ability one can confer global control of dynamics in a spatially ex-
to modify or have control over the dynamics of spatiotem-tended system having few nonlocal connections. In a pre-
poral systems have important applications. liminary study[20] we had described the efficacy of the pin-

It is clear from the above that there are two aspects ohing approach for suppressing chaos in a specific model
“control”—it can indicate, on one hand, suppressing chaossystem. We now show the generality of the approach for both
in the dynamics and restoring the system to its regular besuppressing and inducing/maintaining spatiotemporal chaos
havior; or involve inducing/maintaining complexity in the for a variety of discrete and continuous local nonlinear pro-
dynamics depending on the desired performance of the sysesses(a) a single discrete equatigthe Logistic map, (b)
tem. Several ingenious theoretical approaches have been presupled discrete equatiorithe Host-parasitoid systemand
posed for contro[16], and a few have also been applied to (c) coupled differential equation&he Lorenz systeim We,
experimental systen|st—6,17,18. However, these methods then, use a reverse approach and simulate an experiment in
either requirea priori knowledge of the system dynamics, neurophysiology{1] to show that this simple method can
such as, the stable or unstable fixed points and periodic osuccessfully reproduce the experimental data.
bits; or, involve direct modification or tracking of the system  The importance and usefulness of this approach stems
parameters, and monitoring of time-series data for calculatfrom the fact that it can target the system dynanfiosth

locally and globally in either direction—stable or

unstable—by simply changing the strength and sign of pin-
*Email address: nitageo@yahoo.com ning. This is of importance in systems where evolution of
TCorresponding author. Email address: sinha@gene.ccmbindia.ogpatiotemporal heterogeneity requires differential targeting to
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retain normal functionalitye.g., in ecology or physiology cations with increasing values of The constant pinning is
Also, synchronization of dynamics across space and time iapplied to the map in the following form:

coupled systems has shown to confer both a positive role in

maintaining functiong21] and a negative role in increasing x(n+1)=rx(n)[x(n)—1]*p.

risk of extinction[12]. Thus any approach that can differen-

tially control dynamics in space and time will be useful. On scaling oup, the above equation can be written as

X(n+1)=Rx(n)[x(n)—1],
IIl. THE METHOD

) _where
Many spatially extended systems are composed of dis-

crete entities governed by their local dynamics, which are (R—1)%=(r—1)%*4rp. (3)

coupled to each other through diffusion, convection, conduc-

tion, etc.,[8,22,23. Thus the spatiotemporal system consid-It is clear from the above expression thaip effectively

ered here is given by the one-dimensional diffusivelyincreases and- p decreases the parametethereby chang-

coupled lattice model with periodic boundary conditions  ing the dynamics of the logistic map towards increasing
complexity with positive pinning and towards decreasing

X (i,n+1)=F, (X (i,n))=(1—€)f (Xn(i,Nn)) complexity with negative pinning25].
. . The diffusively coupled latticEqg. (1)] with logistic map
+ el 2[ f1(Xm(i = 1) + i (Xm(i + 1)) ], defined on each lattice siteogistic CML or LCML) is com-

) monly used as a prototype model for spatially extended sys-
tems. It exhibits a wide variety of novel and complex spa-
where f defines the local nonlinear dynamiddescribed tiotemporal behaviors including spatiotemporal ché®§C)
by m variables andk coupled equationson the discrete lat- for different values ofr and coupling strengtke [26]. A
tice sitesi=1,2, ... L. The continuous state variabtéi,n) rough estimate of the strength of pinning required to control
is evaluated in discrete time steps=1,2,... N, and, ¢ is the dynamics in LCML can be obtained by linear stability
the diffusive coupling strength of the nearest neighbors.  analysis. In the case of uniform pinning, to control spa-
The proposed method for controlling the spatiotemporatiotemporal chaos and bring the whole lattice to a fixed point
dynamics involves applying a constant perturbatiorpior  state (x* =[(r—1)= \/(r—1)?+4rp]/2r), the strength of
ning to the state space variable on the lattice sites in th@inning required is given by

following manner: ,
€
|l —_(r—1)\2
(1_6> (r=1)

where p(i,n) represents the strength of pinning on iltk  Thus, forr=4, €e=0.6, p<-—0.42. In a similar manner, an
site atnth time step. We have considered two types of pin-estimate of the strength gfrequired to control the system to
ning for achieving the desired target dynami@: uniform  any higher periodic states can also be obtained.
pinning—perturbation of the same strength applied to all the The iterates of the logistic map diverge under strong nega-
sites at all time steps, i.ep(i,n)=p, and (b) nonuniform tive pinning[20]. This problem of divergence has been taken
pinning—pinning applied to the sites in a spatially inhomo- care of by applying pinning based on a threshold vale (
geneous manner. Here we defipéi,n)=45(i—miy)p, for ~ <modp) of the state variable such that&x., pinning is
m=1,2,... L/i,, such that, if5(i—miy)=1, then every not applied. Below we describe the implementation of this
site that is a multiple of, is “pinned” and takes a finite control method in the LCML under different conditions.
value p, elsep(i,n)=0. Thus wheni,=2, every alternate

site of the lattice is pinned. Control of the dynamics can be 1. Effect of pinning strength

achieved by varying the strength and signpgf,n), which The salient features of the control approach are summa-
depend on the local functional forin[24], the initial dy-  (ized in Fig. 1. Figure ) depicts the global dynamic re-
namical state, and the desired target state of the system. byonse of theniformly pinnedLCML for a range of values
the following sections, we first show the results of imple- of the nonlinear parameterand pinning strength. The gray
menting this simple, unified approach in detail for the region in this ¢-p) plot shows the parameter values at which
coupled map latticeCML ) with the logistic map as the local e |attice exhibits nonchaotic dynamics as indicated by
nonlinear function and then describe its application tonegative maximum Lyapunov exponefMILE) s. The re-

1

x(i,n+1)=Fx(i,n))+p(i,n), (2) p<4r : S

higher-dimensional systems. gions of different stable dynamical behaviors are marked
within the gray region. The black regidpositive MLE) in-
Ill. RESULTS AND DISCUSSION dicates chaotic spatiotemporal dynamics. Figua tlearly

shows that, under the influence of negative pinning, the spa-
tiotemporally chaotic dynamics at higher valuesrdh the

The logistic map given by (x)=rx(1—x), for 1<r=<4 LCML are suppressed to lower periodic and fixed-point
and O0s=x=<1, exhibits dynamics progressing from equilib- states and periodic, complex, and chaotic dynamics can be
rium to chaos through a sequence of period-doubling bifurinduced in the lattice, at low values of by the application

A. Case I: Controlling the logistic CML
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FIG. 1. Global spatiotemporal behavior of
LCML under uniform pinning.(a) Dynamics
of the LCML in r —p parameter space calculated
for r and p in steps of 0.01. The regions
markedp=1, p=2, andp=4 in the gray area
(—veMLE) exhibit equilibrium, period-2, and
period-4 behavior, and the dark regign-ve
MLE) exhibits chaotic dynamics. Bifurcation dia-
gram of sitei =30 in the CML for(b) r=4 as a
function of negativep; and(c) r=2.8 as a func-
tion of positivep. In (b) and(c), e=0.6 and data
for 100 consecutive time steps are superimposed
after eliminating 1000 time steps. Space-time-
amplitude plots of the CMLK(=3.6,=0.3), (d)
p=0, (e) p=—0.25, andf) p=0.15. Initial con-
ditions are randomly chosen fror(0,1) for i
=12,...L.

X(L2)

r=2.8

p

of positive pinning. Thus it is possible to target any desiredrium but spatially periodic dynamicss€ —0.229) by pin-
spatiotemporal dynamical states in this CML by appropri-ning every alternate siteentral pangl Here the pinned and
ately choosing the strength and sign of pinning. unpinned sites assume fixed but different valuez @figher

The typical local response of a lattice site, to opposingfor the unpinned sife The right panel shows the controlled
pinning strengths, is plotted in the bifurcation diagrams innonchaotic dynamics when every third site is pinnae- (
Figs. 1b) and Xc). In Fig. 1(b) the initial chaotic dynamics —0.0008). Suppression of STC is not possibleifgr 3 in
of a chosen site exhibits period reversals leading to periodithis highly chaotic lattice even with higher pinning strength.
and fixed-point dynamics under increasing amounts of conMost real systems do not operate in such highly chaotic state
stantnegativepinning strength. Conversely, a clear period- and thus it is possible to control them using this method with
doubling behavior to chaos, with increasing strength oflow pinning strength applied sparsely over the lattice.
positive pis observed in a LCML that is initially in a spa- The effect of pinning density in inducing/enhancing chaos
tiotemporally equilibrium stat¢Fig. 1(c)]. Similar qualita- is shown for two different values afin Figs. 2b) and Zc).
tive behavior is observed at other lattice sites also. AnalysiThe left panel of Fig. &) shows a stable CML, which, on
of these local bifurcation plots help in determining the pinning the alternate sites with positiye exhibits chaotic
strength and sign of the pinning required for attaining thedynamics (right panel, s=0.179). Similarly, a LCML
desired state. The space-time-amplitude plots of a weakljleft panel of Fig. 2c)] exhibiting weak, two-band
chaotic latticg[Fig. 1(d)] also show complete suppression of chaos 6=0.098) clearly becomes more chaotic
chaos under uniform negative pinnififig. 1(e)], and en-  (s=0.409)—spanning larger area in phase space—when
hancement of chaoticity under positive pinnifigig. 1(f)].  pinned at every alternate sitgght pane). We observed that
Thus uniform negative and positive pinning can be used tenuch smaller perturbation was required to enhance chaos in
globally control the dynamics of the LCML to desired spa- a weakly chaotic lattice in comparison to inducing chaos in a
tiotemporal behavior. stable lattice. Also it was not possible to destabilize a LCML

at equilibrium by pinning fewer than alternate sites.
2. Effect of pinning density

. . o . . Eff f li h
In many real situations it is not possible to have control 3. Effect of coupling strengt

probes over the entire spatial domain. A useful algorithm The coupling strengtle is an important parameter whose
should then have the ability to exert control even when apvariation alone can give rise to a wide range of complex
plied in lesser density. The effect of spatialpnuniform  spatiotemporal patterns in the systd@6]. Thus, for our
pinning on the spatiotemporal dynamics of the LCML is method to be successful in effecting control over the spa-
shown in Fig. 2. tiotemporal system, it would be advantageous to have knowl-

The periodic and weakly chaotic lattices can be easilyedge of the optimal range @f especially when the pinning
controlled to the stable state by applying negative pinning adensity is low. In Fig. 3 we show the role efin suppressing
fairly low density (e.g., at every tenth site for a weakly cha- fully developed STGFigs. 3a)—3(c)], and inducing chaos in
otic lattice). But strongly chaotic lattices require a densera stable lattice[Figs. 3d)—3(f)] in an alternately pinned
distribution of pinning. In Fig. ga), the left panel showing a LCML, as € is varied from zergno coupling to 1 (strongly
highly turbulent LCML is controlled to temporally equilib- coupled.
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(a) r=3.95
0“ !!I!lllll il . ]
120 180 FIG. 2. Space-amplitude plots for LCML un-
(b) r=2.8 der nonuniform pinning(a) Left, fully developed
1.25 .:” ---:::Ii;llli":lii';Hl: STC for r=3.9; center, temporally stable and
) spatially periodic dynamics gy=—0.16 fori,
< ||. Bernenenhrdi || " "|“ o “I |l " =2; right, periodic dynamics witlp=—0.4 for
l I-----.- vl ||.._ el T i,=3. Heree=0.7 andx.=0.1. (b) Left, stable
0 , . LCML with r=2.8; right, induced chaotic dy-
0 120 namics forp=0.5.(c) Left, weakly chaotic lattice
for r=3.6; right, enhanced chaos wifh=0.24.
(2 (c) r=36 . For both(b) and(c) i,=2 ande=0.3.
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The bifurcation diagrams in Figs(@ and 3b) show the [Fig. 3[@] and the pinnedlFig. 3(b)] sites. The typical spatial
temporal behavior of an unpinne@h “gray” ) site and a behavior of this CML, obtained by superimposing data for
neighboring negatively pinnedin “black” ) site, respec- all the lattice sites at a given time, is shown in Fig)3This
tively, in a spatiotemporally chaotic LCML. In absence of also shows that suppression of chaos is observed only at
any interaction €= 0), the unpinned site shows STC and theintermediate coupling strengths for the chosen values of pin-
neighboring pinned site is controlled to equilibrium state.ning strength and pinning density. It may be recalled that
The neighboring sites interact to influence their respectiveontrol can always be achieved in a CML by pinning all the
dynamics ase is increased. At both low and higk, the sites irrespective of coupling strength.
highly chaotic dynamics in the unpinned site offsets the ef- In order to find the range oé for inducing chaos, we
fect of pinning and the CML is not controllable by this consider a stable LCML whose alternate sites are pinned
strength of pinning. But at intermediate valueseofa clear  with positive p [Figs. 3d)—3(f)]. As in Figs. 3a)—3(c), in
period-halving behavior is observed at both the unpinnedhis case also the stable dynamics exerts its influence maxi-

() r=4.0 (d) r=2.8

X(L/2)

FIG. 3. Effect of coupling strength in a non-
uniformly pinned (,=2) LCML: Suppressing
fully developed STC (=4, p=—0.4, andx,
=0.4) in (@—(c), and inducing chaos in a stable
CML (r=2.8, p=0.5) in(d)—(f). Temporal be-
havior of an unpinned sitgn “gray” in (a) and
(d)], and a pinned sitgin “black” in (b) and(e)]
from the central region of the CML(c) and (f)
Spatial behavior of the lattices obtained by super-
imposing data for all the lattice sites at tinme
=1100.

=1100)

X(i,n

0 0.25 0.5 0.75
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100 FIG. 4. Space-time-amplitude plots for local
control in a LCML (e=0.6): (a) In a stable CML
(r=2.8), r is changed to 3.0 in the central ten
sites resulting in periodic oscillations. The altered
dynamics is suppressed with= —0.04 applied
locally to those sites(b) In a spatiotemporally
chaotic CML (=3.7), the central ten sites un-
dergo a parameter change=(3.2) resulting in
local reduction in complexity. Application of lo-
cal positive pinning p=0.21) restores the cha-
otic dynamics in the lattice.

L ."
g I
Unr= !
'i; '." it

mally on moderate values of. It is clear from the Figs. We now show that, using our approach, we can effectively
3(d)—-3(f) that it is possible to induce chaos in a stable LCML achieve global control over such multiply coupled systems
only at low and high coupling strengths. In contrast, enhancby localized pinning—a property that can have important
ing the complexity is indeed easier to accomplish in a peri@pplications in both real and engineered systems. In Table |
odic or weakly chaotic lattice for a larger range @f The ~ We summarize the results of a large number of trials for
strength of pinning also affects the desired ranges,oind ~ global control of a spatiotemporally chaotic LCMbaving

stronger pinning strengths allow control over an extendedcréasing number of random, nonlocal, diffusive linky
range of coupling strengths. randomly pinning a small block of sites. It shows that locally

pinning a block of 15 sites, chosen randomly on the lattice,

can confer global control in more than 85% cases in lattices

with few (about 200 nonlocal connections. Larger pinning
(i) Local control Global control may not always be the region and/or more nonlocal connections are needed for con-

aim of many applications. For example, a diseased state carolling strongly chaotic systems. Similar results are obtained

induce spatially localized changes in biological tiss(eg.,  for inducing/enhancing chaos in the lattice, though stronger

ectopic node in heart or epileptic fogusvhich then affect positive p or larger pinning region is required for lattices

their normal functional dynamid®7]. The therapeutic mea- with more nonlocal connections as they tend to stabilize the

sures involve suppressing such ectopic activities locally. Irdynamics.

Fig. 4 we show that our method is quite suitable for restoring All the results described above for the one-dimensional

spatially localized changes in dynamics to the original stateattice can be generalized to higher spatial dimensions with

leaving the rest of the system undisturbed. appropriate changes in pinning strengths and pinning densi-
As shown in Fig. 4a), localized alteration in the dynam- tjes.

ics of a stable lattice was induced by increasing the param-

eterr slightly in the central ten sites. This introduced small B. Case II: Controlling the host-parasitoid CML

oscillations in that region. On applying a small negative pin-

4. Effect of local pinning

The “pinning” approach is equally effective for higher

; o ; bimensional dynamical systems. Here we show its imple-
latory behavior was observed and equilibrium dynamics re- 4 y P

stored in the whole lattice again. In Fig(b4, we consider a TABLE I. Global control by local pinning in LCML with non-
chaotic lattice whose central ten sites started exhibiting perilocal coupling: Along with their nearest neighbors, randomly
odic oscillations due to reduction in Application of local ~ chosen sites in the latticd < 60) are diffusively coupled to an-
positive pinning to these sites allowed the entire lattice tg*thern randomly chosen sites in a spatiotemporally chaotic LCML
restore its original chaotic behavior. The effect of pinning is(" =36, €=0.2). Pinning p=—0.2) is applied to a block of 15
quite firmly localized whene is not very high. Thus it is sites spanning the whole lattice for each &ndn). T_he_MLE(s) is
clear that this approach can also be used to induce desir&@'culated beforéto ensure+ve MLE) and after pinning. Results
local alterations in spatially extended systems. are averaged over 25 random trials for eashgndn).

(ii) Global control in lattice with nonlocal coupling

. m n % of —ve MLE
Many large spatiotemporal systems possess both local and
nonlocal interactions among its different parts, and pinning 25 5 29
the entire system to achieve global control is practically im- 40 5 36
possible. A typical example is a metapopulation in ecology 50 5 98

where multiple subpopulations interact through migration
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0.3
(@ (b) (©
X
P
55T FIG. 5. Control in host-parasitoid CMLe(
0.150 > 06 m 05 06 =0.2) on pinning the host: phase plane plots for
’ : : ’ H andP in a site for(a) p=0, (b) 0.03, and(c)
p= —0.02. The corresponding lattice dynamics in
0.6 space amplitude plots showing that the unpinned

(@ (e) (f)

1 60 i 60 60

guasiperiodic dynamic&l) is suppressed by posi-
tive pinning(e), and enhanced with negative pin-
ning (f) of the host.

I

0.2

mentation for the host-parasitoiiP) system[28] in ecol-  the hosts and parasitoids diffuse to the nearest neighboring
ogy, which is described by two coupled discrete equations sites. This system exhibits a variety of complex spatiotem-
e _ B poral patterns[28]. Here we present only the results of
H(n+1)=fy=rH(n[1=H(n)lexd - FP(n)] implementing our control method for the case of uniform
PN+ 1)=f.—H 1- _gp pinning to the h_ost variable. The Io.ng-tejrm.dynamlcs of the
(n+1)=fo=HM[1=exp - PN}, © host and parasite at a chosen lattice site in(tHE) phase

whereH(n) andP(n) are the densities of the host and para-Plane is shown in Figs.(&—(c) and the spatiotemporal dy-
site populations at theth generation. The density-dependentnamics of the host in the lattice is depicted in the space-
logistic growth of the host population is modulated by para-amplitude plot in Figs. &l)—(f). Both the host and the
sitism (exf — BP(n)]), and the parasites grow only by in- parasite are known to exhibit quasiperiodic dynamics indi-
fecting the hosts. The parameterand 8 represent the in- vidually and collectively for the parameter values 4 and
trinsic growth rate of the host and the searching efficiency of3=3.5 as shown in Fig.(® and 3d). Figures %b) and 5e)
the parasitoid. show that a small positive pinningmmigration/addition to

We consider a model metapopulation of the host-the host population can lead to suppression of the complex
parasitoid system on a one-dimensional lattice where bothynamics at all lattice sites to a fixed-point state. Conversely,

50
(b)

FIG. 6. Control in the spatially extended Lo-
0 renz system = 0.3). Phase plane plots farand
25 25 z 25 25 Z in a site for (@ p=0, (b) 0.5, and(c) p=
—0.5. The corresponding lattice dynamics show-
ing the unpinned chaotic dynami@d) being sup-

30
(d) (e) (f ' pressed by positive pinninge), and enhanced
with negative pinningf).
: ”HMHHHHN .................... H IH ‘ HI
b
-30
1 20 i 20 20
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Figs. 5c¢) and §f) show that a small negative pinning

(harvesting/removalof the host enhances the complexity in _ ro
dynamics, with both the host and parasitoid exhibiting com- T -4
plex and higher amplitude oscillations. One can implement & N . x
this control method by pinning the parasitoid population ‘_“é‘__ &
also. 2 %
3
C. Case llI: Controlling the Lorenz system o 5 10 15 2 5
. . . . Time (mi
As a prototype for a higher-dimensional continuous sys- o 018 (b) = ime (min)
tem exhibiting chaotic dynamics, we choose the Lorenz sys- 015 I
tem[29] described by three coupled differential equations 30
) Q
x=f1=0(y—x), £
10[
y=f,=—xz+rx—y, 0
y="h y 0 1000 2000 3000 4000
. Time
z=f;=xy—bz (6)

FIG. 7. (a) Effect of polarity of external electric field on bursting
This system shows low-dimensional chaos for the parameteteurons(reproduced from Ref[1] with permission. Burst rate
valuesr =28, b=2.67, ando=10. We use this dynamical (connected dojsrom transverse CA3 under the influence of exter-
system on a spatially discrete one-dimensional lattice wittnal electric field(solid line in upper tracealigned parallel to the
all three variables diffusing to the nearest neighbors with thglendritic-somatic axis of the pyramidal cells. Burst rate is deter-
same strength. This spatially extended system exhibits sparined from number of bursts occurring within nonoverlapping 15-s
tiotemporally chaotic dynamics for the same parameter Va|time windowg upon switching the polarity of the field. At base line,
ues as is shown in the-z phase plane plot of a representa- Without applied field, pyramidal cells synchronously discharge at
tive site [Fig. 6@], and the space-amplitude plot of the ~1 Hz. (b) Simulation of[1] with a weakly chaotic LCML ¢
whole lattice for the variable [Fig. 6(d)]. Figures 6b) and  —.3:6€=0.3). The amplituddAmp) is determined by taking the
6(e) show that, with a small, uniform, positive pinning fg, d'ﬁer?nce?(max')_xm‘”(') an_d averaging for all sites for 100 con-
the chaos in Lorenz system is completely suppressed Iocall%ecuuve time steps after eliminating the transients. On switching

. - L . om negative to positive pinningp(in upper tracg the amplitude
and the lattice also exhibits equilibrium dynamics. And, a.changes from a large value to a lower value, similar to the bursting

Sme.l" n.egatlve pinning en.hances the amplitude (_)f the ChaOtIffeurons. Here, switching from positive to negative pinning is not
oscillations both Iocal_l;{Flg. 6c)] and gIob_aIIy[Flg. G(f)],' continuous and appropriate pinning is applied after eliminating tran-
Thu§ we show that this methqd can ef‘fectl\_/ely be app“ec_' t%ients (500 time stepdor the CML with identical random initial
spatially extended systems with local continuous dynamicalongitions for each case.
systems.
different strengths of opposing sigfBig. 7(b)]. The upper
panel in Fig. Tb) shows the strength of pinning and the
) ) ) o o ) lower panel gives the average amplitude of oscillations in the
In experimental situations “pinning” implies perturbing |atiice sites. It is indeed obvious that positive pinning clearly
the varla_ble/3|gnal that is being measured. Here We_refer thduces higher amplitude oscillations mimicking the higher
an experimental studyl] that shows the effect of polarity of e\ ronal activity, and negative pinning suppresses the back-

external electric field on the neuronal electrical activity in 4rqund activity to differing extents depending on the pinning
hippocampal slices of rats. In this experiment, small extern trength.

electric fields of opposing polarity were used to modulate the

spontaneous burst activity in the pyramidal cell layer in the

CA1 and CAS region of the rat hippocampus. The relation- V. CONCLUSION

ship between both the electric field polarity and the magni- Most dynamical systems manifest parameter regimes

tude on the CAS3 burst frequency is reproduced in Fi@).7 where bifurcation between dynamical states can generate al-

The experiment showed that the burst frequency alternateliered dynamics that can be associated with the onset of

increased and decreased as a direct result of changes in figldthological behavior. Both suppression and preservation of

polarity—negative field amplitudes accelerating and positivechaotic or complex dynamics are thus important in restoring

amplitudes suppressing the burst rate. normalcy. By using our simple approach, we have shown
At a microscopic scale the neuronal tissue can be reprethat it is possible to target the spatiotemporal dynamics, in a

sented as a discrete network of individual cells with localwide variety of systems under many realistic conditions, to

electrical and chemical processes coupled through gap juneny desired stable fixed-point/periodic or chaotic states by

tions. We use the logistic map as a formal description of thesimply applying constant pinning signal of opposite signs in

local complex dynamics of bursting neurons and model thehe spatial domain.

system at base line with a weakly chaotic LCML. We simu- In situations where a tractable mathematical model for the

late the results shown in Fig(& by pinning this LCML for  system is available, linear stability analysis can be used to

D. Case IV: Simulation of an experimental result
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obtain a rough estimate of the strength and sign of pinningf controlling pathologies, where regular application of
required for control, as is shown in Eq®) and (4). Alter- drugs or the presence of situ pacemakers are required till
natively, a few short test experiments on the local functionathe diseased part is physically altered or removed. An impor-
form can help determine the sign and the range of pinningant aspect of this approach is that it controls the dynamics
strength required to achieve the desired performance. Simpoth locally and globally(for systems with nonlocal cou-
larly, in the case of experimental systems, one can carry 0Wjings) through the application of spatially localized pinning.

a few trial experiments by applying external perturbation, ofsych properties allow differential control, i.e., targeting dif-
opposing sign and differing strengths, to the signal beingerent dynamics in different regions in space and time, and
measured to get an indication of the efficacy of the controkan pe very useful in large, heterogeneous, multiply con-
method. The experimental reSLﬁll] elaborated above is a nected systeme_a“g_' metapopu|ati0n in ec0|ogy or |arge ar-
representative example of this method as it involves applicarays of coupled oscillatoysor modulating foci of activity,

tion of external electic field to suppress and enhance th@pjdemic centers, waves of disturbances or to desynchronize
electrical bursting of the neuronal tissue. Similar experimeny spatially extended system. Thus, this simple and general
tal studies exist where alteration in dynamics is effected simgpproach can be used as a powerful tool to target both stable
ply by perturbing the variable/signal that is being measuredind complex spatiotemporal dynamics at different spatial

directly or through controller$18,30. This indicates that and temporal scales allowing possibilities for wide-ranging
this method of control is quite effective and applicable togppjications.

many fields of science and engineering.

The pinning  effectively  reduces/increases the
nonlinearity/parameter causing the dynamics to move to-
wards stable or unstable manifold in single maps and CML
[20,24]. We believe that pinning has a similar effect on other  This work was supported by the Department of Science
dynamical systems. Persistence of pinning is required in thiand Technology, India. S.S. thanks the Santa Fe Institute,
method which makes the controlled state robust against peNew Mexico, where this paper was completed, for its hospi-
turbations. This is a common feature in therapeutic measurdality.
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