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Pattern formation in two-frequency forced parametric waves

H. Arbell and J. Fineberg
The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

~Received 24 July 2001; published 5 March 2002!

We present an experimental investigation of superlattice patterns generated on the surface of a fluid via
parametric forcing with two commensurate frequencies. The spatiotemporal behavior of four qualitatively
different types of superlattice patterns is described in detail. These states are generated via a number of
different three-wave resonant interactions. They occur either as symmetry-breaking bifurcations of hexagonal
patterns composed of a single unstable mode or via nonlinear interactions between the two primary unstable
modes generated by the two forcing frequencies. A coherent picture of these states together with the phase
space in which they appear is presented. In addition, we describe a number of new superlattice states generated
by four-wave interactions that arise when symmetry constraints rule out three-wave resonances.
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I. BACKGROUND

Patterns are ubiquitous in the world around us. The w
‘‘pattern’’ describes an order, regularity, or a simple ma
ematical description, which can be found either in a natu
or a manmade system. Patterns often result from s
interactions of driven nonlinear systems. Naturally, the fi
patterns to be scientifically analyzed were the simplest o
which can be described by few mathematical variab
However, in recent years we have learned to recognize
categorize patterns in systems that were assumed to be f
less, devoid of any order. Perhaps the most obvious cha
teristics of these systems are the multiple length and t
scales that can be present simultaneously. One of the m
important mechanisms to explain such phenomena is
nonlinear resonant interaction between the different mo
that are excited in these systems. In these interactions tw
more waves can interact to form ‘‘new’’ waves. These wav
have a wavelength and frequency that is the sum or dif
ence of the basic waves. The system’s energy can the
transferred between these modes or dissipated at diffe
scales. The purpose of the work described in this paper
to explore this paradigm in the experimental study of
simple controlled system: the parametric excitation of wa
on the surface of a fluid~the Faraday system!.

The general form of the external acceleration applied
the system is given by

g~ t !5A@cos~x!cos~mv0t !1sin~x!cos~nv0t1f!#. ~1!

This spatially uniform vertical excitation preserves the s
tem’s spatial symmetries while modifying its temporal on

As first noted by Faraday, sinusoidal acceleration~in the
direction of gravity! of a fluid layer with angular frequenc
v induces a pattern, having a wave numberk(v), on the
fluid surface. Whereas waves excited by a single freque
have been studied extensively over the last 4 decades
response of the system for multifrequency excitations
only recently begun to be investigated. Single-frequen
driving can produce patterns of different symmetries. P
terns consisting of rolls, squares, hexagons, and 8-, 10-,
12-fold quasipatterns have been experimentally observe
@1–4#. The secondary instabilities of these different patte
1063-651X/2002/65~3!/036224~29!/$20.00 65 0362
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involve complicated states that display either spatiotemp
chaos @3,5–9#, transverse amplitude modulations@10#, or
various defects@3,10# that break the patterns’ initial globa
symmetry. The use of multiple-frequency driving enables
to study the interactions of different excited modes in a c
trolled way, as each excitation frequency can linearly excit
well-defined wave number. In this way, we hope to be able
slowly unfold the system’s underlying behavior and there
unravel the fundamental mechanisms that describe
waves’ interactions.

The purpose of this paper is to provide a coherent ov
view of the wide variety of nonlinear states that result fro
two-frequency forcing. We will provide detailed description
of the spatial and temporal behavior of these states. In do
so, we will provide a characterization of these nonline
states—depicting both the resonant mechanisms and sym
try constraints giving rise to their formation.

This paper is organized in the following fashion. In Sec
we will briefly describe the theoretical and experimen
work that has, to date, been performed in this system.
experimental apparatus and measurement techniques us
our measurements will then be described in Sec. II. We w
then present, in Sec. III, an overview of the phase diagr
together with a brief description of the different types
superlattice states observed. Each type of superlattice
gether with the mechanisms that form it, will then be d
scribed in detail in the subsequent sections. A codimensio
point, at xc , exists in this system where both externa
driven modes simultaneously become linearly unstable. S
harmonic superlattice states~SSS!, which bifurcate from an
initial hexagonal state far fromxc , will be described in Sec
IV. We will then progress to the region of phase space in
vicinity of xc . Three different types of superlattice patter
will be described in Secs. V, VI, and VII. All of the abov
superlattice patterns result from different types of three-w
resonant interactions. We will conclude with Sec. VIII
which a number of superlattice states generated by four-w
resonant interactions are described. We will show that th
states can occur when three-wave interactions are forbid

A. Notation

The notation conventions used throughout this paper
as follows. The driving function is specified in Eq.~1!. To
©2002 The American Physical Society24-1
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avoid confusion, we will always specify the driving fre
quency ratio used in Eq.~1! by the ratiom/n wherem andn
are the two co-prime integers that describe the two frequ
cies v15mv0 and v25nv0 . We will always assume tha
n.m. In our notation,k1 andk2 refer to the wave number
excited, respectively, by the driving frequenciesv1 andv2 .
The anglex in Eq. ~1! describes the relative mixing betwee
the two modes and the anglef describes their phase differ
ence, where the relevant range is 0,f,2pm/n. cos(x) and
sin(x) are sometimes@11,12# replaced by the mixing coeffi
cientsr and 12r .

In the following sections we will frequently characteriz
eigenmodes by their temporal parity. Since the parity ofm
andn is important we will use the notation odd/even~even/
odd! to described the classes of driving wherem ~n! is odd
andn ~m! is even. Odd/odd describes driving where bothm
andn are odd. A state whose temporal response has a fu
mental frequency ofv0/2 will be denoted as a ‘‘subhar
monic’’ state, whereas a ‘‘harmonic’’ state is one with a fu
damental frequency ofv0 .

We shall use the following units. The total amplitudeA,
appearing in Eq. ~1!, is measured in units ofg
5981 cm2/sec. The fluid’s kinematic viscosityn is measured
in centistokes~0.01 cm2/sec!, and the depth of the fluid laye
h is measured in centimeters. In many cases, we will iden
for simplicity, angular frequencies~e.g., v! with the corre-
sponding temporal ones@e.g.,v/~2p!#. Where necessary, an
gular or temporal frequencies will be explicitly denoted. U
less otherwise noted, the spatial scales of the photograp
states presented in the figures are 939 cm2. Additional no-
tation will be defined as needed.

B. Linear analysis

The linear stability analysis of the problem was perform
by Besson, Edwards, and Tuckerman@13# by numerically
solving the linearized Navier-Stokes equation via an ext
sion of the technique developed by Kumar and Tuckerm
@14# for single-frequency excitations. As in the singl
frequency case, the acceleration–wave number plane is c
acterized by alternating tongues corresponding to the ac
eration at which a given wave number becomes linea
unstable. For mixing anglesx50° andx590° the tongue
structure of single-frequency forcing with eithermv0 or nv0
driving is obtained. Increasingx from 0 results in the appear
ance of additional tongues whose dominant frequencies
spacedv0/2 apart, since the system’s basic frequency is th
v0 . Each odd-numbered tongue possesses asubharmonic
temporal dependence composed of only frequenciesv0(p
1 1

2 ) whereas even-numbered tongues are temporallyhar-
monic, i.e., composed of frequenciespv0 ~where p is any
whole number!. Although the time dependence of ea
tongue is given by an infinite series, thedominantfrequency
of the pth odd ~even! tongue corresponds to (p1 1

2 )v0
(pv0). Generally, within the critical tongues the domina
frequenciesnv0/2 or mv0/2 have an order of magnitud
greater amplitude than the other components. Thus, the
poral response of the critical modes form/n5odd/odd driv-
ing ratios is always subharmonic. For odd/even~even/odd!,
03622
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the k1 ‘‘tongue’’ has a subharmonic~harmonic! response
while thek2 tongue has the opposite parity.

The system’s critical wave numberkc corresponds to the
lowest accelerationac at which the flat, featureless sta
loses stability. At a critical value ofx5xc , a codimension-2
point exists where two tongues having wave numbersk1 and
k2 corresponding, respectively, tomv0/2 andnv0/2 simul-
taneously become unstable. Forx far from xc the critical
wave numbers are close to the values ofkc obtained for
single-frequency experiments. Near the codimension-2 p
kc tends to differ from the corresponding single-frequen
value by up to 10%. The calculated values of bothac andkc
are in excellent agreement with experiments@13,15#. While
modes other than the critical ones are linearly damped,
will see that they can play an important role in nonline
wave interactions.

C. Experiments with two-frequency forcing

In the case of single-frequency driving, the subharmo
time dependence prohibits quadratic terms in the ‘‘amp
tude’’ equations describing the nonlinear interactions
tween the amplitudes of the excited modes. However, w
using two-frequency driving with odd/even or even/odd p
ity, both harmonic and subharmonic temporal responses
possible. When one of the driving frequency component
dominant, one can consider the smaller component as a
turbation that breaks the system’s temporal subharmo
symmetry. The reflection invariance of the corresponding
of coupled amplitude equations is then broken and, gen
cally, quadratic terms can appear. These quadratic terms
important since they enable three-wave interactions betw
different modes.

Edwards and Fauve were the first to study the tw
frequency driven Faraday instability@16–18#. They chose to
focus most of their study on 4:5 driving although they al
explored other ratios~such as6

7,
4
7,

8
9, and 3

5!. These experi-
ments used a relatively viscous fluid and a small fluid la
height in order to minimize lateral boundary effects. As t
viscosity of the fluid was rather high (n5100 cS) stripe pat-
terns occurred for single-frequency driving. The phase sp
as presented in@16# for ~even/odd! 4:5 driving can be di-
vided into two parts: The harmonic~subharmonic! part
where thek1 (k2) wave vector is dominant and the leadin
temporal term has the frequency of 4v0/2 (5v0/2). In the
harmonic region, in place of the stripe patterns of wave nu
berk1 appearing for pure 4v0 driving, a first-order transition
to hexagons occurs forx.10°. In the subharmonic region
striped patterns with wave numberk2 are observed until the
near vicinity of the codimension-2 point atxc . The first-
order transition to the hexagonal state results from the q
dratic interactions mentioned above.

In the neighborhood of the codimension-2 point, a temp
rally harmonic, 12-fold symmetric quasiperiodic pattern w
observed. These states appeared for only a small rangef
(f;75°65°). They evolved, via a first-order bifurcation
from either the flat zero-amplitude state or the subharmo
striped patterns. In the hysteretic region of these states,
wards and Fauve also observed solitary axial waves
4-2
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originated from the quasiperiodic pattern. Arbell a
Fineberg@19# have shown that these highly localized wav
are related to ‘‘oscillons,’’ which are temporally oscillatin
states, observed in vibrating granular systems@20#, that are
highly localized in space.

Muller @12# later conducted two-frequency-forcing e
periments using a driving ratio of1

2. These experiments wer
performed nearxc in shallow fluid layers in various region
of the x-f phase space. Both temporally subharmonic he
gon and triangle patterns were observed. Triangular patt
are formed when the spatial phase associated with eac
the excited eigenmodes differs from 0° or 180°. Mull
showed that amplitude equations with both cubic and qui
terms~applying to temporally subharmonic waves! can form
triangular patterns. In contrast, amplitude equations w
quadratic terms have only stable hexagonal solutions. Th
experiments were later modeled by Zhang and Vinals@11#
using a quasipotential approach. Experimentally, Mu
showed that the addition of a third small-amplitude forci
frequency~which is equivalent to perturbatively breaking th
system’s parity! could stabilize either the hexagonal or tria
gular states.

More recent experimental studies in two-frequency-forc
systems were performed by two groups, Kudrolli, Pier, a
Gollub @21# and Arbell and Fineberg@15,19,22#. These stud-
ies were conducted both in the near vicinity and far fromxc .
They revealed a number of qualitatively new, superlatti
type states in which new scales, not directly introduced
the external forcing, were evident.

In regions of phase space that can be relatively far fr
xc , superlattice states were observed as secondary bifu
tions from the harmonic (mv0/2) hexagonal states that occ
for odd/even or even/odd driving ratios. The primary he
agonal symmetry with wave numberkc is broken by addi-
tional modes with wave numbersq,kc whose temporal re-
sponse possesses anmv0/4 component. These states inclu
‘‘SL-II’’ states observed for 4:5 driving by Kudrolli, Pier, an
Gollub @21# and the~SSS! states observed for a large numb
of driving ratios by Arbell and Fineberg@15#.

A second type of superlattice state is observed in the n
vicinity of the codimension-2 point, once again on the s
dominated by theharmonicdriving component when even
odd or odd/even forcing is used. Two variants of these st
coined ‘‘SL-I’’ @21# and double hexagonal states~DHS! @19#
have been observed. These states can be described b
superposition of two hexagonal sets of wave vectors of m
nitudekc . The two sets of six wave vectors are oriented at
angleu r.22° to each other. This specific angle is not ar
trarily chosen. The sum and difference vectors between
two wave vector sets produce a sublattice spanned by
smaller difference wave vectors. When the two sets of w
vectors are oriented at specific angles ofu r , the sublattice
formed by the difference vectors becomes commensu
with the two hexagonal lattices. This structure is one of
generic possibilities that were anticipated on the basis
symmetry arguments proposed by Silber and Proctor@23#.

A qualitatively different type of superlattice occurs in th
vicinity of xc for all driving ratio parities. These state
coined two-mode superlattices~2MS! @15#, are the most gen
03622
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an interaction of the two linearly excited modes~k1 andk2!
with a third linearly damped slaved mode that is nonlinea
excited. The angle betweenk1 and k2 is chosen by the fol-
lowing resonance mechanism: the vector differencekW22kW1

produces a third wave vectorkW3 . The magnitude ofkW3 is
determined by the dispersion relationv(k) for the difference
frequencyv35v22v1 .

An additional type of superlattice state has been obser
for 2

3 and 4
5 driving in the vicinity of xc @22#. This state,

which appears in place of the 2MS state, consists of a rh
boid pattern that is formed by the simple nonlinear re
nance:kW22kW285kW1 , where ukW2u5ukW28u. When the coupling

angleu @u[cos21(kW2•kW28/k2
2)# betweenkW2 andkW28 is tuned to a

value ofu;2p/n, (22n)-fold quasicrystalline patterns ar
naturally formed.

D. Model equations and nonlinear analysis

Generally, two methods have been used to study the
aday instability with two-frequency driving. The first use
simple model systems that yield qualitative insights rega
ing the behavior of the Faraday system. These use gen
assumptions based mainly on symmetry considerations.
second method is to start from the full nonlinear set of eq
tions that describe the system, employ carefully chosen
proximations, and derive a set of equations that describes
behavior of the system based on the real physical parame
Both methods have yielded valuable insights.

1. Model equations

The observation of quasicrystalline patterns~‘‘quasipat-
terns’’! generated using two-frequency driving by Edwar
and Fauve@16# and via single-frequency driving by Binks
Westra, and van de Water@24# provided a motivation to find
model equations that display similar behavior. Muller@25#
first considered a system ofN coupled Landau equation
with cubic nonlinear terms. These equations could be writ
as the gradient of a Lyaponov functional. Muller showed,
minimization of this functional, that regularN-fold patterns
of different symmetries can be stable. Pattern selection
pended on the value of the nonlinear coefficients coupl
the linearly degenerate modes. This mechanism may be
lated to both the appearance of quasipatterns in sin
frequency Faraday experiments and to the quasipatterns
served in the harmonic region of two-frequency Farad
systems with even/odd driving.

A second mechanism that can create quasipatterns is
lated to quadratic interactions between degenerate nonli
modes. Muller proposed that a quadratic nonlinearity, gen
ating the triad interactionkW22kW285kW1 (ukW2u5ukW28u) could also

lead to quasicrystalline patterns. The angle betweenkW2 and
kW28 is tunable by the ratiok1 /k2r with resonant anglesu
545°, 36°, and 30° for 8-, 10-, and 12-fold quasipatter
respectively. These states were observed in a system of
coupled Swift-Hohenberg equations, each with a differ
unstable wave number. Frisch and Sonnino@26# also ob-
served subcritical tenfold symmetrical patterns in coup
4-3
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Swift-Hohenberg equations. This state was numerica
shown to be stable even when the dynamics are not der
from a free energy functional. In addition to states w
N-fold symmetry, nonsymmetric, rhomboidal patterns we
also seen to be stable for some parameter values. Later,
the rhomboidal patterns and resonant quasipatterns resu
from the above interactions were observed experimentally
Arbell and Fineberg@22#.

Lifshitz and Petrich@27# modeled the two-frequency Fa
aday system with a single generalized Swift-Hohenberg-t
equation for asinglereal fieldu(x,y). This model is simpler
than the coupled equations used by Muller, Frisch a
Sonino, and Newell and Pomeau@28#. The model equation
used was rotationally invariant withtwo built-in critical
wave numbers. The equation contained a quadratic term
both broke the system’s up-down symmetry and allow
triad wave interactions. Stable striped, hexagonal and 12-
symmetric patterns were observed for different values of
control parameter. In addition to theseN-fold symmetric
states, a compressed hexagon state, similar to the rhom
stripe pattern described by Muller, was observed.

The above model systems suggest that the existenc
two unstable wave numbers together with the possibility
triad interactions~provided by quadratic terms! is a sufficient
condition for the formation of quasiperiodic patterns. A
other common feature of these models is the existenc
distinct regions of phase space in which patterns that l
N-fold symmetry are stable.

2. Nonlinear analysis

In contrast to the simplified model systems describ
above, Zhang and Vinals@11# derived a description of the
system’s dynamics from the governing equations for the tw
frequency Faraday problem. To this end, they applied
quasipotential approach developed for single-freque
study @29# to the problem of two-frequency driving. Thi
approach is strictly valid in the limits of weak dissipatio
and infinite fluid depth.

To compare their results with Muller’s experimental r
sults, Zhang and Vinals analyzed the special case of1

2 driving
in depth. They first used the linearized equation to study
location of the codimension-2 point,xc , as a function of the
phase differencef. The results were in qualitative agreeme
with the experiments. The discrepancies were attributed
the high damping used in Muller’s experiment, which w
outside the region of validity of the theory. It is interesting
note that the dependence ofxc on f is a special feature o
1
2 driving and does not occur for other driving combination

Zhang and Vinals then, using a multiple scales approa
derived standing wave amplitude equations. This wea
nonlinear analysis assumed that the system was far from
codimension-2 point, so that a single temporal mode do
nated the dynamics. For the case of1

2 driving, they first ob-
tained a prediction for the relative magnitudes of the diff
ent Fourier components of the weakly nonlinear tempo
response of the fluid surface. Then, assumingN degenerate
modes, the coupled amplitude equations describing th
modes were derived. In contrast to@25#, the functionb(u i j )
coupling the i th and j th modes was computed from th
03622
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physical parameters of the problem. One interesting resu
this calculation was that the phase differencef can have a
strong effect on the coupling functionb and thereby a strong
effect on the nonlinear pattern selection. The relative stab
of different N-fold nonlinear states was then calculated
minimization of a Lyapunov functional, as in@25,27#. Semi-
quantitative agreement with the regions of stability observ
experimentally in @12# for different patterns ~squares,
hexagons/triangles, and quasipatterns of various orders! ob-
served in the subharmonic region of thef-x phase space wa
obtained.

An important result of this work was that it suggested
new type of physical mechanism that governs the selec
process. These calculations indicated that the value of
coupling coefficients was strongly influenced by triad inte
actions between the linearly excited modes~corresponding to
the dominant excitation frequency! and thelinearly stable
modes corresponding to thesecondexcitation frequency.
Resonant coupling to these latter modes served, in the re
of phase space far fromxc , to enhance the effective
damping—as energy transferred to these ‘‘slaved’’ mode
more efficiently dissipated. Far fromxc , states thatcannot
couple to the slaved modes are then preferred by the sys
As we shall later see, however, in thevicinity of xc , resonant
triad coupling to the linearly stable, slaved modes provid
one of the main mechanisms for the rich variety of nonline
states observed.

Silber and Skeldon@30# were the first to theoretically
study the two-frequency Faraday system in the vicinity of
codimension-2 point. This study pointed out the importan
of accounting for the temporal symmetries of the syste
Silber and Skeldon focused on forcing ratiosm/n having
either odd/even or even/odd parities, where interactions
tween harmonic and subharmonic waves may occur.

As shown in@11#, resonant mode interactions greatly a
fect the mode coupling functionb(u). Using normal form
analysis, Silber and Skeldon showed that triad resonan
kW16kW185kW2 ~wherek15k18! are only possible when the tem
poral mode corresponding tok2 is harmonic. Whenk2 has a
subharmonic temporal dependence, quadratic terms in
mal form equations can be eliminated@31,32#—thereby de-
coupling the harmonic modes from the subharmonic on
This can be simply understood since the product of two
ear eigenfunctions~resulting from a quadratic interactio
term! results in the addition of their temporal phases. T
sum of two harmonic or subharmonic temporal phases c
not produce a subharmonic one, therefore two modes of
parity cannot couple quadratically to a subharmonic sta
Silber and Skeldon@30# went on to demonstrate the abov
by calculating the amplitude equations for both1

2 ~odd/even!
or 2

3 ~even/odd! driving by means of the quasipotential a
proximation used in@11#.

The existence or suppression of three wave resona
can have a significant effect on the qualitative features of
phase diagram. When one is far fromxc we have seen@11#
that three-wave resonant coupling influences pattern se
tion by enhancing dissipation via the coupling to a heav
damped ~slaved! mode. In this case, resonant triads a
strongly suppressed. On the other hand, when in the ne
4-4
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vicinity of xc , resonant coupling to nearly unstable line
modes can occur. Moreover, if these modes undergo a fi
order bifurcation, their growth will be~to first order! un-
checked and resonant coupling to them may have a v
significant effect on the spatiotemporal behavior of the s
tem.

Silber, Topaz, and Skeldon@33# have recently demon
strated the importance of resonant coupling to slaved mo
for 6

7 forcing nearxc . Using the quasipotential approxima
tion @11# they showed how weakly damped linear mod
with wave numbersK,kc quadratically couple to the un
stable modes to create the SL-I states observed by Kudr
Pier, and Gollub@21#. In this case, the critical wave vecto
ukW i u5kc could be constructed from a commensurate hexa
nal sublattice of wave vectorsKW i such thatkW i5qKW 11pKW 2 .
The SL-I states are a particular case where (p,q)5(62,
63) with kc /K5A7. This particular coupling was mad
possible by the existence of a weakly damped linear ton
with a wave number close toK. The SL-I state wasnot
observed for23 forcing since, for this forcing ratio, no linea
tongues near this resonance exist since there are no
tional harmonic modes withK,kc ~Ki must be harmonic by
@30# as they result from the vector difference of twokW i
modes!.

Recent work by Tse, Rucklidge, Hoyle, and Silber@34#
has shown that the SL-II states observed by Kudrolli, P
and Gollub @21# may be understood as resulting from
symmetry-breaking bifurcation of an initial hexagonal sy
metry. Study of the possible invariant subgroups of the or
nal D61Z2 symmetry characterizing hexagonal standi
waves revealed a number of possible solution branches.
of these corresponds to the spatial symmetry of tempor
averaged SL-II-type states. Depending on the normal fo
coefficients, five additional possible solution branches w
predicted. It remains to be seen whether these other bran
are experimentally observed.

II. EXPERIMENTAL SYSTEM

Our experimental system consisted of a shallow fl
layer, laterally bounded by a plastic sidewall and mounted
a computer-controlled mechanical shaker. A 1-cm-thi
black-anodized aluminum plate of 14.4 cm diameter s
ported the fluid from below. This plate was machined to a
mm flatness. The mechanical shaker used~either Unholtz-
Dickie model 5PM or VTS model 100! provided vertical
accelerations ranging from 0 to 15g. The cell acceleration
regulated to within 0.01g, was monitored continuously by
calibrated accelerometer~Silicon Designs, INC 1210L-010!
attached directly to the armature of the shaker. A feedb
mechanism was used to control and stabilize the amplit
A, mixing anglex, and phasef to desired values.

Most of our experiments were conducted with Dow Co
ing 200 silicone oil of different viscosities~DC200/10,
DC200/20, DC200/50, and DC200/100!. Silicone oil has a
typical density of 0.95 g/cm3 and surface tension of 21.
dyne/cm. This fluid is Newtonian for the viscosity range
1–100 cS. Since the fluid viscosity is highly temperatu
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dependent, stabilizing the fluid temperature was importan
stable fluid temperature of 3060.05 °C was used in all ex
periments. Resultant viscosity variations were less than 0
cS. A number of experiments were also performed us
TKO-77 vacuum pump fluid with viscosities ranging b
tween 221 cS at 33° and 184 cS at 30°. Both Dow Corn
200 and TKO-77 have very low vapor pressures so there
no need to seal the cell against evaporation. The result
our experiments showed no dependence on the partic
type of fluid used.

Our experiments were performed at frequencies betw
20–150 Hz. The selection of the frequency was influenc
by the aspect ratio of the patterns and the shaker’s maxim
acceleration and stroke. Frequency selection was also in
enced, to a lesser extent, by limitations of the imaging a
laser probe technique. Typically the aspect ratio between
cell diameterL and the wavelengthl was between 5,L/l
,50. The maximal driving frequency of 150 Hz was go
erned byac , which increases with increasingv. The shak-
er’s maximal stroke~2.5 cm, peak to peak! and boundary
mode quantization at small aspect ratios dictated the lo
frequency limit.

A. Boundary conditions

The lateral boundary conditions of the experimental c
can have an important effect on the waves excited by
system. In our experiments we attempted to minimize
role of the sidewalls. A circular shape for the lateral boun
ary was chosen. This ensured that no particular pattern
preferred. This is especially significant when the system
only slightly dissipative~e.g., low viscosity fluids and/or
large fluid depth!. For a more highly dissipative system~e.g.,
high viscosity fluids and/or shallow fluids!, the boundary’s
shape does not influence the symmetry of the excited pat
@18#.

As discussed by Douady@1#, an additional effect of side-
walls is the possible emission of waves~meniscus waves!
from the lateral boundaries. These waves are forced at
driving frequency via forced height variations of the men
cus formed at the contact line between the fluid and late
boundaries. Meniscus waves have no threshold and
therefore mask the instability threshold of parametrica
forced waves. To minimize this effect, our system’s late
boundaries~shown schematically in Fig. 1! were sloped at an

FIG. 1. A profile of the container used is shown: a Delrin c
cular boundary~gray! is attached to the bottom plate~black!. The
boundary consists of a vertical section of heighth0 and an inclined
section at an angle ofa520° chosen to allow the surface of th
liquid used, Dow Corning 200, to be at zero contact angle with
rim ~liquid in light gray!. Rings withh0 of 1, 1.5, 2.5, 4, and 5 mm
were used.h could be changed continuously by adding sm
amounts of fluid with a calibrated pipette.
4-5
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H. ARBELL AND J. FINEBERG PHYSICAL REVIEW E65 036224
angle conjugate to the contact angle between the fluid
the material~Delrin! from which the lateral rings were con
structed.~A slope ofa520° was used for the Dow Cornin
200 silicone oil.! In this way, we ensured that the static flu
interface was nearly flat.

An additional advantage of sloped lateral boundaries
the elimination of reflected waves by impedance matchi
Since the instability threshold increases with decreasingh, a
gradual decrease~sloping sides! in fluid depth increases th
effective local threshold at the larger radii to far beyondac .
Since the typical height of the fluid layer in the sloped reg
was only 0.1–0.8 mm, parametric waves could not be
cited and any meniscus waves emanating from the wall w
strongly damped. In practice, this boundary condition co
bined with the fluid viscosities and depths used enabled u
obtain values ofac within 2% of the calculated value
@13,35,36# for a system of infinite lateral extent.

B. Visualization

1. Imaging from above

To visualize the fluid surface, we employed an alternat
type of imaging technique. The imaging system is schem
cally shown in Fig. 2~b!. The experimental cell was illumi
nated by a tall cylindrical screen whose axis was concen
with center of the cell. The screen was illuminated fro
below by a ring of 12 small lamps. As a result, the lig
intensity along the screen varied as a function of the he
above the fluid. A charge-coupled device~CCD! camera was
mounted on the cylinder axis, 1.4 m above the cell. At ea
point on the fluid surface@see Fig. 2~b!#, the local slope
reflects only a single point from the screen onto the CC
Since the lighting provides a unique intensity at each he
along the cylinder, the intensity reflected by each point

FIG. 2. ~a! A schematic diagram of the experimental syste
The imaging system consisted of a cylindrical screen, concen
with the experimental cell, which was illuminated by halogen lam
arranged in a circle. A CCD camera was mounted on the cylin
axis above the fluid surface.~b! The cylinder’s illumination inten-
sity was varied as a function of the height above the fluid. At e
point on the fluid surface the local slope reflects only a single p
from the cylinder surface into the CCD. Since the lighting provid
a unique intensity at each height along the cylinder, the inten
reflected by each point is uniquely mapped to the projection of
fluid surface’s slope in the direction of the cylinder axis.
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the fluid surface is uniquely mapped to the projection of
slope on the cylinder axis. We used the CCD’s high-spe
shuttering mode~1/1000 sec! to obtain instantaneous image
of the fluid surface.

Two methods of triggering were used to control the CC
camera. The first method employed a trigger signal that w
synchronized with the driving. This signal both reset t
camera and initiated acquisition of the video frame at a
sired phase relative to the driving signal. To observe sl
changes in the patterns over long times, slow trigger ra
that were commensurate with the driving frequency w
used. The short-term behavior of a state in its different te
poral phases was studied by the use of slightly incommen
rate trigger rates. This allowed nearly continuous acquisit
of the different temporal phases of a given state without
need for very high-speed acquisition.

Our imaging technique, although providing quantitati
information, does not directly yield the surface wave heig
function h(x,y). The imaging yields a gray-scale imag
I (x,y), that is approximately the absolute value of the g
dient of the height function, i.e.,

I ~x,y!5A@]xh~x,y!#21@]yh~x,y!#2. ~2!

One must then work backwards fromI (x,y) to determine the
function h(x,y). This is done by inputting an assumed sta
into Eq. ~2! and comparing the computed pattern to the st
observed. By iteration it is possible to arrive at fairly goo
estimates ofh(x,y). Some examples are presented in Fig.

For high-amplitude states, visualization from the side w
sometimes used. This was performed by illuminating fro
the side and placing a video camera in the horizontal plan
the plate at the height of the system’s lateral boundary. T
configuration enabled direct quantitative measurements
the wave amplitudes adjacent to the lateral boundaries of
cell. An additional advantage of this imaging was that it
lowed us to simultaneously view both the lower plate’s v
tical movement together with the wave’s motion. In this w
their relative phase could be directly measured.

.
ic
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h
t
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e

FIG. 3. Using the method described in the text we calcula
model images~top! of a simple hexagonal state in its peak state~a!
and crater state~b! and of a square state~c!. The corresponding
experimental patterns are shown~bottom!. To model the surface
waves we assumed an asymmetry between up hexagons and
hexagons due to the the fact that the hexagon’s amplitude was
compared to the small layer height.
4-6
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C. High resolution temporal measurements

Most previous studies of the Faraday system have u
imaging techniques that mainly yield information about t
symmetries of the states observed. Time domain informa
was generally extracted by the use of stroboscopic lightin
the frequency of the shaker. This technique measures
lowest frequency in which a state oscillates but yields
information about higher harmonics. Two experimental st
ies used a laser beam probe to extract information abou
surface waves. Douady@1# used a laser beam deflected at
angle from the surface waves and reflected on a scree
study the amplitude of the waves. Simonelli and Gollub@37#
used a laser beam deflected from the surface waves on
photodetector to obtain temporal information. This tec
nique, however, could not give precise information about
slope of the fluid surface since an average intensity refle
from a single ‘‘cell’’ of the pattern was measured.

We combined these two methods by imaging the refl
tion at the fluid surface of a highly focused laser onto
position sensitive detector~UDT SL20!. This method yielded
an accuracy of 1–5 % in the surface slope and a temp
resolution of 0.02 mS. A good signal-to-noise ratio was o
tained by amplitude modulating the laser signal and th
deconvolving the resultant signal of the position sensit
detector~PSD!. The temporal response of the system w
only limited by the maximal sampling frequency of the PS
voltage.

III. OVERVIEW OF THE PHASE DIAGRAM

The phase space of the two-frequency Faraday syste
very large. Besides physical parameters such as fluid la
height and viscosity, one also has to set the driving par
eters. Introducing two driving components with different fr
quencies, different amplitudes and a nontrivial relative ph
makes the task of choosing a working regime and the
evant dimensionless combinations of parameters a diffi
one.

We have chosen to focus on the simplest commensu
driving ratios as a first step. Them/n ratio combinations
used in our experiments were numerous:1

2,
2
3,

2
3,

2
5,

2
7,

3
4,

3
5,

3
7,

4
5,

4
7,

5
6,

5
7,

5
8,

6
7,

6
11,

41
60,

40
59,

21
50. Most of our detailed experi-

ments were performed with no phase difference between
two frequency components@f50 in Eq. ~1!#. For system
parameters that were seen to excite special patterns, sca
f were made. Changingf was found to be crucial for the
existence of some of the states and of no relevance to oth
Phase diagrams were constructed by fixing the mixing an
x and increasing the amplitudeA until a state of droplet
ejection was reached.

Two typical two-frequency phase diagrams for even/o
driving are presented in Fig. 4. In single-frequency expe
ments rolls, squares, hexagons, and quasipatterns of diffe
symmetries are known to exist depending on the viscos
height, frequency, and amplitude above the threshold. In
parameter regime, the dominant structure in regimes do
nated by a single frequency is squares for low viscosi
(n58.7– 23 cS) and both squares and rolls for higher v
cosities (n547– 87 cS). As in other studies of two
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frequency driving@12,16,17#, two main regions, dominated
by eitherk1 or k2 , exist. Each of these regions has not on
a different wavelength but also different temporal behav
The k1 andk2 dominated regions have a strong response
v1/2 and v2/2, respectively. This is true for all values o
m/n. The temporal response, however, consists of additio
frequency components that depend on the ratiom/n. When
both m andn are odd~odd/odd driving! the excited surface
modes in both regions of phase space have only subharm
components@i.e., (p1 1

2 )v0 with p an integer#. In the case of
odd/even~even/odd! driving, thek1 dominated region is tem
porally subharmonic~harmonic! while thek2 dominated re-
gime is temporally harmonic~subharmonic!. At the critical
valuex5xc , a codimension-2 point exists where both wa
numbers are simultaneously linearly unstable. Thek1 domi-
nated region occurs forx,xc while thek2 dominated region
occurs forx.xc . The interaction ofk1 and k2 leads to a
variety of different nonlinear states in the vicinity ofxc .
Before describing these states, we will first describe the
fects of two-frequency driving in the two main regionsfar
from xc .

In the regions dominated by harmonic states we h
found a number of nontrivial states that bifurcate fro
single-mode hexagonal states while breaking both their s
tial and temporal symmetries. These symmetry-breaking
furcations can even occur whenx is quite small. The SSS
@Fig. 4 ~bottom!# is an example of such a symmetry-breaki
state. SSS states are formed in thek1 dominated regime with
xc25°>x>10°, when the primary hexagonal state’s sym
metry with harmonic temporal behavior is broken by an a
ditional set of wave vectors of magnitudeq,k1 with sub-
harmonic temporal behavior~frequencyv1/4! with respect to
the primary v1/2 frequency. We have observed two ma
types of SSS states, which differ from each other in the o
entation, magnitude, and number ofqW wave vectors. For ex-
ample, the SSS state shown in Fig. 4,~SSS type I! breaks the
initial hexagonal symmetry by the introduction of two wav
vectorsqW , which are parallel to two of the three initial wav
vectorskW1 . The magnitude ofq in this case isk1/2, which
yields a simple resonance conditionqW 1qW 5kW1 . SSS have
been observed only for even/odd driving forall of the m/n
combinations listed above. The different SSS types and
mechanisms that form them will be described in detail
Sec. IV.

For even/odd driving, the effect of two-frequency drivin
on the pattern formation in thek2 dominated region is quite
different than in thek1 dominated region. In thek2 region,
square symmetry dominates at threshold fromx590° to x
'xc . Only in the vicinity ofxc do we see the effects of th
two-frequency driving on the patterns formed. It is intere
ing to note that although theory predicts that hexagons
preferred for harmonic response and squares for sub
monic response~see Sec. I!, we have observedsquaresym-
metry in large parts of the harmonic region for odd/ev
driving (x.xc).

Let us now briefly describe the patterns formed for ev
odd driving in the vicinity ofxc . Starting with thek1 domi-
nated (x,xc) region, two types of patterns are observ
4-7
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FIG. 4. Two typical phase diagrams of two-frequency experiments obtained for 2:3 driving with different system parametv0

520 Hz andh50.155 cm~left! andv0525 Hz andh50.2 cm~right!. In both experimentsn523 cS andf50°. Square regions exist in th
near vicinity of single-frequency forcing. The square symmetry dominates in the subharmonic regime to nearxc while throughout most of
the harmonic region the hexagonal symmetry dominates. In the vicinity of the codimension-2 point we observe three new states tha
many combinations of the driving ratio. These states are two-mode superlattices~2MS!, with underlying square or hexagonal symmetries a
spatially and temporally unlocked states~‘‘Unlocked’’ states!. A resonant state that consists of a rhomboid unit cell (2kR) was also observed
~right!. Unlike the 2MS and unlocked states, which appear for many different driving ratios~odd/odd, odd/even, and even/odd!, this state was
observed for only for23 and 4

5 driving. In the harmonic region of phase space where hexagons are initially dominant, a second bifu
occurs to either temporally subharmonic states~subharmonic superlattice state, SSS! or high-amplitude waves~as well as, at times, localized
‘‘oscillon’’ waves! that appear on a double hexagonal superlattice~DHS!. Symbols in the phase diagram describe measured transition
fixed x. Bottom: typical photographs of these states.
na
ed
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nearxc . One pattern, which we call the double hexago
state~DHS! is formed by two sets of hexagonally arrang
wave vectors~of length k1! with a finite anglea between
them. In the phase space shown in Fig. 4,a;22°. In con-
trast to the SSS, this state doesnot break the temporal sym
metry of the harmonic hexagon state. Depending on vari
system parameters, DHS’s are sometimes formed by a fi
order bifurcation. Perhaps their most outstanding charac
istic is their very high amplitude. The surface wave maxim
can reach amplitudes much higher than the fluid laye
03622
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height. In @19# we have shown how the DHS’s can form
oscillons, a highly localized large-amplitude nonlinear st
that has been observed@19,20,38# in a number of periodi-
cally driven systems.

A special case of the DHS occurs fora530°, whence
one obtains 12-fold quasipatterns such as first observe
@16#. We have seen the formation of such patterns for4

5 driv-
ing in the same region where the DHS witha522° appears
for 2

3 driving.
Let us now move to the vicinity ofxc both on the border
4-8
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PATTERN FORMATION IN TWO-FREQUENCY FORCED . . . PHYSICAL REVIEW E65 036224
of the k1 region and within thek2 region. Here two linearly
unstable eigenvectors with different magnitudes can be c
currently excited. There are numerous possible configu
tions in which such a system can organize itself. Four diff
ent classes of mixed mode states were found to exist. Th
will be described in detail in Sec. VI.

Two-mode superlattices. These states are formed by th
interaction of the dominant mode~e.g.,k2!, with its original
symmetry, and the weaker mode~e.g.,k1!, which breaks the
symmetry of the original pattern. The symmetry of the dom
nant mode can be either square or hexagonal dependin
the proximity of the nearest primary state in phase space
Fig. 4 we present two types of 2MS modes, a square 2
obtained forx.xc and a hexagonal 2MS obtained forx
,xc . The temporal behavior of the 2MS contains both t
v1/2 andv2/2 frequency responses and always includes
subharmonic frequency ofv0/2. These states appear for a
types of driving~odd/even, even/odd, and odd/odd! although
the precise structure of phase space depends on the dr
ratio used.

Unlocked states. Between the square and hexagonal 2M
states an intermediate region exists where bothk1 and k2
appear but no well-defined symmetry or spatial mode lo
ing is observed. Thus, no long-range correlations in eit
space or time exist. The basic time scale of the surface wa
is T54p/v0 but the pattern changes its local structure o
time scales of order 102– 103T.

Rhomboidal states. Changingh, n, or v0 can lead to
qualitative changes in the phase space. Figure 4 shows
different phase diagrams obtained for2

3 driving. The only
difference between the two diagrams is the fluid layer hei
and the value of basic frequencyv0 . Lioubashevski, Arbell,
and Fineberg@39# describe how the dimensionless numb
d/h, defined by the ratio between the effective bound
layer depthd5An/v0 and the fluid heighth, affects single-
mode states selected by the system. For a certain rang
d/h, rhomboidal patterns replace the 2MS and unlock
states~see Fig. 4, bottom!. These states couple two wav
vectors of lengthk2 with one wave vector of lengthk1 .
These wave vectors evolvespontaneouslyfrom two circles
of linearly degenerate states. We will show that for spec
parameter values,n-fold quasipatterns can naturally evolv
from the rhomboidal structures.

In addition to the states described above, in Sec. VIII
will show examples of a number of other resonant structu
that are formed for different system parameters. The richn
of this system allows one to observe a wide variety of d
ferent resonant patterns. We will show some common tr
of these resonant selection mechanisms that can lead
more comprehensive understanding of resonant interact
in pattern forming systems.

IV. SUBHARMONIC SUPERLATTICE STATES

Hexagonal patterns can be formed in two-frequency
periments when the basic subharmonic temporal invaria
is broken and quadratic nonlinear terms appear in the am
tude equations describing the system. These terms can o
in regions of the two-frequency phase space that have a
03622
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monic response. By increasing the amplitude of the drivi
the primary hexagonal symmetry can be broken and n
stable structures appear even in regions where the sec
externally driven mode cannot be excited at all. In this s
tion we will describe the characteristics of these symme
breaking patterns.

In the notation used in this section,KW is the linearly un-
stable wave vector, excitedv15mv0 , that characterizes the
primary pattern.qW is an additional smaller wave vector th
appears in states that bifurcate from the primary patte
Since in each pattern there is a degeneracy in the directio
the wave vectors, we will use an index to number the diff
ent wave vectors of the same magnitude, e.g.,KW i , i
51,2, . . . .

Subharmonic superlattice states occur over a wide ra
of x in the two-frequency phase diagram where the low
frequencyv1 is dominant. SSS were observed for most ev
odd frequency ratios tested, but werenot seen for odd/even
or odd/odd ratios. Since the first SSS-type state was fo
@15#, additional variants have been observed for different
perimental parameters. Both types of SSS pattern, SS
@Fig. 5~a!# and SSS-II@Fig. 5~b!# are shown with their cor-
responding spatial power spectra. Both states share the
lowing characteristics: The basic temporal dependence
both SSS types is subharmonic with respect to the the
mary instability, i.e., the system has a strong response
mv0/4; these states are secondary bifurcations of tempor
harmonic hexagonal states; both states occur in the s
basic region of phase space~for 0,x,xc!; In both statesk2
wave vectors arenot observed.

The different states, in general, occur for different flu
parameters such as fluid viscosity, fluid depth, andv1 /v2
ratios. The most obvious differences can be seen in Fig
Examining their spatial power spectra, we see that wh
both SSS-I and SSS-II spectra are constructed by th

FIG. 5. For 2
3 driving we observe two types of temporally sub

harmonic superlattices, the SSS-I~a! and SSS-II~b!. Experimental
images~left! together with their spatial power spectra~middle! and
simulated images~right! are shown. In~a! we see that a smal

vector of magnitudeq5K/2 (qW iKW ) breaks the hexagonal symmetr

formed by primary wave numbersKW i , whereKi5kc . In ~b! the
primary hexagonal symmetry is broken by wave vectorsq5K/)
located at a 30° angle relative to the primary wave vectors. B
patterns can exist in regions far fromxc , where the higher odd-
frequency component is weak~see Fig. 4!. The patterns obey the

resonance conditions 2qW 5kW c ~SSS-I! andqW 1qW 85KW ~SSS-II!.
4-9
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H. ARBELL AND J. FINEBERG PHYSICAL REVIEW E65 036224
evenly spaced wave vector pairsKW i , the spectra include ad
ditional sets of wave vectorsqW i ~where uqi u,K! of smaller
magnitude. The orientations and magnitudes ofqW i differ in
SSS-I and SSS-II states.

In SSS-IqW i are oriented solely along~some or all of the!
axes defined by theKW i . The lengths of theqi in the SSS-I are
usuallyK/2, but in some cases theqiÞK/2.

SSS-II states are formed by a set ofqW i that alwayscon-
sists of three evenly spaced wave vector pairs of magnit
q5K/) arranged at an angle of 30° relative to the direct
of theKW i triad. The magnitude and orientation ofqi yield the
simple resonance conditionqW 11qW 25KW i . While the SSS-I
have been observed for a wide range of driving ratios~2

3,
4
7,

2
5,

2
7,

4
5!, the SSS-II have only been seen for2

3 and 4
5 driving.

Both types of SSS states have recently been identified
representations of different invariant subgroups when h
agonal symmetry is broken@34,40#.

In the following sections we will present a detailed d
scription of each of the SSS types together with a mechan
that can explain their formation.

A. Subharmonic superlattice type I

The spatiotemporal behavior of the SSS-I state can
modeled by a simple equation for the surface height fu
tion,

h~r ,t !5cos~ 1
2 mv0t !(

i 51

3

Ai cos~KW i•rW1a i !

1cos~ 1
4 mv0t1g!(

i 51

M

Bi cos~qW i•rW1b i !, ~3!

FIG. 6. Typical temporal sequences of an SSS-I state~a! taken at
constant values of the driving parameters for the frequency rat40

60

Hz. The spatial Fourier spectra are composed solely of wave n
bersK, corresponding tov1/2, andq5K/2. The locationsof the
peaks are fixed in the different temporal phases. For the sys
parameters v0 /(2p)520 Hz, n523 cS, f50°, and h
50.155 cm, the hexagonal symmetry is broken intwo directions by
the K/2 vectors. Circles of radiiK and K/2 are drawn in~b!. The
relative intensities of the different wave vectors can be seen; in~a!
qW i are nearly absent while in~c! their intensities are almost equal t

theKW i . The symmetry breaking is also revealed in the intensities
the primary hexagonal vectors, as can be seen in~c!, where the two
strong intensity wave vectors are enclosed in a square and the
one in diamonds.
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qW i iKW i , b i50°,90°, ~4!

whereM is the number of axes with broken symmetry,g is
the temporal phase difference between the two sets
modes, anda i andb i are the respectivespatialphases of the
KW i and qW i components. Because the pattern has hexag
symmetry we assumea i50° and nota i52p/3 as in pat-
terns having triangular symmetry@12#. Equation~3! summa-
rizes the most important features of the SSS-I in a comp
way. We will now present experimental evidence for the v
lidity of this equation and describe the relevance of ea
term ~Ai , Bi , g, b i , andM! in the experimentally observe
states.

In Fig. 6 we present a sequence of SSS-I states take
different times for constant values of the driving paramete
Although the states’ appearance changes with time, their
tial Fourier spectra reveal that the state results from the
teraction of two specific spatial scales; the primary wa
numberuKW u5ukW1u that is excited by thev1 frequency com-
ponent and its spatial subharmonic,qW 5KW /2. The SSS spectra
show that while theKW i have six-fold symmetry, twoqW i with
relatively large amplitude and a third smaller amplitudeqW i
have broken this symmetry. The amplitudes of theqi vary
with time. Within the temporal phases shown in Fig. 6~a! the
qi amplitudes have little power while in Fig. 6~c! the qW i are
stronger than theKW i components. This behavior is reflecte
by the temporal phaseg in Eq. ~3!. The symmetry breaking
is reflected by the relative strengths of both theqW i andKW i . It
is clear that the twoK wave vectors enclosed in squares ha
different strength than the wave vector enclosed in d
monds. This symmetry breaking is also seen in the rela
power of theqi wave vectors.

As demonstrated in Fig. 7, SSS states can have bro
symmetry in one, two, or three directions@M51,2,3 in Eq.
~3!#. In most cases, a specific number of symmetry-break

-

m

f

ak

FIG. 7. Images~top! and power spectra~bottom! of an SSS-I
type state with broken symmetry in one~a! two ~b!, and three~c!
directions. The circles indicate the primary hexagon wave vect
magnitude,K. The symmetry-breaking vectors of magnitudeq
5K/2 are enclosed in squares. All images were obtained for
same system parameters ofn523 cS ~40

70 Hz andh50.155 cm,x
543° andf50°!. This pattern is not stable and drifts slowly~or-
der of 10–60 sec! between these three states.
4-10
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PATTERN FORMATION IN TWO-FREQUENCY FORCED . . . PHYSICAL REVIEW E65 036224
directions was selected. However, for the experiment
scribed in Fig. 7, the pattern drifted slowly~on the scale of
seconds! between the three possible symmetry-broken sta

The transition between the primary hexagonal pattern
the SSS states is~within '1%! nonhystereticand occurs via
a circular front that propagates slowly inward from t
plate’s lateral boundaries. The process is continuous and
versible~see Fig. 8!. Before continuing the study of the spa
tial characteristics of the SSS-I pattern let us digress bri
and examine the temporal behavior of the system using
laser probe method~see Sec. II C!.

Typical time series of thex andy components of the fluid
surface gradient at a single point are presented in Fig. 9
three different accelerations. These describe the tempora
havior of hexagons at threshold~a!, developed hexagons~b!,
and SSS-I~c!. At threshold, the response is harmonic w
respect to the total period of 2p/v0 . The response is stron
gest at the frequency ofv1/2. Increasing the driving ampli
tude results in a bifurcation to a state with a strongsuper-
harmonic response at the frequency ofv1 . This
phenomenon also occurs for single-frequency experimen

A further increase of the driving amplitude yields a se
ond bifurcation. In this bifurcation the temporal response
comessubharmonicwith respect to the period of 2p/v0 . As
can be seen in Fig. 9 the superharmonic component doe
disappear and can be quite strong. It is important to note
2/n driving has some special relations between the vari
frequencies that are not present for higher-order driv
~such as4

5,
4
7, . . . ,67, . . . !. For 2/n driving v1/25v0 . The

temporal response in the harmonic region has the same
quency as the common frequencyv0 . In other driving ratios,
such as4

5 driving, the subharmonic is 4v0/252v0 where the
common frequency isv0 . It is possible that such a relatio
can enhance certain resonant mechanisms and help sta
certain patterns such as the 2kR and oscillon states@19,22#.

Wagner, Muller, and Knorr@41# studied a two-mode sys
tem generated by single-frequency excitation at a bicrit
point where both harmonic and subharmonic tongues

FIG. 8. The transition between hexagonal and the SSS sta
displayed for a typical experiment~40/60!. This is a gradual proces
in which the basic symmetry of a perfect hexagonal pattern~a! is
broken first at the circular boundary~14.4 cm! of the cell. As the
amplitude of the external forcing increases, the area of broken s
metry grows inwards~b!,~c! until the SSS state fills the entire ce
~d!. This process can also occur in the reverse direction.
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come unstable. They describe two different superlatt
states that exist in the transition region between subharm
squares to harmonic hexagonal states. In the first superla
state, the square symmetry is broken by a small wave ve
kWD that is equal tokWH-kWS , wherekWH , kWS are, respectively, the
primary hexagonal and square wave vectors. The rela
phase of the symmetry breakingkD mode compared to the
primary squarekS mode can either be 0° or 90° according
the sign of the nonlinear coefficient in the amplitude equ
tion for the symmetry-breaking mode. The experimental o
servation shows that the phase selected for the first trans
state is 90°. A second superlattice state@41# was observed
that is similar to the SSS-II states found in our experimen
The spatial phase differenceb between the harmonic hex
agonal mode and the subharmonic symmetry-breaking m
was found to be 0° although from amplitude equation co
siderations 90° is also a possible solution.

is

-

FIG. 9. The time dependence of the SSS-I state as studied b
reflection of a laser by the surface waves. In this experiment,
system parametersv0 /(2p)522 Hz, n523 cS, h50.2 cm, f
50°, andx536.3°, increasing the driving amplitude from 2.5
~a! to 2.9 g~b! and 3.7 g~c! results in~a! low-amplitude hexagons
~b! developed hexagons, and~c! SSS-I states. In~a! both ]xh and
]yh have the same peaks in their power spectrum. Increased dri
amplitude yields a different temporal response in the two directi
x and y. This phenomenon also occurs in single-frequency exp
ments where squares are dominant and may be a general featu
the Faraday instability in viscous fluids. In the SSS-I state~c! a
subharmonic temporal response atv0/2 occurs.
4-11
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H. ARBELL AND J. FINEBERG PHYSICAL REVIEW E65 036224
We will now describe in detail the effects of this pha
difference on SSS-I states with broken symmetry. Let us fi
consider the effect of adding aK/2 modulation in one dimen
sion. In Fig. 10 we can see that adding theK/2 mode with
b i50° results in a modulation of the original cosine form
The waves’ local maxima remain at the same spatial loca
but their amplitudes are now modulated with a 4p/K peri-
odicity resulting in one large peak followed by a smal
peak. In contrast to this, adding theK/2 mode with b i
590° results in a different effect. While all of the maxim

FIG. 10. A simple one-dimensional superposition of a harmo
function ~bottom! cos(2px/l) with its subharmonic can have tw
basic combinations. The ‘‘displacive’’ mode shown results from
superposition of cos(2px/l)1b cos(px/l1p/2) ~top! ~b52.2 is ar-
bitrarily chosen!, whereas a ‘‘modulational’’ mode results from th
superposition of cos(2px/l)1b cos(px/l) ~middle!. It can be seen
that in the ‘‘displacive’’ mode the distance between local maxima
either d or 2l2d with l2d!l, while in the ‘‘modulational’’
mode the distance between the local maxima remains the same
the primary mode,l.

FIG. 11. ‘‘Displacive’’ ~left! and ‘‘modulational’’ patterns~right!
are shown for both symmetry breaking in one~top! and three direc-
tions ~bottom!. The pattern shown is simulated using our imagi
model applied to Eq.~3! with M51 (M53) for one direction
~three directions! and with b i5p/2 (b i50) for the ‘‘displacive’’
~‘‘modulational’’! patterns. 2:3 forcing was used with amplitudes
all modes taken to be equal (Ai5Bi). All SSS-I patterns were
found to be displacive in character~compare to Fig. 7!.
03622
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have thesameamplitude, their spatiallocationsare modu-
lated with a 4p/K periodicity. This effect@41# is called ‘‘dis-
placive.’’ The spatial effect in images can be quite pr
nounced. This is demonstrated in Fig. 11 where we prese
comparison between the ‘‘displacive’’~left! and ‘‘modula-
tional’’ ~right! effects with spatially subharmonic pattern
and symmetry breaking along one direction~top! or three
directions ~bottom!. The effects of symmetry breaking i
three directions are more complicated but the qualitative
fect remains. We find that SSS-I states arealways of the
displacive nature (b590°). This can be seen by comparin
the experimental images shown in Fig. 7 with the simula
displacive patterns shown in Fig. 11.

It is interesting to note that the ‘‘modulational’’ patter
shown in Fig. 11~bottom right! was seen in an experimenta
study of the single-frequency Faraday system in a viscoe
tic fluid @42#. When changing the driving frequency, Wagne
Muller, and Knorr found both a harmonic region for lo
driving frequencies and a subharmonic response for hig
ones. In the vicinity of the transition frequency, Wagner o
served a hexagonal superlattice composed of both the
harmonic and harmonic wave vectors. Since the sub
monic wave vector is exactly half of the harmonic one, t

simple resonance ofkWS1kWS5kWH is retained~where theS
index stands for subharmonic and theH for harmonic!. Al-
though the power spectra of this superhexagon describe
Wagner, Muller, and Knorr are similar to the SSS-I pow
spectra~in the case of three-direction symmetry breakin!,
the real space patterns are different, indicating a 0° spa
phase difference betweenkS and kH , in contrast to theb i
590° seen for SSS-I.

The combination of the spatial displacive mechanism a
the subharmonic temporal dependence of theK/2 mode re-
sults in an interesting ‘‘jittering’’ effect in time. If we con-
sider Eq.~3! we see that whent→t12p/v0 the first term in
the right-hand side of Eq.~3! is invariant whereas the secon
term changes sign due to the different time dependence
our model calculation the temporal displacement of 2p/v0
is equivalent to a spatial displacement of 2p/K in each of
the symmetry-breaking directions. Images photographed
time intervals of 2p/v0 appear to jitter at this scale.

B. Subharmonic superlattice type II

As mentioned above, a qualitatively different type of SS
type pattern, SSS-II, has been observed. Increasing both
cosity and height but keeping the dimensionless param
d/h constant ~by changing v0! results in a different
symmetry-breaking scenario. Though the SSS-II appear
the same region of phase space as the SSS-I and shar
subharmonic temporal behavior, it is qualitatively differe
from the SSS-I. The excited vectorsqW i are now aligned at an
angle ofp/6 relative to the vectorsKW i ~in contrast toqW i iKW i in
type SSS-I!. The symmetry-breaking wave vectors are
magnitudeuqi u5uKi u/) and these states exhibitno spatial
symmetry breaking. For eachKW i there is a correspondingqW i .

Our experiments suggest that SSS-II can be describe
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h~r ,t !5cos~ 1
2 mv0t !(

i 51

3

Ai cos~KW i•rW1a i !

1cos~ 1
4 mv0t !(

i 51

3

Bi cos~qW i•rW1b i !, ~5!

KW 15K~0,21!, KW 25KS)2 ,
21

2 D , KW 35KS 2)

2
,
21

2 D ,

and

qW 15q~21,0!, qW 25qS 1

2
,
)

2 D , qW 35qS 1

2
,
2)

2 D ,

q5
K

)
.

Looking at this state at different temporal phases, the
fect of theqi can be easily seen at some phases@Fig. 12~a!#
while, at others, only the hexagonal symmetry is appar
@Fig. 12~c!#. This symmetry is a representation of one po
sible invariant subgroup when hexagonal symmetries
broken@34,40,43#.

In the 1
2 driving experiments performed by Muller@12# a

transition between hexagonal and triangle patterns was
served that corresponds to a change ofS ia i in Eq. ~5! from

FIG. 12. Images@~a!,~b! left# with corresponding power spectr
@~a!,~b! right# of different temporal phases of an SSS-II state o
served for 2

3 driving in the harmonic region of phase space atn
547 cS@v0 /(2p)525 Hz andh50.2 cm#. In contrast to the SSS-
pattern, where the primary hexagonal symmetry is broken by w

vectors parallel toKW i , SSS-II feature a different symmetry brea
ing. A second hexagonal lattice of smaller magnitude wave vec

forms, obeying the resonance conditionqW 11qW 25KW . At certain tem-
poral phases the effect can be easily seen~a! while at others only
the hexagonal symmetry is dominant~b!.

FIG. 13. For 2
3 driving andn50.47 cS, a SSS-II type patter

with a different spatial dependence occurs. Two phases of this
are shown in@~a!, ~b! ~left!# and a simulation of these patterns
shown in@~a!, ~b! right#. These patterns are formed when the spa
phases of the smaller wave vectors,qW i , are shifted byp/2 relative

to KW i . These states were observed for higher frequenciesv0

.35 Hz) than those for which SSS-II having a zero phase shift
observed.
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the value of 0 to 3p/2 @where the second term of the rhs
Eq. ~5! is zero#. A similar phenomenon can take place wi
SSS-II states. As shown in Fig. 13, a variant of the SSS
states occurs with a rotational symmetry of 2p/3 in contrast
to the 2p/6 that is typical for hexagon patterns. These SSS
variants are observed for23 driving when relatively higher
frequencies (v0.40 Hz) are used. Using our imagin
model, we find that these patterns are formed by the sa
resonance as the SSS-II but when spatial phase angles o
qW i modes areb i5p/2 for i 51, 2, 3 orS ib i53p/2. These
SSS-II states have symmetries that are similar to those o
time-averaged symmetries and wave numbers of the ‘‘SL
states observed in@21#. The instantaneous images of SL
states, however, are more reminiscent of SSS-I states~as
shown in Fig. 6!. Patterns similar to this SSS-II variant hav
recently been observed in a forced ferrofluid system@44# in
the vicinity of a bicritical point where harmonic and subha
monic solutions collide. Muller shows that when consideri
a harmonic region amplitude equation with quadratic ter
for a single wave number model, only solutions whe
S ib i50 are possible. It appears that the second set of eq
tions for theq wave number modes, which are tempora
subharmonic, does allow the existence of modes withS ib i
53p/2 solutions. The mechanism that selects the spa
phase in multimode systems still must be clarified.

SSS-II type patterns have also been observed in the
perimental study of optical pattern formation in sodium v
por @45#. In the following section we will address the que
tion of a selection criterion between the SSS-I and SSS
states.

C. Selection between SSS-I and SSS-II

Both SSS-I and SSS-II break the temporal symmetry
the initial hexagon state by temporal period doubling to
basic frequency ofmv0/4. The two states, however, differ i
their spatial behavior. For the case of SSS-I states, the
cited wave vectors,qW i , are both parallel to the linearly un
stable wave vectorsKW i , and, in many casesq5K/2. In con-
trast, the excited wave vectors in SSS-II states are rotate
p/6 relative toKW i . What mechanism governs the selection
both the two different states and the values ofq that are
excited?

As Silber, Topaz, and Skeldon have suggested@33#, the
symmetry-breaking wave vectors of harmonic patterns m
correspond to minima of linearly stable tongues that can
excited via nonlinear coupling to theKW i modes. Since the
subharmonic frequencymv0/4 is excited by all of the SSS
states, the linearly stable tongue with a dominantmv0/4 fre-
quency would be a likely candidate to be selected. The w
numberq corresponding to these waves can be well appro
mated by the linear dispersion relationq5k(mv0/4). Note
that q is not constant for a given value ofv0 , but can be
strongly dependent on the parametersn andh.

Let us now examine the following premise. The syste
will generically prefer to undergo spatial period doubling
q5K/2. If, however,qW (mv0/4) is close to a wave vectorqW
with a magnitude that is substantially different thanK/2, one
possible solution of the system is to lock to either SSS-I
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H. ARBELL AND J. FINEBERG PHYSICAL REVIEW E65 036224
SSS-II patterns withqÞK/2. If q is nearK/), the system
will lock to this value, thereby fulfilling the spatial resonan
condition:qW i1qW j5KW i . SSS-II patterns will then occur. Val
ues of q sufficiently far from either spatial resonance w
result in an SSS-I state withqÞK/2. Such a state is pre
sented in Fig. 14 where symmetry breaking occurs in eit
one direction@Figs. 14~a! and 14~b!# or three@Fig. 14~c!# but
the symmetry-breaking wave vector’s magnitude wasnot

K/2. Instead, vectors parallel toKW i , with magnitudesq
ÞK/2 andK2q are observed with, empirically,q;0.6kc .

This premise is checked in Fig. 15, where we plot t
value of the ratio between the experimentally measured
ues ofq and the wave number computed for single-frequen
driving usingmv0/4 with K for parameters where differen
SSS-type patterns were observed. The plot shows tha
both SSS-II and the SSS-I withqÞK/2 the approximation
q5k(mv0/4) is correct to within 4%. In SSS-I states whe

FIG. 14. Images~top! and corresponding power spectra~bot-
tom! of SSS-I superlattices observed for2

3 driving in which q
ÞK/2. Circles of a radiiK ~outer! and q, corresponding to the
mv0/4 frequency~inner! are drawn. The primary hexagonal sym
metry is broken either in one direction~a!, ~b! or in three directions
~c!. ~a!, ~b! show the same state at different temporal phases.

relative intensities ofqW andKW 2qW vary in the different phases. Al
experiments were withn523 cS.~a!, ~b! for h50.2 cm and~c! for
h50.25 cm. The basic frequency wasv0 /(2p)535 Hz for ~a!, ~b!
and v0 /(2p)530 Hz for ~c!. The value ofq/K is ' 0.6 for all
experiments.

FIG. 15. The measured wave numberqmeas of the symmetry-
breaking wave vectors in SSS-type patterns, normalized by the
ear wave number calculated for the frequencymv0/4 as a function
of the measured critical wave number of the primary hexagon
tern,K. The symbols correspond to different types of SSS patte
SSS-I patterns withq5K/2 ~circles!, SSS-I with qÞK/2 ~dia-
monds!, and SSS-II patterns withq5K/) ~squares!. The data in-
dicate that the first type of pattern (q5K/2) is generally preferred
by the system unless the value ofq(mv0/4) is either close toq
5K/) or sufficiently far from either of these preferred modes.
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q5K/2 is the symmetry-breaking mode, the rat
q/k(mv0/4) variessystematicallybetween 77%–85 %. This
suggests that theqW 5KW /2 resonance is strong enough to i
duce this ‘‘locking’’ or detuning ofq.

For 2
3 driving we observed the appearance of SSS-I sta

at lower liquid layer depth and the SSS-II at higher dept
As h is reduced, we found that instead of an abrupt transit
between the SSS-I and SSS-II states, both types of symm
breaking can occursimultaneously. As shown in Fig. 16, the
primary hexagonal symmetry of this state is broken by t
sixfold sets of wave vectors.

One set corresponds to SSS-I with magnitudeq05K/2
while the other set corresponds to SSS-II, withq15K/). In
real space the characteristic pattern of SSS-II@Fig. 16~b!# is
broken by superimposed stripes in one direction. This s
has both modulative and displacive effects implying that
two symmetry-breaking modes retain their respective spa
phase characteristics.

As demonstrated in Fig. 15, the mechanism that for
both the SSS-I and the SSS-II patterns depends o
‘‘slaved’’ linear eigenmode. In the23 driving described above
the only existent linearly stable subharmonic tongue occ
for v0/25mv0/4. In contrast to2

3 driving, even/odd driving
ratios with m/n values such as45,

6
7, etc., possess linearly

stable tongues whose dominant frequencies differ fr
mv0/4. For example, in50

75-Hz driving, besides the 15 Hz
(5mv0/4) response observed for the SSS state, a resp
at 7.5 Hz (5v0/2) is also possible. Recent theoretical wo
by Silber, Topaz, and Skeldon@33# has suggested that thes
additional slaved modes can influence the character of
selected nonlinear state. We find that these additional sla

e

n-

t-
s;

FIG. 16. Reducingh from h50.33 cm, where only SSS-II wa
observed, toh50.31 cm results in a state where the two types
SSS patterns SSS-I and SSS-II can coexist. In~a!–~c! the combined
state images~left!, full power spectra~middle!, and expanded
power spectra~right! are presented at different temporal phases. T

primary hexagonal symmetry~of magnitudekW0! is broken by two
different sets of wave vectors arranged in two sixfold sublattic
The set corresponding to the SSS-I is enclosed in squares. Th
corresponding to the SSS-II is enclosed in circles. This state
observed for 2

3 driving and system parameters ofn547 cS,
v0 /(2p)525 Hz, h50.31 cm,x562.5°, andf50°.
4-14
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PATTERN FORMATION IN TWO-FREQUENCY FORCED . . . PHYSICAL REVIEW E65 036224
modes can indeed appear. In4
5 driving typical SSS-I states

with a frequency response ofmv0/4 are observed far from
xc . Nearxc , both the 12-fold temporally harmonic quasi
rystalline states first described by Edwards and Fauve@18# as
well as a state composed of acascadeof symmetry-breaking
bifurcations occur. This second type of pattern, which ha
subharmonic time dependence, is shown in Fig. 17~a!

This ‘‘cascaded’’ state appears as either a secondary b
cation of an initial hexagon pattern or as a bifurcation from
12-fold quasipattern state. In its spatial power spectrum
two mechanisms that appeared in both SSS-I- and SS
type patterns are cascaded and appear at different scale
SSS-II-type resonance occurs where wave vectorsqW i with
magnitudesqi5K/) appear. Athird vectorQW , however, is
also present.QW is half the magnitude ofqW i and, echoing the
mechanism forming SSS-I states, breaks the sixfold sym
try of the qW i by aligning itself parallel to a single vector,qW .

Figure 17~b! demonstrates that this state has an ove
temporal periodicity of 2p/v0 . The two images@~b! left,
right# were taken at an interval ofp/v0 . The images look
exactly the same but with a transverse displacement of
d54p/K length scale. The symmetry breaking by theQW is
similar to the SSS-I mechanism where a mode with a ph

FIG. 17. ~a! The image~left! and power spectrum~right! of
‘‘cascaded’’ SSS states appearing for4

5 driving nearxc . The two
mechanisms appearing in SSS-I and SSS-II coexist at diffe
scales. A hexagonal sublattice ofqi5K/) bifurcates from the

original hexagonal pattern. In addition, athird wave vectorQW ÞqW
breaks the symmetry of this sublattice in a single direction. T
state has an overall temporal periodicity of 2p/v0 . This is demon-
strated in~b! where two images@~b! left, right# were taken at an
interval of p/v0 . The images are displaced by ad54p/K length
scale. The horizontal white line indicates the location of the pe
in the first phase@~b! left#. ~c! A side view of this state. The peak
are of high amplitude and have the characteristic shape of the
cillons described by Arbell and Fineberg@19# with a small asym-

metry in the direction ofQW . These images were observed for syste
parameters of 75/60 Hz,n523 cS, h50.2 cm, x556°, and f
50°.
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of p/2 produces a displacive effect, as shown in Fig. 17~b!.
The peaks are of high amplitude and have the character
shape of the oscillons described by Arbell and Fineberg@19#
modified by the asymmetry that is produced by the disp
cive effect of theQW mode. In this state different wave vecto
are dominant at different temporal phases. These states
not observed in experiments with higherm/n values such as
6
7 and 8

9 driving ratios.

V. DOUBLE HEXAGON SUPERLATTICES

Historically, the first two-frequency experiment focuse
on quasicrystalline patterns with 12-fold symmetry. The
were observed in the vicinity ofxc in systems driven with an
even/odd driving ratio and were found to bifurcate eith
from the flat state or as a second bifurcation from the h
monic hexagon region. In this section we will describe bo
the 12-fold quasipatterns mentioned above and two other
perlattice states~see Fig. 18!. All of these states share a ha
monic temporal response for odd/even driving and appea
the same general area of phase space. An important fact
pattern selection is the nonlinear coupling coefficient t
depends strongly on resonant locking~see Sec. I D 2!. In con-
trast to the SSS states, we will see below that nonewwave
numbers are needed to construct these states. This cla
superlattice patterns are differentiated by both the rela
angular orientation and spatial phase relations of the crit
wave vectors that form them.

The 12-fold quasipattern@see Fig. 18~a!# was observed for
4
5 driving in the vicinity ofxc . This state’s temporal behavio
is harmonic with respect tov0 . This state can be formed
near the linear threshold for small values ofe;0.01. Increas-
ing the amplitudeA causes a bifurcation to the cascaded-ty
superlattice described in IV C~see Fig. 17!. The 12-fold qua-
sipattern may also be understood as being formed by

nt

s

s

s-

FIG. 18. When using even/odd driving, a class of tempora
harmonic states exists that is composed of two distinct hexag
sublattices~delineated by squares and circles! of sizeK, the critical
wave number of the harmonic driving component.~a! Double hexa-
gon state~DHS! formed by both the critical hexagonal lattice an
an additional hexagonal sublattice of smaller amplitude, which
rotated by an angle of;22°. ~b! 12-fold quasicrystalline state.~c! A
similar ~‘‘SL1’’ ! state observed by Kudrolli, Pier, and Gollub@21#
for 6

7 driving. This state is formed by a resonance similar to~a! but
with spatial phase of 2p/3 in each of the sublattice components.~a!
and ~b! were obtained for45 ~60

75 Hz! forcing. ~c! was reproduced
with permission from@21#.
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H. ARBELL AND J. FINEBERG PHYSICAL REVIEW E65 036224
sets of hexagonal wave vectors at 30° to each other. As in
quasicrystals, this state doesnot have long-range order or
well-defined subunit cell. It is interesting to note that unli
the quasipattern described in@17# that appeared only forf
;75°, the quasipattern we describe exists forf50°.

Another superlattice pattern@Fig. 18~c!# that occurs in this
regime of phase space was first studied by Kudrolli, Pier,
Gollub with 6

7 driving ratio with v0 /(2p)516.44 Hz, n
520 cS, andh50.3 cm. They found a hexagonal superla
tice pattern composed of two hexagonal sets of critical w
vectors with harmonic temporal response. The equation
describes the surface height function of this pattern can
generally written down as

h~r !5(
i 51

3

Ai cos~KW i•rW1a i !1(
i 51

3

Bi cos~KW i8•rW1b i !,

~6!

whereuKu5uK8u5kc and

KW 15K~1,0!, KW 25KS 2
1

2
,
)

2 D , KW 35KS 2
1

2
,2
)

2 D ,

and KW i8 can be obtained by rotatingKW i by an angle ofu
522°. In Figs. 19~a!, 19~b! and 19~c! we show simulated
images of this equation for different values ofb andAi /Bi .

The pattern@Fig. 18~c!# described by Kudrolli, Pier, and
Gollub was found to have an angleu with the value u
52 sin21(1/2A7)'22°, equal amplitude coefficientsuAi u
5uBi u for i 51,2,3, and spatial phase anglesa i50° andb i
5120°. For this special value ofu, resonance condition
such as 2KW 182KW 3852KW 12KW 3 were shown@21# to exist.

FIG. 19. Using our numerical modeling technique, we calc
lated the images of a perfect double hexagon state~DHS! formed by
two hexagonal lattices rotated by 22°.~a! a i5b i50 @see Eq.~6!#
shows a negative crater state and~b! a positive peak state.~c! shows
the calculated image of a 12-fold quasipattern.~d! A calculated
DHS state with spatial phases ofa i50 andb i52p/3 as in Fig.
18~c!.
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Double hexagon states formed by the superposition of
hexagon sets of critical wave vectors oriented at a rela
angleu52 sin21(1/2A7) are one example@23,34# of a wider
class of superlattices. This superlattice class is composed
periodic lattice formed by a wave number smaller than
critical wave number of the excited surface waves. T
smaller wave number corresponds to the six wave vec
formed by the difference between adjacent wave vectors
the two hexagonal sets, i.e., byQW i5KW i2KW i8 for i 51,2,...,6.

Any two of these wave vectors, sayQW 1 andQW 2 , are primi-
tive vectors of the lattice, and the vectorsKW i and KW i8 are

points on theQ lattice given byKW i5n1QW 11n2QW 2 . Silber
and Proctor@23# show that only a discrete countable set
QW i , whereK/Q5An1

21n2
22n1n2, can satisfy this condition

The angleu between the two lattices is given by

u5cos21S n1
212n1n22n2

2

2~n1
22n1n21n2

2!
D .

In this formulation the experimentally observed patterns
obtained forn153, n252, andK/Q5A7, giving u'22°.
Only the simplest DHS’s have been observed to date.

One characteristic aspect of the DHS’s is the relative s
tial phase of the different wave vectors. The pattern
scribed by Kudrolli, Pier, and Gollub@21# @coined SL-1, see
Fig. 18~c!# consisted of triangular unit cells that were pr
duced by a DHS witha i50° and b i5120°. Silber and
Proctor describe, in simulations of thermal convection
DHS formed with botha i50° andb i50° @23#. The DHS
superlattice in our experiments with a23 driving ratio @see
Fig. 18~a!# differs from these superlattices in that the tw
hexagonal sublattices that form them possessdifferentampli-
tudes. States similar to these been observed in nonlinea
tics @46#. In addition, in our case, there is no spatial pha
difference between the two sets of hexagonal wave vec
~a i5b j for all i, j!.

Although this state is stable close to the threshold,
creasing the driving amplitude results in the appearance
many defects and eventual temporal disorder. At high driv
amplitudes the spatial symmetry is hard to discern due to
many defects and domains within the fluid cell and the st
oscillates between a negative amplitude, craterlike phase
a positive amplitude oscillonlike phase with a frequency
v0 . High-amplitude oscillons appear in the center of t
hexagonal subunit cell of the DHS state. Similar oscillo
were also observed for the 12-fold quasipattern state sh
in Fig. 18~b! @19#.

Let us summarize the common characteristics of D
states. All of the patterns reveal a harmonic time depende
and the lack of anyfundamentalwave vectors other than th
critical wave vectors excited by the harmonic frequency.
of these patterns were observed to be in the vicinity ofxc on
the harmonic side. In all cases, the mixing angle was gre
than that needed for obtaining SSS states and within
rangexc°.x.(xc212°). Another common characteristi
of these states is that all exist in the vicinity of a first-ord
transition of the hexagonal patterns from the featureless fl
state. This implies that quadratic interactions can play

-

4-16



es

tly
v
e

ar
u

io
’’

;

e
e
tia
ic

fl
.
e

o
d
d/

or

d of
e
iven

i-

n

ted
re-

in
n

of
wo
val-

de
t
a-
l-

ori-
by
and
the

lin-

as a
m
i-

o

l

Hz

PATTERN FORMATION IN TWO-FREQUENCY FORCED . . . PHYSICAL REVIEW E65 036224
important part in describing these states. Finally, two of th
patterns also generate oscillons as described in detail in@19#.

VI. TWO-MODE SUPERLATTICES

In the vicinity of the critical mixing anglexc two modes
with different wavelengths can be excited concurren
These modes can interact in different ways to produce a
riety of different patterns. In the following two sections w
will describe two distinct types of two-mode states that
formed nearxc . The first of these states are two-mode s
perlattices~2MS!. These states are formed by the interact
of the two linearly excited modes with a third ‘‘slaved
mode that is selected via a temporal resonance.

Figure 20 shows the three main types of 2MS statesk2
dominated~with either square or hexagonal symmetries! and
k1 dominated~with hexagonal symmetry!. 2MS states exist
in both harmonic and subharmonic regions of phase spac
the vicinity of xc ~see Fig. 4!. In the region of phase spac
between the square 2MS and the hexagonal 2MS a spa
disordered ‘‘unlocked’’ state exists. Unlocked states, wh
are formed by the same wave numbers that form the 2M
have no well-defined spatial symmetries. As in the case
SSS states, the transition to 2MS from either square or
states is nonhysteretic and occurs via propagating fronts

The 2MS are qualitatively different than SSS states. Th
result from spatial phase locking of bothk1 andk2 whereas
the SSS states result from a resonance condition that isinde-
pendentof the k2 mode. 2MS states are the most general
the superlattice states described here. They are observe
all types of driving parities~odd/even, even/odd, and od

FIG. 20. 2MS patterns consist of a nonlinear superposition
botheigenmodes,k1 andk2 , excited by the driving frequenciesv1

andv2 . Although v1 andv2 determine the lengths ofk1 andk2 ,

their relative orientations are determined by the conditionkW35kW2

2kW1 , where the wave numberk3 is determined by the tempora
resonance conditionv35v22v1 . ~a! 2MS patterns for50

80-Hz driv-
ing wherek2 with square symmetry is dominant.~b! k2-dominant
2MS with hexagonal symmetry for45

60-Hz driving and ~c!
k1-dominant states having hexagonal symmetry for 40/60
Shown are the spatial spectra~center! with the resonant triads

~right! kW35kW22kW1 , highlighted.
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odd! and, as shown in Fig. 20, appear with either square
hexagonal symmetry.

A. 2MS Resonance condition

2MS spatial spectra, as shown in Fig. 20, are compose
peaks of lengthk1 andk2 and their linear combinations. Th
strongest secondary peaks, indicated in the figure, are g
by kW35kW22kW1 where the magnitude ofk3 is consistent with
the linear value ofk calculated for a single-frequency exc
tation at the difference frequencyv35v22v1 . Our calcu-
lated value ofk3 was obtained using thelinear single-
frequency code of@14# at threshold. The difference betwee
the calculated and measured values ofk3 varies between 5%
and 20%. This shift between the measured and calcula
values is constant for a given value of the difference f
quencyv3 and systematically decreases asv3 increases. We
believe the shift to be the result of either finite size effects
the cell or the fact that thev(k) used is the linear dispersio
relation for a featurelessstate ~not one with preexisting
waves!.

A subtle point in the interpretation of the power spectra
2MS states is the evaluation of the magnitude of the t
wave vectors that appear. As can be seen in Fig. 21 the
ues ofk1 andk2 measured in the vicinity ofxc are signifi-
cantly different than the values ofk excited by single-
frequency excitation. The two-frequency linear stability co
of Tuckerman and co-workers@13,35# reproduces this effec
and agrees to within 1–2 % with the experimentally me
sured values~see Fig. 21!. This enables us to accurately ca
culate values of bothk1 andk2 in the vicinity of xc .

The resonant conditions stated above suggest that the
entation of the wave vectors building the 2MS is selected
nonlinear interactions that are resonant both in space
time. Thus, the temporal resonance condition dictates
spatial orientation of the vectorskW1 andkW2 . Such three-wave
resonant interactions have been predicted to occur in non
ear interactions of surface waves@47# and are well known in
the physics of plasmas. Similar states were observed
result of nonlinear mixing of a multiple-mode optical bea
@48#. The selection ofk3 via the temporal resonance cond

f

.

FIG. 21. A comparison ofk ~in cm21! calculated using the two-
frequency linear calculation@13# ~solid line! with measured values
of k as a function ofx. Note that both values ofk are nearly con-
stant away fromxc558°. Near xc ,k1 ~corresponding tov1

540 Hz! decreases by nearly 10% whilek2 ~corresponding tov2

560 Hz! increases slightly.
4-17
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H. ARBELL AND J. FINEBERG PHYSICAL REVIEW E65 036224
tion yieldingv3 is nontrivial and cannot be accounted for b
experimental artifacts such as possible nonlinearities in
imaging. This three-wave resonance condition occurred
all frequency ratios tested.

As in SSS, the dominant 2MS wave vector retains
initial symmetry, while the relative orientations of the oth
linearly excited wave vectors are determined by the ab
resonance condition. For odd/even driving hexago
~square! symmetry dominates forx,xc (x.xc). Thus,
square 2MS@Fig. 20~a!# bifurcate from thek2 square pattern
that dominates thex.xc region. Similarly, hexagonal 2MS
@Fig. 20~b!# bifurcate from thek1 hexagonal pattern tha
dominates thex,xc region. In 3

4 driving, hexagonal 2MS
states are excited whose dominant scale is that of the la
wave numberk2 @Fig. 20~c!#. It is known that in single-
frequency driving experiments, different symmetries c
arise for different system parameters even when the temp
behavior is solely subharmonic. In two-frequency driving e
periments the parity of the dominant frequency does not
tomatically dictate the symmetry selected. For example,5

8

driving ~50/80 Hz!, 2MS states are observed with squa
symmetry in the temporally harmonic region.

B. Temporal behavior of 2MS

Using our strobed imaging technique, we studied the s
tiotemporal behavior of the patterns by inspecting them

FIG. 22. A typical temporal sequence of square 2MS sta
taken at constant parameter values for50

70-Hz driving. k1 ~middle
circle!, k2 ~outer circle!, andk3 ~inner circle! are indicated in~a!. In
~d! thek3 vectors are absent but enclosed in squares are vectors

are the vector sumkW381kW3 . System parameters arev0 /(2p)
520 Hz, n523 cS,f50°, x565.4°, andh50.155 cm.

FIG. 23. A typical sequence ofhexagonal2MS ~a!–~e! at dif-
ferent temporal phases taken at constant parameter values for60

80-Hz
driving. Circles of radiik1 ~middle!, k2 ~outer!, andk3 ~inner! are
drawn in ~c!. In ~b! the k3 and k1 vectors interact to produce th
vectors enclosed in squares.k1 andk2 form two sets of hexagonally
arranged vectors.
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different temporal phases. The 2MS inherit the basic tem
ral periodicity ofbothprimary eigenfunctions, which are pe
riodic in time with a basic frequency of eitherv0 ~harmonic!
or v0/2 ~subharmonic!. The superposition of the two mode
always displays a subharmonic response (v0/2). Like the
SSS, the state’s appearance changes qualitatively with t
with the spatial wave numbers having fixedlocations. 2MS
time-dependence stems from the temporal dependence o
amplitudesof these modes. In Figs. 22 and 23 we see typi
sequences of both square and hexagonal 2MS states tak
constant values of the driving parameters. The relative int
sities of the different wave vectors change in the differe
phases; in Fig. 22~e! the k1 andk3 wave vectors are almos
absent, resulting in a pattern whose dominant square sym
try has a 2p/k2 scale, while in the remainder of the phas
all vectors appear. In Fig. 23 the resonance condition allo
kW1 andkW2 to be nearly collinear and two sets of sixfold wav
vectors appear in the power spectrum. As in the square 2
one can see phases with significantly strongerk1 peaks@Fig.
23~a!# as well as those where either thek3 @Fig. 23~b!# or k2
@Fig. 23~c!# are stronger.

The relative stability of 2MS hexagonal states@e.g., Figs.
20~b! and 20~c!# is dependent on whetherk1 or k2 is domi-
nant. Let us first consider hexagonal 2MS states wherek1
dominates. This state is found for even/odd driving forx
,xc ~see Fig. 4! and a typical time sequence is presented
Fig. 24. Again, different wave numbers are dominant in d
ferent temporal phases. The region of phase space where
state appears is not as large as thek2 dominant 2MS, but
these states appear for all even/odd driving ratios used. A
the case of square 2MS and the 2kR states discussed in Se
VII, these states are not observed for all combinations of
andd/h used. It is difficult to obtain a hexagonal 2MS sta
of this kind that extends over the entire system a
k1-dominant hexagonal 2MS states generally occur wit
domains. Thus the spatial spectra~as seen in Fig. 24! appears
sometimes smeared, as the various domains have diffe
angular orientations. Although the scenario described in F
24 is typical, we have observed stable globalk1 dominated
2MS states for particular values off andd/h ~see, e.g., Fig.
46!.

A typical time sequence and power spectra for thek2
dominant hexagonal 2MS state@shown in Figure 20~c!# is

s

hat

FIG. 24. A typical sequence ofk1 dominant hexagonal 2MS
states taken at constant parameter values for40

70-Hz driving. These
states generally appear in domains.~Wave numbers are noted b
arrows.!
4-18
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PATTERN FORMATION IN TWO-FREQUENCY FORCED . . . PHYSICAL REVIEW E65 036224
presented in Fig. 23. Here, in contrast tok1 dominant hex-
agonal 2MS, the pattern is global with a well-defined sy
metry in all of its temporal phases. Hexagonal symmetry w
not seen to be preferred for all odd/even driving and w
only observed for the simple ratios of1

2 and 3
4. This might be

a feature of simple driving ratios that can sometimes h
unique properties that are related to temporal lock
@11,33#.

2MS states are not always as highly ordered as thos
Figs. 22 and 23. When highly ordered 2MS states occur,
resonance condition for these parameters allowskW1 , kW2 , and
kW3 to be nearly collinear. When the angles between the re
nant wave vectors are not small the pattern is usually
global and a number of domains coexist. In highly orde
states we find a locking of the wave vectors’ magnitude
small natural number ratios. The locking ratios ofk1 :k2 :k3
51:3:4 and1:4:5 were, respectively, obtained in Figs. 2

FIG. 25. The time dependence of a two-frequency experim
with even/odd driving was studied using the reflection of a laser
the surface waves. The temporal response is subharmonic~har-
monic! with respect tov0510 Hz for x,xc (x.xc). Time series
~left! and power spectra~right! for three different regimes.~a! Typi-
cal temporal response for hexagonal pattern found forx,xc . Al-
though the 4v0/2520 Hz component is the strongest, anv0

510-Hz harmonic component with all of its higher harmonics
present.~b! Typical time dependence for square patterns~found for
x.xc!. The strongest response is for 4v0/2525 Hz as expected. A
weaker response at the basic subharmonicv0/255 Hz is observed
together with stronger responses at other harmonics. The orde
of the harmonics agrees qualitatively with@11#. ~c! Typical temporal
response of a square 2MS state atxc . The power spectrum shows
strong response at bothv1 ~20 Hz! and v2 ~25 Hz!. All other
harmonics are present with a different power distribution than in~a!
and ~b!. System parameters here are50

40 Hz, n523 cS, h
50.155 cm,f50°, andx540° ~a!, x560° ~b!, and xc553.5°
~c!.
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and 23. This ‘‘spatial locking’’ seems to stabilize global pa
terns in a way similar to the global SSS states presente
Sec. III.

The local laser probe technique provides more detai
quantitative information of the temporal behavior of 2M
states. In Fig. 25 we show one component of the slope
surface waves obtained for4

5 driving. In Fig. 25~a! we show
the typical wave form of a hexagonal pattern forx,xc .
Besides the strong component atv1/254v0/2 and its har-
monics 40,60,80, . . . ~in Hertz!, peaks appear at values o
j v0 , j 51,2, . . . .Those peaks are expected from the line
theory. In Fig. 25~b! we see a typical wave form of a squa
pattern for x.xc . Although the strongest frequency re
sponse is atv2/2, the basic frequencyv0/2 together with its
higher harmonics also appear. Linear theory predicts a
ferent distribution of energy in the peaks for the unsta
mode at threshold. Zhang and Vinals’s@11# nonlinear theory
accounts for the peak’s strength in a semiquantitative way
it correctly predicts the ordering of the strongest peaks.

In Fig. 25~c! the temporal response of the 2MS state
presented. This state has a temporal response that incl
both the frequencies of the harmonic mode,~a! for x,xc ,
and those of the subharmonic one,~b! for x.xc . Although
the power spectrum shows that both main peaks atv1/2 and
v2/2 are of the same strength, their relative strengths
vary with the location of the laser probe.

We have seen that the 2MS state contains the two line
excited eigenmodes both in space and in time. Does e
mode keep its distinct space-time behavior, or is there a c

nt
y

ng

FIG. 26. The time dependence of a square 2MS state meas
via the reflection of a laser at the fluid surface. Time series~left! of
surface gradients]yh ~a! and ]xh ~b! are shown with their power
spectra~right!. ~c! ]yh as a function of]xh. The separation of the
temporal response~a!, ~b! was obtained by choosingx andy along
the symmetry directions.]xh is dominated by a 3v0/2515 Hz re-
sponse whereas]yh undergoes a 5v0/2525 Hz response. System
parameters used were50

30 Hz, n523 cS,h50.155 cm,f50°, and
xc556.3°.
4-19
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plete mixing of the spatial and temporal components?
clarify this question, we write down a simple model for th
surface height of a square 2MS state. For simplicity, we w
assume a square 2MS state where bothkW1 andkW2 are collin-
ear with the same spatial phase,

h~r ,t !5F1~ t !@cos~k1x!1cos~k1y!#1F2~ t !@cos~k2x!

1cos~k2y!#, ~7!

]h

]x
5k1F1~ t !cos~k1x!1k2F2~ t !cos~k2x!,

]h

]x
5k1F1~ t !cos~k1y!1k2F2~ t !cos~k2y!,

where F1(t);cos(v1t/2)1¯ and F2(t);cos(v2t/2)1¯ .
It is easily seen that if one selects a point (x,y)
5(p/2k2 ,p/2k1) then each of the components of the part
derivative]h/]x and ]h/]y has a temporal dependence
F1(t) andF2(t), respectively. BothF1(t) andF2(t) include
time dependent terms retaining the parity of the line
modes: odd multiples of (p1 1

2 )v0 for a subharmonic re-
sponse and even multiples ofpv0 for a harmonic response

As suggested by Eq.~7!, experiments~see Fig. 26! con-
firm the separation of the time dependence of the two mo
within the 2MS state. The]xh component has a strongv1/2
response whereas the]yh component’s strongest peak is
v2/2. This strong separation of spatial time dependencies
only be observed for a few points in the~x, y! plane and, in
general, the two frequencies are mixed.

C. The ‘‘unlocked’’ state and transition regions

Let us now consider the ‘‘unlocked’’ state that appears
the near vicinity ofxc . In Fig. 27 we present a typical tim
series of the unlocked state and its corresponding sp
spectra. The spatial behavior of the state varies rapidly o
time scales of order (2p/v0). In contrast to the SSS an

FIG. 27. In the ‘‘unlocked’’ state no orientational order is appa
ent. As in 2MS states,k1 , k2 , and k3 exist simultaneously bu
unlocked state spectra are diffuse and show little angular corr
tion. Top: Typical views of an unlocked state with correspond
spatial spectra~bottom! observed for 40

60-Hz driving at different
times and fixed driving parameters. The different values ofk appear
with different magnitudes and orientations in each phase. T
lengths are indicated by the arrows.
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2MS states, in the unlocked state no orientational orde
apparent. Bothk1 andk2 exist simultaneously in their spatia
spectra but spatial mode locking does not occur as in
2MS states. This is evident in their power spectra, whe
generally, entire circles of radiik1 and k2 appear. As Fig.
27~d! indicates, additional peaks of wave numberk3 corre-
sponding tov35v22v1 are sometimes observed. The u
locked state is a well-defined state that exists in a relativ
wide region of phase space. This can be seen by defining~as
in @2,15#! the following ‘‘orientational correlation function,’’
Ck(u) for each value ofk:

Ck~u![(
a

@ f k~a! f k~a1u!#Y (
a

@ f k~a! f k~a!#, ~8!

where f k(a) is the Fourier transform of the wave numberk

a-

ir

FIG. 28. Within the ‘‘unlocked’’ states, the correlation amplitud
Qk drops significantly and the angular correlation functionCk(u)
indicates only a small amount of residual order. Top:Qk1

~triangles!
and Qk2

~squares!, averaged over a single period along the linex

558° for 40
60-Hz driving as a function of the driving amplitudeA.

This line traverses the square, square-2MS, unlocked,
hexagonal-2MS phases. Typical patterns in each phase are
played~center!. The symmetry of the different phases is highlight
by Ck(u) for k1 ~gray line! andk2 ~black line! computed for typical
states~u is in degrees!. The power~log scale! of k2 relative tok1 in
each Ck(u) is 8.3 ~square!, 1.1 ~2MS!, 0.9 ~unlocked!, and 0.2
~hexagon!.

FIG. 29. The transition between the square-2MS state and
unlocked state occurs through a gradual process in which b
states coexist in different domains. At the transition, increasing
amplitude for constantx constant result in~a! the global 2MS state
which is first disturbed by small defects at the cell’s rim.~b!, ~c!
The disturbance spreads to the cell’s center until, finally, the en
pattern is in the unlocked state shown in~d!. This process can also
occur in the reverse direction. The spatial scale is given by the 1
cm cell diameter.
4-20
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PATTERN FORMATION IN TWO-FREQUENCY FORCED . . . PHYSICAL REVIEW E65 036224
at the polar anglea. The correlation amplitude,Qk
5 1

2 @maxCk(u)2minCk(u)#, varies between 0 and 1 for, re
spectively, minimal and maximal orientational order. As F
28 shows, both the 2MS and hexagonal states have c
orientational order while very little residual order is appare
in the unlocked state.

As is apparent from Fig. 28, the orientational amplitu
drops sharply as the boundary between the 2MS and
locked phases is crossed. This is demonstrated in F
29~a!–29~d!, which corresponds to the range of 5.1–5.25
in Fig. 28. Between the pure hexagonal state and the
locked state the hexagonal 2MS state exists. This state
plays strongk1 dominant hexagonal symmetry at most te
poral phases but at other temporal phases some of the p
is in the k2 mode. SinceQk is an average of equally tim
separated temporal phases, the hexagonal 2MS state hasQk
that is slightly smaller than that of the pure hexagon stat

The parameterQk does not completely characterize th
different transitions, since spatial fast Fourier transfo
power spectra cannot differentiate between global and lo
ordering. A closer look at real-space images of the transiti
presented in Fig. 28 that correspond to square-2MS,
locked, and hexagonal-2MS states are shown, respecti
in Figs. 29 and 30. Both transitions involve an advanc
front that separates two well-defined domains. The cl
separation between unlocked and 2MS domains provides
ther evidence that the unlocked state is indeed a distinct n
linear state and not, simply, a transition region.

The transitions between unlocked states and the 2
states with different symmetries differ in two ways. The se
sitivity to any change of the driving parameters is mu
higher for the unlocked to 2MS-hexagon transition. Wher
the transition between square 2MS and unlocked states
curs for a relative change of amplitude of less than 5%,
transition between hexagonal-2MS states and hexag
can occur via a change smaller than 0.25%. The time sc
of the induced transitions are also different. The first tran
tion takes place in a nearly quasistatic reversible w
whereas the second transition~as shown in Fig. 30! can oc-
cur over typical time scales of 50–1000 oscillation perio
with a hysteresis of less than 0.1%. This rather sharp tra
tion is, perhaps, due to the effects of the quadratic inte
tions inherent in the harmonic states. The precise duratio
this transition depends on the initial and final driving para
eters. As is typical of front propagation processes, the de
one is within the hexagonal regime, the faster the transi
time @49#.

FIG. 30. A time sequence of the transition from the regu
hexagonal state~a! to hexagonal-2MS states is shown. Thek2 ~60-
Hz! component propagates via a front~b!, ~c! until it dominates the
entire plate and coexists with the large length scale~d!. The driving
parameters are constant for this sequence. The spatial scale is
by the 14.4 cm cell diameter.
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VII. RHOMBOIDAL STATES „2kR… AND
QUASIPATTERNS

In the preceding section we studied the three-wave re
nance mechanism that can form 2MS states from the in
action kW35kW22kW1 and v35v22v1 . Are the only resonant
mechanisms found in the vicinity ofxc?

In this section we will describe the spontaneous format
of nonlinear rhomboidal patterns, formed as a result of so
spatially resonant three-wave coupling between wave v
tors with distinctly different wave numbers. This state h
previously been observed only in a nonlinear optical syst
where the orientations of the interacting wave vectors@50#
were externally imposed. Rhomboidal patterns have a
been recently observed in parametrically driven ferroflu
@44#. The rhomboidal patterns described below sponta
ously couple the two circles of linearly degenerate wa
numbers. These states qualitatively differ from 2MS state
that they are composed solely of the linearly excited wa
vectorsk1 andk2 , in contrast to the additional slaved mod
k3 necessary for 2MS formation.

The rhomboidal states observed in this system result fr
the nonlinear interaction ofk1 andk2 , which are waves with
significantly different wavelengths. Such states have b
observed numerically in a Swift-Hohenberg-type mod
@25,27# as discussed in Sec. I. They have also been an
pated in anisotropic models where two degenerate wave
tors are resonant with an externally imposed wave num
@51#, in nonlinear optical systems@52,53#, and in the analysis
of the Faraday instability excited with two frequenci
@30,33#. Both rhomboidal states and superlattice patte
have also been recently predicted to occur as a result of
bistable modes coupling to a zero mode@54#.

The rhomboidal states observed in this system differ d
tinctly from rhomboids resulting from slightly ‘‘distorted’
hexagonal states@55,56#. ‘‘Distorted hexagons,’’ predicted to
be stable in models with derivative-coupled quadratic term
may arise due to either initial or boundary conditions@57#.
These states have been observed in reaction-diffusion
tems @56#, convection in an imposed shear flow@58#, and
flux line lattices in superconductors@59#.

A. Experimental conditions

We have observed rhomboid states using both Do
Corning 200 oils with kinematic viscositiesn of 8.7, 23, 47,

r

ven

FIG. 31. ~a! A typical 2k rhomboid (2kR) state observed for
2
3 driving and v0 /(2p)525 Hz, n523 cS, andh50.2 cm. The
axisy is defined by the direction ofk1 . ~b! The power spectrum~c!

illustrates the simple resonance conditionkW282kW25kW1 that generates

these states.kW28 and kW2 correspond tov253v0/2 while kW1 corre-
sponds tov152v0/2. u here is 41°.
4-21
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H. ARBELL AND J. FINEBERG PHYSICAL REVIEW E65 036224
and 87 cS~at 30 °C! and the TKO-77 vacuum pump flui
with n5184 cS~at 33 °C! in fluid layers whose depth varie
between 0.1,h,0.55 cm. The two wave number rhomb
(2kR) states described in this section were all generated w
m/n52/3 and 12,v0/2p,45 Hz or m/n54/5 with 10
,v0/2p,20 Hz. Frequency combinations of25

50,
30
60,

40
80,

40
56,

45
63,

48
68,

50
70,

55
75,

55
77,

30
50,

40
70,

45
60,

50
65,

50
80,

52
68,

60
84,

60
100 did not generate

2kR states.
In Fig. 31 we present a typical image of a 2kR pattern.

Although k1 andk2 are the linearly unstable wave numbe
@14# excited byv1 andv2 , their orientation is determined b
the three-wave nonlinear interaction that yields the reson
triad kW282kW25kW1 , whereukW28u5ukW2u5k2 . The higher harmon-
ics in the figure may either be real or could occur as
artifact of the imaging. An additive three-wave resonan
occurs for1

2 forcing where the resonancekW181kW15kW2 governs
the selected pattern. In this case, the resulting pattern~see
Sec. VIII! is a superposition of hexagonal lattices compos
of the two scales.

The observation of 2kR states solely for driving ratios23,
4
5, and 1

2 is entirely consistent with Silber and Skeldon’s@30#
predictions~see Sec. I D 2! that three-waves interactions co
pling the wave numbersk1 and k2 are only allowed when
two odd-parity waves are coupled to a wave with even pa
Thus, kW181kW15kW2 coupling is allowed for odd/even fre

quency ratios such as12, andkW282kW25kW1 coupling occurs in
even/odd forcing, such as23 and 4

5. It is interesting that we
have not observed these states for other frequency ratios
possible that 2MS states are preferred for all but the simp
frequency ratios since, for higher ratios, linearly sta
tongues corresponding to wave numbers close to the valu
k3 ~defined byv35v22v1! are more dense.

A typical phase space in which 2kR states are observed
presented in Fig. 4~right!. For values ofx that are far from
xc , the phase diagram is similar to those described in S
III and VI. The 2kR state exists in the near vicinity ofxc and
replaces both the 2MS and unlocked states. This regio
bounded for x.xc by squares and forx,xc by
k1-dominant DHS that are mixed with oscillons@20# ~see
@19#!. At higher values ofn and h ~e.g., n547 cS, h
50.3 cm, n587 cS, h50.5 cm! square and hexagonal pa
terns only exist near onset. Upon increase ofA both types of
patterns become rolls. The 2kR state is, however, unaffecte
by the state preceding it. They appear for a similar range

FIG. 32. A common phenomenon observed in the 2kR region of
phase space is the formation of two domains of 2kR states~left!
that are oriented with a relative angle ofu that is also the angle

between the two larger vectorskW2 , kW28 forming the 2kR state. A
similar phenomenon can also be observed in domains formed
triblock copolymers@60#.
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f. The transition to DHS and oscillon states also occurs a
Fig. 4.

2kR states are not always correlated throughout the en
system. At relatively low values ofA, 2kR states can some
times be found in two or three domains, as shown in Fig.
The angle separating two such domains is identical to
angleu betweenkW2 and kW28 , as defined in Fig. 31~b!. This
type of domain separation is also observed in ‘‘knitting p
terns’’ @60#, formed by triblock copolymers near a bistab
point. ~These new materials have a reciprocal lattice str
ture similar to 2kR states.!

Let us return to the description of the typical phase spa
As increasing the driving amplitudeA strengthens the non
linear interactions between the waves, 2kR domains coalesce
at higher levels of excitation. Further increase ofA yields a
hysteretic bifurcation to the double hexagonal superlat
state, where oscillons are formed at the maxima of the p
tern ~see@19#!. In Fig. 33 we present a time sequence of t
transition from a global 2kR state to a DHS state by mean
of rapid front propagation. Only at the final stages of th
process does the pattern bifurcate into the high-amplit
state consisting of oscillons superimposed on a DHS ba
ground ~see Sec. V and@19#!. The opposite transition from
the DHS to the 2kR state has a qualitatively different cha
acter. Smallk2 dominated wavelength domains penetrate
DHS from the perimeter of the cell in a way similar to th
transition from hexagons to SSS. The transition is not reve
ible and can have a small hysteresis~under 1%!.

Both 2MS and 2kR states are observed for the drivin
ratios 2

3 and 4
5. In @22# the dimensionless parameterd/h

[(n/vave)
1/2/h @where vave[(v22v1)/2# was shown to

govern the selection between the two patterns. Forf50,
2MS/unlocked states exist aboved/h;0.12– 0.17, while
2kR states exist below. This critical range ofd/h was ob-
tained for a broad range of bothh (0.1<h<0.6 cm) andn
(8.7<n<186 cS). The parameterd/h is the ratio of two
important physical scales of the system: the ratio of the v
cous boundary layer length, where the flow is rotational,

by
FIG. 33. The transition from the 2kR state to the DHS occurs

through an ‘‘explosive’’ process in which a spatial domain of hex
gons forms and rapidly increases in size. Six images~a!–~f! of this
process taken at 1.5-sec intervals for an experiment performed
66
44 Hz driving for n523 cS andh50.2 cm at mixing anglex
570°. Note areas of mixed 2kR and hexagonal domains around th
perimeter of the hexagonal area@clearly seen in upper half of~e!#.
In this process the driving parameters arefixed. The spatial scale is
given by the 14.4 cm cell diameter.
4-22
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PATTERN FORMATION IN TWO-FREQUENCY FORCED . . . PHYSICAL REVIEW E65 036224
the fluid layer’s height. This parameter, in essence, defi
the region of applicability of Zhang and Vinals’s quasipote
tial approximation. (d/h)2 is the ratio of the dissipative time
to the driving time scales. In the study of Lioubashevski a
co-workers, this number was critical for determining patte
selection by single-frequency excitations@39,36#. Thus, this
transition suggests that high dissipation in the system fav
the 2MS over the 2kR states. This may result from the~lin-
ear! broadening of unstable tongues@35# that occurs when
dissipation in the system is increased. This broadening wo
make the linearly stable wave number observed in 2
states,k3 , more accessible.

In the transition regime ofd/h, both 2MS and 2kR states
can coexist ford/h50.12. In this region, at fixed values o
d/h, small changes in eitherA or x can result in globally
stable states of either type. Transient states in which b
states are present can also result in this regime. In th
states both resonant mechanisms can operateconcurrentlyin
different spatial regions of the fluid cell.

As the two driving frequencies are commensurate,
phase variablef in Eq. ~1! is a relevant control paramete
As was shown in the experimental work of Muller and E
wards and Fauve~see Sec. I C! changingf can affect pattern
selection. Typically, the 2kR state exists over the rang
220°,f,115°. The phase space presented in Fig
~right! is typical for 0.16,h,0.22 cm andn523 cS. In Fig.
34 we show how changing the anglef causes the pattern t
change from the 2kR to the 2MS state. The transition is no
abrupt and in some regions localized patches of both st
can coexist. In general, the size of the region in phase sp
where a single 2kR domain exists decreases with the d
tance fromf50°. Becausef5180° is equivalent, for23
driving, to f50°, the 2kR is also stable at this angle. Th

FIG. 34. The effect of changingf in the driving can be seen in
the sequence of images~left! and their power spectra~right! for
different values off. While for f50° ~a! a 2kR state is stable and
global, increasingf from ~b! 20° and~c! 30° transforms the system
to a stable 2MS state at~d! 90°. Increasing the angle to~e! 120° and
~f! 150° reverses the process and finally forf5180° a global 2kR
reemerges. The three concentric circles indicate the magnitud
the three 2MS wave vectors (k1 ,k2 ,k3), while the gray arrows

indicate the wave vectors of the 2kR statekW1 , kW2 . These measure
ments were performed for23 driving with system parameter
v0 /(2p)525 Hz, n523 cS, andh50.2 cm at mixing anglex
570.5°.
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strong effect of changes inf is consistent with the predic
tions of Zhang and Vinals~see Sec. I D 1! who showed how
f can affect the mode coupling functionb(u). Silber, Topaz,
and Skeldon@33# have recently demonstrated that changi
f affects the 2kR resonance by varying the nonlinear coe
ficients of the model equations describing the system.

B. Temporal behavior

The temporal behavior of the 2kR state is similar to that
of the even/odd 2MS states, where the time dependenc
different directions is qualitatively different. Like the eve
odd 2MS states, different directions can have dominant s
harmonic or harmonic components. A time translation
p/v0 shifts the observed pattern by a spatial translation
p/ukW21kW28u in the x direction @as defined in Fig. 31~a!#. The
overall spatiotemporal behavior of the 2kR state is consisten
with Eq. ~9!,

h~ t,x,y!5@a1 cos~v0t !1a2 cos~2v0t !1¯#cos~kW1•xW !

1@b1 cos~v0t/2!1b2 cos~3v0t/2!1¯#

3@cos~kW2•yW !1cos~kW28•yW !#. ~9!

The fact that the two directionsxW ikW1 andyW'x ~as defined in
Fig. 31! each exhibitdifferent time dependence is demon
strated in Fig. 35. This typical time series of thex and y
components of the surface gradient of this state at a sin
point is similar to that presented in Fig. 26 for the 2MS sta
By our choice of axes, the]xh component contains mainly
the v1/2,2v1/2, . . . peaks, while the dominant frequencie
in they direction are (v22v1)/2,v2/2, . . . .Arbitrary xW and
yW directions will contain bothk1 or k2 eigenmodes. This
orientational dependence may prove to be a general cha

of

FIG. 35. The time dependence of the 2kR state was studied
using the reflection of a laser by a point on the fluid surface. T
directional derivatives]xh and]yh as a function of time~left! and
their corresponding power spectra~right! show that each direction
has a different temporal dependence.@The x, y directions are de-
fined in Fig. 31~a!.# ]yh is dominated by thek2 andk28 components
with dominant frequencyv2/2, and]xh corresponds to thek1 com-
ponent with dominant frequencyv1/2. This figure was taken from
@22#. The parameters for the above werev0 /(2p)522 Hz, n
523 cSf50°, andh50.2 cm.
4-23
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H. ARBELL AND J. FINEBERG PHYSICAL REVIEW E65 036224
teristic of superlattice states. When asingle mode is domi-
nant, the predictions of Zhang and Vinals@11# are in good
quantitative agreement with our measurements of the rela
peak intensities. In the vicinity ofxc , when two modes are
concurrently excited, this analysis does not apply and a n
theoretical framework is needed.

In low viscosity fluids~n58.7 cS, 0.1,h,0.2 cm, and
d/h,0.13! an interesting variant of the pure 2kR state is
observed whose symmetry changes with its temporal ph
~see @22#!. At different temporal phases, pure hexagon
mixed hexagonal, and 2kR phases can be seen. Interesting
this state exists for a significantly broader range off
(270°,f,70°) than the pure 2kR state. Together with the
vector triad characteristic of 2kR states, coupling with the
difference vector,kW22kW1 , is also observed in the spatia
spectra of these states.

C. Tuning of the resonant angles and quasipattern formation

The angleu between the two wave vectorskW2 andkW28 can
be tuned by changing the different system parameters. S
the values ofk1 and k2 are roughly determined by the dis
persion relationv(k), the angleu can be varied by changin

FIG. 36. The resonant angle betweenk28 andk2 varies with the
parameters of the experiment. We obtain angles of~a! 36° for sys-
tem parameters ofv0 /(2p)525 Hz, n547 cS, andh50.25 cm;
~b! 33° for system parameters ofv0 /(2p)515 Hz, n587 cS, and
h50.5 cm; ~c! 32° for system parameters ofv0 /(2p)525 Hz, n
587 cS, andh50.5 cm; and~d! 29° for system parameters o
v0 /(2p)520 Hz, n5184 cS, andh50.54 cm. All images were
taken from a 939 cm2 square in the center of the circular plate.

FIG. 37. ~a! A tenfold quasiperiodic pattern and its power spe
trum is observed for v0 /(2p)530 Hz, n547 cS, and h
50.33 cm. Circles are drawn with radiik1 ~inner! and k2 ~outer!.
For these parametersu5360°/10 and five 2kR regions combine to
form the quasipattern. Forv0 /(2p)530 Hz, n523 cS, andh
50.2 cm~b! a nearly eightfold symmetric pattern is seen. This p
tern, however, is actually a deformed quasipattern since thekR
value here ofu541° does not evenly divide 360°. Instead of
single angle, two different anglesu1541° and u2549° are ob-
served in the power spectrum.
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v0 , n, or h while leavingm/n constant. This is demonstrate
in Fig. 36. The value ofu can be calculated for a specifi
mixing anglex using the numerical method developed
Tuckerman and co-workers@13#.

As suggested by@25,26#, when rhomboidal states exis
the tuning ofu can provide a well-defined mechanism
which quasipatterns of any desired symmetry may
formed. When 360/u5p, an integer number of adjacent tr
ads can be formed. As conjugate pairs of triads are alw
formed, the integerp must always be even~as observed in
@16,27#!. This is demonstrated in Fig. 37 where the formati
of perfect tenfold quasicrystalline patterns and approxim
eightfold quasipatterns occurs for values ofu that are tuned
to these resonant (360/u5n) angles. As the power spectra o
these states indicate, each of the inner circle of peaks
magnitudek1 is coupled by a triad resonance with two pea
of magnitudek2 along the outer circle. Whenu'41°, a sym-
metric quasipattern is not possible and a distorted eight
quasipattern, as shown in Fig. 37~b!, occurs.

D. Three-frequency driving

Having observed the distorted eightfold quasipatterns
scribed in Fig. 37~b!, we attempted to stabilize theseasym-
metricquasipatterns by modifying the driving. Muller in@12#
added a third frequency perturbation to break the spa
phase symmetry in the subharmonic regime and thereby
trol the transition between triangles and hexagons. This m
tivated us to add a third frequency in order to enable
excited wave vectorsk1 andk2 to spatially lock to the value
of u545° for which eightfold quasipatterns can natura
form. We used the following driving function:

A@a1 cos~p1v0t !1a2 cos~p2v0t1f1!

1a3 cos~p3v0t1f2!#, ~10!

where the total driving amplitude is given byA and the nor-
malized amplitude ratios bya1 :a2 :a3 with a11a21a351.
p1 :p2 :p3 is the three-frequency ratiop1,p2,p3 and
f1 , f2 are the phase differences with respect to thep1 com-
ponents.

Using 2:3:4 driving we indeed observed a perfect eig
fold quasipattern. In Fig. 38 we show images and pow
spectra of this state at two temporal phases. This stat
subharmonic in time and can be observed in the reg
where tenfold quasipatterns and eightfold distorted quasi
terns were observed for the23 experiments described abov

-

-

FIG. 38. Two temporal phases of an eightfold quasipattern
served for three-frequency driving~a!, ~b!. This state is temporally
subharmonic and was observed in the region where the disto
eightfold quasipatterns were observed~see Fig. 37!. This state was
observed in a 50/75/100 Hz experiment with driving amplitude ra
a1 :a2 :a3 equal to 0.16:0.36:0.48 and a phase difference of 1
between the 100-Hz component and the two other components
4-24
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PATTERN FORMATION IN TWO-FREQUENCY FORCED . . . PHYSICAL REVIEW E65 036224
Interestingly, this state was exceedingly stable and exis
within a single domain over a wide range of parameters~note
the sharp peaks in Fig. 38!. This is in sharp contrast to th
distorted eightfold state shown in Fig. 37, which existed
both a narrow range of parameters and, as evident in
diffuse spectrum, had a tendency to break up into domain
is possible that the third frequency allows the 2kR mecha-
nism to form the quasipattern through the relaxation of
ratio betweenkW1 andkW2 and thereby the angle between the
This state was observed in a 50/75/100 Hz experiment w
ratios of driving amplitudes a1 :a2 :a3 equal to
0.16:0.36:0.48, where the single-frequency critical accele
tions for these frequencies are, respectively, 2.56g, 4.40g,
and 6.91g ~yielding ratios of 0.18:0.32:0.49! and phase dif-
ferencesf150°,f15180°. Although the third frequency
acceleration is not small here, it is still below the critic
value for single-frequency excitation at 100 Hz, and wa
vectors corresponding to the 100-Hz component were
observed.

E. Transition states to rhomboids

Figure 39 shows an expanded view of the 2kR phase
space aroundxc @see Fig. 4~right!#. The region shown lies in

FIG. 39. An expanded view of the phase space described in
4 ~right!. Transition states between square and 2kR states are
formed by a superposition of a square state with one~two! sets of
2kR triad vectors. Between the 2kR and transition states, a modu

lated 2kR state exists in which an additionalkW2 component parallel

to thekW1 component exists.

FIG. 40. A typical time sequence of the transition state is sho
with the corresponding power spectra~bottom!. The wave vectors

(kW2a ,kW2b) generating the squares appear together with a third w

vector kW2c , which is oriented at an angle ofu541° to kW2b . The
above experiment was made for system parameters ofv0 /(2p)
527 Hz, n523 cS,f50°, x569°, andh50.2 cm.
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the subharmonic region of phase space (x.xc), where
square patterns form at threshold. Forx close toxc the tran-
sition region and the 2kR region is relatively narrow com-
pared to the transition region for larger values ofx.

The transition from the square symmetry region to t
2kR state is perhaps more interesting than the transition
tween square and square-2MS states discussed in Sec.
While the square-2MS transition occurs through the form
tion of an ‘‘additional’’ set of wave vectors~of different wave
number! that combine with each of the primary wave vecto
that initially formed the squares, the square-2kR transition
has a qualitatively different nature. Here, the basic squ
symmetry is not only broken, but is actuallyreplacedby a
pattern of completely different symmetry. In 2kR states, one
of the twok2 wave vectors that are initially perpendicular
each other in the square state is replaced by ak2 wave vector
whose orientation forms the angleu that is determined by the
magnitude of thek1 wave vector, which defines the 2kR
rhomboidal pattern.

A typical ‘‘transition’’ state at different temporal phases
shown in Fig. 40. The transition occurs through the form
tion of one or two additional wave vectors of magnitudek2 ,
@kW2c in Fig. 40~a!#. These new wave vectors are aligned at t
2kR resonant angleu with respect to thek2 wave vectors
~kW2a andkW2b! that form the squares. Although additionalk2
vectors could, in theory, form 2kR triads with all of the
original k2 wave vectors, empirically, we find that only on
of the initial k2 directions is selected. This is possibly due
the fact that the self-interaction of theharmonic k1 wave
vectors prefers a hexagonal~rather than a square! arrange-
ment. Thus the transition pattern that is formed is a super
sition of ak2 squarestate with a 2kR state. All other wave
vectors seen are formed by secondary interactions of th
wave vectors. Generally, the transition state breaks the s
metry of the square pattern in a single direction. Since
transition state is usually not global, two domains can fo
and at their common border, one can observe structures
retain the fourfold symmetry.

In the near vicinity ofxc , the transition patterns appear a
in Fig. 40 and their rhomboidal character is apparent. Far
away fromxc , the appearance of the transition state is m
similar to squares, as the orthogonalk2 wave vectors are
more dominant.

g.

n

e

FIG. 41. ‘‘Modulated 2kR’’ states~left! are variants of the 2kR
states formed when@see the power spectrum~right!# an additional

wave vector of magnitudek2 , kW2b , parallel tokW1 is generated. The
system parameters arev0 /(2p)522 Hz, n523 cS, f50°, and
h50.2 cm.
4-25
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H. ARBELL AND J. FINEBERG PHYSICAL REVIEW E65 036224
For x.70° we observe a variant of the 2kR state, shown
in Fig. 41, which forms between the ‘‘transition’’ and th
2kR regions ~see Fig. 39!. This state, which we call a
‘‘modulated’’ 2kR, consists of a modulation of the regula
2kR triad by an additional wave vector of the magnitude a
temporal behavior of the larger frequency component. T
state is formed by the superposition of a 2kR state with an
additional wave vector of magnitudek2 that is oriented par-
allel to thek1 wave vector@see Fig. 41~right!#. This wave
vector retains the time dependence of thek2 mode and gen-
erates a spatial and temporal modulation, similar to that
duced in the SSS mode, in thekW1 direction@x in Fig. 31~a!#.
A possible mechanism that can generate a ‘‘modulated’’ 2kR
state is a 2MS resonance between the two collinear w
vectorskW1 andkW2 that produces akW3 wave vector along the
same direction. This is verified by comparison with t
square-2MS pattern obtained for the same parameters
f590° @see Fig. 34~e!#. This mechanism is supported by o
observations of the ‘‘modulated’’ 2kR states for only rela-
tively low values ofv0 for which the wave vectorskW1 , kW2 ,
andkW3 , forming the 2MS state, are nearly parallel.

VIII. ADDITIONAL RESONANT STATES

A. States observed for oddÕodd parity driving

The work of Silber, Topaz, and Skeldon@33# indicates that
the possible three-wave resonant interactions between
cited and damped modes depend on the parity of the driv
For odd/odd driving no three-wave resonant interactions
tweenk1 and k2 are expected since both modes are tem
rally subharmonic~see Sec. I D 1!. When considering four-
wave interactions, however, these restrictions are no lon
valid. Below, we describe two experiments conducted w
odd/odd driving, which indeed show that four-wave reson

FIG. 42. A 5
7 ratio yields both the 2MS resonance~a! and a

four-wave resonance~b!. In the 2MS power spectrum@~a! right# the

three vectors are nearly parallel obeying the resonancekW35kW2

2kW1 . In ~b! ~right! the power spectrum reveals a qualitatively d

ferent resonance:kW11kW185kW21kW28[kW4 . This resonance produce

additional vectors such askW5 , which are sums and differences of th
original wave vectors involved. The experimental parameters
55
77 -Hz driving frequencies,n523 cS, andh50.2 cm. In ~a! f
590°, x572.8°. and in~b! f50°, x570.8°.
03622
d
is

-

ve

ith

x-
g.
e-
-

er
h
t

interactions can be found both in the vicinity ofxc , where
one mode is strongly excited and the other only wea
damped, and far fromxc where the interactions involve a
excited mode and a single strongly damped mode co
sponding to the subharmonic frequencyv0/2.

For x.xc a 5
7 frequency ratio can produce a square-2M

state in the vicinity ofxc . This, however, is not the only
resonantly locked pattern that can be observed at this driv
ratio. Mixing angles typically 3°–5° degrees beyondxc re-
sults in the formation of the state shown in Fig. 42~b!. The
spatial spectrum of this state indicates that it is formed b
qualitatively different mechanism. The original square p
tern, formed by two orthogonalk2 wave vectors, is broken
by an additional pair ofk1 wave vectors, whose orientation
determined by the four-wave resonance conditionkW11kW18

5kW21kW28 . This resonance produces additional vectors t
are sums and differences of the original wave vectors
volved. States similar to these have been previously obse
in vertically oscillating convection experiments@61#, where
three-wave interactions are forbidden.

In odd/odd driving both sides of phase space exhibit s
harmonic temporal response. Unlike the5

7 driving that pro-
duces hexagons forx,xc ~despite the subharmonic tempo
ral response!, experiments performed using35 driving with
v0520 Hz yield square symmetric patterns forx.xc and
nearly square patterns~rhomboids with an angle of 84°! for
x,xc . Here, a state exhibiting a different mode of fou
wave coupling far fromxc is presented in Fig. 43. Like the
SSS states, these patterns result from a symmetry-brea
bifurcation for xc120°.x.xc . The power spectrum re
veals that in addition to the dominant pair of orthogon
wave vectors~kW1a and kW1b in Fig. 43!, an additional wave
vector of the same magnitude,kW1c , is created along the bi

re

FIG. 43. In an experiment with35
60
100 Hz driving, patterns with

square symmetry~or slightly rhombic! dominate for mixing angles
x,xc . The primary wave number is of magnitudek1 @circles in
~a!–~c!#. When the driving is increased, the primary symmetry
broken by a small wave vector of magnitudek3 ~enclosed in tri-
angles!. These states are observed for parametersn523 cS andh
50.2 cm both at mixing angle close toxc ~a! x569.6° and far
from xc ~b! x548.1° and~c! x558.7°. A possible mechanism fo
the large scale symmetry breaking is a resonant four-wave inte
tion. The power spectrum@~a!, bottom# reveals the existence o
additional vectors of magnitudek1 ~enclosed by squares!. The in-

teraction ofkW1c with the sum of the original vectorskW1a1kW1b ~en-

closed by diamonds! results in a new vectorkW35kW1c2(kW1a1kW1b)
whose scale is consistent withk(v0/2).
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sector ofkW1a and kW1b . The vector sum of these three wav
vectors of magnitudek1 produces a smaller wave vector
magnitudek35kW1c2(kW1a1kW1b). The scale ofkW3 is consis-
tent with k(v0/2), as determined by the linear dispersi
relation. Thus, as in the case of 2MS states, a symme
breaking slaved modekW3 is excited by a nonlinear resonanc

B. States satisfying more than one resonance condition

We have observed a number of cases where states
satisfy more than a single-resonance condition were sele
by the system. These states are generally stable in a
tively wide range of phase space. Here we present a num
of examples of such multiply resonant nonlinear states.

We have seen that SSS-I states result from a primary h
agonal symmetry, broken by a wave vector of sizekc/2. A
similar mechanism can occur for square or rhomboid p
terns. In Fig. 44 we show aspatially subharmonic state, ob
tained using5

8 driving, where a rhomboid is formed by tw
wave vectors of magnitudek1 ~kW1 andkW18 in Fig. 44! via the

additive 2kR resonancekW11kW185kW2 . The spatial period of
the rhomboid is doubled by the appearance of twonewwave

FIG. 44. An image~left! and power spectrum~right! of a spa-

tially subharmonic state where a rhomboid is formed bykW11kW18

5kW2 , wherek1 (k2) is generated by the 5v0 (8v0) frequencies.
The pure rhomboid symmetry is broken by two spatially subh

monic vectorskW1/2 andkW18/2. The vectorsk2a andk2b are formed by

additional resonances:kW2a5kW12kW181kW1/2 and kW2b5kW12kW182kW18/2.
This state appears for50

80-Hz driving for n523 cS andh50.2 cm for
x;xc21°.

FIG. 45. Images@~a!–~c!, top# and the corresponding powe
spectra@~a!–~c!, bottom# of different temporal phases of a SSS-
~2MS! state observed for12 driving in the harmonic region of phas
space at system parameters ofn523 cS, 40

80 Hz, andh50.155 cm.
The pattern was observed in the vicinity ofxc for x.xc . This state
resembles SSS-II states observed for2

3 driving although here a typi-
cal superhexagon cell isp/3 symmetric whereas the SSS-II sta
generally hasp/6 rotational symmetry.
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vectors of sizek1/2 ~kW1/2 andkW18/2 in Fig. 44!. This state was
observed for a mixing anglex5xc21°. An additional spa-
tial resonance is apparent. The vectorskW12kW181kW1/2 andkW1

2kW182kW18/2 both form vectors of lengthk2 ~seek2a andk2b

in Fig. 44!. This ‘‘extra’’ four-wave resonance may be th
result of spatial mode locking. It may be possible that t
extra resonance causes the selection and resultant stabil
this state.

Another example of a state satisfying two resonance c
ditions is presented in Fig. 45. This state, which is only o
served in 1

2 driving experiments, is both a hexagonal 2M
state as well as an SSS-II state. The driving ratio of1

2 is
unique sincev3 ~given by v35v22v1! is equal tov1 .
Thus, the wave numberk3 , excited byv3 , coincides with
the wave numberk1 , excited byv1 . Therefore@11#, a reso-
nant triad is formed involving only the two critical wav
numbersk1 andk2 . In this case SSS-II and 2MS states c
incide for 20,v0,50 Hz. The resonance that is formed
identical to the SSS-II resonance found for odd/even driv
in the harmonic region~see Sec. IV B!, where the wave vec-
tors of magnitudeq andK of the SSS-II state are replaced b
wave vectors of respective magnitudek1 andk2 . The reso-
nance condition for the1

2 experiment can be written askW1

1kW185kW2 . The SSS-II-type resonance is possible since,
the system parameters used, the ratiok2 /k1 is close to).

-

FIG. 46. A state formed by simultaneous multiple resonan
obtained with2

3 driving with the same parameters used to form
2kR state atf50, v0 /(2p)520 Hz, n523 cS, x559°, andh
50.2 cm, but with a phase off5117°. The wave vectors of mag

nitudek3 are formed both from the resonancekW22kW285kW39 as well as

the resonancekW22kW15kW3 . In addition, the condition satisfying the
DHS structure is satisfied and the hexagonal sublattice formed

the kW3 wave vectors spans the entire lattice.k1 , k2 , and k3 are,
respectively, noted by squares, circles, and diamond symbols.

FIG. 47. Different temporal phases of the state described in
46 taken for constant values of the driving parameters. Circles
radii k1 ~middle circle!, k2 ~outer circle!, andk3 ~inner circle! are
drawn in ~b!. At different temporal phases, different scales app
dominant.
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The same resonance was also observed by Wagner, M
and Knorr for a two-mode subharmonic-harmonic interact
in a single-frequency lubrication-limit experiment@41#. In
their experiment, for special values ofh and v, two modes
with temporal responses ofv/2 andv and with spatial wave
numbersk1 andk2 are excited by single-frequency forcing

In our last example, we present an example of a s
where multiple resonance conditions are simultaneously
isfied. When this occurs, we find that the stability of a patt
is significantly enhanced. This state contains features of m
of the states described above. This single state includ
2MS resonance, a DHS resonance~with a 1/A7 sublattice!,
an SSS-II-type resonance, and an ‘‘additive’’ and ‘‘subtra
tive’’ 2 kR resonance. This state was observed for2

3 driving
(v0520 Hz) with f5117° and is shown in Fig. 46.

As can be seen in the power spectrum~Fig. 46 right! a
double lattice with wave numberk2 at an angle of 22.2°
produces the familiar DHS structure described in Sec.
However, in this case the smallest inner hexagon has a m
nitude of k3 , which is associated with frequency,v35v2
2v1 , while the second inner hexagonal set of wave vect
has a magnitude ofk1 . This resonance is very stable an
exists in a single domain. This stability is perhaps due
multiply resonant nature. In Fig. 47 a time sequence
shown of the different phases of this state.

IX. CONCLUSIONS

The work described in this paper provides a partial,
coherent, experimental picture of both the nonlinear sta
generated by two-frequency forcing as well as their doma
of existence in phase space, and the nonlinear interact
that generate them. As demonstrated above, the space of
linear patterns formed by two interacting unstable mode
very rich. Our understanding of the types of structures a
their selection is just beginning. Predicted nonlinear thr
wave resonances@30#, however, appear to govern nonline
pattern selection only for thesimplestratios~2

3 and 1
2!. Recent

theoretical advances made by Silber and co-workers in
analysis of the two-frequency Faraday system in the vicin
of the codimension-2 point@30,33# suggest that at least som
of the features discovered by our experiments can be re
duced by amplitude equations derived using the quasipo
tial approximation ~e.g., @11#!. In addition, recent work
@23,34,40# indicates that many of the superlattice sta
found far fromxc may be qualitatively understood as repr
sentations of invariant subgroups of broken hexagonal s
metry. A quantitative theory that describes the important
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gime of two or more concurrently unstable modes
arbitrary height and viscosity has still to be developed.

Some of the major results of this work are summariz
below.

~1! The temporal symmetry of the driving determin
which resonant interactionscan occur between the primary
excited modes. A number of distinct three- and four-wa
interactions between excited modes and between slaved
excited modes were experimentally observed.

~2! Factors such as the dimensionless dissipation in
system and the driving phasef can play an important role in
the nonlinear interaction mechanism selected by the sys
f is a convenient parameter for comparison with theory,
in contrast to the system’s dissipation, its value does not p
a role in the validity of the theoretical~e.g., @11#! approxi-
mation used.

~3! Symmetry breaking can often occur via modes th
nonlinearly couple to the original set of modes. T
symmetry-breaking modes tend to be arranged in invar
subgroups of the original symmetry group.

~4! In many cases, linearly stable slaved modes can
nonlinearly excited by the parametrically amplified nonline
modes. The number and availability of slaved modes~deter-
mined by the ratio of the driving frequencies! is important in
the selection of the final nonlinear states. This provide
nontrivial selection mechanism for nonlinear states.

~5! A theoretically predicted mechanism@25,26# for pro-
ducing quasipatterns was experimentally observed. By t
ing the system parameters to satisfy a resonance cond
2n-fold quasipatterns can be produced for any desiredn.

We believe that both the states and nonlinear mechani
described in this work should be of general importance t
wide class of parametrically driven nonlinear systems. S
systems include parametrically driven fluid systems, non
ear optical systems@43,50,62–64#, nonlinear wave interac-
tions in superfluid helium@65,66#, magnetically driven fer-
rofluids @44#, and possibly nonlinearly coupled mechanic
systems. The behavior of systems driven by two-freque
forcing is, itself, important. Understanding the spatiotemp
ral behavior of such systems is but a first step in understa
ing the general behavior in space and time of nonlinear s
tems driven by multiple frequencies. The work presen
here is an important building block on the road to und
standing these more complex systems.

ACKNOWLEDGEMENT

We gratefully acknowledge the support of the Israel Aca
emy of Sciences~Grant No. 203/99!.
r-

ys.
@1# S. Douady, J. Fluid Mech.221, 383 ~1990!.
@2# D. Binks and W. van de Water, Phys. Rev. Lett.78, 4043

~1997!.
@3# A. Kudrolli and J. P. Gollub, Physica D97, 133 ~1996!.
@4# K. Kumar and K. M. S. Bajaj, Phys. Rev. E52, R4606~1995!.
@5# E. Bosch and W. van de Water, Phys. Rev. Lett.70, 3420

~1993!.
@6# S. Ciliberto, S. Douady, and S. Fauve, Europhys. Lett.15, 23
~1991!.

@7# A. B. Ezerskii, M. I. Rabinovich, V. P. Reutov, and I. M. Sta
obinets, Zh. Eksp. Teor. Fiz.91, 2070~1986! @Sov. Phys. JETP
64, 1228~1986!#.

@8# B. J. Gluckman, P. Marcq, J. Bridger, and J. P. Gollub, Ph
Rev. Lett.71, 2034~1993!.
4-28



ro

v.

c

ett

r,

y

et

s.

h.

ys.

s.

ys.

n,

. E

s.

ro-

hys.

s.

. A

ett.

ett.

PATTERN FORMATION IN TWO-FREQUENCY FORCED . . . PHYSICAL REVIEW E65 036224
@9# A. Kudrolli and J. P. Gollub, Phys. Rev. E54, R1052~1996!.
@10# L. Daudet, V. Ego, S. Manneville, and J. Bechhoefer, Eu

phys. Lett.32, 313 ~1995!.
@11# W. Zhang and J. Vinals, J. Fluid Mech.341, 225 ~1997!.
@12# H. W. Muller, Phys. Rev. Lett.71, 3287~1993!.
@13# T. Besson, W. S. Edwards, and L. S. Tuckerman, Phys. Re

54, 507 ~1996!.
@14# K. Kumar, Proc. R. Soc. London, Ser. A452, 1113~1996!.
@15# H. Arbell and J. Fineberg, Phys. Rev. Lett.81, 4384~1998!.
@16# W. S. Edwards and S. Fauve, C. R. Acad. Sci., Ser. II: Me

Phys., Chim., Sci. Terre Univers315, 417 ~1992!.
@17# W. S. Edwards and S. Fauve, Phys. Rev. E47, R788~1993!.
@18# W. S. Edwards and S. Fauve, J. Fluid Mech.278, 123 ~1994!.
@19# H. Arbell and J. Fineberg, Phys. Rev. Lett.85, 756 ~2000!.
@20# P. B. Umbanhowar, F. Melo, and H. L. Swinney, Nature~Lon-

don! 382, 793 ~1996!.
@21# A. Kudrolli, B. Pier, and J. P. Gollub, Physica D123, 99

~1998!.
@22# H. Arbell and J. Fineberg, Phys. Rev. Lett.84, 654 ~2000!.
@23# M. Silber and M. R. E. Proctor, Phys. Rev. Lett.81, 2450

~1998!.
@24# D. Binks, M. T. Westra, and W. van de Water, Phys. Rev. L

79, 5010~1997!.
@25# H. W. Muller, Phys. Rev. E49, 1273~1994!.
@26# T. Frisch and G. Sonnino, Phys. Rev. E51, 1169~1995!.
@27# R. Lifshitz and D. M. Petrich, Phys. Rev. Lett.79, 1261

~1997!.
@28# A. C. Newell and Y. Pomeau, J. Phys. A26, L429 ~1993!.
@29# W. Zhang and J. Vinals, J. Fluid Mech.336, 301 ~1997!.
@30# M. Silber and A. C. Skeldon, Phys. Rev. E59, 5446~1999!.
@31# J. D. Crawford, Rev. Mod. Phys.63, 991 ~1991!.
@32# J. D. Crawford, Physica D52, 429 ~1991!.
@33# M. Silber, C. M. Topaz, and A. C. Skeldon, Physica D143, 205

~2000!.
@34# D. P. Tse, A. M. Rucklidge, R. B. Hoyle, and M. Silbe

Physica D146, 367 ~2000!.
@35# K. Kumar and L. S. Tuckerman, J. Fluid Mech.279, 49 ~1994!.
@36# O. Lioubashevski, J. Fineberg, and L. S. Tuckerman, Ph

Rev. E55, R3832~1997!.
@37# F. Simonelli and J. P. Gollub, J. Fluid Mech.199, 471 ~1989!.
@38# O. Lioubashevskiet al., Phys. Rev. Lett.83, 3190~1999!.
@39# O. Lioubashevski, H. Arbell, and J. Fineberg, Phys. Rev. L

76, 3959~1996!.
@40# A. M. Rucklidge, M. Silber, and J. Fineberg, inBifurcations,

Symmetry and Patterns, edited by J. Buescuet al. ~Birkhäuser,
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