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Pattern formation in two-frequency forced parametric waves
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We present an experimental investigation of superlattice patterns generated on the surface of a fluid via
parametric forcing with two commensurate frequencies. The spatiotemporal behavior of four qualitatively
different types of superlattice patterns is described in detail. These states are generated via a number of
different three-wave resonant interactions. They occur either as symmetry-breaking bifurcations of hexagonal
patterns composed of a single unstable mode or via nonlinear interactions between the two primary unstable
modes generated by the two forcing frequencies. A coherent picture of these states together with the phase
space in which they appear is presented. In addition, we describe a number of new superlattice states generated
by four-wave interactions that arise when symmetry constraints rule out three-wave resonances.
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I. BACKGROUND involve complicated states that display either spatiotemporal
chaos[3,5-9, transverse amplitude modulatiof&0], or
Patterns are ubiquitous in the world around us. The wordvarious defect$3,10] that break the patterns’ initial global

“pattern” describes an order, regularity, or a simple math-symmetry. The use of multiple-frequency driving enables us
ematical description, which can be found either in a naturato study the interactions of different excited modes in a con-
or a manmade system. Patterns often result from selftrolled way, as each excitation frequency can linearly excite a
interactions of driven nonlinear systems. Naturally, the firstwell-defined wave number. In this way, we hope to be able to
patterns to be scientifically analyzed were the simplest onesjowly unfold the system’s underlying behavior and thereby
which can be described by few mathematical variablesunravel the fundamental mechanisms that describe the
However, in recent years we have learned to recognize andaves’ interactions.
categorize patterns in systems that were assumed to be form- The purpose of this paper is to provide a coherent over-
less, devoid of any order. Perhaps the most obvious charagiew of the wide variety of nonlinear states that result from
teristics of these systems are the multiple length and timéwo-frequency forcing. We will provide detailed descriptions
scales that can be present simultaneously. One of the most the spatial and temporal behavior of these states. In doing
important mechanisms to explain such phenomena is theo, we will provide a characterization of these nonlinear
nonlinear resonant interaction between the different modestates—depicting both the resonant mechanisms and symme-
that are excited in these systems. In these interactions two ¢y constraints giving rise to their formation.
more waves can interact to form “new” waves. These waves This paper is organized in the following fashion. In Sec. |
have a wavelength and frequency that is the sum or differwe will briefly describe the theoretical and experimental
ence of the basic waves. The system’s energy can then beork that has, to date, been performed in this system. The
transferred between these modes or dissipated at differemxperimental apparatus and measurement techniques used in
scales. The purpose of the work described in this paper wasur measurements will then be described in Sec. Il. We will
to explore this paradigm in the experimental study of athen present, in Sec. Ill, an overview of the phase diagram
simple controlled system: the parametric excitation of wavesogether with a brief description of the different types of

on the surface of a fluidthe Faraday system superlattice states observed. Each type of superlattice, to-
The general form of the external acceleration applied tagether with the mechanisms that form it, will then be de-
the system is given by scribed in detail in the subsequent sections. A codimension-2

point, at y., exists in this system where both externally
g(t)=A[cog x)cog Mwyt)+sin(y)cog nwet+ ¢)]. (1)  driven modes simultaneously become linearly unstable. Sub-
harmonic superlattice statéSSS, which bifurcate from an
This spatially uniform vertical excitation preserves the sysdnitial hexagonal state far frong., will be described in Sec.
tem’s spatial symmetries while modifying its temporal ones.IV. We will then progress to the region of phase space in the
As first noted by Faraday, sinusoidal accelerationthe  Vicinity of x.. Three different types of superlattice patterns
direction of gra\/ity of a fluid |ayer with angu|ar frequency will be described in Secs. V, VI, and VII. All of the above
w induces a pattern, having a wave numbéw), on the  superlattice patterns result from different types of three-wave
fluid surface. Whereas waves excited by a single frequenciesonant interactions. We will conclude with Sec. VIII in
have been studied extensively over the last 4 decades, thghich a number of superlattice states generated by four-wave
response of the System for mu]tifrequency excitations hagesonant interactions are described. We will show that these
only recently begun to be investigated. Single-frequencystates can occur when three-wave interactions are forbidden.
driving can produce patterns of different symmetries. Pat-
terns consisting of rolls, squares, hexagons, and 8-, 10-, and
12-fold quasipatterns have been experimentally observed in The notation conventions used throughout this paper are
[1-4]. The secondary instabilities of these different patternsas follows. The driving function is specified in E¢L). To

A. Notation
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avoid confusion, we will always specify the driving fre- the k; “tongue” has a subharmoni¢harmonig response
quency ratio used in Eql) by the ratiom/n wheremandn  while thek, tongue has the opposite parity.
are the two co-prime integers that describe the two frequen- The system’s critical wave numbé&g corresponds to the
cies w;=Mwy and w,=nwy. We will always assume that lowest acceleratiora, at which the flat, featureless state
n>m. In our notationk,; andk, refer to the wave numbers loses stability. At a critical value of = ., a codimension-2
excited, respectively, by the driving frequencies and . point exists where two tongues having wave numlkgrand
The angley in Eq. (1) describes the relative mixing between k, corresponding, respectively, tiwy/2 andnwy/2 simul-
the two modes and the angledescribes their phase differ- taneously become unstable. Ferfar from y. the critical
ence, where the relevant range is @<27m/n. cosfy) and  wave numbers are close to the valueskepfobtained for
sin(y) are sometime$11,12 replaced by the mixing coeffi- single-frequency experiments. Near the codimension-2 point
cientsr and 1-r. k. tends to differ from the corresponding single-frequency
In the following sections we will frequently characterize value by up to 10%. The calculated values of bagrandk,
eigenmodes by their temporal parity. Since the paritymof are in excellent agreement with experimefi8,15. While
andn is important we will use the notation odd/evéeven/  modes other than the critical ones are linearly damped, we
odd) to described the classes of driving whene(n) is odd  will see that they can play an important role in nonlinear
andn (m) is even. Odd/odd describes driving where both  wave interactions.
andn are odd. A state whose temporal response has a funda-
mental frequency ofwy/2 will be denoted as a “subhar- C. Experiments with two-frequency forcing
monic” state, whereas a “harmonic” state is one with a fun-
damental frequency abg.
We shall use the following units. The total amplitude

In the case of single-frequency driving, the subharmonic
time dependence prohibits quadratic terms in the “ampli-
appearing in Eq. (1), is measured in units ofg tude” equations describing the. nonlinear interactions be-
=981 cnt/sec. The fluid’s kinematic viscosityis measured t""?e” the amplitudes Qf .the e'XC|ted modes. However, when
in centistoke€0.01 cnf/sed, and the depth of the fluid layer YSIN9 two-freque_ncy driving with oqld/even or evenfodd par-
h is measured in centimeters. In many cases, we will identify!ty’ b_Oth harmonic and subha_rn_wonlc temporal responses are
for simplicity, angular frequencieg.g., w) with the corre- poss_lble. When one of t_he driving frequency components is
sponding temporal ondg.g., w/(27)]. Where necessary, an- domlnant, one can consider the anaIIer component as a per-
gular or temporal frequencies will be explicitly denoted. Un_turbatlon that breakg thg sy;tems temporal subharmomc
less otherwise noted, the spatial scales of the photograph%%mmetry' The reflection invariance of the corresponding set

states presented in the figures are ®cn?. Additional no- coupled ar_nplitude equations is then broken a_nd, generi-
tation will be defined as needed cally, quadratic terms can appear. These quadratic terms are

important since they enable three-wave interactions between
different modes.

Edwards and Fauve were the first to study the two-

The linear stability analysis of the problem was performedfrequency driven Faraday instabilift6—18. They chose to
by Besson, Edwards, and Tuckermgi8] by numerically  focus most of their study on 4:5 driving although they also
solving the linearized Navier-Stokes equation via an extenexplored other ratiogsuch as, 2, £, and ). These experi-
sion of the technique developed by Kumar and Tuckermamnents used a relatively viscous fluid and a small fluid layer
[14] for single-frequency excitations. As in the single- height in order to minimize lateral boundary effects. As the
frequency case, the acceleration—wave number plane is charscosity of the fluid was rather highv& 100 ¢S) stripe pat-
acterized by alternating tongues corresponding to the accelerns occurred for single-frequency driving. The phase space
eration at which a given wave number becomes linearlyas presented ifl6] for (even/odd 4:5 driving can be di-
unstable. For mixing angleg=0° and y=90° the tongue vided into two parts: The harmoni¢subharmonig part
structure of single-frequency forcing with eith@iw, ornwy  where thek; (k,) wave vector is dominant and the leading
driving is obtained. Increasingfrom O results in the appear- temporal term has the frequency ob@2 (5wy/2). In the
ance of additional tongues whose dominant frequencies afearmonic region, in place of the stripe patterns of wave num-
spacedw/2 apart, since the system’s basic frequency is therberk, appearing for pure é, driving, a first-order transition
wo. Each odd-numbered tongue possessesiutsharmonic  to hexagons occurs fop>10°. In the subharmonic region,
temporal dependence composed of only frequencigip striped patterns with wave numbles are observed until the
+3) whereas even-numbered tongues are tempotaly  near vicinity of the codimension-2 point at.. The first-
monig i.e., composed of frequencigrvy (Wherep is any  order transition to the hexagonal state results from the qua-
whole numbex. Although the time dependence of each dratic interactions mentioned above.
tongue is given by an infinite series, tleminantfrequency In the neighborhood of the codimension-2 point, a tempo-
of the pth odd (even tongue corresponds topé 3)wg rally harmonic, 12-fold symmetric quasiperiodic pattern was
(pwg). Generally, within the critical tongues the dominant observed. These states appeared for only a small range of
frequenciesnwy/2 or mwy/2 have an order of magnitude (¢~75°*=5°). They evolved, via a first-order bifurcation,
greater amplitude than the other components. Thus, the tenfrom either the flat zero-amplitude state or the subharmonic
poral response of the critical modes fofn=odd/odd driv-  striped patterns. In the hysteretic region of these states, Ed-
ing ratios is always subharmonic. For odd/eemen/odd, = wards and Fauve also observed solitary axial waves that

B. Linear analysis
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originated from the quasiperiodic pattern. Arbell anderal of the superlattice states observed. They are formed by

Fineberg[19] have shown that these highly localized wavesan interaction of the two linearly excited modgs andk)

are related to “oscillons,” which are temporally oscillating With a third linearly damped slaved mode that is nonlinearly

states, observed in vibrating granular systd@@j, that are ~ excited. The angle betwedq andk; is chosen by the fol-

highly localized in space. lowing resonance mechanism: the vector differekge k;
Muller [12] later conducted two-frequency-forcing ex- produces a third wave vecter3. The magnitude otZ3 is

periments using a driving ratio gf These experiments were determined by the dispersion relatiaigk) for the difference

performed neay. in shallow fluid layers in various regions frequencyw;=w,— w;.

of the x-¢ phase space. Both temporally subharmonic hexa- An additional type of superlattice state has been observed

gon and triangle patterns were observed. Triangular patterrigr 5 and # driving in the vicinity of x. [22]. This state,

are formed when the spatial phase associated with each @fhich appears in place of the 2MS state, consists of a rhom-

the excited eigenmodes differs from 0° or 180°. Mullerboid pattern that is formed by the simple nonlinear reso-

showed that amplitude equations with both cubic and quinti¢,3nce: k,— K;=K;, where |k,|=|K}|. When the coupling

terms(applying to temporally subharmonic wayesn form e - -,
triangular patterns. In contrast, amplitude equations Withanglee[e—cos (>-ky/ky)] betweerk, andk; is tuned to a

guadratic terms have only stable hexagonal solutions. Theé’éa‘Iue of §~2m/n, (2—n)-fold quasicrystalline patterns are
experiments were later modeled by Zhang and Vifalg ~ naturally formed.
using a quasipotential approach. Experimentally, Muller
showed that the addition of a third small-amplitude forcing D. Model equations and nonlinear analysis
frequency(which is equivalent to perturbatively breaking the  Generally, two methods have been used to study the Far-
system’s parity could stabilize either the hexagonal or trian- aday instability with two-frequency driving. The first uses
gular states. simple model systems that yield qualitative insights regard-
More recent experimental studies in two-frequency-forcedng the behavior of the Faraday system. These use general
systems were performed by two groups, Kudrolli, Pier, andassumptions based mainly on symmetry considerations. The
Gollub [21] and Arbell and Fineberffl5,19,23. These stud- second method is to start from the full nonlinear set of equa-
ies were conducted both in the near vicinity and far frpm  tions that describe the system, employ carefully chosen ap-
They revealed a number of qualitatively new, superlatticeproximations, and derive a set of equations that describes the
type states in which new scales, not directly introduced Vigehavior of the system based on the real physical parameters.

the external forcing, were evident. Both methods have yielded valuable insights.
In regions of phase space that can be relatively far from
Xc. Superlattice states were observed as secondary bifurca- 1. Model equations

tions from the harmonicriwo/2) hexagonal states that occur
for odd/even or even/odd driving ratios. The primary hex-
agonal symmetry with wave numb&g, is broken by addi-
tional modes with wave numbets<k. whose temporal re-
sponse possesses @ y/4 component. These states include
“SL-II" states observed for 4:5 driving by Kudrolli, Pier, and
Gollub[21] and the(SSS states observed for a large number

The observation of quasicrystalline patterfiguasipat-
terns”) generated using two-frequency driving by Edwards
and Fauveg16] and via single-frequency driving by Binks,
Westra, and van de Watf24] provided a motivation to find
model equations that display similar behavior. Mull@6]
first considered a system df coupled Landau equations
L . . with cubic nonlinear terms. These equations could be written
of driving ratios by Arbell and Fineber.5]. as the gradient of a Lyaponov functional. Muller showed, by

. A.second type (.)f supgrlattice state is obseryed in the N€3finimization of this functional, that reguldi-fold patterns
vicinity of the codimension-2 point, once again on the side

domi d by theh icdrivi h / of different symmetries can be stable. Pattern selection de-
ominated by therarmonicdriving component when even pended on the value of the nonlinear coefficients coupling
odd or odd/even forcing is used. Two variants of these stateg,, linearly degenerate modes. This mechanism may be re-
Eomedb SL- b[21] ar&d _lqﬁUble hexagonal Etat;@HS).élg]b lated to both the appearance of quasipatterns in single-

ave been observed. These states can be described Dy guency Faraday experiments and to the quasipatterns ob-
superposition of two hexagonal sets of wave vectors of magz

) ) . rved in the harmonic region of two-frequency Faraday
nitudek, . The two sets of six wave vectors are oriented at anéystems with even/odd driving

angle g, ~22° to each other. This specific angle is not arbi- * A gecond mechanism that can create quasipatterns is re-
trarily chosen. The sum and difference vectors between thgeq 1o quadratic interactions between degenerate nonlinear

two wave vector sets produce a sublattice spanned by th§oqes Muller proposed that a quadratic nonlinearity, gener-
smaller difference wave vectors. When the two sets of wave

vectors are oriented at specific anglesépf the sublattice ating the triad interactiok, — kp=ky (|k;|=[k3) could also
formed by the difference vectors becomes commensuratéad to quasicrystalline patterns. The angle betwegand
with the two hexagonal lattices. This structure is one of thek; is tunable by the ratid,/k,, with resonant angle®
generic possibilities that were anticipated on the basis o&45°, 36°, and 30° for 8-, 10-, and 12-fold quasipatterns,
symmetry arguments proposed by Silber and Prd@st. respectively. These states were observed in a system of two
A qualitatively different type of superlattice occurs in the coupled Swift-Hohenberg equations, each with a different
vicinity of y. for all driving ratio parities. These states, unstable wave number. Frisch and Sonn[26] also ob-
coined two-mode superlatticé8MS) [15], are the most gen- served subcritical tenfold symmetrical patterns in coupled
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Swift-Hohenberg equations. This state was numericallyphysical parameters of the problem. One interesting result of
shown to be stable even when the dynamics are not derivetthis calculation was that the phase differerte€an have a
from a free energy functional. In addition to states withstrong effect on the coupling functighiand thereby a strong
N-fold symmetry, nonsymmetric, rhomboidal patterns wereeffect on the nonlinear pattern selection. The relative stability
also seen to be stable for some parameter values. Later, bofi different N-fold nonlinear states was then calculated by
the rhomboidal patterns and resonant quasipatterns resultimginimization of a Lyapunov functional, as [25,27. Semi-
from the above interactions were observed experimentally bguantitative agreement with the regions of stability observed
Arbell and Fineberd22]. experimentally in [12] for different patterns (squares,
Lifshitz and PetricH27] modeled the two-frequency Far- hexagons/triangles, and quasipatterns of various oraérs
aday system with a single generalized Swift-Hohenberg-typserved in the subharmonic region of iey phase space was
equation for asinglereal fieldu(x,y). This model is simpler obtained.
than the coupled equations used by Muller, Frisch and An important result of this work was that it suggested a
Sonino, and Newell and Pome§28]. The model equation new type of physical mechanism that governs the selection
used was rotationally invariant witltwo built-in critical ~ process. These calculations indicated that the value of the
wave numbers. The equation contained a quadratic term thabupling coefficients was strongly influenced by triad inter-
both broke the system’s up-down symmetry and allowedactions between the linearly excited modesrresponding to
triad wave interactions. Stable striped, hexagonal and 12-folthe dominant excitation frequencynd thelinearly stable
symmetric patterns were observed for different values of thenodes corresponding to thgecondexcitation frequency.
control parameter. In addition to thesé¢fold symmetric Resonant coupling to these latter modes served, in the region
states, a compressed hexagon state, similar to the rhombiof phase space far frony., to enhance the effective
stripe pattern described by Muller, was observed. damping—as energy transferred to these “slaved” modes is
The above model systems suggest that the existence afore efficiently dissipated. Far from,., states thatannot
two unstable wave numbers together with the possibility ofcouple to the slaved modes are then preferred by the system.
triad interactiongprovided by quadratic termss a sufficient  As we shall later see, however, in thiginity of ., resonant
condition for the formation of quasiperiodic patterns. An-triad coupling to the linearly stable, slaved modes provides
other common feature of these models is the existence ajne of the main mechanisms for the rich variety of nonlinear
distinct regions of phase space in which patterns that lacktates observed.

N-fold symmetry are stable. Silber and Skeldor{30] were the first to theoretically
_ _ study the two-frequency Faraday system in the vicinity of the
2. Nonlinear analysis codimension-2 point. This study pointed out the importance

In contrast to the simplified model systems described®f accounting for the temporal symmetries of the system.
above, Zhang and Vinalgl1] derived a description of the Silber and Skeldon focused on forcing ratiogn having
system’s dynamics from the governing equations for the twogither odd/evep or even/odd parities, where interactions be-
frequency Faraday problem. To this end, they applied théveen harmonic and subharmonic waves may occur.
quasipotential approach developed for single-frequency AS shown in[11], resonant mode interactions greatly af-
study [29] to the problem of two-frequency driving. This fect the mode coupling functiog(6). Using normal form
approach is strictly valid in the limits of weak dissipation i\nalgsm,ésnber and Skeldon showed that triad resonances
and infinite fluid depth. k;=k;=k, (wherek,=k;) are only possible when the tem-

To compare their results with Muller’s experimental re- poral mode corresponding i@ is harmonic. Wherk, has a
sults, Zhang and Vinals analyzed the special casedoiving subharmonic temporal dependence, quadratic terms in nor-
in depth. They first used the linearized equation to study thenal form equations can be eliminatg8il,32—thereby de-
location of the codimension-2 poing., as a function of the coupling the harmonic modes from the subharmonic ones.
phase difference. The results were in qualitative agreement This can be simply understood since the product of two lin-
with the experiments. The discrepancies were attributed tear eigenfunctiongresulting from a quadratic interaction
the high damping used in Muller’'s experiment, which wasterm) results in the addition of their temporal phases. The
outside the region of validity of the theory. It is interesting to sum of two harmonic or subharmonic temporal phases can-
note that the dependence gf on ¢ is a special feature of not produce a subharmonic one, therefore two modes of like
1 driving and does not occur for other driving combinations.parity cannot couple quadratically to a subharmonic state.

Zhang and Vinals then, using a multiple scales approactilber and Skeldo30] went on to demonstrate the above,
derived standing wave amplitude equations. This weaklypy calculating the amplitude equations for bdtfodd/even
nonlinear analysis assumed that the system was far from thar 5 (even/oddl driving by means of the quasipotential ap-
codimension-2 point, so that a single temporal mode domiproximation used if11].
nated the dynamics. For the caseiadriving, they first ob- The existence or suppression of three wave resonances
tained a prediction for the relative magnitudes of the differ-can have a significant effect on the qualitative features of the
ent Fourier components of the weakly nonlinear temporaphase diagram. When one is far fropg we have seefll]
response of the fluid surface. Then, assunfihdegenerate that three-wave resonant coupling influences pattern selec-
modes, the coupled amplitude equations describing thed@n by enhancing dissipation via the coupling to a heavily
modes were derived. In contrast[@b], the functionp(6;;) damped (slaved mode. In this case, resonant triads are
coupling theith and jth modes was computed from the strongly suppressedOn the other hand, when in the near
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vicinity of x., resonant coupling to nearly unstable linear . o
modes can occur. Moreover, if these modes undergo a first- N4 0 y
order bifurcation, their growth will beto first ordej un- - L |
checked and resonant coupling to them may have a very
significant effect on the spatiotemporal behavior of the sys- < L >
tem.
Silber, Topaz, and Skeldo[83] have recently demon- FIG. 1. A profile of the container used is shown: a Delrin cir-

strated the importance of resonant coupling to slaved modesilar boundary(gray) is attached to the bottom platblack. The

for ¢ forcing neary.. Using the quasipotential approxima- boundary consists of a vertical section of heightand an inclined
tion [11] they showed how weakly damped linear modessection at an angle ak=20° chosen to allow the surface of the
with wave numbersk <k. quadratically couple to the un- liquid used, Dow Corning 200, to be at zero contact angle with the
stable modes to create the SL-I states observed by Kudrollf!Mm (liquid in light gray). Rings withhy of 1, 1.5, 2.5, 4, and 5 mm

Pier, and Gollug21]. In this case, the critical wave vectors Weré used.h could be changed continuously by adding small

- ts of fluid with librated pipette.
|ki| =k could be constructed from a commensurate hexago‘rilmoun S ofTiid with & catibrated pipetie

nal sublattice of wave vectolts; such thatki=qK;+pK;.  dependent, stabilizing the fluid temperature was important. A
The SL-I states are a particular case whepeq]=(*=2,  stable fluid temperature of 300.05°C was used in all ex-
+3) with k,/K= 7. This particular coupling was made periments. Resultant viscosity variations were less than 0.04
possible by the existence of a weakly damped linear tongugS. A number of experiments were also performed using
with a wave number close t&. The SL-l state wasiot  TKO-77 vacuum pump fluid with viscosities ranging be-
observed for forcing since, for this forcing ratio, no linear tween 221 ¢S at 33° and 184 ¢S at 30°. Both Dow Corning
tongues near this resonance exist since there are no ad@ipo and TKO-77 have very low vapor pressures so there was
tional harmonic modes witK <k (K; must be harmonic by no need to seal the cell against evaporation. The results of
[30] as they result from the vector difference of tvﬁp our experiments showed no dependence on the particular
modes. type of fluid used.

Recent work by Tse, Rucklidge, Hoyle, and Siljgd] Our experiments were performed at frequencies between
has shown that the SL-II states observed by Kudrolli, Pier2Z0—150 Hz. The selection of the frequency was influenced
and Gollub[21] may be understood as resulting from a by the aspect ratio of the patterns and the shaker’s maximum
symmetry-breaking bifurcation of an initial hexagonal sym-acceleration and stroke. Frequency selection was also influ-
metry. Study of the possible invariant subgroups of the origi-€nced, to a lesser extent, by limitations of the imaging and
nal Dg+2Z2 symmetry characterizing hexagonal standinglaser probe technique. Typically the aspect ratio between the
waves revealed a number of possible solution branches. Oreell diameterL. and the wavelength was between §L/\
of these corresponds to the spatial symmetry of temporally<50. The maximal driving frequency of 150 Hz was gov-
averaged SL-ll-type states. Depending on the normal fornerned bya., which increases with increasing The shak-
coefficients, five additional possible solution branches werer's maximal strokg2.5 cm, peak to peakand boundary
predicted. It remains to be seen whether these other brancha®de quantization at small aspect ratios dictated the lower
are experimentally observed. frequency limit.

A. Boundary conditions
IIl. EXPERIMENTAL SYSTEM .. .
The lateral boundary conditions of the experimental cell

Our experimental system consisted of a shallow fluidcan have an important effect on the waves excited by the
layer, laterally bounded by a plastic sidewall and mounted orsystem. In our experiments we attempted to minimize the
a computer-controlled mechanical shaker. A 1-cm-thickrole of the sidewalls. A circular shape for the lateral bound-
black-anodized aluminum plate of 14.4 cm diameter supary was chosen. This ensured that no particular pattern was
ported the fluid from below. This plate was machined to a 1Qpreferred. This is especially significant when the system is
um flatness. The mechanical shaker ugether Unholtz- only slightly dissipative(e.g., low viscosity fluids and/or
Dickie model 5PM or VTS model 1Q0provided vertical large fluid deptih For a more highly dissipative systeie.g.,
accelerations ranging from 0 to §5The cell acceleration, high viscosity fluids and/or shallow fluiisthe boundary’s
regulated to within 0.04, was monitored continuously by a shape does not influence the symmetry of the excited pattern
calibrated accelerometé8ilicon Designs, INC 1210L-030 [18].
attached directly to the armature of the shaker. A feedback As discussed by Douadyl], an additional effect of side-
mechanism was used to control and stabilize the amplitudevalls is the possible emission of wavé@meniscus waves
A, mixing angley, and phasep to desired values. from the lateral boundaries. These waves are forced at the

Most of our experiments were conducted with Dow Corn-driving frequency via forced height variations of the menis-
ing 200 silicone oil of different viscositiesDC200/10, cus formed at the contact line between the fluid and lateral
DC200/20, DC200/50, and DC200/1)0Gsilicone oil has a boundaries. Meniscus waves have no threshold and can
typical density of 0.95 g/cthand surface tension of 21.5 therefore mask the instability threshold of parametrically
dyne/cm. This fluid is Newtonian for the viscosity range of forced waves. To minimize this effect, our system’s lateral
1-100 cS. Since the fluid viscosity is highly temperatureboundariegshown schematically in Fig.)vere sloped at an
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FIG. 3. Using the method described in the text we calculated

FIG. 2. (a) A schematic diagram of the experimental system.model imagestop) of a simple hexagonal state in its peak staje

The imaging system consisted of a cylindrical screen, concentri@nd crater stat¢b) and of a square stat@). The corresponding

with the experimental cell, which was illuminated by halogen lampsexperimental patterns are showfottom. To model the surface

arranged in a circle. A CCD camera was mounted on the cylindewaves we assumed an asymmetry between up hexagons and down

axis above the fluid surfacéb) The cylinder’s illumination inten- hexagons due to the the fact that the hexagon’s amplitude was large

sity was varied as a function of the height above the fluid. At eacrcompared to the small layer height.

point on the fluid surface the local slope reflects only a single point

from the cylinder surface into the CCD. Since the lighting providesthe fluid surface is uniquely mapped to the projection of its

a unique intensity at each height along the cylinder, the intensityslope on the cylinder axis. We used the CCD’s high-speed

reflected by each point is uniquely mapped to the projection of theshuttering modé€1/1000 seLto obtain instantaneous images

fluid surface’s slope in the direction of the cylinder axis. of the fluid surface.

) i Two methods of triggering were used to control the CCD
angle conjugate to the contact angle between the fluid angdymera. The first method employed a trigger signal that was

the material(Delrin) from which the lateral rings were CON- synchronized with the driving. This signal both reset the
structed.(A slope of@=20° was used for the Dow Corning camera and initiated acquisition of the video frame at a de-
200 silicone oil) In this way, we ensured that the static fluid gjreg phase relative to the driving signal. To observe slow
interface was nearly flat. _.changes in the patterns over long times, slow trigger rates
An additional advantage of sloped lateral boundaries isnat were commensurate with the driving frequency were
the elimination of reflected waves by impedance matchingysed. The short-term behavior of a state in its different tem-
Since the instability thresh_old i_ncre{:lses Wlth decreabimg poral phases was studied by the use of slightly incommensu-
gradual decreasesloping sidepin fluid depth increases the rate trigger rates. This allowed nearly continuous acquisition
effective local threshold at the larger radii to far bey@nd  of the different temporal phases of a given state without the
Since the typical height of the fluid layer in the sloped regionpeed for very high-speed acquisition.
was only 0.1-0.8 mm, parametric waves could not be ex- oyr imaging technique, although providing quantitative
cited and any meniscus waves emanating from the wall wergyformation, does not directly yield the surface wave height
strongly damped. In practice, this boundary condition com+,nction h(x,y). The imaging vyields a gray-scale image,

bined with the fluid viscosities and depths used enabled us tqy v), that is approximately the absolute value of the gra-
obtain values ofa; within 2% of the calculated values gient of the height function, i.e.,

[13,35,34 for a system of infinite lateral extent.

Gradient Lit Cylinder

Gradient Lit Cylinder
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1(x,y) = Laxh(x,y)1?+[dyh(x,y) 1% @

One must then work backwards frdrfx,y) to determine the
functionh(x,y). This is done by inputting an assumed state

To visualize the fluid surface, we employed an alternativento Eq.(2) and comparing the computed pattern to the state
type of imaging technique. The imaging system is schematiobserved. By iteration it is possible to arrive at fairly good
cally shown in Fig. 2b). The experimental cell was illumi- estimates oh(x,y). Some examples are presented in Fig. 3.
nated by a tall cylindrical screen whose axis was concentric For high-amplitude states, visualization from the side was
with center of the cell. The screen was illuminated fromsometimes used. This was performed by illuminating from
below by a ring of 12 small lamps. As a result, the light the side and placing a video camera in the horizontal plane of
intensity along the screen varied as a function of the heighthe plate at the height of the system’s lateral boundary. This
above the fluid. A charge-coupled devig@CD) camera was configuration enabled direct quantitative measurements of
mounted on the cylinder axis, 1.4 m above the cell. At eactihe wave amplitudes adjacent to the lateral boundaries of the
point on the fluid surfacgésee Fig. 2b)], the local slope cell. An additional advantage of this imaging was that it al-
reflects only a single point from the screen onto the CCDJowed us to simultaneously view both the lower plate’s ver-
Since the lighting provides a unique intensity at each heightical movement together with the wave’s motion. In this way
along the cylinder, the intensity reflected by each point ortheir relative phase could be directly measured.

B. Visualization

1. Imaging from above
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C. High resolution temporal measurements frequency driving[12,16,17, two main regions, dominated

Most previous studies of the Faraday system have usedy eitherk orkz, exist. Each of these regions has not only
imaging techniques that mainly yield information about the® different wavelength but al_so different temporal behavior.
symmetries of the states observed. Time domain informatiod "€ k1 andk, dominated regions have a strong response at
was generally extracted by the use of stroboscopic lighting a1/2 @nd w,/2, respectively. This is true for all values of
the frequency of the shaker. This technique measures tH8/N- The temporal response, however, consists of additional
lowest frequency in which a state oscillates but yields norequency components that depend on the ratia. When
information about higher harmonics. Two experimental studboth m andn are odd(odd/odd driving the excited surface
ies used a laser beam probe to extract information about th@odes in both regions of phase space have only subharmonic
surface waves. Douadyl] used a laser beam deflected at ancomponentsi.e., (p+ 3) wo with p an integel. In the case of
angle from the surface waves and reflected on a screen tmld/even(even/odd driving, thek; dominated region is tem-
study the amplitude of the waves. Simonelli and Goll8B]  porally subharmoni¢harmoni¢ while thek, dominated re-
used a laser beam deflected from the surface waves ontogime is temporally harmoni¢subharmonig At the critical
photodetector to obtain temporal information. This tech-valuey=y., a codimension-2 point exists where both wave
nique, however, could not give precise information about thenumbers are simultaneously linearly unstable. Kheomi-
slope of the fluid surface since an average intensity reflectedated region occurs fof< x. while thek, dominated region
from a single “cell” of the pattern was measured. occurs fory>x.. The interaction ok, andk, leads to a

We combined these two methods by imaging the reflecvariety of different nonlinear states in the vicinity gf..
tion at the fluid surface of a highly focused laser onto aBefore describing these states, we will first describe the ef-
position sensitive detectuUDT SL20). This method yielded fects of two-frequency driving in the two main regiofes
an accuracy of 1-5% in the surface slope and a temporatom Xe-
resolution of 0.02 mS. A good signal-to-noise ratio was ob- |n the regions dominated by harmonic states we have
tained by amplitude modulating the laser signal and thefound a number of nontrivial states that bifurcate from
deconvolving the resultant signal of the position sensitivesingle-mode hexagonal states while breaking both their spa-
detector(PSD). The temporal response of the system wasal and temporal symmetries. These symmetry-breaking bi-
only limited by the maximal sampling frequency of the PSDfurcations can even occur whenis quite small. The SSS
voltage. [Fig. 4 (bottom] is an example of such a symmetry-breaking

state. SSS states are formed in khedominated regime with
[ll. OVERVIEW OF THE PHASE DIAGRAM Xc—5°=x=10°, when the primary hexagonal state’s sym-

The phase space of the two-frequency Faraday system metry with harmonic temporal behavior is broken by an ad-

very large. Besides physical parameters such as fluid lay tional set of wave vectors of magnitudie=k; with sub-
height and viscosity, one also has to set the driving param—armomc temporal behavidirequencyw,/4) with respect to

eters. Introducing two driving components with different fre- the primary wy/2 frequency. We have observed two main

. . . S . (taypes of SSS states, which differ from each other in the ori-
guencies, different amplitudes and a nontrivial relative phas . : -
éntation, magnitude, and number@fvave vectors. For ex-

g]VZﬁS dE;ee;asisct(ngsghgc?r?;g%;ic\;\;gc,rk(;rf]g regime and th_e .relr'?mple, the SSS state shown in Fig(8SS type ) breaks the
parameters a difficulf_. . ) )
one. initial h(ixagqnal symmetry by the introduction qf two wave
We have chosen to focus on the simplest commensuratveeCtoqu’ which are pf';\rallel 0 _tWO 9f the th_ree initial yvave
driving ratios as a first step. Thew/n ratio combinations Vectorsky. The magnitude ofj in this case i,/2, which
used in our experiments were numerogsz, 2, 2,2 2 2 yields a simple resonance conditigit-g=k;. SSS have
3 4458 5 6 6 4 40 2 Most of our detailed experi- been observed only for even/odd driving falt of the m/n
ments were performed with no phase difference between theombinations listed above. The different SSS types and the
two frequency componenisp=0 in Eq. (1)]. For system mechanisms that form them will be described in detail in
parameters that were seen to excite special patterns, scansSsfc. IV.
¢ were made. Changing was found to be crucial for the For even/odd driving, the effect of two-frequency driving
existence of some of the states and of no relevance to otheradn the pattern formation in thie, dominated region is quite
Phase diagrams were constructed by fixing the mixing angldifferent than in thek; dominated region. In th&, region,
x and increasing the amplitud& until a state of droplet square symmetry dominates at threshold frgm90° to x
ejection was reached. ~xc- Only in the vicinity of y. do we see the effects of the
Two typical two-frequency phase diagrams for even/oddwo-frequency driving on the patterns formed. It is interest-
driving are presented in Fig. 4. In single-frequency experiing to note that although theory predicts that hexagons are
ments rolls, squares, hexagons, and quasipatterns of differepteferred for harmonic response and squares for subhar-
symmetries are known to exist depending on the viscositymonic responsésee Sec.)l we have observedquaresym-
height, frequency, and amplitude above the threshold. In oumetry in large parts of the harmonic region for odd/even
parameter regime, the dominant structure in regimes domidriving (x> x.)-
nated by a single frequency is squares for low viscosities Let us now briefly describe the patterns formed for even/
(v=8.7-23 ¢S) and both squares and rolls for higher vis-odd driving in the vicinity ofy.. Starting with thek,; domi-
cosities (p=47-87cS). As in other studies of two- nated (<x.) region, two types of patterns are observed
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FIG. 4. Two typical phase diagrams of two-frequency experiments obtained for 2:3 driving with different system paramgeters:

=20 Hz andh=0.155 cm(left) andwy= 25 Hz andh=0.2 cm(right). In both experiments=23 ¢S andp=0°. Square regions exist in the

near vicinity of single-frequency forcing. The square symmetry dominates in the subharmonic regime g whae throughout most of

the harmonic region the hexagonal symmetry dominates. In the vicinity of the codimension-2 point we observe three new states that exist for

many combinations of the driving ratio. These states are two-mode superl&fd8s with underlying square or hexagonal symmetries and

spatially and temporally unlocked statéelnlocked” stateg. A resonant state that consists of a rhomboid unit céliRRwas also observed

(right). Unlike the 2MS and unlocked states, which appear for many different driving fatiogodd, odd/even, and even/gdithis state was

observed for only fo and 2 driving. In the harmonic region of phase space where hexagons are initially dominant, a second bifurcation

occurs to either temporally subharmonic statgharmonic superlattice state, $88high-amplitude wave&s well as, at times, localized

“oscillon” waves) that appear on a double hexagonal superlatiidS). Symbols in the phase diagram describe measured transitions for
fixed x. Bottom: typical photographs of these states.

near xy.. One pattern, which we call the double hexagonalheight. In[19] we have shown how the DHS’s can form
state(DHS) is formed by two sets of hexagonally arrangedoscillons, a highly localized large-amplitude nonlinear state
wave vectors(of length k;) with a finite anglea between that has been observéd9,20,38 in a number of periodi-
them. In the phase space shown in Figa4;22°. In con-  cally driven systems.

trast to the SSS, this state dasst break the temporal sym- A special case of the DHS occurs far=30°, whence
metry of the harmonic hexagon state. Depending on variousne obtains 12-fold quasipatterns such as first observed in
system parameters, DHS’s are sometimes formed by a firsf16]. We have seen the formation of such patternsifdriv-
order bifurcation. Perhaps their most outstanding characteing in the same region where the DHS with=22° appears
istic is their very high amplitude. The surface wave maximafor 2 driving.

can reach amplitudes much higher than the fluid layer's Let us now move to the vicinity of. both on the border
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of thek; region and within thek, region. Here two linearly 000000000 seseccccos

o0o0o0000

unstable eigenvectors with different magnitudes can be con-
currently excited. There are numerous possible configura-
tions in which such a system can organize itself. Four differ-
ent classes of mixed mode states were found to exist. These
will be described in detail in Sec. VI.

Two-mode superlatticeShese states are formed by the
interaction of the dominant mode.g.,k»), with its original
symmetry, and the weaker mo@eg.,k,), which breaks the
symmetry of the original pattern. The symmetry of the domi-
nant mode can be either square or hexagonal depending on
the proximity of the nearest primary state in phase space. In
Fig. 4 we present two types of 2MS modes, a square 2MS FIG. 5. ForZ driving we observe two types of temporally sub-
obtained fory>y. and a hexagonal 2MS obtained fgr  harmonic superlattices, the SS$a) and SSS-lI(b). Experimental
<Xxc- The temporal behavior of the 2MS contains both theimages(left) together with their spatial power spectraiddle) and
/2 andw,/2 frequency responses and always includes theimulated imagegright) are shown. In(a) we see that a small
subharmonic frequency aby/2. These states appear for all vector of magnitude =K/2 (GlIK) breaks the hexagonal symmetry
types of driving(odd/even, even/odd, and odd/oddthough  formed by primary wave numbets;, whereK;=k.. In (b) the
the precise structure of phase space depends on the drivipgmary hexagonal symmetry is broken by wave vectprsk/v3
ratio used. located at a 30° angle relative to the primary wave vectors. Both

Unlocked statesBetween the square and hexagonal 2MSpatterns can exist in regions far frog., where the higher odd-
states an intermediate region exists where daotrandk,  frequency component is wedkee Fig. 4. The patterns obey the
appear but no well-defined symmetry or spatial mode lock+esonance conditionsiz=k, (SSS-) andg+¢q’ =K (SSS-I).
ing is observed. Thus, no long-range correlations in either ) ] ] o
space or time exist. The basic time scale of the surface wavég0nic response. By increasing the amplitude of the driving,

is T=4/ w, but the pattern changes its local structure overth® primary hexagonal symmetry can be broken and new
time scales of order £0-10°T. stable structures appear even in regions where the second

Rhomboidal statesChangingh, », or w, can lead to externally driven mode cannot be excited at all. In this sec-

qualitative changes in the phase space. Figure 4 shows twipn we will describe the characteristics of these symmetry-
different phase diagrams obtained fardriving. The only ~ Préaking patterns. )
difference between the two diagrams is the fluid layer height In the notation used in this sectioK, is the linearly un-
and the value of basic frequeneay. Lioubashevski, Arbell, stable wave vector, excited; = mw,, that characterizes the
and Fineberd39] describe how the dimensionless numberprimary patterng is an additional smaller wave vector that
8/h, defined by the ratio between the effective boundaryappears in states that bifurcate from the primary pattern.
layer depths= \/v/wy and the fluid heighh, affects single- Since in each pattern there is a degeneracy in the direction of
mode states selected by the system. For a certain range éf¢ wave vectors, we will use an index to number the differ-
o/h, rhomboidal patterns replace the 2MS and unlockedent wave vectors of the same magnitude, el;, i
states(see Fig. 4, bottom These states couple two wave =1,2, ... .
vectors of lengthk, with one wave vector of lengtlk; . Subharmonic superlattice states occur over a wide range
These wave vectors evolapontaneouslyrom two circles  of y in the two-frequency phase diagram where the lower
of linearly degenerate states. We will show that for speciafrequencyw, is dominant. SSS were observed for most even/
parameter values)-fold quasipatterns can naturally evolve odd frequency ratios tested, but waret seen for odd/even
from the rhomboidal structures. or odd/odd ratios. Since the first SSS-type state was found
In addition to the states described above, in Sec. VIII wd 15], additional variants have been observed for different ex-
will show examples of a number of other resonant structureperimental parameters. Both types of SSS pattern, SSS-I
that are formed for different system parameters. The richned$ig. 5a)] and SSS-I[Fig. 5(b)] are shown with their cor-
of this system allows one to observe a wide variety of dif-responding spatial power spectra. Both states share the fol-
ferent resonant patterns. We will show some common traittowing characteristics: The basic temporal dependence of
of these resonant selection mechanisms that can lead tobamth SSS types is subharmonic with respect to the the pri-
more comprehensive understanding of resonant interactiomaary instability, i.e., the system has a strong response at

in pattern forming systems. Mwy/4; these states are secondary bifurcations of temporally
harmonic hexagonal states; both states occur in the same
IV. SUBHARMONIC SUPERLATTICE STATES basic region of phase spafer 0< y< x.); In both statek,

wave vectors ar@ot observed.
Hexagonal patterns can be formed in two-frequency ex- The different states, in general, occur for different fluid
periments when the basic subharmonic temporal invariancparameters such as fluid viscosity, fluid depth, and w,
is broken and quadratic nonlinear terms appear in the amplratios. The most obvious differences can be seen in Fig. 5.
tude equations describing the system. These terms can occixamining their spatial power spectra, we see that while
in regions of the two-frequency phase space that have a hapoth SSS-1 and SSS-Il spectra are constructed by three
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FIG. 6. Typical temporal sequences of an SSS-1 S@taken at
constant values of the driving parameters for the frequencyggatio FIG. 7. Images(top) and power spectrébottom) of an SSS-I
Hz. The spatial Foqrier spectra are composed soIeI_y of wave NUMyne state with broken symmetry in ori@ two (b), and three(c)
bersK, corrgspoqdlng tcm_1/2, andq=K/2. Thelocationsof the directions. The circles indicate the primary hexagon wave vector’s
peaks are fixed in the different temporal phases. For the SySteragnitude,K. The symmetry-breaking vectors of magnitude
parameters wo/(2m)=20Hz, »=23¢S, ¢=0° and h  _i5 are enclosed in squares. All images were obtained for the
=0.155 cm, the hexagonal symmetry is brokemvo directions by same system parameters of 23 03(471_8 Hz andh=0.155 cm, y
the K/2 vectors. Circles of radiK andK/2 are drawn inb). The  _ 420 and¢=0°). This pattern is not stable and drifts slowiy-
relative intensities of the different wave vectors can be see@in 4o of 1060 secbetween these three states.
g; are nearly absent while ift) their intensities are almost equal to
the Ki . The symmetry breaking is also revealed in the intensities OWith
the primary hexagonal vectors, as can be sedn)irwhere the two
strong intensity wave vectors are enclosed in a square and the weak R
one in diamonds. gilK;, B;=0°,90°, (4)

evenly spaced wave vector paKs, the spectra include ad- whereM is the number of axes with broken symmetgyis
venly sp paKs, P the temporal phase difference between the two sets of
ditional sets of wave vector§; (where|q;|<K) of smaller

magnitude. The orientations and magnitudesjofliffer in modes, fmdyi andp; are the respectivspatialphases of the
SSS-I and SSS-II states. K; and g; components. Because the pattern has hexagonal

In SSS-Iq; are oriented solely alongsome or all of thg tsymmr?try We; _assurrei=0° a?&g]o"gizzt?ﬂ?zs‘)is irr:qgg'
. - . i erns having triangular symme . Equation(3) su -
3252@6‘2?26%3 ::igggi;’;it?;ﬁi ngz' in the SSS-1 are rizes the most important features of the SSS-I in a compact

- way. We will now present experimental evidence for the va-
SSS-Il states are formed by a set@fthat alwayscon- ay. Yve b P

. . .. lidity of this equation and describe the relevance of each
sists of three evenly spaced wave vector pairs of magnitud

q=K/v3 arranged at an angle of 30° relative to the directiongst:{;':qe(sp‘i  Biv v Bi, andM) in the experimentally observed

of theK; triad. The magnitude and orientationgfyield the In Fig. 6 we present a sequence of SSS-| states taken at
simple resonance conditiog; + G,= IZi . While the SSS-I different times for constant values of the driving parameters.
have been observed for a wide range of driving ratiys;, ~ Although the states’ appearance changes with time, their spa-
£, 2, 9), the SSS-II have only been seen fpand £ driving.  tial Fourier spectra reveal that the state results from the in-
Both types of SSS states have recently been identified agraction of two specific spatial scales; the primary wave
representations of different invariant subgroups when hexnumper|K|=|k;| that is excited by thew, frequency com-
agonal symmetry is brokei34,40. ponent and its spatial subharmonics K/2. The SSS spectra

In the following sections we will present a detailed de- ) 5 . o
scription of each of the SSS types together with a mechanisri oW that while the<; have six-fold symmetry, twaj; with
that can explain their formation. relatively large .amplltude and a third ;maller amplitugje

have broken this symmetry. The amplitudes of thevary
with time. Within the temporal phases shown in Fig)ghe
A. Subharmonic superlattice type | g; amplitudes have little power while in Fig(® the G; are

The spatiotemporal behavior of the SSS-I state can b&tronger than th&; components. This behavior is reflected
modeled by a simple equation for the surface height funcby the temporal phasg in Eq. (3). The symmetry breaking
tion, is reflected by the relative strengths of both theandK; . It

is clear that the twd wave vectors enclosed in squares have
3 different strength than the wave vector enclosed in dia-
h(r,t)=cod imwgt) D, A cogK; F+a;) monds. This symmetry breaking is also seen in the relative
i=1 power of theq; wave vectors.
M As demonstrated in Fig. 7, SSS states can have broken
1 ) s 2.0 symmetry in one, two, or three directiofisl =1,2,3 in Eq.
eosimat + 7/);1 Bicostqi-r+ 4. (3 (3)‘/)]. In myost cases, a specific number of symmetry-breaking
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FIG. 8. The transition between hexagonal and the SSS state is : : vl |
displayed for a typical experime0/60. This is a gradual process on 1, f N 100
in which the basic symmetry of a perfect hexagonal pattayns <, 0.0‘ ‘ MW WV\ \M 10
broken first at the circular boundaf{4.4 cnm of the cell. As the © y \F‘ ! 1 ﬂ \
amplitude of the external forcing increases, the area of broken sym- O 0350400 | J 3& J
metry grows inwardgb),(c) until the SSS state fills the entire cell (b) Tirne (msec) (%requ?lzcy (‘}‘I‘"z) @
(d). This process can also occur in the reverse direction. 02 .
LA LA \ 100,
directions was selected. However, for the experiment de- ézzm\fw ‘ 10
scribed in Fig. 7, the pattern drifted slow{gn the scale of 04’ | J ‘vf Il n ﬂ J
secondsbetween the three possible symmetry-broken states. od . o1 | /‘ |
The transition between the primary hexagonal pattern and 2 Eobh 10
the SSS states (svithin ~1%) nonhysteretiand occurs via ﬁo.owm'\ v“b \ {\J/ i
a circular front that propagates slowly inward from the © ‘\ ’ “ o4 J\ !
plate’s lateral boundaries. The process is continuous and re- 0.2 "L A U \ 4|
versible(see Fig. 8 Before continuing the study of the spa- c) e ey Brconercy @)

tial characteristics of the SSS-I pattern let us digress briefly

and examine the temporal behavior of the system using the FIG. 9. The time dependence of the SSS-I state as studied by the

laser probe methotsee Sec. I ¢ reflection of a laser by the surface waves. In this experiment, for
Typical time series of th& andy components of the fluid system parameterss,/(27)=22Hz, v=23cS, h=0.2cm, ¢

surface gradient at a single point are presented in Fig. 9 for0°, andx=36.3°, increasing the driving amplitude from 2.5 g

three different accelerations. These describe the temporal b to 2.9 g(b) and 3.7 g(c) results in(a) low-amplitude hexagons,

havior of hexagons at threshald), developed hexagorib), (b) developed hexagons, arid) SSS-| states. Ita) both 9,h and

and SSS-I(c). At threshold, the response is harmonic with ayh h_ave thf_e same peaks in their power spectrum. Increase_d dr'iving

respect to the total period of@ w,. The response is stron- amplitude yields a different temporal response in the two directions

gest at the frequency a#,/2. Increasing the driving ampli- x andy. This phenomenon also occurs in single-frequency experi-
tude results in a bifurcation to a state with a stragper- ments where squares are dominant and may be a general feature of

harmonic response at the frequency ofo;. This the Faraday instability in viscous fluids. In the SSS-I stajea

. . subharmonic temporal responsecgf2 occurs.
phenomenon also occurs for single-frequency experiments.

A further increase of the driving amplitude yields a sec-come unstable. They describe two different superlattice
ond bifurcation. In this bifurcation the temporal response bestates that exist in the transition region between subharmonic
comessubharmoniavith respect to the period of2 wg. As  squares to harmonic hexagonal states. In the first superlattice
can be seen in Fig. 9 the superharmonic component does nstate, the square symmetry is broken by a small wave vector
disappear and can be quite strong. It is important to note that, that is equal tk-ks, wherek,, , ks are, respectively, the
2/n driving has some special relations between the variougprimary hexagonal and square wave vectors. The relative
frequencies that are not present for higher-order drivingphase of the symmetry breakirkg mode compared to the
(such asg, 7,... 5 ...). For 2h driving 1/2=wy. The  primary squarés mode can either be 0° or 90° according to
temporal response in the harmonic region has the same frehe sign of the nonlinear coefficient in the amplitude equa-
quency as the common frequeney. In other driving ratios, tion for the symmetry-breaking mode. The experimental ob-
such as driving, the subharmonic isdy/2= 2w, where the  servation shows that the phase selected for the first transition
common frequency isg. It is possible that such a relation state is 90°. A second superlattice stpdd] was observed
can enhance certain resonant mechanisms and help stabiligeat is similar to the SSS-II states found in our experiments.
certain patterns such as th&R and oscillon stategl9,22,. The spatial phase differengg between the harmonic hex-

Wagner, Muller, and Knorf41] studied a two-mode sys- agonal mode and the subharmonic symmetry-breaking mode
tem generated by single-frequency excitation at a bicriticalvas found to be 0° although from amplitude equation con-
point where both harmonic and subharmonic tongues besiderations 90° is also a possible solution.
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e ;:\J ' § ~_ ~ have thesameamplitude, their spatialocationsare modu-
displacive gl! VM\ / \/ lated with a 47/K periodicity. This effecf41] is called “dis-
: . . : : placive.” The spatial effect in images can be quite pro-
“m s ' : ' : nounced. This is demonstrated in Fig. 11 where we present a
odulational” 1t ) - .
_?\/A\/ ‘x/\’\ /\ comparison between the “displacivgleft) and “modula-

tional” (right) effects with spatially subharmonic patterns

~ and symmetry breaking along one directi@op) or three
“primary” ?\/\ VV\/\/\ directions (bottom). The effects of symmetry breaking in
0 1

-

A 4 5 3 three directions are more complicated but the qualitative ef-

X/ fect remains. We find that SSS-I states aleays of the

FIG. 10. A simple one-dimensional superposition of a harmonicdISpIaCIVe nature = 90%). This can be seen by comparing

function (bottom) cos(2mx/\) with its subharmonic can have two the experlmental images s_how_n in Fig. 7 with the simulated
basic combinations. The “displacive” mode shown results from thta(j'Spl"_j"(:'Ye pattgrns shown in Fig. 11. .
superposition of cosg@x/\)+b cos@x/\+m/2) (top) (b=2.2 is ar- It is interesting to note that the “modulational” pattern
bitrarily chosei, whereas a “modulational” mode results from the Shown in Fig. 11(bottom righ} was seen in an experimental
superposition of cos@@/\)+bcos@x/\) (middle). It can be seen study of the single-frequency Faraday system in a viscoelas-
that in the “displacive” mode the distance between local maxima istic fluid [42]. When changing the driving frequency, Wagner,
eitherd or 2\ —d with A —d<\, while in the “modulational”  Muller, and Knorr found both a harmonic region for low
mode the distance between the local maxima remains the same asdfiving frequencies and a subharmonic response for higher
the primary modej. ones. In the vicinity of the transition frequency, Wagner ob-
served a hexagonal superlattice composed of both the sub-
We will now describe in detail the effects of this phaseharmonic and harmonic wave vectors. Since the subhar-

difference on SSS-I states with broken symmetry. Let us firsiygnic wave vector is exactly half of the harmonic one, the
consider the effect of addingk¥/2 modulation in one dimen- _. > o - .
simple resonance oks+ks=ky is retained(where theS

sion. In Fig. 10 we can see that adding K& mode with . .

Bi=0° results in a modulation of the original cosine form. |rr11dexhstt:;1]nds for subhatrmor;lct?hgnd tHef(;r harmor(;m). Alb db

The waves’ local maxima remain at the same spatial Iocatio{}\loug ISI p"ower sgelg ra ot this s u.ﬁ’ er texg’:r\]gog Sgslcrl ed by

but their amplitudes are now modulated with a/& peri- agner, vuller, and rnorr are similar to the -| power
spectra(in the case of three-direction symmetry breaking

odicity resulting in one large peak followed by a smaller o I diff indicati N ial
peak. In contrast to this, adding tH&/2 mode with B the real space patterns are different, indicating a 0° spatia

=90° results in a different effect. While all of the maxima phase difference betwedw andky, in contrast to the;
=90° seen for SSS-I.
e The comblngtlon of the spatial displacive mechanism and
0000000000V ODOOODOOOOO the subharmonic temporal dependence of Kii2 mode re-
‘ggggggggg, sults in an interesting “jittering” effect in time. If we con-
sider Eq.(3) we see that wheh—t+ 27/ wq the first term in
0000000000 the right-hand side of Eq3) is invariant whereas the second
000000000 term changes sign due to the different time dependence. In
POOOOOOOOOC our model calculation the temporal displacement af/ @,
SO0 0000 H H . . .
hoo0000000C is equivalent to a spatial displacement of/K in each of
the symmetry-breaking directions. Images photographed at
time intervals of 2r/ w, appear to jitter at this scale.

cacacac
OAOADA

AONH
B. Subharmonic superlattice type Il

As mentioned above, a qualitatively different type of SSS-
type pattern, SSS-II, has been observed. Increasing both vis-
cosity and height but keeping the dimensionless parameter
o/h constant (by changing wgy) results in a different
symmetry-breaking scenario. Though the SSS-II appears in
the same region of phase space as the SSS-I and shares its
FIG. 11. “Displacive” (left) and “modulational” patterngright)  sybharmonic temporal behavior, it is qualitatively different

are shown for both symmetry breaking in dftep) and three direc-  from the SSS-I. The excited vectajsare now aligned at an
tions (bottom). The pattern shown is simulated using our imaging angle of /6 relative to the vectorgi (in contrast t(ﬂi\llzi in

del lied to Eq(3) with M=1 (M=3) f directi )
model applied to Eq(3) wi ( ) for one direction type SSS-. The symmetry-breaking wave vectors are of

(three directionsand with g;= /2 (B8;=0) for the “displacive” ; B D -
(“modulational”) patterns. 2:3 forcing was used with amplitudes of magnitude|q;| = |K;|/v3 and these states exhibib spatial

all modes taken to be equal(=B;). All SSS-I patterns were Symmetry breaking. For eadf; there is a correspondird .
found to be displacive in charactGzompare to Fig. ¥ Our experiments suggest that SSS-1l can be described by
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the value of 0 to 3/2 [where the second term of the rhs of
000 Eq. (5) is zerd. A similar phenomenon can take place with
5 I SSS-ll states. As shown in Fig. 13, a variant of the SSS-II
Go0] states occurs with a rotational symmetry of/2 in contrast
- to the 27/6 that is typical for hexagon patterns. These SSS-I
variants are observed fdr driving when relatively higher
FIG. 12. Imageg(a),(b) left] with corresponding power spectra frequencies ¢,>40 Hz) are used. Using our imaging
[(a),(b) rlght] of different temporal phases of an SSS-II state ob-model, we find that these patterns are formed by the same
served for3 driving in the harmonic region of phase spacevat resonance as the SSS-Il but when spatial phase angles of the
=47 cS[wq/(27) =25 Hz andh=0.2 cm. In contrast to the SSS-I G; modes are3,= /2 fori=1, 2, 3 or3;3,=3m/2. These
pattern, where the primary hexagonal symmetry is broken by wav&gs. || states have symmetries that are similar to those of the
vectors paraIIeI tCK,, SSS-1| feature a different symmetry break- time- averaged Symmetnes and wave numbers of the “SL2”
ing. A second hexagonal lattice of smaller magnitude wave vectorgtates observed if21]. The instantaneous images of SL2
forms, obeying the resonance conditij+ G,= K. At certain tem-  states, however, are more reminiscent of SSS-I stées
poral phases the effect can be easily s@@mwhile at others only  shown in Fig. 6. Patterns similar to this SSS-II variant have
the hexagonal symmetry is domina(i. recently been observed in a forced ferrofluid sysfdd in
the vicinity of a bicritical point where harmonic and subhar-
monic solutions collide. Muller shows that when considering

3

h(r,t)=cos{%mw0t)i21 A cog K-+ aj) a harmonic region amplitude equation with quadratic terms
- for a single wave number model, only solutions where
3 2;Bi=0 are possible. It appears that the second set of equa-
+cos(%mw0t)21 Bicogqi-f+B), (5 tions for theq wave number modes, which are temporally
=

subharmonic does allow the existence of modes wEhg;
=3/2 solutions. The mechanism that selects the spatial
phase in multimode systems still must be clarified.

SSS-Il type patterns have also been observed in the ex-
perimental study of optical pattern formation in sodium va-

>

. (\/§ —1) . (—f3 —1)
K,=K(0,—1), K,=K , K ,

22 ) T

and por [45]. In the following section we will address the ques-
13 1 -3 tion of a selection criterion between the SSS-1 and SSS-II
di1=d(-1,0, qu(E 7) CT3=CI(§,T), states.
C. Selection between SSS-I and SSS-
q= E Both SSS-I and SSS-Il break the temporal symmetry of
V3 the initial hexagon state by temporal period doubling to a

basic frequency ofmwy/4. The two states, however, differ in
Looking at this state at different temporal phases, the eftheir spatial behavior. For the case of SSS-I states, the ex-
fect of theq; can be easily seen at some phaség. 12a)]  cited wave vectorsj;, are both parallel to the linearly un-
while, at others, only the hexagonal symmetry is apparent;-vie wave vectoré,, and, in many cases=K/2. In con-

[Fig. 12c)]. This symmetry is & representation of one poS-y oot the excited wave vectors in SSS-1l states are rotated by
sible invariant subgroup when hexagonal symmetries are/6 relative toK What mechanism governs the selection of
broken[34,40,43. g

both the two d|fferent states and the valuesqothat are
@xcned’?
As Silber, Topaz, and Skeldon have suggeg@g], the
symmetry-breaking wave vectors of harmonic patterns may
correspond to minima of linearly stable tongues that can be

excited via nonlinear coupling to th€; modes. Since the
subharmonic frequencsnwy/4 is excited by all of the SSS
states, the linearly stable tongue with a dominaaty/4 fre-
quency would be a likely candidate to be selected. The wave
numberq corresponding to these waves can be well approxi-
FIG. 13. For2 driving and »=0.47 cS, a SSS-Il type pattern Mated by the linear dispersion relatioi= k(mwe/4). Note
with a different spatial dependence occurs. Two phases of this stat®at g is not constant for a given value ef,, but can be
are shown in(a), (b) (left)] and a simulation of these patterns is Strongly dependent on the parameterandh.
shown in[(a), (b) right]. These patterns are formed when the spatial Let us now examine the following premise. The system
phases of the smaller wave vectogs, are shifted byr/2 relative  will generically prefer to undergo spatial period doubling to
to K;. These states were observed for higher frequencies ( =K/2. If, however,g(mwg/4) is close to a wave vectaf
>35 Hz) than those for which SSS-II having a zero phase shift aravith a magnitude that is substantially different th&f2, one
observed. possible solution of the system is to lock to either SSS-I or

In the 3 driving experiments performed by Mull¢t?2] a
transition between hexagonal and triangle patterns was o
served that corresponds to a change.of; in Eg. (5) from
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FIG. 14. Imagegtop) and corresponding power specifaot-
tom) of SSS-I superlattices observed férdriving in which q
#K/2. Circles of a radiiK (outep and g, corresponding to the
Mwy/4 frequency(innen are drawn. The primary hexagonal sym-
metry is broken either in one directida), (b) or in three directions
(c). (8, (b) show the same state at different temporal phases. The
relative intensities ofj andR—(j vary in the different phases. All
experiments were witlv=23 ¢S.(a), (b) for h=0.2 cm andc) for
h=0.25 cm. The basic frequency wasg/(27) =35 Hz for (a), (b)
and wy/(27) =30 Hz for (c). The value ofg/K is ~ 0.6 for all
experiments.

FIG. 16. Reducind from h=0.33 cm, where only SSS-Il was
observed, tch=0.31 cm results in a state where the two types of
SSS patterns SSS-1 and SSS-Il can coexistalra(c) the combined
state images(left), full power spectra(middle), and expanded
power spectréright) are presented at different temporal phases. The
primary hexagonal symmetriof magnitudel?o) is broken by two
SSS-II patterns witlg#K/2. If q is nearK/v3, the system different sets of wave vectors arranged in two sixfold sublattices.
will lock to this value, thereby fulfilling the spatial resonance The set corresponding to the SSS-I is enclosed in squares. The set
condition:qi+dj= }Zi . SSS-Il patterns will then occur. Val- correspondingzto thg SSS-l is enclosed in circles. This state was
ues ofq sufficiently far from either spatial resonance will °Pserved fors driving and system parameters of=47 cS,
result in an SSS-I state with#K/2. Such a state is pre- “°o/(27)=25Hz,h=0.31cm,x=62.5°, and$=0°.
sented in Fig. 14 where symmetry breaking occurs in either
one directior{Figs. 14a) and 14b)] or three[Fig. 14c)] but q=K/2 is the symmetry-breaking mode, the ratio
the symmetry-breaking wave vector's magnitude was  0/k(Mawo/4) variessystematicallpetween 77%-—85 %. This
K/2. Instead, vectors parallel t&;, with magnitudesq  suggests that th§=K/2 resonance is strong enough to in-
#K/2 andK —q are observed with, empiricallg~ 0.6k . duce this “locking” or detuning ofg.

This premise is checked in Fig. 15, where we plot the For 5 driving we observed the appearance of SSS-I states
value of the ratio between the experimentally measured vajat lower liquid layer depth and the SSS-II at higher depths.
ues ofg and the wave number computed for single-frequencyAs h is reduced, we found that instead of an abrupt transition
driving usingmwg/4 with K for parameters where different between the SSS-I and SSS-II states, both types of symmetry
SSS-type patterns were observed. The plot shows that fdireaking can occusimultaneouslyAs shown in Fig. 16, the
both SSS-Il and the SSS-I withy#K/2 the approximation Primary hexagonal symmetry of this state is broken by two

q=k(mwq/4) is correct to within 4%. In SSS-I states where sixfold sets of wave vectors.
One set corresponds to SSS-I with magnituges K/2

while the other set corresponds to SSS-II, vith=K/v3. In

" .t e real space the characteristic pattern of SSE-ig. 16b)] is
q 101 - " broken by superimposed stripes in one direction. This state
ﬁ4)0-9- has both modulative and displacive effects implying that the
08 : '-. e ] two symmetry-breaking modes retain their respective spatial
o phase characteristics.
0.71 . . .
As demonstrated in Fig. 15, the mechanism that forms
6 8 10 12 14 both the SSS-I and the SSS-Il patterns depends on a
K [l/em] “slaved” linear eigenmode. In thé driving described above,

the only existent linearly stable subharmonic tongue occurs

FIG. 15. The measured wave numbgf.,s of the symmetry- - . -
breaking wave vectors in SSS-type patterns, normalized by the Iinf-Or wo/2=Mawo/4. In contrast tc; driving, even/odd driving

ear wave number calculated for the frequenmy,/4 as a function ratios with m/n values such aé 7 etc., POSSESS _Ilnearly

of the measured critical wave number of the primary hexagon patStaPle tongues Whosgsodomlnqnt frequencies differ from
tern, K. The symbols correspond to different types of SSS patternsT@o/4. For example, inz-Hz driving, besides the 15 Hz
SSS- patterns withg=K/2 (circles, SSS-I with q#K/2 (dia- =Mawy/4) response observed for the SSS state, a response
monds, and SSS-Il patterns with=K/v3 (squares The data in- @t 7.5 HZ (= 0(/2) is also possible. Recent theoretical work
dicate that the first type of patterq K/2) is generally preferred by Silber, Topaz, and Skeldd33] has suggested that these
by the system unless the value gfmwg/4) is either close tay additional slaved modes can influence the character of the
=K/v3 or sufficiently far from either of these preferred modes.  selected nonlinear state. We find that these additional slaved
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FIG. 17. (8 The image(left) and power spectrunfright) of
“cascaded” SSS states appearing é)ldriving neary.. The two

PHYSICAL REVIEW &5 036224

201,07« #2O -9
,‘:‘.2 {oN0s, 3¢ o'
(103 0. = A0/

FIG. 18. When using even/odd driving, a class of temporally
harmonic states exists that is composed of two distinct hexagonal
sublatticegdelineated by squares and cirgles sizeK, the critical
wave number of the harmonic driving componedaj.Double hexa-
gon state(DHS) formed by both the critical hexagonal lattice and
an additional hexagonal sublattice of smaller amplitude, which is
rotated by an angle of 22°. (b) 12-fold quasicrystalline statéc) A
similar (“SL1" ) state observed by Kudrolli, Pier, and Goll{®1]
for %3 driving. This state is formed by a resonance similataobut

mechanisms appearing in SSS-I and SSS-Il coexist at differerith spatial phase of 23 in each of the sublattice componer(.

scales. A hexagonal sublattice gf=K/v3 bifurcates from the
original hexagonal pattern. In addition,tiaird wave vectorQ# q

breaks the symmetry of this sublattice in a single direction. Thi

state has an overall temporal periodicity af/2v,. This is demon-
strated in(b) where two image$(b) left, right] were taken at an
interval of m/wy. The images are displaced byde 4#/K length

scale. The horizontal white line indicates the location of the peak

and (b) were obtained for‘g1 (3—2 Hz) forcing. (c) was reproduced
with permission from{21].

Sof /2 produces a displacive effect, as shown in FigbL7

The peaks are of high amplitude and have the characteristic
shape of the oscillons described by Arbell and Finelh&&j

énodified by the asymmetry that is produced by the displa-

in the first phasé(b) left]. (c) A side view of this state. The peaks Cive effect of theQ mode. In this state different wave vectors
are of high amplitude and have the characteristic shape of the o&re dominant at different temporal phases. These states were

cillons described by Arbell and Finebef§9] with a small asym-

not observed in experiments with highafn values such as

. . . = . 6 8 F H
metry in the direction of). These images were observed for system7 and g driving ratios.

parameters of 75/60 Hzy=23 cS, h=0.2 cm, y=56°, and ¢
=0°.

modes can indeed appear. Jrdriving typical SSS-| states

V. DOUBLE HEXAGON SUPERLATTICES

Historically, the first two-frequency experiment focused

with a frequency response dfw,/4 are observed far from ©N guasicrystalline patterns with 12-fold symmetry. These
Y. Neary., both the 12-fold temporally harmonic quasic- ere observed in the vicinity of. in systems driven with an

rystalline states first described by Edwards and Fali8gas
well as a state composed ofascadeof symmetry-breaking

even/odd driving ratio and were found to bifurcate either
from the flat state or as a second bifurcation from the har-

bifurcations occur. This second type of pattern, which has &10Nnic hexagon region. In this section we will describe both

subharmonic time dependence, is shown in Fidal7

the 12-fold quasipatterns mentioned above and two other su-

This “cascaded” state appears as either a secondary pifuRerlattice stategsee Fig. 18 All of these states share a har-

cation of an initial hexagon pattern or as a bifurcation from aMonic temporal response for odd/even driving and appear in
12-fold quasipattern state. In its spatial power spectrum th&€ same general area of phase space. An important factor in
two mechanisms that appeared in both SSS-I- and sss-|pattern selection is the nonlinear coupling coefficient that
type patterns are cascaded and appear at different scales. AgPends strongly on resonant lockiisge Sec. IDR In con-
SSS-lI-type resonance occurs where wave veotpravith trast to the SSS states, we will see below thahewwave
magnitudesy, = K/v3 appear. Athird vector®, however, is numbers are needed to construct these states. This class of

9 i . ppear. . ' o superlattice patterns are differentiated by both the relative
also presentQ is half the magnitude ofj; and, echoing the

- ) - angular orientation and spatial phase relations of the critical
mechanism forming SSS-| states, breaks the sixfold symmegayve vectors that form them.

try of the §; by aligning itself parallel to a single vectdj,

The 12-fold quasipatterfsee Fig. 183)] was observed for

Figure 17b) demonstrates that this state has an overalk griying in the vicinity of y. . This state’s temporal behavior

temporal periodicity of 2r/wy. The two imageqd(b) left,
right] were taken at an interval of/wy. The images look

is harmonic with respect te,. This state can be formed
near the linear threshold for small valueseaf0.01. Increas-

exactly the same but with a transverse displacement of thﬁz]g the amplitudeA causes a bifurcation to the cascaded-type

d=4x/K length scale. The symmetry breaking by tﬁeis

superlattice described in IV Gee Fig. 1Y. The 12-fold qua-

similar to the SSS-I mechanism where a mode with a phassipattern may also be understood as being formed by two
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Double hexagon states formed by the superposition of two
hexagon sets of critical wave vectors oriented at a relative
angle§=2 sin (1/2\/7) are one examplg23,34) of a wider
class of superlattices. This superlattice class is composed of a
periodic lattice formed by a wave number smaller than the
critical wave number of the excited surface waves. This
smaller wave number corresponds to the six wave vectors
formed by the difference between adjacent wave vectors of

the two hexagonal sets, i.e., =K;—K/ fori=1,2,...,6.
Any two of these wave vectors, s&), andQ,, are primi-
tive vectors of the lattice, and the vectdfs and K/ are
points on theQ lattice given byK;=n;Q;+n,Q,. Silber
and Proctof{ 23] show that only a discrete countable set of

éi , WhereK/Q= \/n21+ n22— n.n,, can satisfy this condition.

The anglef between the two lattices is given by

n3+2n.n,—n3
2(ni—nyny+n3)

FIG. 19. Using our numerical modeling technique, we calcu- #=cos !

lated the images of a perfect double hexagon skS) formed by

two hexagonal lattices rotated by 228) «;=8,=0 [see Eq.6)] In this f lati h . v ob d
shows a negative crater state dhgla positive peak statéc) shows n this formulation the experimentally observed patterns are

the calculated image of a 12-fold quasipattefd) A calculated ~ OPtained forn; =3, n2=,2, andK/Q=\7, giving g~22°.

DHS state with spatial phases af=0 and g;=2/3 as in Fig. ~Only the simplest DHS’s have been observed to date.

18(c). One characteristic aspect of the DHS’s is the relative spa-
tial phase of the different wave vectors. The pattern de-

sets of hexagonal wave vectors at 30° to each other. As in aficribed by Kudrolli, Pier, and Golluf21] [coined SL-1, see
quasicrystals, this state doest have long-range order or a Fig- 18¢c)] consisted of triangular unit cells that were pro-
well-defined subunit cell. It is interesting to note that unlike duced by a DHS witha;=0° and g;=120°. Silber and
the quasipattern described [in7] that appeared only fop ~ Proctor descrlpe, in simulations of thermal convection, a
~75°, the quasipattern we describe exists dox 0°. DHS formed with botha;=0° and 8;=0° [23]. The DHS
Another superlattice patteffig. 18c)] that occurs in this ~ Superlattice in our experiments with 2driving ratio [see

regime of phase space was first studied by Kudrolli, Pier, anffig- 18@] differs from these superlattices in that the two
Gollub with & driving ratio with wy/(27)=16.44 Hz, v hexagonal sublattices that form them poss#fsrentampli-

—20 ¢S, anch=0.3 cm. They found a hexagonal superlat- tudes. States similar to these been observed in nonlinear op-

tice pattern composed of two hexagonal sets of critical wavdiCS [46]. In addition, in our case, there is no spatial phase
vectors with harmonic temporal response. The equation th&fifference between the two sets of hexagonal wave vectors

describes the surface height function of this pattern can béxi=A8; for all i, j). _ _
generally written down as Although this state is stable close to the threshold, in-

creasing the driving amplitude results in the appearance of

3 3 many defects and eventual temporal disorder. At high driving
h(r)=2>, A cogK;-F+a;)+ >, B;cogK/ -+, amplitudes the spatial symmetry is hard to discern due to the
i=1 i=1 many defects and domains within the fluid cell and the state

(6) oscillates between a negative amplitude, craterlike phase and
a positive amplitude oscillonlike phase with a frequency of

where|K|=|K’|=k. and wo. High-amplitude oscillons appear in the center of the
hexagonal subunit cell of the DHS state. Similar oscillons
- - 1v3 - 1 V3 were also observed for the 12-fold quasipattern state shown
Ki=K(1,0, K;= K( - 5-7) » Kg= K( T 7) , in Fig. 18b) [19].

Let us summarize the common characteristics of DHS
s, . L= states. All of the patterns reveal a harmonic time dependence
and K{" can be obtained by rotatinf; by an angle of0 5 the |ack of anjundamentaivave vectors other than the
=22°. In Figs. 19a), 19b) and 19c) we show simulated cjical wave vectors excited by the harmonic frequency. Al
images of this equation for different values®andA;/B;.  f these patterns were observed to be in the vicinity 0bn

The patterr{Fig. 18(c)] described by Kudrolli, Pier, and e harmonic side. In all cases, the mixing angle was greater
Gollub was found to have an angle with the value &  han that needed for obtaining SSS states and within the
=2sin (1/2(7)~22°, equal amplitude coefficients;|  range y.°> y>(y.— 12°). Another common characteristic
=|B;| for i=1,2,3, and spatial phase angles=0° andB;  of these states is that all exist in the vicinity of a first-order
=120°. For this special value of, resonance conditions transition of the hexagonal patterns from the featureless fluid
such as K;—Kj3;=2K;—Kj3 were showr[21] to exist. state. This implies that quadratic interactions can play an
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gt e 0%1(:: FIG. 21. A comparison ok (in cm™?) calculated using the two-
? MO frequency linear calculatiofiL3] (solid line) with measured values
i "o |t . e of k as a function ofy. Note that both values df are nearly con-
i stant away fromy.=58°. Near x.,k; (corresponding tow;

. . . =40 H2z decreases by nearly 10% whikg (corresponding taw
FIG. 20. 2MS patterns consist of a nonlinear superposition of 2 y y 6 whikg ( ponding fav,

both eigenmodesk,; andk,, excited by the driving frequencies,; =60 Ha) increases slightly.
and w,. Although w, and w, determine the lengths &, andk,,
their relative orientations are determined by the condiﬁgﬁr IZZ
—121, where the wave numbey¢; is determined by the temporal
resonance condition; = w,— ;. (8) 2MS patterns foE3-Hz driv-
ing wherek, with square symmetry is dominarb) k,-dominant A. 2MS Resonance condition

2MS with hexagonal symmetry forg-Hz driving and (©) 2MS spatial spectra, as shown in Fig. 20, are composed of
ki-dominant states having hexagonal symmetry for 40/60 Hzpeaks of lengttk; andk, and their linear combinations. The
Showng are. the, spatial specttaentef with the resonant triads strongest secondary peaks, indicated in the figure, are given
(right) ks=k~ ki, highlighted. by ks=k,—k; where the magnitude ¢ is consistent with

_ _ o ) the linear value ok calculated for a single-frequency exci-
important part in describing these states. Finally, two of theseation at the difference frequenays=w,— w;. Our calcu-
patterns also generate oscillons as described in detdibin  |5ted value ofks was obtained using théinear single-
frequency code of14] at threshold. The difference between
the calculated and measured value&p¥aries between 5%
and 20%. This shift between the measured and calculated

In the vicinity of the critical mixing angley. two modes ~ Vvalues is constant for a given value of the difference fre-
with different wavelengths can be excited concurrently.quencyws and systematically decreasesadgincreases. We
These modes can interact in different ways to produce a vaelieve the shift to be the result of either finite size effects in
riety of different patterns. In the following two sections we the cell or the fact that the (k) used is the linear dispersion
will describe two distinct types of two-mode states that arg€lation for a featurelessstate (not one with preexisting
formed neary.. The first of these states are two-mode su-Waves.

perlattices2MS). These states are formed by the interaction A subtle point in the interpretation of the power spectra of
of the two linearly excited modes with a third “slaved” 2MS states is the evaluation of the magnitude of the two

mode that is selected via a temporal resonance. wave vectors that appear. As can be seen in Fig. 21 the val-
Figure 20 shows the three main types of 2MS stakgs; ues ofk; andk; measured in the vicinity of. are signifi-
dominatedwith either square or hexagonal symmetriasd ~ cantly different than the values df excited by single-
k, dominated(with hexagonal symmetjy 2MS states exist frequency excitation. The two-frequency linear stability code
in both harmonic and subharmonic regions of phase space @f Tuckerman and co-workefd3,35 reproduces this effect
the vicinity of x. (see Fig. 4 In the region of phase space and agrees to within 1-2% with the experimentally mea-
between the square 2MS and the hexagonal 2MS a spatialfired valuegsee Fig. 21 This enables us to accurately cal-
disordered “unlocked” state exists. Unlocked states, whichculate values of botk, andk; in the vicinity of x..
are formed by the same wave numbers that form the 2MS, The resonant conditions stated above suggest that the ori-
have no well-defined Spatia| Symmetries_ As in the case O@ntation of the wave vectors bUIldIng the 2MS is selected by
SSS states, the transition to 2MS from either square or fldionlinear interactions that are resonant both in space and
states is nonhysteretic and occurs via propagating fronts. time. Thus, the temporal resonance condition dictates the
The 2MS are qualitatively different than SSS states. Theyspatial orientation of the vectoks andk,. Such three-wave
result from spatial phase locking of bokh andk, whereas resonant interactions have been predicted to occur in nonlin-
the SSS states result from a resonance condition thiatlés  ear interactions of surface wavis/] and are well known in
pendentof the k, mode. 2MS states are the most general ofthe physics of plasmas. Similar states were observed as a
the superlattice states described here. They are observed f@sult of nonlinear mixing of a multiple-mode optical beam
all types of driving paritiegodd/even, even/odd, and odd/ [48]. The selection oks via the temporal resonance condi-

odd and, as shown in Fig. 20, appear with either square or
hexagonal symmetry.

VI. TWO-MODE SUPERLATTICES
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FIG. 22. A typical temporal sequence of square 2MS states
taken at constant parameter values %&Hz driving. k; (middle
circle), k, (outer circld, andks (inner circl are indicated ir@). In FIG. 24. A typical sequence df; dominant hexagonal 2MS
(d) theks vectors are absent but enclosed in squares are vectors th&@tes taken at constant parameter valuesigodz driving. These
are the vector sung+|23. System parameters are,/(27) states generally appear in domaif#/ave numbers are noted by
=20 Hz, v=23 ¢S, $=0°, y=65.4°, anch=0.155 cm. arrows)

tion yielding ws is nontrivial and cannot be accounted for by different temporal phases. The 2MS inherit the basic tempo-
experimental artifacts such as possible nonlinearities in th&! Periodicity ofboth primary eigenfunctions, which are pe-
imaging. This three-wave resonance condition occurred fofiodic in time with a basic frequency of eithex, (harmonig
all frequency ratios tested. or wg/2 (;ubharmom}: The supgrposmon of the tvyo modes
As in SSS, the dominant 2MS wave vector retains its2!ways displays a subharmonic respongg/®). Like the
initial symmetry, while the relative orientations of the other SSS, the state’s appearance changes qualitatively with time,
linearly excited wave vectors are determined by the abovéith the spatial wave numbers having fixetations 2MS
resonance condition. For odd/even driving hexagonalime-dependence stems from the temporal dependence of the
(squaré symmetry dominates fory<y. (x>xo). Thus, amplitudesof these modes. In Figs. 22 and 23 we see typical
square 2MSFig. 20a)] bifurcate from thek, square pattern Seéduences of both square and hexagonal 2MS states taken at
that dominates thg> y. region. Similarly, hexagonal 2MS constant value_s of the driving parameters. Th_e relatlv_e inten-
[Fig. 20b)] bifurcate from thek, hexagonal pattern that sities of _the _dlfferent wave vectors change in the different
dominates they< x. region. In? driving, hexagonal 2MS phases; in Fig. 2@) thek, andk; wave vectors are almost
states are excited whose dominant scale is that of the larg@PSent, resulting in a pattern whose dominant square symme-
wave numberk, [Fig. 20c)]. It is known that in single- try has a 27/k, scale, V\_/h|le in the remainder of tht_a phases
frequency driving experiments, different symmetries can"i‘” vectE)rS appear. In Fig. 23 the resonance condition allows
arise for different system parameters even when the temporkl andk; to be nearly collinear and two sets of sixfold wave
behavior is solely subharmonic. In two-frequency driving ex-vectors appear in the power spectrum. As in the square 2MS,
periments the parity of the dominant frequency does not auone can see phases with significantly strorigepeaks|Fig.
tomatically dictate the symmetry selected. For examplg, in 23(@)] as well as those where either the[Fig. 23b)] or k,
driving (50/80 H2, 2MS states are observed with square[Fig. 23¢)] are stronger.

symmetry in the temporally harmonic region. The relative stability of 2MS hexagonal stafesg., Figs.
20(b) and 2@c)] is dependent on whethéy or k, is domi-
B. Temporal behavior of 2MS nant. Let us first consider hexagonal 2MS states wikgre

) , , ) ) dominates. This state is found for even/odd driving for
Using our strobed imaging technique, we studied the spa—<X (see Fig. 4and a typical time sequence is presented in
tiotemporal behavior of the patterns by inspecting them aF:ig.024. Again, different wave numbers are dominant in dif-
ferent temporal phases. The region of phase space where this
state appears is not as large as khedominant 2MS, but
these states appear for all even/odd driving ratios used. As in
the case of square 2MS and thkeRstates discussed in Sec.
VI, these states are not observed for all combinationg of

L . and 6/h used. It is difficult to obtain a hexagonal 2MS state
e e < of this kind that extends over the entire system and
book ' k;-dominant hexagonal 2MS states generally occur within
IR - domains. Thus the spatial spectes seen in Fig. 2dappears

sometimes smeared, as the various domains have different
FIG. 23. A typical sequence dfexagonal2MS (2)—(e) at dif- angular qrientations. Although the scenario descriped in Fig.

ferent temporal phases taken at constant parameter valugstiar 24 is typical, we have observed stable glokaldominated

driving. Circles of radiik, (middle), k, (outep, andks (innep are ~ 2MS states for particular values gfand é/h (see, e.g., Fig.

drawn in (c). In (b) the ks andk; vectors interact to produce the 46).

vectors enclosed in squards.andk, form two sets of hexagonally A typical time sequence and power spectra for e

arranged vectors. dominant hexagonal 2MS stafshown in Figure 2X)] is
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C Time (msec) Frequency (Hz) via the reflection of a laser at the fluid surface. Time seflieft) of

surface gradientsyh (a) and d,h (b) are shown with their power
Ispectra(right). (0) dyh as a function ofd,h. The separation of the
ytemporal respons@), (b) was obtained by choosingandy along
the symmetry directionsi,h is dominated by a 3,/2=15 Hz re-
sponse whereag,h undergoes a &,/2=25 Hz response. System
parameters used we% Hz, v=23 ¢S,h=0.155cm,$»=0°, and
Xc=56.3°.

FIG. 25. The time dependence of a two-frequency experimen
with even/odd driving was studied using the reflection of a laser b
the surface waves. The temporal response is subharmibaie
monic) with respect tawy=10 Hz for x<x. (x> x.). Time series
(left) and power spectr@ight) for three different regimega) Typi-
cal temporal response for hexagonal pattern foundyfary. . Al-
though the 4,/2=20Hz component is the strongest, as
=10-Hz harmonic component with all of its higher harmonics is
present(b) Typical time dependence for square patteffiosind for ~ and 23. This “spatial locking” seems to stabilize global pat-
x> x.). The strongest response is fob@2=25 Hz as expected. A terns in a way similar to the global SSS states presented in
weaker response at the basic subharmenj=5 Hz is observed Sec. lll.
together with stronger responses at other harmonics. The ordering The local laser probe technique provides more detailed,
of the harmonics agrees qualitatively wittt]. (c) Typical temporal  quantitative information of the temporal behavior of 2MS
response of a square 2MS stateyat The power spectrum shows a states. In Fig. 25 we show one component of the slope of
strong response at botl; (20 H2 and w, (25 H2. All other  syrface waves obtained férdriving. In Fig. 25a) we show
harmonics are present with a different power distribution tha@in  the typical wave form of a hexagonal pattern fpr x..
and (b). System parameters here af} Hz, »=23cS, h  Begides the strong component @i/2=4w,/2 and its har-
=0.155cm, ¢=0°, andx=40° (a), x=60° (b), and xc=53.5°  mqnjcs 40,60,80. .. (in Hert), peaks appear at values of
©- jwgo, j=1,2,... .Those peaks are expected from the linear
- . . theory. In Fig. 2%b) we see a typical wave form of a square
presented in Fig. 23. Her_e, n contrgstktp domma_nt hex- pattern for y>yx.. Although the strongest frequency re-
agonal 2MS, the pattern is global with a well-defined sym-q, ;¢ s at,,/2, the basic frequency,/2 together with its
metry in all of its temporal phases. Hexagonal symmetry Wagjoher harmonics also appear. Linear theory predicts a dif-
not seen to be preferrgd for al] odd/evesn dr!vmg and Wasgrent distribution of energy in the peaks for the unstable
only observed'for the ;lmple ratios dand;. This ml'ght be mode at threshold. Zhang and Vinalfkl] nonlinear theory
a feature of simple driving ratios that can sometimes have .., s for the peak's strength in a semiquantitative way, as
unique properties that are related to temporal 10Cking¢ ¢ rectly predicts the ordering of the strongest peaks.

[11,33. . . In Fig. 25c) the temporal response of the 2MS state is
2MS states are not always as highly ordered as those 'gresented. This state has a temporal response that includes

Figs. 22 and 23. When highly ordered 2MS sEate§ occur, th oth the frequencies of the harmonic moéa, for y< x.,
resonance condition for these parameters allkwsk,, and  and those of the subharmonic orfb) for x> Xc- Although

IZ3 to be nearly collinear. When the angles between the resahe power spectrum shows that both main peaks,& and
nant wave vectors are not small the pattern is usually no,/2 are of the same strength, their relative strengths can
global and a number of domains coexist. In highly orderedvary with the location of the laser probe.

states we find a locking of the wave vectors’ magnitude to We have seen that the 2MS state contains the two linearly
small natural number ratios. The locking ratioskaf k,:ks excited eigenmodes both in space and in time. Does each
=1:3:4 and1:4:5 were, respectively, obtained in Figs. 22 mode keep its distinct space-time behavior, or is there a com-
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FIG. 27. In the “unlocked” state no orientational order is appar-
ent. As in 2MS statesk;, k,, and ks exist simultaneously but

unlocked state spectra are diffuse and show little angular correla- S — ,m 09 T80 ¢ 90 18 0 90 T80

tion. Top: Typical views of an unlocked state with corresponding SQUARE 2Ms UNLOCKED  HEXAGON

spatial spectrabottom observed forg—g-Hz driving at different o . ) ) )
times and fixed driving parameters. The different Valuebmpear FIG. 28._W|_th|n the “unlocked” states, the Cor-relatlon amplltude
with different magnitudes and orientations in each phase. Theifox drops significantly and the angular correlation functiog( 6)
lengths are indicated by the arrows. indicates only a small amount of residual order. T@pi (triangles

and Qx, (squarey averaged over a single period along the Ijpe
plete mixing of the spatial and temporal components? Tg=58° for &-Hz driving as a function of the driving amplitude
clarify this question, we write down a simple model for the This line traverses the square, square-2MS, unlocked, and
surface height of a square 2MS state. For simplicity, we will"€xagonal-2MS phases. Typical patterns in each phase are dis-
assume a square 2MS state where tﬁgtland lzz are collin- played(centej. The symmetry of the different phases is highlighted

. . by C(0) for k; (gray line andk, (black line computed for typical
ear with the same spatial phase, stateq# is in degrees The power(log scale of k, relative tok, in

h(r,t)=F,(t)[cog kyx) + cogkyy) ]+ Fo(t)[cog kox) eachC,(#) is 8.3 (squarg, 1.1 (2MS), 0.9 (unlocked, and 0.2

(hexagon.
+ . . . .
costkzy)], ™ 2MS states, in the unlocked state no orientational order is

sh apparent. Botlk; andk, exist simultaneously in their spatial
— =k, F;(t)cog kyx) + koF 5(t)cog K,X), spectra but spatial mode locking does not occur as in the
IxX 2MS states. This is evident in their power spectra, where,
generally, entire circles of radk; and k, appear. As Fig.
27(d) indicates, additional peaks of wave numlkgrcorre-
sponding tow;= w,— w,; are sometimes observed. The un-
locked state is a well-defined state that exists in a relatively
where F,(t)~cos@t/2)+--- and F,(t)~cos@,t/2)+---.  wide region of phase space. This can be seen by deflamg
It is easily seen that if one selects a poink,y) in [2,15)) the following “orientational correlation function,”
= (m/2k,,7/2k;) then each of the components of the partial Cx(6) for each value ok:
derivative gh/9x and dh/dy has a temporal dependence of
Fl(t) andF,(t), respectively._B_otrFl(t) and_Fz(t) includfa Cu( 0)52 [f(a)f(a+ 0)]/ 2 [f(a)f(a)], (8
time dependent terms retallnlng the parity of the linear « @
modes: odd multiples ofp(+3)wq for a subharmonic re-
sponse and even Fr)nultipleré pzzo foor a harmonic response. wheref(«) is the Fourier transform of the wave number

As suggested by Ed7), experimentgsee Fig. 2§ con-
firm the separation of the time dependence of the two modes
within the 2MS state. Thé,h component has a strong,/2
response whereas tligh component’s strongest peak is at g
w,/2. This strong separation of spatial time dependencies can (a)%
only be observed for a few points in tlie y) plane and, in

dh
v kiF1(t)cogkyy) +KkFo(t)cogkyy),

general, the two frequencies are mixed. FIG. 29. The transition between the square-2MS state and the
unlocked state occurs through a gradual process in which both
C. The “unlocked” state and transition regions states coexist in different domains. At the transition, increasing the

) _ amplitude for constany constant result ifa) the global 2MS state
Let us now consider the “unlocked” state that appears inyhich is first disturbed by small defects at the cell’s rith), (c)
the near vicinity ofy.. In Fig. 27 we present a typical time The disturbance spreads to the cell’s center until, finally, the entire
series of the unlocked state and its corresponding spatiglattern is in the unlocked state shown(é. This process can also
spectra. The spatial behavior of the state varies rapidly ovesccur in the reverse direction. The spatial scale is given by the 14.4
time scales of order (2/wg). In contrast to the SSS and cm cell diameter.
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(b)

FIG. 30. A time sequence of the transition from the regular I
hexagonal staté) to hexagonal-2MS states is shown. Tikye(60-
Hz) component propagates via a frahy, (c) until it dominates the FIG. 31. (a) A typical 2k rhomboid (XR) state observed for
entire plate and coexists with the large length s¢dleThe driving 3 driving and wo/(27)=25 Hz, v=23 ¢S, andh=0.2cm. The
parameters are constant for this sequence. The spatial scale is givexisy is defined by the direction d; . (b) The power spectrur(c)
by the 14.4 cm cell diameter. illustrates the simple resonance conditign-k,=k; that generates

these statesk), and k, correspond taw,=3w/2 while k; corre-
sponds tow;=2we/2. 0 here is 41°.

(a) %8s

at the polar anglea. The correlation amplitude,Qy

= 1[maxC,(#)—minC, ()], varies between 0 and 1 for, re-
spectively, minimal and maximal orientational order. As Fig. VIl. RHOMBOIDAL STATES (2kR) AND
28 shows, both the 2MS and hexagonal states have clear QUASIPATTERNS

orientational order while very little residual order is apparent . . .
in the unlocked state. In the preceding section we studied the three-wave reso-

As is apparent from Fig. 28, the orientational almplituolenance mechanism that can form 2MS states from the inter-

drops sharply as the boundary between the 2MS and urctionks=k;—k; and ws=w,—w;. Are the only resonant
locked phases is crossed. This is demonstrated in Fig&hechanisms found in the vicinity of.? _
29(a)—29(d), which corresponds to the range of 5.1-5.25 g _ In this section we will describe the spontaneous formation
in Fig. 28. Between the pure hexagonal state and the urf nonlinear rhomboidal patterns, formed as a result of solely
locked state the hexagonal 2MS state exists. This state di§Patially resonant three-wave coupling between wave vec-
plays strongk, dominant hexagonal symmetry at most tem-tors with distinctly different wave numbers. This state has
poral phases but at other temporal phases some of the powef€Viously been observed only in a nonlinear optical system
is in the k, mode. SinceQ, is an average of equally time where the orientations of the interacting wave vec{&aG)
separated temporal phases, the hexagonal 2MS stateQjas a'Ve'e externally |mposeq. Rhombou_:ial pattgrns have e}lso
that is slightly smaller than that of the pure hexagon state. been recently obs_erved in parametrlc_:ally driven ferrofluids
The parametef, does not completely characterize the [44]. The rhomboidal p{:\tterns de;cnbed below spontane-
different transitions, since spatial fast Fourier transformPUSly couple the two circles of linearly degenerate wave
power spectra cannot differentiate between global and locdlumbers. These states qualitatively dlffe_zr from 2M$ states in
ordering. A closer look at real-space images of the transitiond1at they are composed solely of the linearly excited wave
presented in Fig. 28 that correspond to square-2MS, un¥ectorsk,; andk,, in contrast to the additional slaved mode

locked, and hexagonal-2MS states are shown, respectivelljz Necessary for 2MS formation.
in Figs. 29 and 30. Both transitions involve an advancing | Nne rhomboidal states observed in this system result from
front that separates two well-defined domains. The cleaf€ nonlinear interaction d; andk;, which are waves with
separation between unlocked and 2MS domains provides fugignificantly different wavelengths. Such states have been
ther evidence that the unlocked state is indeed a distinct nofpPseérved numerically in a Swift-Hohenberg-type models
linear state and not, simply, a transition region. [25,2@ as Q|scus§ed in Sec. |. They have also been antici-
The transitions between unlocked states and the 2M$ated in anisotropic models where two degenerate wave vec-
states with different symmetries differ in two ways. The sen-0rs are resonant with an externally imposed wave number
sitivity to any change of the driving parameters is much[51l; in nonlinear optical systenj$2,53, and in the analysis
higher for the unlocked to 2MS-hexagon transition. Wherea®f the Faraday instability excited with two frequencies
the transition between square 2MS and unlocked states 0£30.33. Both rhomboidal states and superlattice patterns
curs for a relative change of amplitude of less than 5%, thd'@ve also been recently predicted to occur as a result of two
transition between hexagonal-2MS states and hexagorfistable modes coupling to a zero mdd]. _ _
can occur via a change smaller than 0.25%. The time scales |he rhomboidal states observed in this system differ dis-
of the induced transitions are also different. The first transifinctly from rhomboids resulting from slightly “distorted”
tion takes place in a nearly quasistatic reversible wayhexagonal statd$5,56. “Distorted hexagons,” predicted to
whereas the second transitiéas shown in Fig. 30can oc- be stab]e in models' with 'dt_e'nvatlve—coupled quad_rgtlc terms,
cur over typical time scales of 50—1000 oscillation periodsM@y arise due to either initial or boundary conditidss].
with a hysteresis of less than 0.1%. This rather sharp transiL.N€s€ states have been observed in reaction-diffusion sys-
tion is, perhaps, due to the effects of the quadratic interad€Ms[56], convection in an imposed shear fld8], and
tions inherent in the harmonic states. The precise duration dfux line lattices in superconductof§9].
this transition depends on the initial and final driving param-
eters. As is typical of front propagation processes, the deeper
one is within the hexagonal regime, the faster the transition We have observed rhomboid states using both Dow-
time [49]. Corning 200 oils with kinematic viscositiasof 8.7, 23, 47,

A. Experimental conditions
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FIG. 32. Acommon phenomenon observed in th&k2egion of
phase space is the formation of two domains kR2states(left)
that are oriented with a relative angle éfthat is also the angle
between the two larger vectoks, kj forming the kR state. A
similar phenomenon can also be observed in domains formed b%
triblock copolymerg60].

FIG. 33. The transition from theKkR state to the DHS occurs
rough an “explosive” process in which a spatial domain of hexa-
gons forms and rapidly increases in size. Six images(f) of this

and 87 cS(at 30°Q and the TKO-77 vacuum pump fluid %gocess taken at 1.5-sec intervals for an experiment performed with
with v=184 cS(at 33 °Q in fluid layers whose depth varied #_Z driving for »=23cS andh=0.2cm at mixing angle
between 0.4 h<0.55 cm. The two wave number rhombic =70°. Note areas of mixedKR and hexagonal domains around the

. . . . " perimeter of the hexagonal argaearly seen in upper half dg)].
(2kR) states described in this section were all gengrated WIth, this process the driving parameters &ixed The spatial scale is
m/n=2/3 and 1X wq/27<45Hz or m/n=4/5 with 10

20 40 10 given by the 14.4 cm cell diameter.

<wol2m<20 Hz. Frequency combinations &, 2 22, 2,
45 48 50 55 55 30 40 45 50 50 52 60 60 d
———————————— 100 did not generate
63) 68 70r 75 77 501 70 60 651 80! 68 84r 100 -~ . .
2kR states. ¢. The transition to DHS and oscillon states also occurs as in

In Fig. 31 we present a typical image of &R pattern. Fig. 4. )
Although k; andk, are the linearly unstable wave numbers 2kR states are not always correlated throughout the entire
[14] excited byw; andw,, their orientation is determined by SYStem. At relatively low values ok, 2kR states can some-

the three-wave nonlinear interaction that yields the resonar{mes e found in two or three domains, as shown in Fig. 32.
triad R;—Rzzﬁl where| IZ§|=|I22|=k2. The higher harmon- The angle separating two such domains is identical to the

ics in the figure may either be real or could occur as arf"dle @ betweenk, andk;, as defined in Fig. 3b). This

artifact of the imaging. An additive three-wave resonancdYP€ Of domain separation is also observed in “knitting pat-
1 . oo o terns” [60], formed by triblock copolymers near a bistable
occurs for; forcing where the resonan&g+k; =k, governs

. . oint. (These new materials have a reciprocal lattice struc-
the selected pattern. In this case, the resulting patteza b ( P

) . ) c}ure similar to XR states.
Sec. VIl is a superposition of hexagonal lattices compose Let us return to the description of the typical phase space.
of the two scales.

; - . As increasing the driving amplituda strengthens the non-
The observation of RR states solely for driving ratio$, ; . . .
: . . . I m
4 and? s entirely consistent with Silber and Skeldofo] inear interactions between the wavekRdomains coalesce

redictions(see Sec. | D pthat three-waves interactions cou- at higher levels of excitation. Further increasefoyields a
prs ) waves | : u hysteretic bifurcation to the double hexagonal superlattice
pling the wave numberk; andk, are only allowed when

. ; .. state, where oscillons are formed at the maxima of the pat-
two Odg'paflw waves ar_e coypled to a wave with even Partyiern (see[19]). In Fig. 33 we present a time sequence of the
Thus, k;+k,=kz coupling is allowed for odd/even fre- transition from a global RR state to a DHS state by means
quency ratios such a§ andkj,—k,=k; coupling occurs in  of rapid front propagation. Only at the final stages of this
even/odd forcing, such asand 2. It is interesting that we process does the pattern bifurcate into the high-amplitude
have not observed these states for other frequency ratios. It #ate consisting of oscillons superimposed on a DHS back-
possible that 2MS states are preferred for all but the simplesgiround (see Sec. V anfi19]). The opposite transition from
frequency ratios since, for higher ratios, linearly stablethe DHS to the RR state has a qualitatively different char-
tongues corresponding to wave numbers close to the value afcter. Smalk, dominated wavelength domains penetrate the
k5 (defined byw;= w,— w4) are more dense. DHS from the perimeter of the cell in a way similar to the
A typical phase space in whichR states are observed is transition from hexagons to SSS. The transition is not revers-
presented in Fig. 4right). For values ofy that are far from ible and can have a small hysteregisider 1%.
Xc. the phase diagram is similar to those described in Secs. Both 2MS and RR states are observed for the driving
Il and VI. The 2kR state exists in the near vicinity gf. and  ratios § and 2. In [22] the dimensionless parametérh
replaces both the 2MS and unlocked states. This region is (v/wa9*%h [where w,=(w,— w1)/2] was shown to
bounded for y>x. by squares and fory<yx. by govern the selection between the two patterns. &er0,
k,-dominant DHS that are mixed with oscillofi20] (see = 2MS/unlocked states exist abov&h~0.12—-0.17, while
[19]). At higher values ofv and h (e.g., v=47cS, h 2kR states exist below. This critical range éfh was ob-
=0.3cm, v=87 cS,h=0.5 cm square and hexagonal pat- tained for a broad range of both(0.1=<h=<0.6 cm) andv
terns only exist near onset. Upon increasé\dfoth types of (8.7<v=<186 cS). The paramete#/h is the ratio of two
patterns become rolls. The&kR state is, however, unaffected important physical scales of the system: the ratio of the vis-
by the state preceding it. They appear for a similar range ofous boundary layer length, where the flow is rotational, to
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FIG. 34. The effect of changing in the driving can be seen in
the sequence of imageteft) and their power spectraight) for
different values ofp. While for ¢=0° (a) a 2kR state is stable and
global, increasingp from (b) 20° and(c) 30° transforms the system
to a stable 2MS state &i) 90°. Increasing the angle te) 120° and
(f) 150° reverses the process and finally §io= 180° a global XR
reemerges. The three concentric circles indicate the magnitude
the three 2MS wave vectorkq{,k,,ks), while the gray arrows
indicate the wave vectors of th&kR statelzl, IZZ. These measure-
ments were performed foé driving with system parameters
wo/(2m)=25Hz, v=23cS, andh=0.2 cm at mixing angley
=70.5°.

FIG. 35. The time dependence of th&R state was studied
using the reflection of a laser by a point on the fluid surface. The
directional derivativeg,h and dyh as a function of timeleft) and
their corresponding power spectfiéght) show that each direction
has a different temporal dependenfEhe x, y directions are de-
(giped in Fig. 31a).] 9,h is dominated by thé, andk; components
with dominant frequencw,/2, andd,h corresponds to thke, com-
ponent with dominant frequenay,/2. This figure was taken from
[22]. The parameters for the above wedg /(27)=22 Hz, v
=23¢S¢$»=0°, andh=0.2 cm.

strong effect of changes it is consistent with the predic-
. , . . . . tions of Zhang and Vinalgsee Sec. | D lwho showed how
:Ee ﬂu'.d Iayfers T'elgg_::tTh;szﬁarametgr,wl: Ies’sence,i detf"r]fa can affect the mode coupling functig#(6). Silber, Topaz,

€ region ot applicabiiily of zhang an alss quasipoten- o, Skeldor{33] have recently demonstrated that changing

. . . 2 . . - - - -
:Ial'[f?p%ici)\;(iw]aitilr?]n. ol hl) ISI;hteh ra'uto gf t()r]]‘eL(ijc;iT)Iggﬂ\elss,tll(I}naen qf;b affects the XR resonance by varying the nonlinear coef-
o the g ime scales. € study icients of the model equations describing the system.

co-workers, this number was critical for determining pattern
selection by single-frequency excitatiof9,36. Thus, this
transition suggests that high dissipation in the system favors
the 2MS over the RR states. This may result from thén- The temporal behavior of thekR state is similar to that
eal broadening of unstable tongug35] that occurs when of the even/odd 2MS states, where the time dependence in
dissipation in the system is increased. This broadening wouldifferent directions is qualitatively different. Like the even/
make the linearly stable wave number observed in 2MSdd 2MS states, different directions can have dominant sub-
stateskz, more accessible. harmonic or harmonic components. A time translation of
In the transition regime od/h, both 2MS and RR states 7/ w, shifts the observed pattern by a spatial translation of

can coexist foro/h=0.12. In this region, at fixed values of 77/|I22+I2§| in the x direction[as defined in Fig. 38)]. The

o/h, small changes in eithek or x can result in globally  gyerall spatiotemporal behavior of th&R state is consistent
stable states of either type. Transient states in which bot{ith Eq. (9),

states are present can also result in this regime. In these

B. Temporal behavior

states both resonant mechanisms can opeateurrentlyin h(t,x,y) =[a; cog wet) +a, cog 2wot) + - --]cog Ky - X)
different spatial regions of the fluid cell.

As the two driving frequencies are commensurate, the +[by cog wt/2) + b, cog3wot/2) +- -]
phase variablep in Eq. (1) is a relevant control parameter. L N
As was shown in the experimental work of Muller and Ed- X[codkz-y)+codk;-y)]. ©)

wards and Fauvésee Sec. | Cchanginge can affect pattern

selection. Typically, the BR state exists over the range The fact that the two directionglk, andy.L x (as defined in
—20°<¢<+15°. The phase space presented in Fig. 4Fig. 31) each exhibitdifferenttime dependence is demon-
(right) is typical for 0.16<h<<0.22 cm andv=23 cS. In Fig.  strated in Fig. 35. This typical time series of tkeandy

34 we show how changing the anglecauses the pattern to components of the surface gradient of this state at a single
change from the RR to the 2MS state. The transition is not point is similar to that presented in Fig. 26 for the 2MS state.
abrupt and in some regions localized patches of both statd3y our choice of axes, thé,h component contains mainly
can coexist. In general, the size of the region in phase spathe w4/2,2w4/2, . .. peaks, while the dominant frequencies
where a single RR domain exists decreases with the dis-in they direction are f,— w4)/2,w,/2, . .. .Arbitrary X and
tance from¢=0°. Becausep=180° is equivalent, fo y directions will contain bothk; or k, eigenmodes. This
driving, to ¢=0°, the KR is also stable at this angle. The orientational dependence may prove to be a general charac-
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K\ "1k T ' e FIG. 38. Two temporal phases of an eightfold quasipattern ob-
. V . v . = A - served for three-frequency drivin@), (b). This state is temporally
epede oo o e subharmonic and was observed in the region where the distorted

eightfold quasipatterns were obserisge Fig. 3Y. This state was
observed in a 50/75/100 Hz experiment with driving amplitude ratio
a;:a,:az equal to 0.16:0.36:0.48 and a phase difference of 180°
FIG. 36. The resonant angle betwdénandk, varies with the  between the 100-Hz component and the two other components.

parameters of the experiment. We obtain angle&apB86° for sys- ) ) o
tem parameters ok, /(2m) =25 Hz, v=47 ¢S, andh=0.25cm;  @o. ¥, Or hwhile leavingm/n constant. This is demonstrated

(b) 33° for system parameters afy/(27) =15 Hz, v=87 ¢S, and in Fig. 36. The value o can be calculated for a specific
h=0.5 cm; (c) 32° for system parameters afy/(27)=25 Hz, v mixing angle y using the numerical method developed by
=87cS, andh=0.5cm; and(d) 29° for system parameters of Tuckerman and co-workefd3].
wo/(2m)=20Hz, =184 cS, andh=0.54 cm. All images were As suggested by25,26, when rhomboidal states exist,
taken from a % 9 cn? square in the center of the circular plate.  the tuning of @ can provide a well-defined mechanism in
which quasipatterns of any desired symmetry may be

teristic of superlattice states. Whensimgle mode is domi- formed. When 36@=p, an integer number of adjacent tri-
nant, the predictions of Zhang and Vindlsl] are in good ads can be formed. As conjugate pairs of triads are always
quantitative agreement with our measurements of the relativéormed, the integep must always be evefas observed in
peak intensities. In the vicinity of., when two modes are [16,27). This is demonstrated in Fig. 37 where the formation
concurrently excited, this analysis does not apply and a newf perfect tenfold quasicrystalline patterns and approximate
theoretical framework is needed. eightfold quasipatterns occurs for valueséothat are tuned

In low viscosity fluids(»=8.7 ¢S, 0.5xh<0.2cm, and to these resonant (360# n) angles. As the power spectra of
5/h<0.13 an interesting variant of the purekR state is these states indicate, each of the inner circle of peaks of
observed whose symmetry changes with its temporal phaggagnitudek; is coupled by a triad resonance with two peaks
(see[22]). At different temporal phases, pure hexagonal,of magnitudek, along the outer circle. Whef~41°, a sym-
mixed hexagonal, andKR phases can be seen. Interestingly, metric quasipattern is not possible and a distorted eightfold
this state exists for a significantly broader range of quasipattern, as shown in Fig.(®), occurs.
(—70°< < 70°) than the pure R state. Together with the

vector triad characteristic of KR states, coupling with the D. Three-frequency driving
difference vectork,—k;, is also observed in the spatial  Haying observed the distorted eightfold quasipatterns de-
spectra of these states. scribed in Fig. 3tb), we attempted to stabilize thessym-

metricquasipatterns by modifying the driving. Muller [ih2]
C. Tuning of the resonant angles and quasipattern formation ~ added a third frequency perturbation to break the spatial
. ., phase symmetry in the subharmonic regime and thereby con-
The angled between the two wave vectoks andk; can g the fransition between triangles and hexagons. This mo-
be tuned by changing the different system parameters. SinGgated us to add a third frequency in order to enable the
the values ok, andk, are roughly determined by the dis- gycited wave vectork; andk, to spatially lock to the value
persion relationn(k), the angled can be varied by changing of g—45° for which eightfold quasipatterns can naturally

form. We used the following driving function:
Ala; cogpiwgt) +a, cog prwet + ¢1)
+agcogpswot+ )], (10

where the total driving amplitude is given Byand the nor-
malized amplitude ratios by, :a,:az with a;+a,+az=1.

FIG. 37. (a) A tenfold quasiperiodic pattern and its power spec- "~ " . .
trum is observed forwy/(27m)=30Hz, v=47cS, and h P1:p2:Ps is the three-frequency ratig,<p,<ps and

=0.33cm. Circles are drawn with radi, (innen andk, (outeh. %1, ¢2 are the phase differences with respect togheom-

For these parametets=360°/10 and five RR regions combine to PONents. o _ .

form the quasipattern. Fow,/(27)=30 Hz, v=23 ¢S, andh Using 2:3:4 driving we indeed observed a perfect eight-

=0.2 cm(b) a nearly eightfold symmetric pattern is seen. This pat-fold quasipattern. In Fig. 38 we show images and power

tern, however, is actually a deformed quasipattern since ke 2 Spectra of this state at two temporal phases. This state is
value here of¢=41° does not evenly divide 360°. Instead of a Subharmonic in time and can be observed in the region
single angle, two different angle$,=41° and #,=49° are ob- where tenfold quasipatterns and eightfold distorted quasipat-
served in the power spectrum. terns were observed for thieexperiments described above.
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. : : . states formed whefsee the power spectrufnight)] an additional

12 Drivingii%plitude (gz)'250 Hz 24 wave vector of magnitudk,, Ky, , parallel tok, is generated. The
system parameters awe,/(27) =22 Hz, v=23cS, ¢=0°, and

FIG. 39. An expanded view of the phase space described in Fig1=0.2 cm.

4 (right). Transition states between square arkiR2states are

formed by a superposition of a square state with m®) sets of

2kR triad vectors. Between thekR and transition states, a modu-

lated R state exists in which an additioniej component parallel

to the 121 component exists.

the subharmonic region of phase spaog>(y.), where
square patterns form at threshold. Koclose toy, the tran-
sition region and the R region is relatively narrow com-
pared to the transition region for larger valuesyof

Interestingly, this state was exceedingly stable and existed 1h€ transition from the square symmetry region to the
within a single domain over a wide range of parametecte 2KkR state is perhaps more interesting than the transition be-
the sharp peaks in Fig. B8This is in sharp contrast to the Ween square and square-2MS states discussed in Sec. VIC.
distorted eightfold state shown in Fig. 37, which existed inWhile the square-2MS transition occurs through the forma-
both a narrow range of parameters and, as evident in itdon of an “additional” set of wave vector®f different wave
diffuse spectrum, had a tendency to break up into domains. ftumbej that combine with each of the primary wave vectors
is possible that the third frequency allows theRRmecha- that initially formed the squares, the squateRtransition
nism to form the quasipattern through the relaxation of théhas a qualitatively different nature. Here, the basic square
ratio betweerk,; andk, and thereby the angle between them.Symmetry is not only broken, but is actualigplacedby a
This state was observed in a 50/75/100 Hz experiment witpattern of completely different symmetry. IkR states, one
ratios of driving amplitudes a,:a,:a; equal to Of the twok, wave vectors that are initially perpendicular to
0.16:0.36:0.48, where the single-frequency critical acceleraeach other in the square state is replaced ky\&ave vector
tions for these frequencies are, respectively, @,56.4Q, whose orientation forms the anglehat is determined by the
and 6.93 (yielding ratios of 0.18:0.32:0.4%nd phase dif- magnitude of thek; wave vector, which defines thekR
ferences¢,=0°,¢,=180°. Although the third frequency rhomboidal pattern.

acceleration is not small here, it is still below the critical A typical “transition” state at different temporal phases is
value for single-frequency excitation at 100 Hz, and waveshown in Fig. 40. The transition occurs through the forma-
vectors corresponding to the 100-Hz component were ndion of one or two additional wave vectors of magnituge

observed. [IZZC in Fig. 40@)]. These new wave vectors are aligned at the
2kR resonant angle with respect to th&k, wave vectors

(IZZa and IZZb) that form the squares. Although additional
Figure 39 shows an expanded view of theR2phase vectors could, in theory, form KR triads with all of the
space aroung. [see Fig. 4right)]. The region shown lies in original k, wave vectors, empirically, we find that only one
of the initial k, directions is selected. This is possibly due to
the fact that the self-interaction of tHgarmonic k wave
vectors prefers a hexagonahther than a squarerrange-
ment. Thus the transition pattern that is formed is a superpo-
sition of ak, squarestate with a R state. All other wave
vectors seen are formed by secondary interactions of these
wave vectors. Generally, the transition state breaks the sym-
metry of the square pattern in a single direction. Since the
transition state is usually not global, two domains can form
and at their common border, one can observe structures that
FIG. 40. Atypical time sequence of the transition state is showrretain the fourfold symmetry.
with the corresponding power spectifaottom). The wave vectors In the near vicinity ofy., the transition patterns appear as
(K»a ,Kop) generating the squares appear together with a third wavén Fig. 40 and their rhomboidal character is apparent. Farther
vectork,., which is oriented at an angle #f=41° tok,,. The  away fromy., the appearance of the transition state is more
above experiment was made for system parameters¢{2m) similar to squares, as the orthogorigl wave vectors are
=27 Hz, v=23¢S, $=0°, y=69°, andh=0.2 cm. more dominant.

E. Transition states to rhomboids

(o
1)

# :L’:%?j I} Y

i 570,
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FIG. 43. In an experiment witf == Hz driving, patterns with

square symmetryor slightly rhombig dominate for mixing angles

' ’ x<xc- The primary wave number is of magnituéle [circles in

5 (8—(c)]. When the driving is increased, the primary symmetry is
FIG. 42. A7 ratio yields both the 2MS resonan¢a) and a  proken by a small wave vector of magnitullg (enclosed in tri-

four-wave resonanoi). In the 2MS power spectrufita) right] the  angles. These states are observed for parameter23 ¢S anch

three vectors are nearly parallel obeying the resonadagcek, =0.2 cm both at mixing angle close tg. (@) y=69.6° and far

—K;. In (b) (right) the power spectrum reveals a qualitatively dif- from x. (b) x=48.1° and(c) y="58.7°. A possible mechanism for

ferent resonancek;+k;=k,+kj=Kk,. This resonance produces the large scale symmetry breaking is a resonant four-wave interac-

additional vectors such zi!g which are sums and differences of the tlon._ _The power spectrurﬁ(_a), botton] reveals the eX|stenc_e of

original wave vectors involved. The experimental parameters ar@ddltlonal v?ctors of magnitude, (enclosed by sqyar)as»The in-

3_3 -Hz driving frequenciesy=23 ¢S, andh=0.2cm. In(a) ¢ teraction ofk,. with the sum of the original vectots, ,+k;,, (en-

=90°, y=72.8°. and in(b) $=0°, y=70.8°. closed by diamondsresults in a new vectoks=K;.— (Kia+ Kyp)
whose scale is consistent wikfwy/2).

For y>70° we observe a variant of th&kR state, shown
in Fig. 41, which forms between the “transition” and the interactions can be found both in the vicinity of, where
2kR regions (see Fig. 39 This state, which we call a one mode is strongly excited and the other only weakly
“modulated” 2kR, consists of a modulation of the regular damped, and far frony. where the interactions involve an
2kR triad by an additional wave vector of the magnitude andexcited mode and a single strongly damped mode corre-
temporal behavior of the larger frequency component. Thisponding to the subharmonic frequenoy/2.
state is formed by the superposition of BR state with an For x> x. a 2 frequency ratio can produce a square-2MS
additional wave vector of magnitude that is oriented par- state in the vicinity ofy.. This, however, is not the only
allel to thek,; wave vector{see Fig. 41(right)]. This wave resonantly locked pattern that can be observed at this driving
vector retains the time dependence of kiemode and gen- ratio. Mixing angles typically 3°-5° degrees beyoggd re-
erates a spatial and temporal modulation, similar to that insults in the formation of the state shown in Fig.(42 The
duced in the SSS mode, in the direction[x in Fig. 3%a)].  SPatial spectrum of this state indicates that it is formed by a
A possible mechanism that can generate a “modulatad2 qualitatively different mechanism. The original square pat-
state is a 2MS resonance between the two collinear waviern, formed by two orthogond, wave vectors, is broken
vectorslzl and |22 that produces 4;3 wave vector along the by an additional pair ok; wave vectors, whose orlerjtatlgn is
same direction. This is verified by comparison with thedetermined by the four-wave resonance conditiqr-K;
square-2MS pattern obtained for the same parameters with |22+l2§. This resonance produces additional vectors that
¢=90° [see Fig. 34e)]. This mechanism is supported by our are sums and differences of the original wave vectors in-
observations of the “modulated” KR states for only rela- volved. States similar to these have been previously observed
tively low values ofw, for which the wave vectork, , k,,  in vertically oscillating convection experimen§1], where

> . three-wave interactions are forbidden.
andk;, forming the 2MS state, are nearly parallel. i . o
3 "9 yP In odd/odd driving both sides of phase space exhibit sub-

harmonic temporal response. Unlike tBalriving that pro-
duces hexagons foy<x. (despite the subharmonic tempo-
A. States observed for od¢bdd parity driving ral responsg experiments performed using driving with

The work of Silber, Topaz, and Skeldfdd] indicates that wo=20 Hz yield square symmetric patterns fpb> x. and
the possible three-wave resonant interactions between eRearly square patterr(mombp_lds W'th. an angle of gjfor
cited and damped modes depend on the parity of the drivin (< Xec- Her_e, a state exhlbltlng a d|ff(_aren_t mode .Of four-
For odd/odd driving no three-wave resonant interactions bex 2'¢ coupling far fromy.; is presented in Fig. 43. Like the .
tweenk,; andk, are expected since both modes are tempo-S.SS states, these paotterns result from a symmetry-breaking
rally subharmoniasee Sec. ID)L When considering four- bifurcation for yc+20°> x> .. The power spectrum re-
wave interactions, however, these restrictions are no Iongé’reals that in "jldd't'on ﬁto the dominant pair of orthogonal
valid. Below, we describe two experiments conducted withwave vectorsky, andk;, in Fig. 43, an additional wave

odd/odd driving, which indeed show that four-wave resonantector of the same magnitudi,., is created along the bi-

VIIl. ADDITIONAL RESONANT STATES
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FIG. 46. A state formed by simultaneous multiple resonances
FIG. 44. An image(left) and power spectrurtright) of a spa- obtained with% driving with the same parameters useod to form a

tially subharmonic state where a rhomboid is formed Kay- k; ikOst:;:e bitt(ﬁv;t% ;Sé;iz)agiolll_';; VTLiswCaSv’er_eiirg 2??nhag-

=K,, wherek, (k,) is generated by thed, (8w,) frequencies. . ' ' -

The pure rhomboid symmetry is broken by two spatially subhar—n'IUdeks are formed both from the resonariee- kz=k; as well as

. . - the resonanck,—k;=Ks. In addition, the condition satisfying the
monic vectorsky/2 andky/2. Thexect9r$<2a andks, are fgrmgfj bY DHs structure is satisfied and the hexagonal sublattice formed by
additional resonances,,=k;—kj+k3/2 andk,,=k;—k;—k3/2.

This state appears f@f-Hz driving for v=23 ¢S anch=0.2 cm for the k; wave vectors spans the entire lattiég, kp, andk, are,
X~ xe—1° respectively, noted by squares, circles, and diamond symbols.
c .

sector ofk,, andKy,. The vector sum of these three wave VeCtors of sizé/2 (ky/2 andk;/2 in Fig. 44. This state was
vectors of magnitudé, produces a smaller wave vector of gbserved for a mixing anglg=x.—1°. An additional spa-
magnitudeks=Ky.— (K15 + Kyp). The scale oks is consis- t|aL resonance is apparent. The vectkys-k; +k,/2 andk,
tent with k(wo/2), as determined by the linear dispersion —ki—Kkj3/2 both form vectors of lengtk, (seek,, andky,
relation. Thus, as in the case of 2MS states, a symmetryin Fig. 44). This “extra” four-wave resonance may be the
breaking slaved mode is excited by a nonlinear resonance. résult of spatial mode locking. It may be possible that this
extra resonance causes the selection and resultant stability of
this state.

Another example of a state satisfying two resonance con-

We have observed a number of cases where states thaitions is presented in Fig. 45. This state, which is only ob-
satisfy more than a single-resonance condition were selectegérved in2 driving experiments, is both a hexagonal 2MS
by the system. These states are generally stable in a relgtate as well as an SSS-II state. The driving ratio dé
tively wide range of phase space. Here we present a numbghique sincew; (given by wz;=w,— ;) is equal tow;.
of examples of such multiply resonant nonlinear states.  Thus, the wave numbeks, excited byws, coincides with

We have seen that SSS-| states result from a primary hE)the wave numbek]_, excited bywl_ Thereford:ll], a reso-
agonal symmetry, broken by a wave vector of sig€2. A nant triad is formed involving only the two critical wave
similar mechanism can occur for square or rhomboid patnumbersk, andk,. In this case SSS-Il and 2MS states co-
terns. In Fig. 44 we show spatially subharmonic state, ob- incide for 20< w,<50 Hz. The resonance that is formed is
tained usingg driving, where a rhomboid is formed by two identical to the SSS-II resonance found for odd/even driving
wave vectors of magnitude, (k; andkj in Fig. 44 via the in the harmonic regiofisee Sec. IV B where the wave vec-
additive R resonancek, +k;=K,. The spatial period of tors of magnitudel andK of the SSS-Il state are replaced by
the rhomboid is doubled by the appearance of hewwave ~Wave vectors of respective magnituklgandk,. The reso-

nance condition for the experiment can be written dg

+Kj=k,. The SSS-lI-type resonance is possible since, for
the system parameters used, the ritiok, is close tov3.

B. States satisfying more than one resonance condition

FIG. 45. Imaged(a)—(c), top] and the corresponding power
spectral(a)—(c), bottom] of different temporal phases of a SSS-II
(2MS) state observed foir driving in the harmonic region of phase
space at system parameterswef 23 ¢S, g‘—g Hz, andh=0.155 cm. FIG. 47. Different temporal phases of the state described in Fig.
The pattern was observed in the vicinity yaf for x> x.. This state 46 taken for constant values of the driving parameters. Circles of
resembles SSS-Il states observedZairiving although here a typi-  radii k; (middle circlg, k, (outer circle, andk, (inner circle are
cal superhexagon cell is/3 symmetric whereas the SSS-II state drawn in(b). At different temporal phases, different scales appear
generally hasi/6 rotational symmetry. dominant.
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The same resonance was also observed by Wagner, Mullegime of two or more concurrently unstable modes for
and Knorr for a two-mode subharmonic-harmonic interactiorarbitrary height and viscosity has still to be developed.

in a single-frequency lubrication-limit experimeptl]. In Some of the major results of this work are summarized
their experiment, for special values bfand w, two modes  below. o _
with temporal responses afi2 andw and with spatial wave (1) The temporal symmetry of the driving determines

numbersk, andk, are excited by single-frequency forcing. Which resonant interactionsan occur between the primary
In our last example, we present an example of a statgxcited modes. A number of distinct three- and four-wave

where multiple resonance conditions are simultaneously satftéractions between excited modes and between slaved and

isfied. When this occurs, we find that the stability of a patterneXCizte?: modes we;]e expﬁrin&entally_ otl)servgq. ination in th
is significantly enhanced. This state contains features of most (t )m aﬁ?;ﬁ Sgﬁviﬁs the |m(nans||on enS?m 'Sﬂpg:'?nl I?nt €
of the states described above. This single state includes tsﬁls ema e g phagecan play a portant rofe

. : e nonlinear interaction mechanism selected by the system.
2MS resonance, a DHS resonar(wet“h a 1/‘/7 S“bla“tt'ce' ¢ is a convenient parameter for comparison with theory, as,
an SSS-lI-type resonance, and an “additive” and “subtrac-

Y : > in contrast to the system’s dissipation, its value does not play
tive” 2 kR resonance. This state was observedfaliving 5 1je in the validity of the theoretic.g.,[11]) approxi-
(wp=20Hz) with =117° and is shown in Fig. 46.

i th . ioh mation used.
As can be seen in the power spectrifig. 46 right a (3) Symmetry breaking can often occur via modes that
double lattice with wave numbek, at an angle of 22.2°

. . ) nonlinearly couple to the original set of modes. The
produces the familiar DHS structure described in Sec. ""symmetry—breaking modes tend to be arranged in invariant

However, in this case the smallest inner hexagon has a Madiihgroups of the original symmetry group.

hitude of ks, which is associated with frequencys=w, (4) In many cases, linearly stable slaved modes can be
—wy, while the second inner hexagonal set of wave vectors,onjinearly excited by the parametrically amplified nonlinear
has a magnitude ok,. This resonance is very stable and jodes. The number and availability of slaved motteter-
exists in a single domain. This stability is perhaps due itSpineq py the ratio of the driving frequenciés important in
multiply resonant nature. In Fig. 47 a time sequence ighe selection of the final nonlinear states. This provides a

shown of the different phases of this state. nontrivial selection mechanism for nonlinear states.
(5) A theoretically predicted mechanisf5,2€ for pro-
IX. CONCLUSIONS ducing quasipatterns was experimentally observed. By tun-

The work described in this paper provides a partial, bu ng the system parameters to satisfy a resonance condition
X n-fold quasipatterns can be produced for any desired

coherent, experimental picture of both the nonlinear state We beli that both the stat d i hani
generated by two-frequency forcing as well as their domains € believe hat bo € stales and noniinear mechanisms

of existence in phase space, and the nonlinear interactior‘fjsescr'bed in this work should be of general importance to a

that generate them. As demonstrated above, the space of noVHi-de cIas; of parametrica[ly drivep nonIir_1ear systems. Su_ch
linear patterns formed by two interacting unstable modes igystems include parametrically driven fluid systems, nonlin-

very rich. Our understanding of the types of structures an(?ar optical sy;te_(rjn%’o]_ﬁo,g;—(s@ nonlin?_ar l\;va:j/e_ inte;ac-
their selection is just beginning. Predicted nonlinear threel!ONs 1N Supertiul eliun 65,66, magnetically driven fer-

wave resonances0], however, appear to govern nonlinear rofluids [44], and pqssibly nonlinearly. coupled mechanical

pattern selection only for theimplestratios(% and3). Recent systems. The bghawor of systems dr|\{en by two-frequency
theoretical advances made by Silber and co-workers in thE)OrCIng IS, itself, important. Understandmg the Spatiotempo-
analysis of the two-frequency Faraday system in the vicinit)[al behavior of such systems Is but a f'@ step in understand-
of the codimension-2 poiri80,33 suggest that at least some ing the general behavior in space and time of nonlinear sys-

of the features discovered by our experiments can be repri‘:—amS driven by multiple frequencies. The work presented

duced by amplitude equations derived using the quasipote \ere Is an Important building block on the road to under-
tial approximation (e.g., [11]). In addition, recent work standing these more complex systems.
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