
PHYSICAL REVIEW E, VOLUME 65, 036220
Shadowing breakdown and large errors in dynamical simulations of physical systems
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Simulations play a crucial role in the modern study of physical systems. A major open question for long
dynamical simulations of physical processes is the role of discretization and truncation errors in the outcome.
A general mechanism is described that can cause extremely small noise inputs to result in errors in simulation
statistics that are several orders of magnitude larger. A scaling law for the size of such errors in terms of the
noise level and properties of the dynamics is given. This result brings into question trajectory averages that are
computed for systems with particular dynamical behaviors, in particular, systems that exhibit fluctuating
Lyapunov exponents or unstable dimension variability.
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The advent of high-performance computing has pu
valuable tool in the hands of the physical scientist. Studie
long-time celestial mechanics, meterological and clim
phenomena, molecular and protein dynamics, and coun
other areas have been revolutionized by the ability to sim
late dynamical processes over many time steps. When
otic dynamics enters the picture, as is known to happen
the above examples, the question of the validity of the sim
lation results becomes complicated. Computer simulati
by their very nature make small truncation errors as
model is advanced in time. When small one-step errors
made, chaotic dynamics destroys the possibility of followi
individual trajectories accurately, due to sensitivity to init
conditions. In such a case, scientists often abandon the
of studying individual trajectories, and resort to estimati
ergodic averages, say for estimating the mean CO2 level in a
climate model or temperature in a molecular simulation
large literature on shadowing theory@1,2# has developed to
try to justify this approach, essentially by locating or provi
the existence of true model trajectories, with possibly diff
ent initial conditions, that stay near the simulation trajecto
for long times. If successful, this can be a justification of t
validity of the statistic being computed by the simulatio
However, it has become clear from recent research that s
owing fails for certain systems, in a readily quantifiable w
@3,4#. In other words, even when the model is well specifie
and the approximately correct chaotic attractor is formed
the simulation,there is no fundamental reason for compute
simulated long-time statistics to be even approximately c
rect.

In this paper we complete this sequence of observat
by exhibiting a family of examples for which large errors
long-time statistics indeed occur, even though the dynam
is restricted to an approximately correct attractor and o
tiny one-step errors are made. The reason for the large s
lation error is that shadowing breakdown causes a syst
atic, macroscopic bias in the natural ergodic measure of
attractor that is several orders of magnitude greater than
one-step error size. The examples have only two degree
freedom, and are made to be as simple as possible, to s
the likely pervasiveness of this phenomenon. More com
cated, higher-dimensional examples will have correspo
ingly larger effects. In addition, we propose a scaling f
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mula for the expected error of the computed statistic, a
identify the exponent in the scaling formula with dynamic
quantities from the underlying deterministic system. It is a
parent from the formula that when this so-called hyperbo
ity exponent is very small, the potential exists for large err
in measured statistics.

For chaotic systems, sensitivity to initial data makes co
puter simulations especially problematic. The distance
tween nearby trajectories grows exponentially as a func
of time. When running a computer simulation of a chao
system, continual small errors on the order of mach
roundoff are made, making the computed trajectory disti
from the true trajectory that is the goal of the simulation. T
distance between the computed trajectory and the orig
true trajectory, therefore, grows exponentially. However, i
possible that another true trajectory, with a slightly differe
initial condition from the original true trajectory, remain
relatively close to the computed trajectory, orshadowsthe
computed trajectory, for long computing times. For ideal~hy-
perbolic! chaotic dynamics such shadowing trajectories w
shown to exist by Anosov and Bowen@1#, leading to a great
deal of research in that area. A dynamical system is hyp
bolic if phase space can be spanned locally by a fixed n
ber of independent stable and unstable directions that
consistent under the operation of the dynamics. Method
shadowing have shown that for chaotic systems that
nearly hyperbolic@2#, locally sensitive trajectories are ofte
globally insensitive, in that there exist~true! shadowing tra-
jectories, very close to long computer-generated pseudo
jectories.

The situation was clarified further by the development
rough criteria@3# for when a dynamical system was too f
from hyperbolicity to have long shadowing trajectories.
@4#, a scaling law was developed for the expected length
shadowing trajectories. The scaling exponent was expre
in terms of the distance of the finite-time Lyapunov exp
nents ~FTLE! to zero. If a FTLE moves back and fort
through zero during a trajectory, it represents a tangen
direction that is uncertain between expansion and cont
tion, which precludes the existence of a hyperbolic struct
on the attractor. This effect, also called unstable dimens
variability, has been the focus of much recent work@4,5#.
©2002 The American Physical Society20-1
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In spite of the improved understanding of shadowing fa
ure in the case of fluctuating Lyapunov exponents and
stable dimension variability, the connection to computi
long-term averages has not been clear. In fact, it has b
theorized that perhaps long-term averages can be comp
correctly in the absence of long correct trajectories@6#. How-
ever, while this case may be common, in this paper we sh
that the possibility exists for the reverse to be true. We de
a family of examples that exhibits shadowing failure beca
of unstable dimension variability, and for which microscop
one-step errors cause macroscopic errors in long-term a
ages.

A typical interesting computed quantity in a simulation
a chaotic dynamical system can be expressed as a long-
average of a function, called the observation function, o
the trajectory of the system. We will be concerned with
godic systems for which the probability distribution of tr
jectory points forms anatural measureof the global attrac-
tor. If the observation function is the characteristic~or
indicator! function of a subset of phase space, then
asymptotic average is the natural measure of that subset
will make use of this fact in the heuristic argument below

The shadowing results of@4# turned on the developmen
of a scaling law for shadowing distance, defined to be
distance between a given point on a computed trajectory
its corresponding point on the shadowing true trajectory,
suming it exists. The scaling law says that the distribution
the log shadowing distances along the trajectory is appr
mately an exponential distribution

p~y!5he2h(y2 ln d), ~1!

for y> ln d, where d is the one-step error size andh is a
scaling exponent expressing the severity of the fluctuatio
Lyapunov exponents,

h5
2umu

s2
. ~2!

Here m and s represent the mean and standard deviati
respectively, of the distribution of the finite-time Lyapuno
exponent closest to zero@7#. In light of the connection of the
quantity h to various aspects of nonhyperbolicity, we w
call h the hyperbolicity exponentfor the remainder of the
paper. Figure 1 shows an example set of FTLE distributi
for a two-dimensional map that we examine more clos
below. ~The time-t Lyapunov exponents of a chaotic traje
tory are the averagesl i of the logarithm of local expansion
rates along the trajectory of lengtht, so that an infinitesima
sphere of radiusdr at the beginning of the trajectory woul
evolve to an ellipsoid with axesl i

tdr after t time units.! The
shadowing distance scaling law~1! is closely related to in-
termittency, and may be thought of as ‘‘intermittency in mi
iature.’’ The exponential distribution is the result of tiny e
cursions that periodically move the computed traject
away from the true trajectory, and then return toward it. T
cumulative distribution function of the log shadowing di
tances, obtained by integrating the probability distributi
03622
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function ~1!, is P(y)512e2h(y2 ln d). The probability that
the shadowing distance is greater thanD is, therefore,

exp@2h~ ln D2 ln d!#5S d

D D h

. ~3!

A heuristic argument allows us to develop a scaling f
mula for the error in a trajectory average due to small o
step errors. Our goal will be to show that for a fixed obs
vation function g(x) defined on the phase space of t
system, the difference between the computed trajectory
erage ofg and the true trajectory average ofg scales with the
one-step errord with a scaling exponent ofh52umu/s2, or
in terms of expectation over the computed natural meas
and the true natural measure,

FIG. 1. Distribution of time-100 Lyapunov exponents of plan
map ~9!, for parametersa50.9, c50.9, d50.0, and variousb. ~a!
b51.0; ~b! b51.1; ~c! b51.2.
0-2
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^g&computed2^g& true5Kdh. ~4!

First we will reduce to the case whereg is the character-
istic function of a diskS in the phase space. If we can sho
Eq. ~4! to hold for all disk subsets, then we know it holds f
the natural measure itself, and therefore, for any funct
integrated over the natural measure. The trajectory ave
of g(x)5xS(x) is simply the proportion of time spent in th
disk Sby the trajectory. We will calculate the probability th
xS,computedandxS,true differ, for a fixed timet. Let U,T, re-
spectively, denote the corresponding points on the comp
and true trajectories. Assume first thatT lies in the setS and
we calculate the probability thatU lies outside the set. Con
sider the set of half-linesL radiating from the pointT, as in
Fig. 2. If U lies on the half-lineL, then it lies outsideS if and
only if the distanced(T,U) betweenT and U is at least
d(T,LT). Using Eq.~3!, the probability thatU lies outside of
the setS is

P~U not inSuT in S!5E
L
S d

d~T,LT! D
h

pU,LdL, ~5!

wherepU,L denotes the probability thatU lies on the half-
line L. Assuming that this probability is independent ofd, the
terms relying ond factor out of the integral to give,

P~U not inSuT in S!5K1dh. ~6!

A similar argument shows that

P~T not inSuU in S!5K2dh, ~7!

and we may conclude that

P$x~computed orbit!Þx~ true orbit!%}dh, ~8!

which is the claim~4!.

FIG. 2. Schematic view of heuristic argument. Under the c
dition that the trajectory pointU lies on half-lineL, the probability
thatU lies outside of the diskSshown can be expressed in terms
the probability distribution of distances betweenT andU.
03622
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The role of roundoff errors of sized in computing trajec-
tory averages is now clear from Eq.~4!. If the hyperbolicity
exponenth is near 1, little propagation of error will occu
from the small scale to the large. On the other hand, ih
'0, there may be a large bias, or difference in expec
values, of the observation functiong(x) under the computed
and true probability measures. Note that the proportiona
constantK in Eq. ~4! is dependent on the observation fun
tion g. In fact, K may be zero or small enough to make t
bias zero or undetectably small for some choices ofg, and
large for others.

We illustrate a case for which the bias in natural meas
is easily detectable with the two-dimensional example,

f ~x,y!5~sinx@ap cospy1b#, c@sin@py1d#2sind#

1sinpx!. ~9!

The chaotic attractor for this map, shown in Fig. 3 for
particular choice of parameters, has fractal dimension
tween one and two. Figure 1 showed the distributions
finite-time Lyapunov exponents for this planar discrete d
namical system, with parameters set toa50.9,c50.9,d
50.0, and for variousb. The smaller Lyapunov exponen
fluctuates around zero in the three cases shown in Fig. 1
most strongly in the caseb51.0. The mean and standar
deviation @8# for the time-100 Lyapunov exponents in th
case arem50.006 ands10050.044, givings50.44 and a
hyperbolicity exponent ofh50.058, from formula~2!. For
the caseb51.2, on the other hand, the smaller Lyapun
exponent has moved somewhat away from zero,m50.124
and s10050.081, leading to a much higher exponenth
50.377. According to Eq.~4!, we expect that computing
accurate trajectory averages will be much more difficult
b51.0 than forb51.2.

To test Eq.~4! quantitatively, we computed trajectory av
erages of a variety of observation functionsg(x,y), for vari-
ous noise levelsd. We computed the trajectory average
high precision~used to represent the ‘‘true’’ value! for a long
trajectory, and compared it to the trajectory average from
trajectory computed with one-step random error of sized.

-

FIG. 3. One trajectory of the chaotic attractor generated by
planar map~9!.
0-3
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For g(x,y)5y2, the resulting differences in averag
^g&computed2^g& true are plotted in Fig. 4 as a function ofd.
They follow a power law as a function ofd, in agreement
with the heuristic argument above. The exponent from
power law can be estimated by the least squares lines sh
in Fig. 4. In Fig. 5, we plot the results of estimating th
power law exponent as done in Fig. 4, for several param
valuesb. Also plotted in Fig. 5 are the corresponding valu
of h52m/s2, computed from the Lyapunov exponent dist
butions as in Fig. 1. They are in reasonably good agreem
@9#, as predicted by formula~4!.

It is important to note that the differences between t
and computed averages are not due to the length of trajec
over which the averages were taken~about 107 steps, in this
case!. The difference is one of bias, not variance, and pers
as the length of test trajectory is made arbitrarily large.

This family of examples shows the unexpected effe

FIG. 4. Illustration of the power law~4!. A plot of the difference
in the average value ofg(x,y)5y2, under a true (d50) versus a
noisy (d.0) trajectory, as a function ofd. Parameter values for th
map ~9! are a50.9, c50.9, d50.0, and ~a! b51.0, ~b! b51.2.
Power law scaling is clearly evident; the slopes~a! 0.073 and~b!
0.39 agree with the hyperbolicity exponentsh52m/s2.
al

h.
d
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that very small noise levels can have on the computation
global averages in a dynamical setting. In Fig. 4, these
fects are evident. When the hyperbolicity exponenth is
around 0.3, as in frame~b! of the figure, one-step error o
size 10214 propagates to errors of size 10 to the pow
2(14)(0.3)'24, a magnification of 10 orders of magn
tude. In the more serious case of Fig. 4~a!, one can expect
errors of macroscopic size.

Fluctuating Lyapunov exponents and unstable dimens
variability are expected to be common in high-dimensio
systems. When these effects are present, physical obs
ables computed from long-term simulations may converge
a biased, erroneous value. The argument is often made
such statistical averages can be computed accurately
amalgamating many short correct trajectories, consisting
the shadowing trajectories corresponding to short piece
the computed trajectory. However, while these short shad
ing trajectories may be correct, their initial conditions suff
from the same bias~4! and offer no improvement in comput
ing a correct average. Similarly, Monte Carlo simulation
achieved by starting at many different initial conditions a
averaging the results, will have the same communal bias
such cases no method for eliminating this large error in
observed physical quantity, beyond computing in even hig
precision, is presently known.

This research was supported by the National Scie
Foundation.

FIG. 5. Comparison of hyperbolicity exponenth derived from
finite-time Lyapunov exponents~2! ~small crosses! and the scaling
exponent~diamonds! from long simulations of trajectory average
using Eq.~4!. They should agree, according to the heuristic arg
ment of the text. Results are omitted nearb51.07 because the
attractor disappears due to an interior crisis.
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@8# The meanm is computed as the mean of the second-larg
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