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For a model one-dimensional asymmetric double-well potential we calculated the so-called survival prob-
ability (i.e., the probability for a particle initially localized in one well to remain thevée use a semiclassical
(WKB) solution of the Schidinger equation. It is shown that behavior essentially depends on transition
probability, and on a dimensionless parametethat is a ratio of characteristic frequencies for low-energy
nonlinear in-well oscillations and interwell tunneling. For the potential describing a finite m@kinrble-wel)
one has always a regular behavior. Aok 1, there are well defined resonance pairs of levels and the survival
probability has coherent oscillations related to resonance splitting. Howeveérfdr there are no oscillations
at all for the survival probability, and there is almost an exponential decay with the characteristic time
determined by Fermi golden rule. In this case, one may not restrict himself to only resonance pair levels. The
number of levels perturbed by tunneling grows proportionally/fo (in other words, instead of isolated pairs
there appear the resonance regions containing the sets of strongly coupled Ievbksregion of intermediate
values ofA one has a crossover between both limiting cases, namely, the exponential decay with subsequent
long period recurrent behavior.
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I. INTRODUCTION ior) to incoherent decay or dissipative tunneliisgy ergodic
behavioj. The essential part of the model we will present is
Double level systems and models appear in various corto illustrate this semiclassical quasichaotic behavior. In fact,
texts in physics, chemistry, and biology. The recurrent interthe illustration was made long ago by Fermi, Pasta, and
est in the topic is related mainly with fairly rich and inter- Ulam[9]. They performed computer studies of energy shar-
esting physics of the systems, and with the experimentdnd and ergodicity for weakly coupled systemshobscilla-
activity on several classes of systems that can be viewed 48rs- Later on, the results of Reff9] were confirmed and
good physical realization of double level modéiscluding ~ 'efined(see, e.g., Refd.10,11)). But all these papers were
fashionable quantum dots, see, e.g., R&l). Among the devoted fco sy_stems with many degrees of freedom
possible types of behavior, we will particularly be concerneo[(N.>>1).'d'mens'c.mal phase spa]_cbr the cases where the
with coherent oscillations and incohereftissipativelike motion is nearly integrable and irregular in different energy

tunneling. Our goal is to propose a simple mathematical€91°Ns: Level statistics for such kind of mixed systdires,

. o when behavior is regular and chaotic in different phase space
model to illustrate crossover from coherent oscillations to

S . . . regions changes gradually from Poisson to Wigner type of
d|$3|pat|ve_ tunnelmgdecay_ or re_laxatlo)m _Wh'Ch_ are alsq distributions[12—14. Thus these systems become noninte-
related to incoherent transitions in multidimensional oscilla-

| . hi : rable when the energy exceeds a certain critical value. On
tor systems. In a certain sense this crossover reveals magy, contrary, we will propose and investigate in 1D a conser-

features of chaotic behavior. It is a common fact now that a¢ive system with time independent Hamiltonian that is evi-
classical chaos is defined as extreme complexity of the tragently always integrable, and it does not generate classical
jectories in phase space, with the trajectories being very sehzos.
sitive to small changes in the initial conditiof,3]. It is For the sake of completeness let us note that the tunneling
evident that the state vectdwave function of a closed in the mixed(i.e., regular-chaoticsystems has been studied
quantum system strictly speaking does not exhibit chaotiais well for two-level systems when one of the levels interacts
motion, as a consequence of the unitary nature of time evowith a chaotic stat¢15,16 (see also revieWl7] and refer-
lution. But, in fact, since in quantum mechanics trajectoriesences therein In the case of a resonance between the tun-
in the phase space cannot be introduced due to Heisenbengling doublet and suitable chaotic states, the tunneling is
uncertainty principle, the standard classical concept of thenhancedso-called chaos assisted tunnejirejd has very
stability becomes ambiguousee, e.g., Ref§4-8§|). strong resonance dependence on quantum numbers. Similar
We put forward a simplgbut yet nontrivial model of  effects due to transverse vibrations take place for isolated
one-dimensiona(1D)asymmetric double-well potential that Fermi resonances in tunneling syste[§].
can be used to describe under relatively weak assumptions a Our paper has the following structure. Section Il contains
crossover from coherent oscillatiofsay mechanical behav- basic equations necessary for our investigation. Section Ill is
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devoted to the calculation of the so-called survival probabilprobability conservation law, which leads to the Lorentzian
ity. We use the semiclassical approdd®] (see also Ref. envelope for spectral distribution functions. Unlike R&f1],
[20] and references herginSection IV contains the sum- in our case, we get the Lorentzian envelope filledsgqyeaks
mary. The Appendix is devoted to the technical and methodief the final states.

cal details of the calculations. The procedure is described in the Appendix, and it in-
cludes three stepsee Refs[19,21], and we will use nota-
Il. ASYMMETRIC 1D DOUBLE-WELL POTENTIAL tions from Ref.[20]).

. S ) (a) First, one should find the actioW, in the classically
The simple model studied in this paper consists of a quan|iowed region(.e., W, between turning poinjsin the left
tum particle in one-dimensional asymmetric double-well po-, | (L well), and apply the semiclassical quantization. For

tential U(X) with one-parameter dependent shape. Using the,o low-energy states in tHe well it leads to the following
tunneling distance, and the characteristic frequency of the \g|ation:

oscillations around the left minimufl,, we can introduced
the so-called semiclassical parameﬁermﬂoaﬁ/h>1 (mis

a mass of a particle, and further we will get 1 measuring
energies in the units of frequen¢ywhich is assumed to be
sufficiently large, i.e., the tunneling matrix element should bewhere, integer numbersnumerate eigenvalueg,, is deter-
small in Q) scale. The choice of the model potential is dic- mined by an exponentially small phase shift, and the last
tated by the principle of minimal requirements. Our aim is toterm on the right-hand side of E@) is in fact the definition
describe, in the framework of one universal model, the crossfor eigenvalues:,, .

over from symmetric double-well potential to the so-called (b) Second, the same should be done for the right well (
decay potential, and to do it we need a parameter to make theell). The calculation is almost trivial in the limib>1
right well (R well) deeper and wider than the left well ( [when the potentiall) becomes strongly asymmetfic

well).

Using ()o anda, to set corresponding scales, the model YWg= YWEOM' mpe, ()

potential satisfying these minimal requirements can be writ- . . .
ten in the following dimensionless form: where the dimensionless energyis counted from the bot-

tom of theL well, the actionWY is

1
n-+ §+Xn

YW, =7 =7e,, (2

1 1
= _x%(1— —_ T
V(X) 2X (1 X)| 1+ b2X s (1) 'le(QO)=E(b2—1)2(b2+l), (4)
where V=U/(Qyy), andx=X/a,. The dimensionless pa- 5,4
rameterb allows us to change the shape of the right wé&ll (
well), and to consider both limiting cases, namely, a tradi- b2+1
tional symmetric double-well potentigfor b=1), and for B=—p—=b for b>1 )

b—o a decay potentialor, in other words, to change the

level spacings fromf)y* scale to zerp In fact, it can be  Note that the parametg8=2Q,/wr is proportional to the
shown (see below and the Appendithat qualitatively all  density of states in th& well (wg is the frequency of non-
our results do not depend on the concrete form of the ongénear oscillations irR well at £ =0), and, therefore, know-
parametric potential satisfying these requiremeotsly on  ing the magnitudgd one can compute the density of states in
the density ofR stateg. Behavior in both limiting cases are the R well, which grows proportional td for b>1. It is
well known, and forb=1 one has coherent quantum oscil- convenient to rewrite Eqg3), (4) in the same form as Eq.
lations, typical for any two-level systems, while fbr— o 2),
there is a continuum spectrum of eigenstatescfer+c and
one can find an ergodic behaviéncoherent decagy Our
main goal in this section is to study crossover between both
limits at variations otb.

The general procedure for searching semiclassical soluwhereng and «,, are integer and correspondingly fractional
tions of the Schredinger equation with the model potential parts of the quantity
(1) has a tricky point. The fact is that in thewell we have
a discrete eigenvalue spectruistationary statgswhile for VW(RO)
the R well in the caseb>1 we have quasistationary states, T B
which are characterized by wave functiofis(X) exponen-
tially increased in the region ef>V(X). Both kind of states The physical meaning o, is the deviation from a reso-
are defined on different sheets of complex energetic surfacegmnce between thath level in theL well and the nearest
[19], and to treat both kind of states one should use differenkevel in the R well. By the definition of a fractional part
tools, namely, the standard quantization of the stationarya,|<1/28.
states from the discrete part of the spe€ti@], and proposed (c) And as the last step, again using the quantization rule,
long ago by Zeldovich21] for quasistationary states the flux one can find the spectrum.

'}/WR = ’ (6)

1
nR+ E‘f’ an+,8)(

L
)

1

3 (7)
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It turns out(see Appendixthat the spectrum and the be- 4.0
havior of the system depends crucially on the paraméter - et
=pBR,, where Wy
2n+2,yn+1/2 SOm- g(g) 20é’ﬁ————
Rn = 771/2n| exq - 27WB)1 (8) CO K 1 0_2_ _______
is the 8 independent decay rate of théh metastable state of 005F%:z::22:=
the L well atb—o [Wj is the action in the classically for- Mode
bidden(between turning poinjsregion|. ' LEE i
For A<1, solving the quantization relatidA2), one can 208 — o
easily find 1 cemmsees-
-3.03 -
S [ O Sy ] 9 Py E
8t=l’l === o —Q— A~ an|. -4. L I L L L R R
" 228 "ol ) 0.0 04 0.8 1.2 16

This expression9) determines the resonance pairs of the A

levels, the so-called two-level systems. FIG. 1. The eigenvalues as functions &f for the zero-point
Besides the same quantization rif2) we get analyti- level (h=0) of theL well. Dashed lines indicate the limits df
cally (i.e., for arbitrary values of\) eigenvalues for th&® <1, andA>1; y=10, a(=0.

well in the vicinity of the resonance doublet
tion of quasistationary states in terms of eigenstates of a

continuous spectrum. This behavior can be formulated, in
; other words, in terms of the so-called recurrence time, i.e.,
the characteristic time when the system returns to the initial
state. For a finite motiorti.e., for a finite value ot) the
behavior of the system remains regular. The recurrence time
(i.e., in the case of merely coherent oscillation perid
proportional to U4, for A<1, while for A>1 this time
scales as 1J/g (as a long-period time scale

m=+1,+2,.... (10)

These levels are numerated by the quantum number

For A<1, all displacements of the levels due to tunneling
are small, and two-level system approximation is vaiid.,
there is well defined isolated resonance pairs of levels with
splitting «< (R, / 8) 3] The situation becomes completely dif- IIl. SURVIVAL PROBABILITY

ferent forA=1. In the limitA>1, we get almost equidistant  The tunneling dynamics can be characterized by the time
spectrum of mixed.-R levels in the vicinity of the following  gyolution of the initially prepared localized staie(0), and

values ofy (see Appendix for the detajls by the definition the survival probability of the state is
m+i/2-an, 1 P(O)=[(W(0)|W(1)]2 12
X= =t %—A}- 1 (O=|(%(0)[W(v)| 12)

For the stationary states evideniyt) =1, while for quasis-
The expressiong10), (11) given above show that the tationary(decaying statgsthe survival probability reads
number of levels perturbed by tunneling grows proportion- _ r
ally to \A. In Fig. 1 we have shown the displacements of the P(t)=exp(—T'D), (13
levels perturbed by tunneling. These displacements are d?ﬂherel“ is the decay rate that should be found, and we use
creased very rapidly for the levels with quantum numberswfl for the time scale
. . - . R .
'afg‘?r tha_n\/K. The scales in this figure are given by the The simplest case is the coherent tunneling dynamics of
semiclassical parameter that relates to the well and the —y\ evel states. Let us consider the-n’ resonance region.
barrier. Once the scales are fixed fRevell is characterized . . . L R
: _ . The eigenfunctions of isolated andL wells, ¥, and¥ , .
by the eigenfrequency 1/b ate=0 (or what is the same by It has the initial stat n
the density of states or by the actitv in the R well). one has the initial state
Summarizing the results of this section, we have shown W(0)=wt
that instead of isolated two-level systems taking place for n’
A <1, in the opposite limit\>1 there appear the resonance the survival probability can be easily calculated

regions containing the sets of strongly coupled levels. The
resonance widths are determined by tunneling matrix ele- 1 R,
1+cog 2t F .

ments [HZ2,= o, wreXxp(—2yWg)/4m?=R,/B]. In spite of P(O=5
the fact that for any finite values df (andb) we have only

the discrete spectrum of real eigenstates, we found above that Normalized wave functions in the well can be calcu-
mixing of L-R states very closely resembles the representalated trivially, and using standard semiclassical wave func-

(14)
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1.0 : modulation grows with3, and in the limitA>1 we get the
A 7N dense spectrum of states in tRevell, and almost exponen-
0.8 / tial decay forP(t) with 8 independent relaxational time
P V ! «R, . In this case, the survival probabilifj.e., the prob-
06 . / | ability to keep the system in its initial statéor the time
. ; \ interval <1/wg decays almost exponentially with time, and
0.4 i \ the characteristic relaxation timeis determined by Fermi
\ / N ) golden rule, i.e.7 *«H3,/wg. This result is also conformed
0.2 N / \ / to Van Hove statemen22] concerning quasichaotic behav-
/ i ior of semiclassical systems at time scales of the order of
00 ‘||\IIJIIIl|I\II!II||I|I|I|II||I|II[III||I|II\II!Il wR/Hi2-
0 2 4 6 8 10 We can relate the phenomenom described aljoee al-
most vanishing probability for backflow from thie to L
i5 well) to the Fermi golden rule for a transition probability
08 Wi =2m[Hg|%ps, (15
P - whereH;; is the matrix element between the initial st&e
0.6 and the final stat&;, andp; is the density of final states.
For our casefl;;=H,=+R, /8, andp;= B/2) we get eas-
0.4 ily
023 Wir=7R,,
OOE which does not depend gn . Therefore, the Fermi golden
' rule corresponds to the limit when the backflow from e
. 1 2l 4 RO 2 o well is totally suppressed due to the interference.
ort The survival probability can be related also to spectral
i distribution of the initially localized in thd. well states.
i Indeed, by the definition of the spectral distributi8(E) of
08§ the initially prepared localized state is determined by the
P ' _ transition amplitudes in expansion over the eigenstates
0.6 (¥n.En),
0.4 S(E)=2 (W(0)|W)[*8(E~Ep), (16)
0.2—; and, therefore,
0.0 : - : e |
0 50 100 150 200 250 300 (VO¥(t)=| SE)exp—IEHdE. (17

(!)Rt
For \P(O)E\Ifg' the spectral distribution is a set of peaks
FIG. 2. The survival probability for different values of and  with Lorentzian envelope
vy=10. (8 A=0.02, b=5 (solid line); A=0.5, b=116 (dashed
line): (b) A=0.5, b=116 (solid line: A=4.0, b=929 (dashed 2 JVRB
line); (¢) A=4.0, b=929 (solid line); A =16.0, b=3715 (dashed S(B)=— BE—E 4R
line). : !

S(E—E)). (18)

) , n Crossover from the coherent oscillations to exponential de-
tions for theR well, we are in a position to compute the 5y gceurs when the Lorentzian envelope begins to fill up by
survival probability for a general case as a functionAaf 5 heaks of the final states. Note that the width of the Lorent-
The results are shown in Fig. 2. o zian envelop&18) does not depend on the final state density
For A<1, P(t) oscillates with characteristic time scales (see Appendix and also RR1]). We have shown the re-

. _1 .
proportional toH; = VB/Ry. In the regionA=1, these 0s-  gy|ts of the calculation of the spectral distribution in Fig. 3.
cillations are strongly suppressed. The reason for the sup-

pression of oscillations is related to interference of the states
with energies in the resonance region. As a result of the
interference the total probability for the system to return Let us sum up the results of our paper. We investigated the
back from theR well is decreased, and low-frequency modu-behavior of a quantum particle in 1D asymmetric double-
lation of coherent tunneling is raised. The period of thewell potential with one-parameter dependent shape, which

IV. CONCLUSION
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FIG. 3. The spectral distribution for different values &fand
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=4644.

PHYSICAL REVIEW E 65 036217

between both limiting cases, namely, the exponential decay
with subsequent long period recurrent behavior.

However, a number of remarks related to our results are in
order. Many features often classified as evidences of quan-
tum chaos, in fact, as we have illustrated in our model, can
occur for well defined states possessing only discrete energy
levels. The deviation from two-level system behavior, taking
place forA>1, has nothing to do with random or chaotic
properties of the system. It means only that due to well
known phenomenom of level repulsion the two-level ap-
proximation is not adequate. Lorentzian envelgpee Fig.

3) we found arises from the interaction of a single leveLin
well with a set of levels in th&k well and not with appear-
ance of level widthgimaginary self-energy contributiops

One should distinguish between short-time and long-time
behavior, and the boundary between them depends on the
parameterA. Short-time returns«3) are governed by one
or a small number of semiclassical paths, while long-time
returns <R, 1Y arise from interference between many paths.
In the limit A<1, exponential decay occurs for short-time
dynamics, while the system remains regular for long-time
scales, in contrast with chaotic models we discussed in the
Introduction. Nevertheless, the tunneling in the limit /of
>1 can induce vibrational relaxation for localiz&devels.

The relaxation appears due to tunneling recurrences, and re-

ALK sults in redistribution of initial energy over all levels coupled
E with a singleL level.
B—' 0.4 The main physical idea of our paper, namely, that specific
s quasichaotic behavior is associated with the fact that one
9.4 0.2 level in L well in a certain condition £>1) is coupled to a

Vv set of almost dense levels in tRewell, was discussed in the

0.0 literature long agd22] (see also Refi21]), mainly qualita-
80 -60 -40 20 00 20 40 60 80 tively. Our achievement is that we have proposed a concrete

and tractable analytical model to illustrate and to investigate
explicitly and quantitatively this statement.

In this respect our results are quite different from numeri-
cal investigations of billiard-type systenfsee, e.g., review
paper[17]), showing universal behavior of level spacings in
finite chaotic systems. Our resulif®r the totally integrable
1D mode) demonstrate that level spacing distribution is not

allows us to consider in the framework of one universala specific feature of quantum systems with chaotic classical
model the crossover from the traditional symmetric doublecounterpart limit. Our finding of the equidistant regular level
well potential to the decay one. We have shown that behaviadistribution is a result of the interaction of the singléevel
essentially depends on transition probability, and on a dimenwith several(of the order of ten for our particular choice of
sionless parameteX that is a ratio of characteristic frequen- the parameteisR levels (which in own turn are regular
cies for low-energy nonlinear in-well oscillations and inter- oneg. We should also distinguish our model from the dy-
well tunneling. For the potential describing a finite motion namic tunneling onel23,24. The latter assumed strong cou-
(double wel), strictly speaking, one has always a regularpling of the tunneling system with an environment that de-
behavior. ForA <1, there are well defined resonance pairs ofstroys the coherence, whereas in our model the coherence is
levels and the survival probability has coherent oscillationsiestroyed by the tunneling itself due to the high densitiR of
related to resonance splitting. However, foB>1 there are  states, breaking two-level approximation.

no oscillations at all for the survival probability, and there is  Note also at the very end of the paper that results pre-
almost an exponential decay with the characteristic time desented here are not only interesting in their own ri¢git
termined by Fermi golden rule. In this case, one may noteast in our opinioly but they might be directly tested ex-
restrict himself to only resonance pair levels. The number operimentally since there are many molecular systems where
levels perturbed by tunneling grows proportionally\td (in  the 1D asymmetric potential investigated in the paper is a
other words, instead of isolated pairs there appear the reseeasonable model for the reality. And not only molecular
nance regions containing the sets of strongly coupled levelssystems, for instance, recently as a controllable two-level
In the region of intermediate values Afone has a crossover system, double quantum dots have also been proposed for
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realizing a single quantum bit in solid state systems. Experione gets the almost equidistant spectrum of the mixeRl
mentally [1], in these systems two distinct regimes characdevels, and in this condition the solution of Eé2) leads to
terizing the nature of low-energy dynamics have been obthe expression$9), (10) presented in the main text of the
served: (i) relaxational regime, when an excited-statepaper.
electron population decays exponentially in time with a rate The time evolution of any initially prepared state can be
correctly given by Fermi golden ruldiji) vibronic regime, described by a superposition of the eigenfunctions of the
when the population oscillates for some number of cyclegsliscrete and continuous spectra with time dependent phases.
before decaying. For the potentiall) with b>1 the initial finite motion, i.e.,

And what's more, at short times the averaged excitedihe initial density distribution
state populations oscillate but have a decaying envelope. The

similarity with the behavior we found in the paper is X2 5
evident P(I)ZJ’X (X, 1)[?dX, (A3)
1
ACKNOWLEDGMENTS concentrated in thé well att=0 decreases exponentially
: o L with time
The research described in this publication was made pos-
sible in part by RFFR Grants 97-03-33687a and 00-02- p(1)=p(0)exp( — 7t). (Ad)

11785. The numerical results were obtained in collaboration
with E.V. Vetoshkin, whose contribution is gratefully ac-

knowledged. Equation(A4) signifies that the wave functions of quasista-

tionary states have the form

APPENDIX V(X 1) =V,(X)exd (—ie,— na/2)t], (AB)

The semiclassical wave function is represented in the Wel};\nd the eigenvalues are complex and lies on the lower half-
known WKB forn? space of £,7) plane. The quantization of the stationary

states of a discrete spectrum is performed by the requirement

¥ =exp(iW). [19]
The actionW should satisfy to the WKB equation |¥(X,1)|2=0 at |X]|—oe.
1/dW\? & This condition is impossible to impose on quasistationary
21 dx :;_V(X)’ (A1) states, since the wave functioh,(X) is exponentially in-

creased in the region ef>V(X). The physically meaningful
boundary condition noted first by Zeldovi¢B1] for quasis-
ytationary states can be written as a conservation law for the
flux probability from theL well through the barrier. The
difference between stationary and quasistationary states dis-
appears as it should at—0.

The expansion of the initially quasistationary state is

tan(yW,)tan yWg) = 4expg2yWs), (A2) " dominated by the continuum spectrum eigenfunctions with
the energies close to the real parts of the eigenvadiies

whereWg is the action in the classically forbidden region in These eigenfunctions have the form
between the turning poini$; , X, in the left and right wells,
andW_  are the coordinate independent actions in the clas- AK) BR(X),  X<Xp
sically allowed regions inside of tHe (respectivelyR) well.

and two turning points, which are boundaries of classicall
allowed regions, are situated near zero8/¢K) —e/7y.

For the asymmetric double-well potentigl) the Bohr-
Sommerfeld 19] quantization equations read

; : o Y (X)= 2 A6
Using the following expansion: K(X) \Gsin(kXJr 5(K), X>X, (A6)
* 1 271-1
tanz= >, 2z| 22— w3 m+ > } , whereX,, is the left turning point of th&® well, the localized
m=0 wave functionng is normalized to unity, and the phase is
given as

IAll characteristics of our model are not specific only for the 1D K
case. ForA>1, one can expect similar behavior for multidimen- S5(k)= 5o—arctar]<—2, (A7)
sional systems. —kq

2Equivalently, it can be represented in the so-called instanton or
minimum action tunneling path formalisf25] (see also Ref.20]) and g, is a k-independent componenk;=2me,, k;
in the form of ¥ =exp(— yWg), which is more efficient for classi- =Ky nn/4e,. For the eigenfunctions with the energiesnd
cally inaccessible parts of phase space. ¢’ close toe, we get
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X
J_w¢k(x’)¢>kr(x’)dx’

B 1 1
"~ 2m e—¢g’

From Egs.(A6), (A7), and (A8) in the limit e—¢’—0 we

get
2 [2¢
A2(K)= — 1 /_”%.
77 M 4(s—e,)*+ 75

d do,
(ﬁj%—ﬁaﬁ) (A8)

(A9)

PHYSICAL REVIEW E 65 036217

The relation(A9) shows that the probability density of the
continuous spectrum eigenstates exhibits the Lorentzian dis-
tribution around the real part of the quasistationary eigenval-
uese,. ExpressiongA9)—(All) are equivalent to the spec-
tral distribution(18) presented in the main body of the paper.

A few words concerning numerical results have been pre-
sented in the captions of Figs. 1-3. The calculations have
been performed to check;) semiclassical approximation for
the model potentia{l); (ii) the spectral distributio18).

We used the numerical diagonalization of the Hamiltonian
matrix in the basis set of trial functions, which includes:
so-called instanton wave functions of thewell (see Ref.

ExpressiongA7) and (A9) are valid for a continuous spec- [20), and the WKB functions oR well. This basis was
trum, for discrete levels the phase shift as well is governe@thonormalized by using standard Schmidt metfi2f). For

by the probability flux from theR well into classically for-
bidden region, and instead of EG\7) it leads to

1
s=arctan/R, ———, (A10)
€n~ €nm
and instead of EqA9) one can easily find
VRSB
A%(Enm=— — (A11)

Note that Eq.A11) has almost the same form as EA9),

theL well, highly excited states near the barrier top have also
been included. In all numerical calculations we set the value
of a (so-called defect of a resonancas zero. All results
presented in the figures do not depend on this particular
choice.

The numerical results confirm that Ed.8) is quite accu-
rate in the whole range ok where the transition from co-
herent oscillations to exponential decay occurs. Note that
sinceR levels with the negative energy are not mixed with
levels, and besides the resonance region is sufficiently nar-
row (R,=0.01), we need not diagonalize huge matrices. For

although it depends on discrete energy levels, and besidesatr purposes the diagonalization of the matrix 38@000 is
has a different coefficient due to different normalization con-more than sufficient to find eigenvalues in the resonance re-

dition.

gion around thex=0 L level.
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