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Flexible parallel implementation of logic gates using chaotic elements
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We demonstrate the basic principles for the direct and flexible implementation of all basic logical operations
utilizing low dimensional chaos. Then we generalize the concept to high dimensional chaotic systems, and
show the parallelism inherent in such systems. As a case study we implement the proposed parallel computing
architecture to obtain parallelized bit-by-bit addition with a two-dimensional chaotic neuronal and a three-
dimensional chaotic laser model.
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I. INTRODUCTION TABLE I. The truth table of the basic logic operations. Column
1 showsanD(l4,l5,). column 2 showsor(l4,l,), and column 3
A recurring theme of research into chaotic systems ovefhoWsxoRr(ly,12), where the two inputs arl andl,. Column 4
the last decade has been that chaos provides “flexibility” inSNOWs thenoT gate, where there is one inpu,
the performance of natural systems and provides such sys-

tems with a rich variety of behaviors that can be utilized for h1 2 AND OR XOR ! NoT
more versatile performance. In particular, attempts to bridge ¢ 0 0 0 0 0 1
dynamics and computatiof$—7] present a new direction in 0 1 0 1 1 1 0
harnessing chaos. For instance, the capability of dynamical q 0 0 1 1
systems to perform the fundamentelr logic has been suc- 1 1 1 1 0

cessfully demonstrated recently], and this indicates the
scope of building general-purpose machines from chaotic
processors. priate outputs for the different fundamental gates for all pos-
The motivation for exploring chaos as a candidate forsiple sets of inputs.
direct and controlled computingas in endeavors such as  Towards this aim, in this work we first show thkrect
DNA [8] and quantum computin@]) is to find new ways to  and flexible implementatioof all these logical operations
exploit physical phenomena that are well understood in thetilizing low dimensional chaos. Then we give details of the
context of physics to do computations, i.e., to use new congeneral concept and specific implementation of parallelized
cepts of physics to build better computing devices. Our gentogic using high dimensional chaotic elements.
eral strategy here will be to exploit the determinism of dy-  The organization of this paper is as follows: In Sec. Il we
namics on one hand, and its richness on the other. Thgemonstrate the basic principles of obtaining different logic
determinism will allow us to “reverse engineer,” so to speak, operations and implement these on one-dimensional chaotic
and the richness of dynamical patterns will allow flexibility maps. Section Il outlines the generalization to multidimen-
and versatility in accomplishing all the fundamental opera-sional chaotic systems and the parallelism inherent in such
tions. systems. Section IV gives a specific implementation using a
The basic components of computer architecture today arvo-dimensional chaotic neuronal map and Sec. V utilizes a
the logicalAND, OR, NOT, andXOR (exclusiveor) operations,  three-dimensional chaotic laser model. Finally Sec. VI dis-
from which we can directly obtain basic operations like bit- cusses and summarizes the results.
by-bit addition and memory10]. These operations act on
two inputsl, andl, (for AND, OR, andXOR) or one inputl
(in case ofNOT) and outputs a signdD. The logical opera-
tions are defined by patterns of input-to-output mapping rep- Here we will endeavor to obtain clearly definesD, OR,
resented by the truth table in Table I. Now all the above-NOT, and XOR gate response patterns with a single chaotic
mentioned gates can be constructed by combiningntbe  element. These are the necessary and sufficient ingredients of
operation proposed if7]. For exampleaAND can be realized the most basic components to build a computer. Our tech-
by AND(X,Y)=NOR(NOR(X,Y), NOR(X,Y)) and XxOR(X,Y) nique is simple and direct, and is targeted at achieving uni-
=NOR(NOR(NOR(X,NOR(X,Y))), NOR(NOR(NOR(X,Y),Y))).  versal general purpose computing, rather than a narrowly
Clearly though, this conversion process is inefficient in com-specialized problem domain.
parison with direct implementation, considering perhaps Consider a single chaotic element whose state is repre-
such fundamental operations may be performed a large nunsented by a valug, as ourchaotic chipor chaotic processor
ber of times. So the direct and flexible implementations ofThe state of the element evolves according to some dynami-
gates is useful and could prove very cost effective. Our probeal rule exhibiting chaos. For instance, the updates of the
lem then is to design chaotic elements that yield the approstate of the element from time to n+1 may be well de-

II. BASIC LOGIC OPERATIONS WITH A CHAOTIC MAP
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TABLE Il. The correspondence between actual input and out-
put, designated as;, and X,, respectively, in the text and their
interpreted values. Here outpOt=0 represents false in a Boolean
operation and 0 in bit-by-bit addition, af@=1 represents true in a
Boolean operation, and 1 in bit-by-bit addition.

Interpreted /O Actual 1/0
(A) (B) ©
0 0
FIG. 1. Three types of input/output configuratiorial logical 1 5
AND, OR, and XoR; (b) logical NOT; (c) bit-by-bit arithmetic addi-

tion.

0,,0,, and it is the configuration necessary for bit-by-bit
scribed by a map, i.ex,.1=f(x,), wheref is anonlinear  arithmetic addition(see Table V in Sec. IV for truth table
functionchosen to obtain chaotic dynamics. All the fundamental logic gate operations involve the fol-

Now this element receives two inpuifor AND, OR, and  lowing steps,
XOR) or one input(in case ofNoT) and outputs a signal. In (1) Initialization and external inputs,

our scheme, the inputs to the chaotic elements are denoted by X— Xy + xianrxﬁ1 for the AND, OR, andxOR operations, and
1 2

Xin» Xins--. @nd theaction of the inputs is to stimulatgick) X—Xo+ Xj, for the NOT operation,
the state of the system as follows: wherexg is the initial state of the system, amg,=0 when
I=0 andx;,= é whenl=1.
XX+ XE X2 (2) Chaotic update, i.ex—f(x), wheref(x) is a chaotic
function.

i . i . (3) Threshold mechanism to obtain outpyy; is
wherex;,=0 if I;=0 andx;,=6>0 if I,=1.

The outputsfrom the chaotic element are obtained by a
simple threshold mechanismAfter suitable time if the
evolved state variabl&x) is larger than a prescribed thresh-
old x*, i.e., f(x)>x*, the state variable is reset to threshold

* 4 — *
e e e ot 1) ) o whrex i th tresnok, A shown  Tal 1 s s
* : - preted a00=0 if Xo, =0 andO=1 if Xq,~ 6.
f:()é)gx , there is no response from the element aqg In order to obtain the desired input-output response we
i need to satisfy the conditions enumerated in Table Il for the
different gates. Note that the symmetry of inputs reduces the
four conditions in the truth table of Table | to three distinct
conditions, with rows 2 and 3 of Table | leading to condition
2 in Table III.
For instance, for thenD gate implementation the three

Xour=0 if f(x)<x*, and

Xour={f(X) —x*} if f(x)>x*,

This emitted excess,; encodes the output of the opera-
tion: whenx,,~=0 it encodes 0 and whex,,~ & it encodes
1, whereéd is a prescribed positive constafitl]. So if the
variablex of the evolved state of the chaotic element is lower
than threshold it yields 0, i.eQ=0. If the variablex has a
value greater than thresholq, W't_h the excess amount bemé"’onditions arise as follows: Condition 1 comes from row 1 of
~ 6, the output has value 1, i.e€Q=1[12]. Table | which has. = .= 0. This impliesc: = x2 =0 and
Setting the threshold value and initial state of the systema '€ 1 which has; =1,=9. ThiS IMPIesXi, = Xj, =1, and o
so that it directly gives the desired respofiise., outputs the th? initial state ’?‘ﬁef INpULS remains xy. After chaotic evo-
desired excess,,,) constitutesprogrammingthe gates. !utlon the st_ate ig(xo). Since the (.)UtpUt of aﬁND gate for
In our implementation we demand that tin@ut and out- Inputs (O.'Q) IS 0, Xoue should be 0, i.e.f(xo) <X .
put have equivalent definitiong.e., one unit is the same Coﬁd'“o” 2 comes from rows 2 an_d s qf -:‘lble l, which
quantity for input and outpiit as well as among various h‘;"s e|ther111 orl, to b2e one. This implies eitheg,= & and
logical operations. This requires that constartssumes the Xin=0 0 Xj;=0 andxj;= . So the initial state after inputs
same value throughout a network, and this will allow theNOW is Xo+ 6, and the state after chaotic evolutionfigx,
output of one gate element to easily couple to another gaté 6). Since the output of aanD gate for inputs(1,0) and
element as input, so that gates can be “wired” directly into(0,1) is 0, Xy Should again be 0, i.ef(xg) <x*.
gate arrays implementing compounded logic operations. Condition 3 comes from row 4 of Table I, which hags
The number of inputs and outputs for each chaotic ele=1,=1. This impliesx;,=x5=5 and so, the initial state
ment depends on the specific operation. Figure 1 depicts thfter inputs isxo+246. After chaotic evolution one then has
three types of input/output configurations for a chaotic ele-statef(x,+26). Since the output of aaND gate for inputs
ment. The circles in the figures represent chaotic element$l,1) is 1, X, should now bes, i.e.,[f(Xo+28) —x* ]~ 6.
For example, Fig. (B shows a configuration with two inputs ~ All the three conditions have to be satisfisimulta-
I, andl,, and one outpu®. This configuration is used for neouslyto implement theanD gate, as the mapping from
the Booleamnb, OR, andxoRr operationgsee Table)l Fig-  (x},x2) to Xo, must hold for all combinations ofxf,x2).
ure 1(b) has one input and one outpu® for theNOT opera-  Conversely, when all three conditions are satisfied,
tion. Figure Ic) has two inputsly,l, and two outputs Xx,,=AND(l4,l,) holds. That is, these conditions are neces-
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TABLE lll. Necessary and sufficient conditions to be satisfied by a chaotic element in order to implement the logical operatiors
XOR, andNoT.

Operation AND OR XOR NOT
Condition 1 f(Xg) =<x* (%) =<x* f(Xg) =<x* f(Xg) —x*~3&
Condition 2 f(Xo+ 8)=<x* f(Xgt+ 8)—x*~6 f(Xg+ 8)—x*~6 f(Xo+ &) =<x*
Condition 3 f(Xg+28)—x*~§ f(Xg+28)—x*~6 f(Xo+28)<x*
sary and sufficient for implementingnD. Similarly, one can In summary, we have given a direct implementation of all
obtain conditions foOR, XOR, andNOT. the basic logic gates using single chaotic element, by

So given a dynamic$(x) corresponding to the physical merely changing the threshold and the initial s{dt8]. This
device in actual implementation, one must find values offeature can be exploited to obtain programmable hardware,
threshold and initial state satisfying the conditions derived.e., to obtain different gate arrays, on demand, from the
from the truth table to be implemented. same set of chaotic processors, exploiting the fact that the

Here is a numerical example of the basic procedure laicthaotic element can act as different gates by simply changing
out above. As a representative chaotic function, we fgdkg  the threshold parameter and initial state, which is pro-
to be the prototypical logistic map: a map known to be ofgrammed informatiorfor the “software”).
widespread relevance to physical and biological chaotic phe- Note thatnonlinearity in the processing units is clearly
nomena, necessary for various Boolean implementations. The com-

plex relationship between ingigi and outpufs) eliminates
f(X)=4x(1-Xx), the possibility of any linear function mimicking all of the
Boolean operations. Only sufficient richness of dynamical
wherex e [0,1]. Select the constad common to both input  behavior can ensure the capacity to gitthe different ap-
and output and to all logical gates to BeThe following  plications from thesameprocessing units. Here we could
Table IV shows the initiak, and thresholc*, which satisfy ~ readily “control” the chaotic map to yield the dynamical
the conditions in Table IIl. For instance, fanD, selecting response necessary for the various desired applications.

Xo=0 andx* = 3/4 satisfies the three conditions in Table Il Now we will demonstrate how high dimensional chaotic
as follows: systems can be exploited for parallel computing, a key infor-
mation processing technology for increasing the effective
f(Xg)=f(0)=0=<x* (=3/4), speed of computing. We show that a single chaotic dynami-

cal element of dimensioN can effectively serve as a parallel

f(xo+ 8)=f(L/4)=0<x* (=3/4), processor oN inputs. We exploit the dimensionality of these

systems and the richness of temporal patterns inherent in
their dynamics to obtain parallelized operations. The space
costs, i.e., the number of processors necessary, need not then
scale up with the number of operations in such systems, thus
effecting reduction of computational effort.

f(Xo+28) —Xx* =(1/2) — 3/4=1—3/4=1/4= 5.

Further, bit-by-bit arithmetic addition, the most funda-
mental form of arithmetic operation, is constructed freor
andAND gates. Other types of arithmetic operations can then
easily be performed using this basic addition or a similar  Ill. GENERALIZATION TO MULTIDIMENSIONAL
operation. For example, addition of larger numbrsg)., ad- SYSTEMS
dition of two 32-bit numberscan be carried out by extend-
ing the bit-by-bit operation to a higher number of bits. Sub-fre
traction can be done as addition of the complemente(gy
numbers. Multiplication can be achieved as repeated additiocg

or its variations; similarly, division can be done as repeate ionality of such systems can be velgrge even if thespa-
subtraction. Further, using Ioglcal operations suchaas, tial extent of the device is very smallhe evolving state of a
computer memory based on integrated circuits can_be Corgystem at any point of time is characterized by many com-
SIponents, each described by a dynamical variable. For in-
stance, certain neuronal cells can be realistically described
by 120 variable$14,15. Our approach now will exploit the
variety of multidimensional dynamical states available in a
single chaotic element to implement parallel computisee

Fig. 2.

Most complex physical systems have many degrees of
edom and are characterized by many dimensions, with the
stem’s physical size very often not scaling with this dimen-
ionality of the dynamical system, i.e., typically, tHenen-

which in turn are built by combining logical gat€s0].

TABLE IV. Numeric example of implementation of the logical
operationsanND, OR, XOR, andNoT, with §= %.

Operation AND oR XOR NoT The objective here is to obtald clearly defined logic gate
Xo 0 : 1 1 response patterns from tiNecomponents characterizing the
x* 3 & 3 3 state of anN-dimensional system. This enables us to imple-

ment N operations in parallel with aingle Ndimensional
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Dynamical System TABLE V. The truth table of bit-by-bit arithmetic addition.
of dimension N: {X}=(x,x,, ... X)
Iy I2 O 0,
0 0 0 0
State at time 0 State at time 7 0 1 1 0
[— -
X X 1 0 1 0
o dynamical T 1 1 0 1
evolution
Encodes N inputs for time Encodes N outputs
(I, TyeaiT ) 1 (0 1,0 ;s O volves two logic operationsyND and XOR, for which there

are two inputs, i.e.M=2 in the general scenario given
FIG. 2. Schematic figure of parallelism achievable through highabove. We perform these operations in parallel with the two-
dimensional chaotic systems. Note that high dimensionality reflect§limensional chaotic neuron.
the complexityof the dynamics rather than actual physical size. The two inputs to the 2D chaotic processor are denoted by
(x1(1),x2,(1)) and (x}(2),x2(2)) for the two variablesc;
chaotic element. Thus one can gain processing power withrendx,, respectively. Setting the threshold values and initial
out having to add more elemerjtks]. Below we generalize state of the system so that it directly gives the desired re-

the approach introduced in Sec. Il to multidimensions. sponse(i.e., outputs the desired excessgs, andx2,) con-
Specifically our processor now is ardimensional cha- stitutes designing the gates.
otic element, whose state is characterized by Bit-by-bit addition operates on two-inputls;, 1, and

=(X1,X2,...Xy). As before, theM inputs I ,1,,...I}, tothe  yields two outputD;, O,, with O;=x0R(l4,1,) being the
ith variable of the chaotic element are encoded through valffirst (rightmos} digit of the sum andD,=AND(I4,1,) being
ues xt(i),x2(i),...xM(i). The action of the inputs is to the carry of the answer to the next di¢see Table V. So the

stimulate(kick) the state of the system as follows: inputs to the two variable$x,,x,} are the same, namely,
I1=13=1, andI3=13=1, here.
Xi— X+ X (1) + X3 () 4+ xM (i) The actual input, designated &$§(i) (with k=1,2 andi
=1,2) and the actual output, designatedxé;ﬁ (i=1,2) will
with i:]., e N for the N state Variables. As bEforﬁ:(n(i) be interpreted as fOHOWS{Ikn(I):O Wher‘”i =0 and X:(r‘l(l)
=0 whenli =0 andxiy(i)= 5, whenlj=1. =&, whenlj=1. OutputO; is 0 whenx.,=0, andO; is 1

. . : . out”~
by the simple threshold mechanism. After time if the o sojutions adhering to the stringent conditioAs= 5,

evolved state variable(7) is larger than a prescribed — 5 pyt this need not be the case, in general

thresholdx , i.e., xi(1)>X, the state variable is reset to  The two-dimensional model for biological neurons we fo-
threshold value® emitting the excess amourb,={x(7)  cus on is given by17]

—x;}. If the value of the variable is under the critical value

X", i.e., x(7)=<x", there is no response from the element x1(n)={x1(n—1)}? exp{xa(n—1) = xy(n— 1)} +K,

and x,,=0. As beforex,,~=0 encodes 0 and ~ & en-
codes 1.

Setting the evolution time, threshold values, and initial g map displays markedly neuronlike dynamics and was

state of the system so that it directly gives the desired refynd to agree qualitatively with experimeris]. Heren is
sponse(i.e., outputs the desired excessgs,, x2

outa---:X’SIut) the discrete time index, variablq is related to an instanta-
again constitutes programming the gates. We also demangbous membrane potential of the neuron and the variaple
that the input and output have equivalent definitions and injg equivalent to a recovery current. The model has four pa-
terpretations i.e., one unit is the same quantity for input angameters:a determines the time constant of reactivation,
output. This will allow the output of one gate element t0ne activation dependence of the recovery procesthe
easily feed into another gate element as input, so that elgnaximum amplitude of the recovery current, and pararieter
ments can be coupled into gate arrays implementing cOMcan be viewed either as a constant bias or as a time-
pounded logic operations. We now describe two specifiggependent external stimulation. The parameters here are cho-
implementations of this parallel computation architecture beésen 5o as to keep the dynamics completely chaadic (

Xs(N)=axy(n—1)—bx;(n—1)+c. (&N

low. =0.89,b=0.18,c=0.28,k=0.03). Now we will employ
three steps to implement our logical operations on the above
IV. IMPLEMENTATION OF PARALLEL COMPUTING BY system.
A TWO-DIMENSIONAL CHAOTIC NEURON MAP Step 1lnitialization of the state of the system{®;,X5q}

. . . z]g.nd addition of external inputs,
We obtain clearly defined logic gate response patterns, o

two logic gates in parallel, with a single two-dimensional Xlﬁxlo+xﬁ1(1)+xﬁ1(1),
(2D) chaotic element. Specifically we demonstrate the repre-
sentative example dbit-by-bit arithmetic additionThis in-  and likewise,
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TABLE VI. Necessary and sufficient conditions to be satisfied

PHYSICAL REVIEW E 65 036216

TABLE VII. Inital values X;9,X,0 and thresholds and x5

by a 2D chaotic element in order to implement the logical operavyielding the parallel logic operation ofor and AND, with §~0.7.

tionsAND andxoRr in parallel. Here variablg, is implementing the
XOR operation and variablg, is implementing theanD operation.

Initial state XOR AND
X10:X20 x1(n)=xj Xo(n)=<x3
X10t+ 01, X0+ 02 Xy(n) —x7 ~ 8y Xa(N)=<x3
X10F 281, X090+ 26, Xy (N)<xj} Xa(N) = X5 ~ &,
+x:(2)+x3(2
Xo— X201 Xin(2) +Xi(2).

Step 2 Chaotic evolution fon time steps, from the initial
state given above, via Eql).

Here the chaotic evolution takes place over ten stepsnize10 in
Table VI. Note thain=1, ... ,4 does not yield any suitable solu-
tion.

* *

X10 X20 X1 X2
1.8 1.7 0.44 1.11
1.4 1.65 0.38 1.07

It is necessary to have all the six conditions described
above to be satisfiesimultaneouslyto implement X,
=xoR(l4,l,) and XgutEAND(Il,Iz) in parallel, since the
mapping from (1,1,) to (X5, X5,) must hold for all combi-
nations of (4,l,). Conversely, when these conditions are
satisﬁed,xgutEXOR(I1,I2) and xgutzAND(Il,Iz) hold. That

Step 3 Threshold mechanism on the two variables to ob-s, these conditions aneecessary and sufficient for the par-

tain the two outputs, namely, the outpug, x2, (encoding
O; and O, in Table V) are given byx,=0 if x(n)<x;
Xou=1Xi(n) =X} if x;(n)>x". If x,,,=0 it encodes 0 and

if i~ &; it encodes 1.

allel logic operationamplementing bit-by-bit arithmetic op-
eration, namelyxor andAND. Similar considerations for the
other parallel logical operations can be straightforwardly for-
mulated.

A summary of the necessary and sufficient conditions to

Having laid out our three-step procedure, the next step ie satisfied for the parallelized bit-by-bit addition operation
to design our system in such a way that it yields the desire¢s given in Table VI. In the representative example discussed
input-to-output mapping defined by Table V, i.e., given ahere, we demand,=6,= & to be a common positive con-

multidimensional chaotic evolution function, we want to

stant, so that an output from one adder can directly be fed

have the free parameters to be consistent with the abov@to another adder as input, as noted earlier.

procedure and also achieve the required mapping.
So for the bit-by-bit addition example,, should yield
XOR(I1,15) andxgut should yieldanbp(l4,15,). There are four

In this neuronal model, suitabfablesolutions satisfying
the necessary and sufficient conditions tabulated in Table VI
can be found in darge region of state spaceOut of the

rows in Table V corresponding to the four possible combinaimany possible implementations, one should choose those

tions ofI4,l,. As thel/O relations are symmetric with re-
spect tol; andl, we can combine rows 2 and 3 in Table V
into a single case. So we need to consider the following.

Case 1Bothl 4, |, are O(row 1 in Table V} i.e., the initial
states of the variablex; and x, are X0+ 0+0=x44 and
Xo0t 0+ 0=X,q, respectively.

Case 20ne ofl4, I, is 0, the other 1row 2 or 3 in Table
V) i.e., the initial states of the variableg andx, are x4
+ 011t 0=X10+ 0+ 5;=Xp+ 61 and Xyt d5+0=Xo+0
+ 8,=Xogt 8, respectively.

Case 3Bothl; andl, are 1(row 4 in Table V}, i.e., the
initial states of the variableg; and x, are X;o+ 61+ &1
=Xq0+ 281 andX,g+ S+ 5,= X0+ 268,, respectively.

Say variablex; is implementing thexor operation and
variablex, is implementing thenD operation. Then for the
XOR operationXg,, in step 3 should be 0 for cases 1 and 3.

Consequently we demand thaf(n) <x7 when the initial
state isxq (i.e., case landx,o+ 26 (i.e., case B For case 2,
when the initial state i%,o+ 8;, X1(n) should bex} + &;, so
that after the thresholding actioq,; will be 8, yielding an
output of 1.

For theAND operation, implemented via the variable,

that give large responséise., yield larges) and those that lie
inside a wide basin in state space, in order to have enhanced
stability with respect to noise. Further, the evolution times
should be kept short. This enhances both the efficiency of the
operation and keeps errors from blowing up significantly.
Table VII lists a few specific numerical examples. For in-
stance, when the thresholds are sexjt 0.4 andx; ~1.0,

with 6~0.7, after an evolution over ten iteraté®., n=10

in Table VI) all the relevant gate responses are obtained par-
allel. Table VIII shows the variation of under noisy evolu-
tion and imprecise initial condition setting. Clearly the op-
eration is robust with respect to small fluctuations.

More generally, we can have different sets of inputs for
different operations. Letl¢,13) be the inputs to the first
variablex; and (13,13) be the inputs to the second variable
X,. Consider the representative examplexpfandx, imple-
menting theAND operation for two different sets of inputs
simultaneously. If we want the relevantiD logic relations
to hold for all sets of inputs we need the truth table given in
Table IX to hold.

Again we employ the following steps to implement our
logical operations.

Step 1 Initialization of the state of the system xqq, X,

X2, in step 3 should be 0 for both cases 1 and 2. So w&nd addition of external inputs,

demand thax,(n)<x5 when the initial state i%,, (i.e., case
1) andx,ot+ S (i.e., case 2 For case 3, when the initial state
iS Xo0+268,, Xo(n) should bex + 8,, so that after thresh-
olding X,,= &,, encoding an output of 1.

1y L o2y
X— X0+ Xin(1) +Xin (1),

wherex((i) encoded | [x¥(i)=0 if I,=0 andx (i)=& if
IL=1], with k=1, 2.
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TABLE VIII. Output values obtained for the parallel operations = TABLE X. Necessary and sufficient conditions to be satisfied by
XOR andAND, under noise, for the representative example of the 2Da chaotic element in order to implement the logical operatrois
neuronal system with inital states and thresholds given by the firsin parallel on two sets of inputs.
row of Table VII. The strength of noiggoth in the initial states and

in the evolution is given byz. In the case of output (.e., for input Initial state AND(17,13) AND(1%,13
(1,1) in xoR, input(0,1) [=(1,0)] in AND, and input(0,0) in xor and N .
AND) thex(n) values are well below the threshold. So under small X10:X20 xl(n)sxi x2(n)sxi
noise these states still remain below threshold, and one always ob-  X10.X20t &2 X1(n)=xj Xo(N)=<x;
tains output 0, as desired. The valueqf~ &, encoding 1, is X10:X20t 28 Xy (n) <X} Xa(N) = X5 ~ 8,
somewhat more sensitive to noise. Shown in the table are the values  Xjp+ 81,X2g X1 (N)<xj} Xa(N)<x3
6,%;!2) for a particular(generig noise realization, for the cases X109t 61,X20t 82 Xy(n)<xj Xa(N)<x3}
yielding an output of 1(namely, for inputs(0,1) [=(1,0] in xOR X107+ 61,X00F 255 Xy(n)<x3} Xo(N) = x5 ~ 8,
and input(1,2) in AND). Clearly they are all within an accuracy of X107 281, X0 X1(N) =X} ~ &, Xa(N)<x3}
0.02[12]. X190+ 201, %20t &2 Xy (N) —X] ~ &y Xo(n)=<x3
n 6&0(’)]% 5(A]N:g X10+ 251,X20+252 Xl(n)*x*~51 Xz(n)=X§+ 52
0 0.7037 0.7035 , .
0.001 0.7065 0.7054 rows 6 and 10 in Table IX into one case, etc. A summary of
0.01 0.7245 0.7219 the_condltlons to'be satisfied in order that me) opera}tlorj
be implemented in parallel for any two sets of inputs is given
in Table X.
Step 2 Chaotic evolution fon time steps, from the initial It is necessary to have all the conditions described above
state given above via Eql). to be satisfied simultaneously to implem@y=AnD(I7,13

Step 3 Threshold mechanism on the two variables to ob-and OZEAND(IZ,Ig) in parallel, since the mapping from
tain the two outputs, i.e., the output§,, x2, (encodingd;  (11,13,12,13) to (O,,0,) must hold for all combinations of
and O, in Table 1X). If x;(n)<x*, then 0;=0, and if 1], I3, 1%, 13. Conversely, when these conditions are satis-
x(n)>x¥ andx},=x(n)—x*=4;, thenO;=1. fied, O;=AND(I],13) and O,=AND(I,1%) hold for all 17,

In this representative example of implementing the 1%, If, |§. That is, these conditions are necessary and suffi-
operation in parallel for two distinct sets of inputs, namely,cient for parallely implementingaND for any two sets of
0,=AND(11,13) andO,=AND(13,13), the 16 rows in Table inputs. Similar considerations for the other parallel logical
IX corresponding to the 16 possible combinations for valueperations can be formulated straightforwardly.
of 13, 13, 12, 12 must hold true. As before, this reduces to  Now in this neuronal model, suitable solutions for the
nine distinct cases, as théO relations are symmetric with necessary and sufficient conditions tabulated in Tables IX
respect to exchange df, I3 and 12, 13, and so we can and X can be found. These exist aroung=0.5375, X5
combine for instance, rows 5 and 9 in Table IX into one case=1.0835,x7 =0.231, andx; =1.454, with 5=0.0115 and

n=20. Note, however, that the range of solutions is smaller

TABLE IX. The truth table forO,=aND(11,13) and O,=AND (and consequently, less robu#itan in the previous example
(13.1%), where (1,13) is the first set of inputs and {,15) the sec-  of parallelized bit-by-bit addition, as many more conditions
ond set of inputs. have to be satisfied simultaneously now than in the previous
case.

In summary, here we have doubled computing speeds, as
a single 2D chaotic element can act as two processors in
parallel, and thus we gain processors without increase in
physical size.

2
12 |
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V. PARALLEL LOGIC WITH A CHAOTIC LASER MODEL

Consider a chaotic Lorenz-like system, described by a set
of three coupled ordinary differential equations

X1=0(X2—X1),
Xo=1IX1—Xo—X1X3,

5(3:X1X2_bX3. (2)

PR PRPPRPPRPRPPPOOOOOOOO
PP RPPOO0OOCOORRLRRPLPRPLOOOO
PP OORFRPOORRLROORELROO
PORPRORPRORPRORPRORORORO
PP PP O0OO0OO0O0O0OO00O0O0O0O0O
POOORrROOOROOORrR OOO

It is known that there exists a correspondence between a
coherently pumped far-infrarg@IR) ammonia laser and the
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TABLE XI. Truth table of the output values, thg, x,, andxs TABLE XIlI. Values of initial state:x;q,Xsq,X30 @and thresholds
variables must encode in order to yield the logic response3;of xj ,x3 ,x3 for the three variableg,,x,,x3, respectively, yielding
=0R(l4,l,), O,=x0R(l4,l,), andOz=AND(l4,l,), respectively. the parallel logic operations @R, XOR, andAND, with §=1.0. Here
The outputs to the four possible input combination$,oindl, are  the chaotic evolution takes place ove+0.5.
shown.

X10 X20 X30 X3 X3 X3
e ©1 0 ©: ~1.9 8.3 —9.5 8.4 16.0 32.3
0,0 0 0 0 -1.8 7.9 —-10.0 8.5 16.4 32.6
0,1 1 1 0
1,0 1 1 0
1,1 1 0 1 Step 3 Threshold mechanism on the three variables at

time 7 to obtain the three outputs, i.e., the outpyls, X2,
_ x3, (encodingO;, O,, andOs, as in Table X). If the ith
Lorenz system above as follows: tkg variable corresponds variablex,(7)<x* , then theith outputO;=0, and ifx;(7)
- . . . . [l ’
to the Inor(;nahzelqi |(rj1vers]|cc12, arlld ib@ ?nl(éxz \éarltables toI >x* andx, = {x(7)—x*}~ 5, thenO;=1.
normalized amplitudes of thé electric field and atomic polar- ), ;¢ system, a large range of initial states and threshold

ization's, respectively. The three parameters for the COIT&; - 1ues satisfy the conditions of Table XII yielding tio,
sipgr;%mgthlR NH Ias?r moldel ar:w:ﬁ’ r=1gt, _anc(ijbb dXOR, andAND operations in parallel. For instance, two spe-
—J.co. TNeseé parameter values have been oblaned by Aic nymerical examples are shown in Table XIII. Again we

tailed comparison with experimen{ts9]. This laser operates . <idar 2 common value ot = 5,= 55= 6 for ease of con-

in the megahertz region. We will now use this 3D system % atenation of dynamical gates. Note that a continuous band

implement three operatlon.s in parallel. . of solutions exist between the two solutions shown in Table
As befor_e, the th_r ee va(lablexl(,_xz,xs) of this system at Xlll, all giving the relevant gate responses in parallel, with
various points of t'm.eT ygeld various gate °“tp‘4t5- As a the samed encoding the three outputs. Typically these solu-
specific representative _ illustration, I.Et us _'mplementtions are robust under fluctuations in the dynamics, initial
OR(l1,15), XOR(l4,15), andAND(l4,1,) logic gates in paral- states, and threshold settings. Also note that#there is as
lel on a pair of inputs i, | 2) . Implementation of other logic |4 a5 one-tenths of the typical periodicity of the system,
gates proceeds in a similar fa_sh|on._ and so the operation is fast. Further, the short evolution times
In our example .the three-dlmen5|onal state of the syster 4 large values of help to keep the operations robias in
at some appropriate t|m(_a- should encodeor(ly,15), the 2D example Table XIV displays the output from a typi-
XOR(l1,12), AND(ly,l5), i€, Xy(7) should encode cq| hoisy evolution of the elements. Clearly the output is
OR(I1,12), Xz(7) should encodexor(ly,l3), and Xs(7)  gjways well within acceptable tolerance.
should encod@nb(l4,15). We thus have to implement the | s then conceivable that choosing faster chaotic dynam-
input-output relations tabulated in Table XI. Since we seelﬁcs, such as ultrafast optical components operating in the
the parallel implementation @R, XOR f‘nd;\NDson acom-  gigahertz regime, will enhance computational speeds beyond
mon set of inputsl(;,1,) here, we havé =1l =1;=I, With  hose currently available. For instance, in principle, using
k=1,2. As in the 2D case, we again employ three steps t@emijconductor lasers or fiber lasers yielding chaotic
implement our logical operations. subnanosecond/subpicosecond pulg2g], one could per-
Step 1lnitialization of the state of the systemx@y,X20,  haps reach speeds of0ogic operations per second.
X309 and addition of external inputs,
X Xig 4 XE 4 X2 VI. DISCUSSION
Our aim was to construct general multipurpose program-
for variablesi = 1,2,3. Herex;, encodes input; andx;, en-  mable hardware out of chaotic elements. Further, we aimed
codes input,. As earlier,1, =0 corresponds ta\=0 and  to increase computational speeds through the exploitation of

=1 corresponds toxi‘;=5. parallel computing architectures that utilize the many dy-
Step 2 Chaotic evolution for timer, from the initial state namical states available to chaotic systems. The direct and
given above, via Eq2). flexible parallel implementation of the functions proposed

TABLE XIl. Necessary and sufficient conditions to be satisfied by a 3D chaotic laser in order to imple-
ment the logical operatiornsr, XOR, andAND in parallel. Here variablg, is implementing thedr operation,
variablex, is implementing thexor operation, and variable; is implementing thenD operation.

Initial state OR XOR AND
X101X20,X30 x1(7)=x] Xo(7)<X3 X3(7)=<X3
X10tF 01, X0 02, X307 83 X (1) — X7 ~ 6, Xo(7) = X5~ &, X3(7)<X3
X109+ 261, X200+ 285 , X301 255 X (7) =X~ 8, Xo(7) <X} X3(7) = X%~ &3
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TABLE XIV. Output values obtained for the parallel operations then need not be forced into unnatural patterns such as
OR, XOR, andAND, under noise, for the representative example oftransistor-transistor logic pulses but are allowed to operate
the laser system with initial states and thresholds given by the firsivith their natural dynamics to perform operations. This
row of Table XIIl. The strength of noiséoth in the initial states makes for possibly more robust system behavior.
and in the evolutionis given by 7. In the case of output Q.e., for In some sense the knowledge of the dynamics has allowed
input (1,2) in xoR, input (0,1) [=(1,0] in AND, and input(0,0) in  us to reverse engineer and obtain what must be done in order
OR, XOR, andanD) thex(7) values are well below the threshold. So, to select out the temporal patterns emulating the different
under small noise these states still remain below threshold, and orgates. The proposed metho@ghich constitute a nonfeed-
always obtains output 0, as desired. The valug.gf~ 5, encoding  back control, utilized as a programming schémace de-

1, is somewhat more sensitive to noise. Shown in the table are theigned, need no further run-time effort. For instance, here the
values&fgéigz), for a particular(generi¢ noise realization, for the same element can be made to operate as different gates by
cases yielding an output of (hamely, for input(0,1) [=(1,0)] in simply choosing a suitable threshold, which is made avail-
x0oR andor, and for input(1,1) in or andanp). Clearly they are all  able as a look-up table. The thresholding does not change the

within an accuracy of 0.05 aroung=1.0[12]. natural dynamics but operates as a resetting of the state of
the system.
7 50D S 88D oD It is not appropriate at this incipient stage to debate the
optimality of computing with chaos. The interesting infer-
0 0.999 1.019 0.984 0.996 ence one can draw at this point is the feasibility of chaos as
0.001 1.002 1.007 0.985 0.998 a candidate for direct and controlled computing and its evi-
0.01 1.007 0.961 0.975 0.973

dent potential. This is quite like the situation in the more
“mature” fields of DNA [8] and quantum computing9]
where too its still not clear whether these computing sys-
here can then serve as simple and cost effective key ingrediems, first presented adternate computing paradigmsan

ents of a computing system, for instance, serving flexibly aperform better than digital computetalthough they hold

the basis for bit-by-bit arithmetic addition, and as a basiagreat promisg[22]. In contrast to the DNA and quantum
component of computer memory. With these fundamental inparadigms, which are geared to handigecific problems
gredients in hand it is conceivable to build simple, fast, cossuited specially to themselves, we are aiming at a general-
effective, and general-purpose computing devices, which arpurpose machine. Further, chaos computing has an advantage
more flexible than wired hardware. (unlike, say DNA computing, which is limited by slow bio-

It is illuminating to contrast our use of chaotic elementslogical processedn that here one is quite free to design and
with the possible use of periodic elements on one hand, anexploit (almos} any fast dynamical system. So we can
random elements on the other. It is not possible to extract athoose from a wide variety of chaotic systems, ranging from
the differentlogic responses from theameelement in case fast electronic circuits to fast lasers, and this will have direct
of periodic components, as the temporal patterns are inherelevance for the operational speeds attainable in experimen-
ently very limited. So, periodic elements do not offer muchtal realizationq 23].
flexibility or versatility. Random elements on the other hand In summary, we have demonstrated the basic principles
have many different temporal sequences. But theyrae for the direct and flexible implementation of all basic logical
deterministicand so one cannot use themdesigncompo-  operations utilizing low dimensional chaos. Then we gener-
nents. Only chaotic dynamics enjoys both richness of tempoalized the concept to high dimensional chaotic systems and
ral behavior as well as determinism. Here we have showrlemonstrated the parallelism inherent in such systems. The
how one can select out temporal responses corresponding power of the scheme is evident when one notes that even a
different logic gate patterns from such dynamics, and thiswo-dimensional system, when utilized in the manner indi-
ability allows us to construct programmable ga2s]. cated heredoublescomputational speeds. It is conceivable

The basic idea here is not to expend effort and energyhen that such architectures may serve as flexible ingredients
trying to eliminate the complicated inherent dynamics, but toof a fast and cost effective general-purpose computing de-
exploit it instead. The intrinsic dynamics of our componentsvice.
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