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Flexible parallel implementation of logic gates using chaotic elements
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We demonstrate the basic principles for the direct and flexible implementation of all basic logical operations
utilizing low dimensional chaos. Then we generalize the concept to high dimensional chaotic systems, and
show the parallelism inherent in such systems. As a case study we implement the proposed parallel computing
architecture to obtain parallelized bit-by-bit addition with a two-dimensional chaotic neuronal and a three-
dimensional chaotic laser model.
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I. INTRODUCTION

A recurring theme of research into chaotic systems o
the last decade has been that chaos provides ‘‘flexibility’
the performance of natural systems and provides such
tems with a rich variety of behaviors that can be utilized
more versatile performance. In particular, attempts to bri
dynamics and computations@1–7# present a new direction in
harnessing chaos. For instance, the capability of dynam
systems to perform the fundamentalNOR logic has been suc
cessfully demonstrated recently@7#, and this indicates the
scope of building general-purpose machines from cha
processors.

The motivation for exploring chaos as a candidate
direct and controlled computing~as in endeavors such a
DNA @8# and quantum computing@9#! is to find new ways to
exploit physical phenomena that are well understood in
context of physics to do computations, i.e., to use new c
cepts of physics to build better computing devices. Our g
eral strategy here will be to exploit the determinism of d
namics on one hand, and its richness on the other.
determinism will allow us to ‘‘reverse engineer,’’ so to spea
and the richness of dynamical patterns will allow flexibili
and versatility in accomplishing all the fundamental ope
tions.

The basic components of computer architecture today
the logicalAND, OR, NOT, andXOR ~exclusiveOR! operations,
from which we can directly obtain basic operations like b
by-bit addition and memory@10#. These operations act o
two inputsI 1 and I 2 ~for AND, OR, andXOR! or one inputI
~in case ofNOT! and outputs a signalO. The logical opera-
tions are defined by patterns of input-to-output mapping r
resented by the truth table in Table I. Now all the abov
mentioned gates can be constructed by combining theNOR

operation proposed in@7#. For example,AND can be realized
by AND~X,Y!5NOR„NOR~X,Y!, NOR~X,Y!… and XOR~X,Y!
5NOR„NOR~NOR„X,NOR~X,Y!…!, NOR~NOR„NOR~X,Y!,Y…!….
Clearly though, this conversion process is inefficient in co
parison with direct implementation, considering perha
such fundamental operations may be performed a large n
ber of times. So the direct and flexible implementations
gates is useful and could prove very cost effective. Our pr
lem then is to design chaotic elements that yield the app
1063-651X/2002/65~3!/036216~9!/$20.00 65 0362
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priate outputs for the different fundamental gates for all p
sible sets of inputs.

Towards this aim, in this work we first show thedirect
and flexible implementationof all these logical operations
utilizing low dimensional chaos. Then we give details of t
general concept and specific implementation of paralleli
logic using high dimensional chaotic elements.

The organization of this paper is as follows: In Sec. II w
demonstrate the basic principles of obtaining different lo
operations and implement these on one-dimensional cha
maps. Section III outlines the generalization to multidime
sional chaotic systems and the parallelism inherent in s
systems. Section IV gives a specific implementation usin
two-dimensional chaotic neuronal map and Sec. V utilize
three-dimensional chaotic laser model. Finally Sec. VI d
cusses and summarizes the results.

II. BASIC LOGIC OPERATIONS WITH A CHAOTIC MAP

Here we will endeavor to obtain clearly definedAND, OR,
NOT, and XOR gate response patterns with a single chao
element. These are the necessary and sufficient ingredien
the most basic components to build a computer. Our te
nique is simple and direct, and is targeted at achieving u
versal general purpose computing, rather than a narro
specialized problem domain.

Consider a single chaotic element whose state is re
sented by a valuex, as ourchaotic chipor chaotic processor.
The state of the element evolves according to some dyna
cal rule exhibiting chaos. For instance, the updates of
state of the element from timen to n11 may be well de-

TABLE I. The truth table of the basic logic operations. Colum
1 showsAND(I 1 ,I 2). column 2 showsOR(I 1 ,I 2), and column 3
showsXOR(I 1 ,I 2), where the two inputs areI 1 and I 2 . Column 4
shows theNOT gate, where there is one input,I.

I 1 I 2 AND OR XOR I NOT

0 0 0 0 0 0 1
0 1 0 1 1 1 0
1 0 0 1 1
1 1 1 1 0
©2002 The American Physical Society16-1
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scribed by a map, i.e.,xn115 f (xn), wheref is a nonlinear
functionchosen to obtain chaotic dynamics.

Now this element receives two inputs~for AND, OR, and
XOR! or one input~in case ofNOT! and outputs a signal. In
our scheme, the inputs to the chaotic elements are denote
xin

1 , xin
2 ,... and theaction of the inputs is to stimulate~kick!

the state of the system as follows:

x→x1xin
1 1xin

2 1¯ ,

wherexin
i 50 if I i50 andxin

i 5d.0 if I i51.
The outputsfrom the chaotic element are obtained by

simple threshold mechanism. After suitable time if the
evolved state variablef (x) is larger than a prescribed thres
old x* , i.e., f (x).x* , the state variable is reset to thresho
value x* emitting the excess amountxout5$ f (x)2x* %. If
the value of the variable is under the critical valuex* , i.e.,
f (x)<x* , there is no response from the element andxout
50.

This emitted excessxout encodes the output of the oper
tion: whenxout50 it encodes 0 and whenxout;d it encodes
1, whered is a prescribed positive constant@11#. So if the
variablex of the evolved state of the chaotic element is low
than threshold it yields 0, i.e.,O[0. If the variablex has a
value greater than threshold, with the excess amount b
;d, the output has value 1, i.e.,O[1 @12#.

Setting the threshold value and initial state of the syst
so that it directly gives the desired response~i.e., outputs the
desired excessxout! constitutesprogrammingthe gates.

In our implementation we demand that theinput and out-
put have equivalent definitions~i.e., one unit is the same
quantity for input and output!, as well as among variou
logical operations. This requires that constantd assumes the
same value throughout a network, and this will allow t
output of one gate element to easily couple to another g
element as input, so that gates can be ‘‘wired’’ directly in
gate arrays implementing compounded logic operations.

The number of inputs and outputs for each chaotic e
ment depends on the specific operation. Figure 1 depicts
three types of input/output configurations for a chaotic e
ment. The circles in the figures represent chaotic eleme
For example, Fig. 1~a! shows a configuration with two input
I 1 and I 2 , and one outputO. This configuration is used fo
the BooleanAND, OR, andXOR operations~see Table I!. Fig-
ure 1~b! has one inputI and one outputO for theNOT opera-
tion. Figure 1~c! has two inputsI 1 ,I 2 and two outputs

FIG. 1. Three types of input/output configurations:~a! logical
AND, OR, and XOR; ~b! logical NOT; ~c! bit-by-bit arithmetic addi-
tion.
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O1 ,O2 , and it is the configuration necessary for bit-by-b
arithmetic addition~see Table V in Sec. IV for truth table!.

All the fundamental logic gate operations involve the fo
lowing steps,

~1! Initialization and external inputs,
x→x01xin

1 1xin
2 for theAND, OR, andXOR operations, and

x→x01xin for the NOT operation,
wherex0 is the initial state of the system, andxin50 when
I 50 andxin5d when I 51.

~2! Chaotic update, i.e.,x→ f (x), wheref (x) is a chaotic
function.

~3! Threshold mechanism to obtain outputxout is

xout50 if f ~x!<x* , and

xout5$ f ~x!2x* % if f ~x!.x* ,

wherex* is the threshold. As shown in Table II this is inte
preted asO50 if xout50 andO51 if xout;d.

In order to obtain the desired input-output response
need to satisfy the conditions enumerated in Table III for
different gates. Note that the symmetry of inputs reduces
four conditions in the truth table of Table I to three distin
conditions, with rows 2 and 3 of Table I leading to conditio
2 in Table III.

For instance, for theAND gate implementation the thre
conditions arise as follows: Condition 1 comes from row 1
Table I which hasI 15I 250. This impliesxin

1 5xin
2 50, and so

the initial state after inputs remains atx0 . After chaotic evo-
lution the state isf (x0). Since the output of anAND gate for
inputs ~0,0! is 0, xout should be 0, i.e.,f (x0)<x* .

Condition 2 comes from rows 2 and 3 of Table I, whic
has eitherI 1 or I 2 to be one. This implies eitherxin

1 5d and
xin

2 50 or xin
1 50 andxin

2 5d. So the initial state after inputs
now is x01d, and the state after chaotic evolution isf (x0
1d). Since the output of anAND gate for inputs~1,0! and
~0,1! is 0, xout should again be 0, i.e.,f (x0)<x* .

Condition 3 comes from row 4 of Table I, which hasI 1

5I 251. This impliesxin
1 5xin

2 5d and so, the initial state
after inputs isx012d. After chaotic evolution one then ha
statef (x012d). Since the output of anAND gate for inputs
~1,1! is 1, xout should now bed, i.e., @ f (x012d)2x* #;d.

All the three conditions have to be satisfiedsimulta-
neouslyto implement theAND gate, as the mapping from
(xin

1 ,xin
2 ) to xout must hold for all combinations of (xin

1 ,xin
2 ).

Conversely, when all three conditions are satisfi
xout[AND(I 1 ,I 2) holds. That is, these conditions are nece

TABLE II. The correspondence between actual input and o
put, designated asxin and xout , respectively, in the text and thei
interpreted values. Here outputO50 represents false in a Boolea
operation and 0 in bit-by-bit addition, andO51 represents true in a
Boolean operation, and 1 in bit-by-bit addition.

InterpretedI /O Actual I /O

0 0
1 d
6-2



FLEXIBLE PARALLEL IMPLEMENTATION OF LOGIC . . . PHYSICAL REVIEW E 65 036216
TABLE III. Necessary and sufficient conditions to be satisfied by a chaotic element in order to implement the logical operationsAND, OR,
XOR, andNOT.

Operation AND OR XOR NOT

Condition 1 f (x0)<x* f (x0)<x* f (x0)<x* f (x0)2x* ;d
Condition 2 f (x01d)<x* f (x01d)2x* ;d f (x01d)2x* ;d f (x01d)<x*
Condition 3 f (x012d)2x* ;d f (x012d)2x* ;d f (x012d)<x*
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sary and sufficient for implementingAND. Similarly, one can
obtain conditions forOR, XOR, andNOT.

So given a dynamicsf (x) corresponding to the physica
device in actual implementation, one must find values
threshold and initial state satisfying the conditions deriv
from the truth table to be implemented.

Here is a numerical example of the basic procedure
out above. As a representative chaotic function, we takef (x)
to be the prototypical logistic map: a map known to be
widespread relevance to physical and biological chaotic p
nomena,

f ~x!54x~12x!,

wherexP@0,1#. Select the constantd, common to both input
and output and to all logical gates to be1

4. The following
Table IV shows the initialx0 and thresholdx* , which satisfy
the conditions in Table III. For instance, forAND, selecting
x050 andx* 53/4 satisfies the three conditions in Table
as follows:

f ~x0!5 f ~0!50<x* ~53/4!,

f ~x01d!5 f ~1/4!50<x* ~53/4!,

f ~x012d!2x* 5 f ~1/2!23/45123/451/45d.

Further, bit-by-bit arithmetic addition, the most fund
mental form of arithmetic operation, is constructed fromXOR

andAND gates. Other types of arithmetic operations can th
easily be performed using this basic addition or a sim
operation. For example, addition of larger numbers~e.g., ad-
dition of two 32-bit numbers! can be carried out by extend
ing the bit-by-bit operation to a higher number of bits. Su
traction can be done as addition of the complemen
numbers. Multiplication can be achieved as repeated add
or its variations; similarly, division can be done as repea
subtraction. Further, using logical operations such asAND,
computer memory based on integrated circuits can be c
structed. Such memory architecture is based on flip flo
which in turn are built by combining logical gates@10#.

TABLE IV. Numeric example of implementation of the logica
operationsAND, OR, XOR, andNOT, with d5

1
4 .

Operation AND OR XOR NOT

x0 0 1
8

1
4

1
2

x* 3
4

11
16

3
4

3
4
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In summary, we have given a direct implementation of
the basic logic gates using asingle chaotic element, by
merely changing the threshold and the initial state@13#. This
feature can be exploited to obtain programmable hardw
i.e., to obtain different gate arrays, on demand, from
same set of chaotic processors, exploiting the fact that
chaotic element can act as different gates by simply chang
the threshold parameter and initial state, which is p
grammed information~or the ‘‘software’’!.

Note thatnonlinearity in the processing units is clearl
necessary for various Boolean implementations. The co
plex relationship between input~s! and output~s! eliminates
the possibility of any linear function mimicking all of th
Boolean operations. Only sufficient richness of dynami
behavior can ensure the capacity to getall the different ap-
plications from thesameprocessing units. Here we coul
readily ‘‘control’’ the chaotic map to yield the dynamica
response necessary for the various desired applications.

Now we will demonstrate how high dimensional chao
systems can be exploited for parallel computing, a key inf
mation processing technology for increasing the effect
speed of computing. We show that a single chaotic dyna
cal element of dimensionN can effectively serve as a paralle
processor ofN inputs. We exploit the dimensionality of thes
systems and the richness of temporal patterns inheren
their dynamics to obtain parallelized operations. The sp
costs, i.e., the number of processors necessary, need not
scale up with the number of operations in such systems,
effecting reduction of computational effort.

III. GENERALIZATION TO MULTIDIMENSIONAL
SYSTEMS

Most complex physical systems have many degrees
freedom and are characterized by many dimensions, with
system’s physical size very often not scaling with this dime
sionality of the dynamical system, i.e., typically, thedimen-
sionality of such systems can be verylarge even if thespa-
tial extent of the device is very small. The evolving state of a
system at any point of time is characterized by many co
ponents, each described by a dynamical variable. For
stance, certain neuronal cells can be realistically descri
by 120 variables@14,15#. Our approach now will exploit the
variety of multidimensional dynamical states available in
single chaotic element to implement parallel computing~see
Fig. 2!.

The objective here is to obtainN clearly defined logic gate
response patterns from theN components characterizing th
state of anN-dimensional system. This enables us to imp
ment N operations in parallel with asingle N-dimensional
6-3
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SINHA, MUNAKATA, AND DITTO PHYSICAL REVIEW E 65 036216
chaotic element. Thus one can gain processing power w
out having to add more elements@16#. Below we generalize
the approach introduced in Sec. II to multidimensions.

Specifically our processor now is anN-dimensional cha-
otic element, whose state is characterized byx
[(x1 ,x2 ,...,xN). As before, theM inputs I1

i ,I 2
i ,...,I M

i to the
i th variable of the chaotic element are encoded through
ues xin

1 ( i ),xin
2 ( i ),...,xin

M( i ). The action of the inputs is to
stimulate~kick! the state of the system as follows:

xi→xi1xin
1 ~ i !1xin

2 ~ i !1¯1xin
M~ i !

with i 51, . . . ,N for the N state variables. As before,xin
k ( i )

50 whenI k
i 50 andxin

k ( i )5d, whenI k
i 51.

The outputsfrom the chaotic element are again obtain
by the simple threshold mechanism. After timet, if the
evolved state variablexi(t) is larger than a prescribe
thresholdxi* , i.e., xi(t).xi* , the state variable is reset t
threshold valuexi* emitting the excess amountxout

i 5$xi(t)
2xi* %. If the value of the variable is under the critical valu
xi* , i.e., xi(t)<xi* , there is no response from the eleme
and xout

i 50. As before,xout
i 50 encodes 0 andxout

i ;d i en-
codes 1.

Setting the evolution timet, threshold values, and initia
state of the system so that it directly gives the desired
sponse~i.e., outputs the desired excessesxout

1 , xout
2 ,...,xout

N !
again constitutes programming the gates. We also dem
that the input and output have equivalent definitions and
terpretations i.e., one unit is the same quantity for input a
output. This will allow the output of one gate element
easily feed into another gate element as input, so that
ments can be coupled into gate arrays implementing c
pounded logic operations. We now describe two spec
implementations of this parallel computation architecture
low.

IV. IMPLEMENTATION OF PARALLEL COMPUTING BY
A TWO-DIMENSIONAL CHAOTIC NEURON MAP

We obtain clearly defined logic gate response patterns
two logic gates in parallel, with a single two-dimension
~2D! chaotic element. Specifically we demonstrate the rep
sentative example ofbit-by-bit arithmetic addition. This in-

FIG. 2. Schematic figure of parallelism achievable through h
dimensional chaotic systems. Note that high dimensionality refl
the complexityof the dynamics rather than actual physical size.
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volves two logic operations,AND and XOR, for which there
are two inputs, i.e.,M52 in the general scenario give
above. We perform these operations in parallel with the tw
dimensional chaotic neuron.

The two inputs to the 2D chaotic processor are denoted
„xin

1 (1),xin
2 (1)… and „xin

1 (2),xin
2 (2)… for the two variablesx1

andx2 , respectively. Setting the threshold values and ini
state of the system so that it directly gives the desired
sponse~i.e., outputs the desired excessesxout

1 andxout
2 ! con-

stitutes designing the gates.
Bit-by-bit addition operates on two-inputsI 1 , I 2 and

yields two outputsO1 , O2 , with O1[XOR(I 1 ,I 2) being the
first ~rightmost! digit of the sum andO2[AND(I 1 ,I 2) being
the carry of the answer to the next digit~see Table V!. So the
inputs to the two variables$x1 ,x2% are the same, namely
I 1

15I 1
25I 1 and I 2

15I 2
25I 2 here.

The actual input, designated asxin
k ( i ) ~with k51,2 andi

51,2! and the actual output, designated asxout
i ( i 51,2) will

be interpreted as follows:xin
k ( i )50 when I k

i 50 andxin
k ( i )

5d1 when I k
i 51. OutputOi is 0 whenxout

i 50, andOi is 1
whenxout

i ;d i . In our representative example, we will loo
for solutions adhering to the stringent conditionsd15d2
5d ~but this need not be the case, in general!.

The two-dimensional model for biological neurons we f
cus on is given by@17#

x1~n!5$x1~n21!%2 exp$x2~n21!2x1~n21!%1k,

x2~n!5ax2~n21!2bx1~n21!1c. ~1!

This map displays markedly neuronlike dynamics and w
found to agree qualitatively with experiments@18#. Heren is
the discrete time index, variablex1 is related to an instanta
neous membrane potential of the neuron and the variablx2
is equivalent to a recovery current. The model has four
rameters:a determines the time constant of reactivation,b
the activation dependence of the recovery process,c the
maximum amplitude of the recovery current, and parametk
can be viewed either as a constant bias or as a ti
dependent external stimulation. The parameters here are
sen so as to keep the dynamics completely chaotica
50.89,b50.18,c50.28,k50.03). Now we will employ
three steps to implement our logical operations on the ab
system.

Step 1. Initialization of the state of the system to$x10,x20%
and addition of external inputs,

x1→x101xin
1 ~1!1xin

2 ~1!,

and likewise,

h
ts

TABLE V. The truth table of bit-by-bit arithmetic addition.

I 1 I 2 O1 O2

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1
6-4
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x2→x201xin
1 ~2!1xin

2 ~2!.

Step 2. Chaotic evolution forn time steps, from the initial
state given above, via Eq.~1!.

Step 3. Threshold mechanism on the two variables to o
tain the two outputs, namely, the outputsxout

1 , xout
2 ~encoding

O1 and O2 in Table V! are given byxout
i 50 if xi(n)<xi* ;

xout
i 5$xi(n)2xi* % if xi(n).xi* . If xout

i 50 it encodes 0 and
if xout

i ;d i it encodes 1.
Having laid out our three-step procedure, the next ste

to design our system in such a way that it yields the des
input-to-output mapping defined by Table V, i.e., given
multidimensional chaotic evolution function, we want
have the free parameters to be consistent with the ab
procedure and also achieve the required mapping.

So for the bit-by-bit addition example,xout
1 should yield

XOR(I 1 ,I 2) andxout
2 should yieldAND(I 1 ,I 2). There are four

rows in Table V corresponding to the four possible combi
tions of I 1 ,I 2 . As the I /O relations are symmetric with re
spect toI 1 and I 2 we can combine rows 2 and 3 in Table
into a single case. So we need to consider the following

Case 1. Both I 1 , I 2 are 0~row 1 in Table V! i.e., the initial
states of the variablesx1 and x2 are x1010105x10 and
x2010105x20, respectively.

Case 2. One ofI 1 , I 2 is 0, the other 1~row 2 or 3 in Table
V! i.e., the initial states of the variablesx1 and x2 are x10
1d1105x10101d15x101d1 and x201d2105x2010
1d25x201d2 , respectively.

Case 3. Both I 1 and I 2 are 1~row 4 in Table V!, i.e., the
initial states of the variablesx1 and x2 are x101d11d1
5x1012d1 andx201d21d25x2012d2 , respectively.

Say variablex1 is implementing theXOR operation and
variablex2 is implementing theAND operation. Then for the
XOR operation,xout

i in step 3 should be 0 for cases 1 and
Consequently we demand thatx1(n)<x1* when the initial

state isx10 ~i.e., case 1! andx1012d ~i.e., case 3!. For case 2,
when the initial state isx101d1 , x1(n) should bex1* 1d1 , so
that after the thresholding actionxout will be d1 , yielding an
output of 1.

For theAND operation, implemented via thex2 variable,
xout

2 in step 3 should be 0 for both cases 1 and 2. So
demand thatx2(n)<x2* when the initial state isx20 ~i.e., case
1! andx201d ~i.e., case 2!. For case 3, when the initial stat
is x2012d2 , x2(n) should bex2* 1d2 , so that after thresh
olding xout[d2 , encoding an output of 1.

TABLE VI. Necessary and sufficient conditions to be satisfi
by a 2D chaotic element in order to implement the logical ope
tionsAND andXOR in parallel. Here variablex1 is implementing the
XOR operation and variablex2 is implementing theAND operation.

Initial state XOR AND

x10,x20 x1(n)<x1* x2(n)<x2*
x101d1 ,x201d2 x1(n)2x1* ;d1 x2(n)<x2*

x1012d1 ,x2012d2 x1(n)<x1* x2(n)2x2* ;d2
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It is necessary to have all the six conditions describ
above to be satisfiedsimultaneouslyto implement xout

i

[XOR(I 1 ,I 2) and xout
2 [AND(I 1 ,I 2) in parallel, since the

mapping from (I 1 ,I 2) to (xout
1 ,xout

2 ) must hold for all combi-
nations of (I 1 ,I 2). Conversely, when these conditions a
satisfied,xout

1 [XOR(I 1 ,I 2) and xout
2 [AND(I 1 ,I 2) hold. That

is, these conditions arenecessary and sufficient for the pa
allel logic operationsimplementing bit-by-bit arithmetic op-
eration, namely,XOR andAND. Similar considerations for the
other parallel logical operations can be straightforwardly f
mulated.

A summary of the necessary and sufficient conditions
be satisfied for the parallelized bit-by-bit addition operati
is given in Table VI. In the representative example discus
here, we demandd15d25d to be a common positive con
stant, so that an output from one adder can directly be
into another adder as input, as noted earlier.

In this neuronal model, suitablestablesolutions satisfying
the necessary and sufficient conditions tabulated in Table
can be found in alarge region of state space. Out of the
many possible implementations, one should choose th
that give large responses~i.e., yield larged! and those that lie
inside a wide basin in state space, in order to have enhan
stability with respect to noise. Further, the evolution tim
should be kept short. This enhances both the efficiency of
operation and keeps errors from blowing up significan
Table VII lists a few specific numerical examples. For i
stance, when the thresholds are set atx1* ;0.4 andx2* ;1.0,
with d;0.7, after an evolution over ten iterates~i.e., n510
in Table VI! all the relevant gate responses are obtained p
allel. Table VIII shows the variation ofd under noisy evolu-
tion and imprecise initial condition setting. Clearly the o
eration is robust with respect to small fluctuations.

More generally, we can have different sets of inputs
different operations. Let (I 1

1,I 2
1) be the inputs to the firs

variablex1 and (I 1
2,I 2

2) be the inputs to the second variab
x2 . Consider the representative example ofx1 andx2 imple-
menting theAND operation for two different sets of input
simultaneously. If we want the relevantAND logic relations
to hold for all sets of inputs we need the truth table given
Table IX to hold.

Again we employ the following steps to implement o
logical operations.

Step 1. Initialization of the state of the system tox10, x20
and addition of external inputs,

x→xi01xin
1 ~ i !1xin

2 ~ i !,

wherexin
k ( i ) encodesI k

i @xin
k ( i )50 if I k

i 50 andxin
k ( i )5d i if

I k
i 51#, with k51, 2.

-
TABLE VII. Inital values x10,x20 and thresholdsx1* and x2*

yielding the parallel logic operation ofXOR andAND, with d;0.7.
Here the chaotic evolution takes place over ten steps, i.e.,n510 in
Table VI. Note thatn51, . . . ,4 does not yield any suitable solu
tion.

x10 x20 x1* x2*

1.8 1.7 0.44 1.11
1.4 1.65 0.38 1.07
6-5
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Step 2. Chaotic evolution forn time steps, from the initial
state given above via Eq.~1!.

Step 3. Threshold mechanism on the two variables to o
tain the two outputs, i.e., the outputsxout

1 , xout
2 ~encodingO1

and O2 in Table IX!. If xi(n)<xi* , then Oi50, and if
xi(n).xi* andxout

1 5xi(n)2xi* 5d i , thenOi51.
In this representative example of implementing theAND

operation in parallel for two distinct sets of inputs, name
O1[AND(I 1

1,I 2
1) andO2[AND(I 1

2,I 2
1), the 16 rows in Table

IX corresponding to the 16 possible combinations for valu
of I 1

1, I 2
1, I 1

2, I 2
2 must hold true. As before, this reduces

nine distinct cases, as theI /O relations are symmetric with
respect to exchange ofI 1

1, I 2
1 and I 1

2, I 2
1, and so we can

combine for instance, rows 5 and 9 in Table IX into one ca

TABLE IX. The truth table forO1[AND(I 1
1,I 2

1) and O2[AND

(I 1
2,I 2

2), where (I 1
1,I 2

1) is the first set of inputs and (I 1
2,I 2

2) the sec-
ond set of inputs.

I 1
1 I 2

1 I 1
2 I 2

2 O1 O2

0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 1
0 1 0 0 0 0
0 1 0 1 0 0
0 1 1 0 0 0
0 1 1 1 0 1
1 0 0 0 0 0
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 0 1
1 1 0 0 1 0
1 1 0 1 1 0
1 1 1 0 1 0
1 1 1 1 1 1

TABLE VIII. Output values obtained for the parallel operation
XOR andAND, under noise, for the representative example of the
neuronal system with inital states and thresholds given by the
row of Table VII. The strength of noise~both in the initial states and
in the evolution! is given byh. In the case of output 0„i.e., for input
~1,1! in XOR, input ~0,1! @[~1,0!# in AND, and input~0,0! in XOR and
AND… the x(n) values are well below the threshold. So under sm
noise these states still remain below threshold, and one always
tains output 0, as desired. The value ofxout;d, encoding 1, is
somewhat more sensitive to noise. Shown in the table are the va
d logic

(I 1 ,I 2) for a particular ~generic! noise realization, for the case
yielding an output of 1„namely, for inputs~0,1! @[~1,0!# in XOR

and input~1,1! in AND…. Clearly they are all within an accuracy o
0.02 @12#.

h dXOR
(0,1) dAND

(1,1)

0 0.7037 0.7035
0.001 0.7065 0.7054
0.01 0.7245 0.7219
03621
-
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rows 6 and 10 in Table IX into one case, etc. A summary
the conditions to be satisfied in order that theAND operation
be implemented in parallel for any two sets of inputs is giv
in Table X.

It is necessary to have all the conditions described ab
to be satisfied simultaneously to implementO1[AND(I 1

1,I 2
1)

and O2[AND(I 1
2,I 2

2) in parallel, since the mapping from
(I 1

1,I 2
1,I 1

2,I 2
2) to (O1 ,O2) must hold for all combinations o

I 1
1, I 2

1, I 1
2, I 2

2. Conversely, when these conditions are sa
fied, O1[AND(I 1

1,I 2
1) and O2[AND(I 1

2,I 2
2) hold for all I 1

1,
I 2

1, I 1
2, I 2

2. That is, these conditions are necessary and su
cient for parallely implementingAND for any two sets of
inputs. Similar considerations for the other parallel logic
operations can be formulated straightforwardly.

Now in this neuronal model, suitable solutions for th
necessary and sufficient conditions tabulated in Tables
and X can be found. These exist aroundx1050.5375,x20

51.0835,x1* 50.231, andx2* 51.454, with d50.0115 and
n520. Note, however, that the range of solutions is sma
~and consequently, less robust! than in the previous exampl
of parallelized bit-by-bit addition, as many more conditio
have to be satisfied simultaneously now than in the previ
case.

In summary, here we have doubled computing speeds
a single 2D chaotic element can act as two processor
parallel, and thus we gain processors without increase
physical size.

V. PARALLEL LOGIC WITH A CHAOTIC LASER MODEL

Consider a chaotic Lorenz-like system, described by a
of three coupled ordinary differential equations

ẋ15s~x22x1!,

ẋ25rx12x22x1x3 ,

ẋ35x1x22bx3 . ~2!

It is known that there exists a correspondence betwee
coherently pumped far-infrared~FIR! ammonia laser and the

st

ll
b-

es

TABLE X. Necessary and sufficient conditions to be satisfied
a chaotic element in order to implement the logical operationsAND

in parallel on two sets of inputs.

Initial state AND(I 1
1,I 2

1) AND(I 1
2,I 2

2)

x10,x20 x1(n)<x1* x2(n)<x2*
x10,x201d2 x1(n)<x1* x2(n)<x2*

x10,x2012d2 x1(n)<x1* x2(n)2x2* ;d2

x101d1 ,x20 x1(n)<x1* x2(n)<x2*
x101d1 ,x201d2 x1(n)<x1* x2(n)<x2*

x101d1 ,x2012d2 x1(n)<x1* x2(n)2x2* ;d2

x1012d1 ,x20 x1(n)2x1* ;d1 x2(n)<x2*
x1012d1 ,x201d2 x1(n)2x1* ;d1 x2(n)<x2*

x1012d1 ,x2012d2 x1(n)2x* ;d1 x2(n)5x2* 1d2
6-6
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Lorenz system above as follows: thex3 variable corresponds
to the normalized inversion, and thex1 and x2 variables to
normalized amplitudes of the electric field and atomic pol
izations, respectively. The three parameters for the co
sponding FIR NH3 laser model ares52, r 515, and b
50.25. These parameter values have been obtained by
tailed comparison with experiments@19#. This laser operates
in the megahertz region. We will now use this 3D system
implement three operations in parallel.

As before, the three variables (x1 ,x2 ,x3) of this system at
various points of timet yield various gate outputs. As
specific representative illustration, let us impleme
OR(I 1 ,I 2), XOR(I 1 ,I 2), andAND(I 1 ,I 2) logic gates in paral-
lel on a pair of inputs (I 1 ,I 2). Implementation of other logic
gates proceeds in a similar fashion.

In our example the three-dimensional state of the sys
at some appropriate timet should encodeOR(I 1 ,I 2),
XOR(I 1 ,I 2), AND(I 1 ,I 2), i.e., x1(t) should encode
OR(I 1 ,I 2), x2(t) should encodeXOR(I 1 ,I 2), and x3(t)
should encodeAND(I 1 ,I 2). We thus have to implement th
input-output relations tabulated in Table XI. Since we se
the parallel implementation ofOR, XOR, andAND on a com-
mon set of inputs (I 1 ,I 2) here, we haveI k

15I k
25I k

35I k , with
k51,2. As in the 2D case, we again employ three steps
implement our logical operations.

Step 1. Initialization of the state of the system tox10,x20,
x30 and addition of external inputs,

x→xi01xin
1 1xin

2

for variablesi 51,2,3. Herexin
1 encodes inputI 1 andxin

2 en-
codes inputI 2 . As earlier,I k50 corresponds toxin

k 50 and
I k51 corresponds toxin

k 5d.
Step 2. Chaotic evolution for timet, from the initial state

given above, via Eq.~2!.

TABLE XI. Truth table of the output values, thex1 , x2 , andx3

variables must encode in order to yield the logic responses ofO1

[OR(I 1 ,I 2), O2[XOR(I 1 ,I 2), and O3[AND(I 1 ,I 2), respectively.
The outputs to the four possible input combinations ofI 1 andI 2 are
shown.

I 1 ,I 2 O1 O2 O3

0,0 0 0 0
0,1 1 1 0
1,0 1 1 0
1,1 1 0 1
03621
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Step 3. Threshold mechanism on the three variables
time t to obtain the three outputs, i.e., the outputsxout

1 , xout
2 ,

xout
3 ~encodingO1 , O2 , andO3 , as in Table XI!. If the i th

variablexi(t)<xi* , then thei th outputOi[0, and if xi(t)
.xi* andxout

i 5$xi(t)2xi* %;d i , thenOi[1.
In this system, a large range of initial states and thresh

values satisfy the conditions of Table XII yielding theOR,

XOR, andAND operations in parallel. For instance, two sp
cific numerical examples are shown in Table XIII. Again w
consider a common value ofd15d25d35d for ease of con-
catenation of dynamical gates. Note that a continuous b
of solutions exist between the two solutions shown in Ta
XIII, all giving the relevant gate responses in parallel, w
the samed encoding the three outputs. Typically these so
tions are robust under fluctuations in the dynamics, ini
states, and threshold settings. Also note that thet here is as
low as one-tenths of the typical periodicity of the syste
and so the operation is fast. Further, the short evolution tim
and large values ofd help to keep the operations robust~as in
the 2D example!. Table XIV displays the output from a typi
cal noisy evolution of the elements. Clearly the output
always well within acceptable tolerance.

It is then conceivable that choosing faster chaotic dyna
ics, such as ultrafast optical components operating in
gigahertz regime, will enhance computational speeds bey
those currently available. For instance, in principle, us
semiconductor lasers or fiber lasers yielding chao
subnanosecond/subpicosecond pulses@20#, one could per-
haps reach speeds of 1010 logic operations per second.

VI. DISCUSSION

Our aim was to construct general multipurpose progra
mable hardware out of chaotic elements. Further, we aim
to increase computational speeds through the exploitatio
parallel computing architectures that utilize the many d
namical states available to chaotic systems. The direct
flexible parallel implementation of the functions propos

TABLE XIII. Values of initial state:x10,x20,x30 and thresholds
x1* ,x2* ,x3* for the three variablesx1 ,x2 ,x3 , respectively, yielding
the parallel logic operations ofOR, XOR, andAND, with d51.0. Here
the chaotic evolution takes place overt50.5.

x10 x20 x30 x1* x2* x3*

21.9 8.3 29.5 8.4 16.0 32.3
21.8 7.9 210.0 8.5 16.4 32.6
ple-
TABLE XII. Necessary and sufficient conditions to be satisfied by a 3D chaotic laser in order to im
ment the logical operationsOR, XOR, andAND in parallel. Here variablex1 is implementing theOR operation,
variablex2 is implementing theXOR operation, and variablex3 is implementing theAND operation.

Initial state OR XOR AND

x10,x20,x30 x1(t)<x1* x2(t)<x2* x3(t)<x3*
x101d1 ,x201d2 ,x301d3 x1(t)2x1* ;d1 x2(t)2x2* ;d2 x3(t)<x3*

x1012d1 ,x2012d2 ,x3012d3 x1(t)2x1* ;d1 x2(t)<x2* x3(t)2x3* ;d3
6-7
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here can then serve as simple and cost effective key ingr
ents of a computing system, for instance, serving flexibly
the basis for bit-by-bit arithmetic addition, and as a ba
component of computer memory. With these fundamental
gredients in hand it is conceivable to build simple, fast, c
effective, and general-purpose computing devices, which
more flexible than wired hardware.

It is illuminating to contrast our use of chaotic elemen
with the possible use of periodic elements on one hand,
random elements on the other. It is not possible to extrac
the different logic responses from thesameelement in case
of periodic components, as the temporal patterns are in
ently very limited. So, periodic elements do not offer mu
flexibility or versatility. Random elements on the other ha
have many different temporal sequences. But they arenot
deterministicand so one cannot use them todesigncompo-
nents. Only chaotic dynamics enjoys both richness of tem
ral behavior as well as determinism. Here we have sho
how one can select out temporal responses correspondin
different logic gate patterns from such dynamics, and t
ability allows us to construct programmable gates@21#.

The basic idea here is not to expend effort and ene
trying to eliminate the complicated inherent dynamics, bu
exploit it instead. The intrinsic dynamics of our compone

TABLE XIV. Output values obtained for the parallel operatio
OR, XOR, and AND, under noise, for the representative example
the laser system with initial states and thresholds given by the
row of Table XIII. The strength of noise~both in the initial states
and in the evolution! is given byh. In the case of output 0„i.e., for
input ~1,1! in XOR, input ~0,1! @[~1,0!# in AND, and input~0,0! in
OR, XOR, andAND… thex(t) values are well below the threshold. S
under small noise these states still remain below threshold, and
always obtains output 0, as desired. The value ofxout;d, encoding
1, is somewhat more sensitive to noise. Shown in the table are
valuesd logic

(I 1 ,I 2) , for a particular~generic! noise realization, for the
cases yielding an output of 1„namely, for input~0,1! @[~1,0!# in
XOR andOR, and for input~1,1! in OR andAND…. Clearly they are all
within an accuracy of 0.05 aroundd51.0 @12#.

h dOR
(0,1) dXOR

(0,1) dOR
(1,1) dAND

(1,1)

0 0.999 1.019 0.984 0.996
0.001 1.002 1.007 0.985 0.998
0.01 1.007 0.961 0.975 0.973
iva
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then need not be forced into unnatural patterns such
transistor-transistor logic pulses but are allowed to ope
with their natural dynamics to perform operations. Th
makes for possibly more robust system behavior.

In some sense the knowledge of the dynamics has allo
us to reverse engineer and obtain what must be done in o
to select out the temporal patterns emulating the differ
gates. The proposed methods~which constitute a nonfeed
back control, utilized as a programming scheme! once de-
signed, need no further run-time effort. For instance, here
same element can be made to operate as different gate
simply choosing a suitable threshold, which is made av
able as a look-up table. The thresholding does not change
natural dynamics but operates as a resetting of the stat
the system.

It is not appropriate at this incipient stage to debate
optimality of computing with chaos. The interesting infe
ence one can draw at this point is the feasibility of chaos
a candidate for direct and controlled computing and its e
dent potential. This is quite like the situation in the mo
‘‘mature’’ fields of DNA @8# and quantum computing@9#
where too its still not clear whether these computing s
tems, first presented asalternate computing paradigms, can
perform better than digital computers~although they hold
great promise! @22#. In contrast to the DNA and quantum
paradigms, which are geared to handlespecific problems
suited specially to themselves, we are aiming at a gene
purpose machine. Further, chaos computing has an advan
~unlike, say DNA computing, which is limited by slow bio
logical processes! in that here one is quite free to design a
exploit ~almost! any fast dynamical system. So we ca
choose from a wide variety of chaotic systems, ranging fr
fast electronic circuits to fast lasers, and this will have dir
relevance for the operational speeds attainable in experim
tal realizations@23#.

In summary, we have demonstrated the basic princip
for the direct and flexible implementation of all basic logic
operations utilizing low dimensional chaos. Then we gen
alized the concept to high dimensional chaotic systems
demonstrated the parallelism inherent in such systems.
power of the scheme is evident when one notes that eve
two-dimensional system, when utilized in the manner in
cated here,doublescomputational speeds. It is conceivab
then that such architectures may serve as flexible ingredi
of a fast and cost effective general-purpose computing
vice.
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