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The numerical analyses of the i@ map suggest the following features. As we increase the value of the
control parameter around each stable period of the period-1 branch, an infinitely large series afipapled
saddle nodes appears in the following sequemce (. . ,5,4,3). The limit of each series is the infinitely large
set of homoclinic points, created at the homoclinic tangency for the respective flip $bddiedary saddle in
the case of period)1These observations are in good agreement with the predictions of Gavrilov, Silnikov, and
Robinson. Each newly created sink, referred to as Gavrilov-Silnik&®) sink, later constitutes a first-order
secondary cascade. The flipoundary saddles of these cascades also exhibit homoclinic tangency. Past such
tangency, around the respective GS sink, an infinitely large series of petiogled saddle nodesn(
=...,5,4,3) seems to appear in a similar manner. The newly created GS sinks later constitute second-order
secondary cascades. These phenomena, comprised of the homoclinic tangency dbaufigary saddle,
followed by the sequential appearance of an infinitely large sequence of petipded saddle nodes around
the respective GS sink, appear to recur in a self-similar manner, creating higher-order and further higher-order
GS sinks and the associated secondary cascades. Each secondary cascade survives within a small subinterval of
the control parameter window where the respective GS sink from the immediate lower-order secondary cas-
cade exists. These processes appear to corgidurgfinitum Therefore, in the limiting conditions, an infinitely
large sequence of sinks may simultaneously coexist in the phase space for an infinitely large number of control
parameter values. These observations are in good agreement with the predictions of Newhouse. Thus, the GS
sinks may be identified as Gavrilov-Silnikov-Newhou&&SN) sinks that are organized in a self-similar
manner in the phase and parameter space. These features are very similar to those we recently observed in a
periodically forced, damped Toda oscillaf@. K. Goswami, Phys. Rev. B2, 2068(2000]. Since, the Heon
map and Toda oscillator are standard modeise from the maps and the other from the oscillatoosir
observations may provide some strong evidences towards universality in the self-similar organization of GSN
sinks in the low-dissipative limit.
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The two most fascinating fundamental features in nonlin-appearance of an infinitely large set of sifks be referred
ear science ar@) universality andii) order(self-similarity) ~ to as Gavrilov-Silnikov(GS) sinks| in the neighboring pa-
within complexity [1-3]. For instance, let us consider the rameter space of the homoclinic tangency for a dissipative
classic example of chaos that could be an exceedingly consaddle. Notably, under similar circumstances, Newh¢8$e
plex irregular state of a nonlinear system. Notably, chao$ias predictedtheoremC of Robinson[9]) that, in a residual
reveals fractal nature in the projected phase spataps subset in the neighboring parameter space, an infinitely large
with inherent self-similarity[4].> Such self-similarity has number of sinksknown as Newhouse sinksnay simulta-
been observed in a large number of nonlinear systenaps neously coexist in the phase space. Such a complex scenario
in the interdisciplinary area of nonlinear science. Thus, thdas been studied by various researchers to reveal some
self-similarity is a universal feature of chaos. deeper insight about many intricate issues, namely, the wild

From chaos, we draw attention to another complex yeflyperbolic setg9,10], the persistent homoclinic tangency
contrasting scenario, predicted by Gavrilov and Silnikgly ~ [9—11, zero Lebesgue measure of the set of Newhouse pa-
and Newhous¢8]. In the case of one-parameter diffeomor- rameter valueg12,13, basin boundary metamorphogés],
phisms, Gavrilov and Silnikoy7], as we notice from Rob- basin organizationgl5], and some other related phenomena

inson’s theorem#\ and B [9], have predicted the sequential [16,17. _ o
Notably, from the numerical analyses of the periodically

forced, damped Toda oscillator moddl8] of the classB

*Email address: bgoswami@apsara.barc.emet.in lasers[19], we have demonstratd@3] the Newhouse sinks

*Email address: n9026014@ccs.iitb.ac.in in a self-similar bifurcation structure formatig24]. We re-

Uin the case of a chaotic state created in the sequence of periog§€W here Ref[23] in brief. Past homoclinic tangency for a
doubling, or the union of several such chaotic states via cfisgs Period-3 boundary saddle, our observations suggest that,
the self-similarity of the chaotic orbit may partly be attributed to thearound every stable periodsay, of period 2™ %
fact that the periodic states in Feigenbaum sequence obey a certdit=1,2,3 ...) of the period-3 branch, an infinitely large
scaling phenomenon in the phase spgle sequence of saddle nodegof period Hnx2m1;
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n=...,5,4,3) appears sequentially. The newly created node: T ' ' ' ' '
later constitute their period doubling sequencist-order jali
secondary cascade&ach secondary cascade exists in a sub-
interval in the control parameter window where the respec-
tive sink from the period-3 branch remains stable. Around
each stable orbit of these secondary cascades, an infinitel
large series of period-tupled saddle nodes appears sequen-
tially in a similar manner. Each respective node later consti- i
tutes a second-order secondary cascade. These phenome 1} 8
were recurrent in a self-similar manner, creating higher-order :
and further higher-order secondary cascades, around th
period-3 branch. Each secondary cascade exists in a subinte
val in the control parameter window where the respective
sink (around whom the cascade is created in some process ¢
n tupling) from the immediate lower-order secondary cas- x
cade remains stable. Therefore, each stable orbit from ant 06 T
given order secondary cascade coexists in the phase spa
with the respective stable periodic orbits from all the lower-
order secondary cascades. Thus, subject to the choice of pi 4,4 | i
rameter values, the limit of such a sequence of coexisting
sinks could be infinitely large. In other words, the self-
similar appearance of the secondary cascades suggests tr
an infinitely large sequence of sinks may coexist in the phase
space for an infinitely large number of points in the control
parameter space, close to the homoclinic tangency of the
period-3 boundary saddle. These observations are in goo ot /_
agreement with the predictions of Newhouse. Therefore, \
these observations suggest in a certain sense some ord
(self-similarity) within the complex scenario, predicted by
Gauvrilov, Silnikov, and Newhouse. R 0 1 5 3 4

In the current paper, we are encouraged to investigate W
whether the self-similar organization of the Newhouse sinks
could be a universal feature. A judicious approach, we be- FIG. 1. Bifurcation diagram of the period-1 brancpl(. The
lieve, would be to investigate the organization of the sinks inPeriod-1 boundary and flip saddles are shown by segmented lines.
another standard model, preferably from maps. We consider ) ) )
the Henon map that indeed suggests a self-similar organizallvé GS sink from the immediate lower-order secondary cas-
tion of the sinks, very similar to what we observed in thec?‘d_e e.XIStS. Therefore, at the I|m_|t|r)g. conditions, due to self-
Toda oscillatof23]. similarity, one may expect an infinitely large number of

While presenting the evidence for self-similar organiza-CoeXxisting GS sinks at an infinitely large number of param-
tion of the sinks, the current analyses will be more compre&ter values. These observations will be in good agreement
hensive, in comparison to our previous w§aa], towards a  With the predictions of Newhouse. Thus, we will identify the
complete identification of the sinks. For example, in the cas&S Sinks as Gavrilov-Silnikov-Newhous8SN sinks, orga-
of the Toda oscillator, we did not investigate the homoclinichized in a self-similar manner in the phase and parameter
tangency of any flip saddle of the period-3 branch. Nor digSPace. We consider the Henon nfap25| described by

we do so for any boundariflip) saddle of any secondary

08| -

02| 4

— 2
cascade. We believe, such investigations would have helped Xn+1=1= uXa+yn,
us to explore the limits of the sequences of the period
n-tupled saddle nodes. As a consequence, the possibility that Yne1= —IXn, 1

the respective nodes being identified as GS sinks also re-

mained unexplored. In the present paper, we investigatehereJ=0.98 (a low-dissipative cageln Fig. 1, we show
along these directions. Most importantly, our observationghe period 1 branch where the period 1 is created in a saddle-
will suggest that every homoclinic tangency of the boundarynode bifurcation. The invariant manifolds of the period-1
(flip) saddle will be followed with a sequential appearance ofboundary saddle undergo first homoclinic tangencywat
infinitely large number GS sink&reated in saddle-node bi- —0.6076[Fig. 2(a)]. Past such tangency, as we increase the
furcations. In other words, we will show the self-similar value of u further, we observe the sequential occurrence of
appearance of higher order and further higher order of G@&pparently an infinitely large sequence of peridad-
sinks (and the associated secondary cascadgsparently, = ...,5,4,3) saddle nodes around the period-1 sink. The
each secondary cascade would survive within a small sublimit of this sequence is the infinite set of homoclinic points,
interval of the control parameter window where the respecereated at the homoclinic tangency. These are in accordance
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u FIG. 3. (a) Homoclinic tangency of the period-1 flip saddle at
n=3.222. The stable and unstable manifolds are, respectively, de-

FIG. 2. (a) Homoclinic tangency of the period-1 boundary ; L
saddle atu=—0.6076. The stable and unstable manifolds are, re-nOtEd by B and 1u. Two white spots inside the dense unstable

spectively, denoted bysiand 1u. One component of the stable manifold indicate the location of period-2 sinth) The successive

manifold is accumulating near the other component. Similarly, oné'PPearance of a series of first-order secondary cascades, namely,
9 P ) Y. eriod-10, -8, and -6 cascades around period 2. Each cascade and

component of the unstable manifold is accumulating near the oth t'he period-2 sink are sampled every two periods

component. The white spot inside the dense unstable manifold in- '

dicates the location of the period-1 sirth) The successive appear-

ance of a series of first-order secondary cascades, namely, periodsRoclinic tangency afu=3.222[Fig. 3@]. Past such tan-

-4, and -3 cascades around the period 1. From this figure onwardgency, as we increase the value offurther, again we ob-

a periodn cascaddi.e., a perioda branch will be denoted bypn. serve the sequential occurrence of apparently an infinitely
large sequence of periodhgn= ... ,5,4,3) saddle nodes

with the predictions of Gavrilov and Silnikov, thus identify- around the period-2 sink. These observations are in good

ing the nodes as GS sinks. Each sisky of perioda) later  agreement with Robinson’s predictiohhe respective GS

constitutes a first-order secondary casca@e periodn sinks constitute another series of first-order secondary cas-

branch. For instance, in Fig. ®), we show the sequential cades. For instance, in Fig(8, we show the sequential

appearance of period-5, -4, and -3 cascades around the psppearances of period-10, -8, and -6 cascades around the

riod 1. From this figure onwards, a periodeascaddi.e., a  period 2. Each cascade exists in a disjoint subinterval of the

periodn branch will be denoted bypn. Each cascade exists control parameter window where the period 2 remains stable.

in a disjoint subinterval of the control parameter window We conjecture that for each successive stage of period dou-

where the period 1 remains staBle. bling in the period-1 branch, one would observe again the

After the period doubling, the period-1 sink becomes ahomoclinic tangency of the respective flip saddle, followed
flip saddle and a stable period 2 is created. The invarianby sequential appearance of an infinitely large sequence of
manifolds of the period-1 flip saddle also undergo first ho-

3In the case of period doubling, the orientations of the invariant

2Henceforth, by the word “disjoint” we imply that each secondary manifolds are not preserved. According to Robinson’s theafem
cascade of a given order, created around the same sink, appears ifi94, the difference of periodicity between successive sinks is twice
separate subinterval. the periodicity of the flip saddle. This is indeed what we observed.
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FIG. 4. Schematic illustration of a series of first-order secondary
cascades around the sinks of the period-1 brgdemoted byP). 04}
The secondary cascades, created aroundnthesink (of period
2"~ n=1,2,3) of the period-1 branch, in period tripling, quadru-
pling, and pentupling are, respectively, denoted &y,Q,,P,.
Only one component of each secondary cascade has been show X
The segmented lines denote the boundary saddles. 0

-0.6

period n-tupled first-order GS sinks around the respective 00 [ p15
sink from the period-1 branch. Each newly created GS sink 01 | /<
later will constitute another first-order secondary cascade .o.15 | ﬁ
that will survive within a small disjoint subinterval of the

pi2
PO/ |
control parameter window where the respective sink from the /\ /<

_02 -

period-1 branch exists. These features are schematically ilx 025 L /< 1
lustrated in Fig. 4. The period-1 branch is denoted by 03 A\\\ B 3 T
P..Qn. T, represent the first-order secondary cascades cre  -0.35 | ‘"“"~~'—~——~\,,,P\,\\7 .
ated, respectively, in period pentupling, quadrupling, and tri- 04 L B
pling around thenth sink of the period-1 branch. 045 | ]

Notably, the boundary saddles of the first-order secondary \\ \
cascades also undergo homoclinic tangency. Again, each tar 035 \< T
gency (say of the periodn saddle is followed by the se- 058 S 08 » s 14 P,
guential appearance of an infinitely large sequence of period n
mn (n=...,5,4,3) saddle nodes around the pemodink.

The limit of such a sequence is the infinitely large set of FIG. 5. (8 Homoclinic tangency of the period-3 boundary
homoclinic points, created at the respective tangency. Thesw@ddle afu=1.035. The stable and unstable manifolds are, respec-
are again in good agreement with the predictions of Gavrilowively, denoted by 8 and 1. The sampling period of the manifolds

and Silnikov. The respective GS sinks later constitute a seriei§ three. One component of the unstable manifoiith a few spi-

of second-order secondary cascades. For instance, in Fi 1l approaches the period-1 sink. The white spot inside the other
5(a), we show the homoclinic tangency of the period-3dense cc_)mponentindicates the Io_cation of the period-3 @mkhe
boundary saddle, and in Fig(§, we show the sequential Successive appearance of a series of second-order secondary cas-
appearances of period-15, -12, and -9 cascades around perigRfies: namely, period-15, -12, and -9 cascades around period 3.
3. After period doubling (3-6), the manifolds of period-3 Each cascade and the period-3 sink are sampled every three periods.
flip saddle also exhibit homoclinic tangenfdyig. 6(a)]. Past

such tangency, an infinitely large sequence of perin(h6 cascade. Each second-order cascade survives within a small
=...,5,4,3) saddle nodes appear around the period-6 sinklisjoint subinterval of the control parameter window where
The newly created GS sinks later constitute another series dfie respective GS sink from the first-order secondary cascade
second-order secondary cascades. For instance, in (Blg. 6 exists. We conjecture that, past the homoclinic tangency of
we show the successive appearance of period-30, -24, arghch flip(boundary saddle of any first-order secondary cas-
-18 cascades around the period 6 of the period-3 branch. Ieade, one would find an infinite series of second-order GS
Figs. 7 and 8, we show some more examples that suggesinks (and the associated second-order secondary cagcades
occurrence of similar phenomena around the first two sink@round the respective first-order GS sink in a similar manner.
of each of period-4 and period-5 cascades. In Fig),’ve  For a schematic illustration, we may refer back to Fig. 4
show the successive appearance of period-20, -16, and -1¢here we have to assume tRebranch denotes in general
cascades around the period 4 of the period-4 cascade. In Figny first-order secondary cascade. ABQ,Q,,T, would

7(b), we show the successive appearance of period-40, -32epresent the second-order secondary cascades created, re-
and -24 cascades around the period 8 of the period-4 caspectively, in period pentupling, quadrupling, and tripling
cade. In Fig. &), we show the successive appearance ofaround thenth GS sink of the given first-order secondary
period-25, -20, and -15 cascades around the period-5 sink. iascadeP. In Fig. 9, we show some additional evidences of
Fig. 8b), we show the successive appearance of period-5Gecond-order secondary cascades, created around the sinks of
-40, and -30 cascades around the period 10 of the period42eriod-10, -8, and -6 cascades that are shown earlier in Fig.
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FIG. 6. (a) Homoclinic tangency of the period-3 flip saddle at |G, 7. Successive appearance of some series of second-order
u=1.23755. The stable and unstable manifolds are, respectivelgecondary cascades around the first two sinks of the period-4 cas-
denoted by 8 and 1. The sampling period of the manifolds is cade. The period-4 cascade itself is created around period 1 and
three. The white spots inside the core dense regions of the unstabd@own earlier in Fig. @). In each plot, the sampling period is the
manifold indicate the location of period-6 sinth) The successive same as that of the respective sirf&) Period-20, -16, and -12

appearance of a series of second-order secondary cascades, namghgcades around period %) Period-40, -32, and -24 cascades
period-30, -24, and -18 cascades around period 6 of the period-ground period 8.

branch. Each cascade and the period-6 sink are sampled every six

iods. . .
perioas pearances of period-60, -48, and -36 cascades around period

3(b). In Fig. 9a), we show the successive appearance ofl2 of period-12 cascade. Figure(&lshows sequential ap-
period-30, -24, and -18 cascades around period 6 of period{8earances of period-75, -60, and -45 cascades around period
cascade. In Fig. (®), we show the successive appearance ofl5. Finally, in Fig. 11b), we show an example of the forma-
period-40, -32, and -24 cascades around the period-8 sink dion of fourth-order secondary cascades around the period-27
the period-8 cascade. In Fig(c9, we show the successive sink. We show the sequential appearances of period-135,
appearance of period-50, -40, and -30 cascades around thkE08, and -81 cascades around period 27.
period-10 sink of the period-10 cascade. These observations suggest a self-similar organization of
Interestingly, the entire phenomena, comprised of the hothe GS sinks(and the associated secondary cascadesr
moclinic tangency of a boundarflip) saddle, followed by schematic illustration, we refer back to Fig. 4 where we as-
the sequential appearance of an infinitely large sequence stime tha®P branch represents in general a secondary cascade
periodn-tupled (h= ... ,54,3) GS sinkgcreated in saddle- of any given orderP,,Q,,T,(n=1,2,3...) represent the
node bifurcationsaround the respective lower-order GS sink next higher-order secondary cascades created, respectively,
seems to recur in a self-similar manner. Also, each newlyn period pentupling, quadrupling, and tripling arounth
created GS sink later constitutes a higher-order secondafgS sink of the cascade. The limit of each GS sequence
cascade. For example, we show some third-order secondawould be the infinite set of homoclinic points, created at the
cascades in Figs. 10 and 11. In Fig.(d9 we show the homoclinic tangency of the respective saddle. Each newly
sequential appearances of period-45, -36, and -27 secondasyeated GS sink starts a new higher-order secondary cascade.
cascades around period 9. Figure(tiOshows similar ap- Each new cascade survives within a small disjoint subinter-

036210-5



BINOY KRISHNA GOSWAMI AND SOURISH BASU PHYSICAL REVIEW E65 036210

T T T T T 0.13
0.125 |
4 012 |~ —
0.115 |

. 5 p20 - 0.11 p6
X 0105 [ ~¢ i
16 | / p5 1 01 _,\C////:Q

[\
[\ \V)
T T

V)

1

T
o 4
o
T
n
&
Q
|||\‘

-
o]
T
e

14F . i 0.095 | Qg E(_
= 0.00 | ¢ -
12 F pi5 0.085 - ~ .
I \\/ 0.08 1 1 1 1 1 1 1 1
1F - 3644 3.646 3648 3.65 3.652 3.654 3.656 3.658
| ~— N n

0.015
06 B < '

04 NQ i 0.01

feo

-0.31 -0.3 -0.29 -0.28 -0.27 -0.26 0.005
18 x
19 °
- 1 1 -
b 0.005
18| 4 e
17 |p50 i -0.01
e 345 3452 3454 3456 3458  3.46
16 | B Q
1'5 L - P 1 1 T T 1
9 0.4 | - c —< 4
14 p40 .
\\\ 5 é p30 0.13 | 010 i
125 —F 4 oo b |
12 /(\ x = 4 - —
0.11 | ~Gps0 -
11k, < m
1k ~ i 04 f = ‘&0 i
1 1 = \Id 1 1 1 1 1
-0.232 -0.228 -0.224 3336  3.338 334 3342 3344 3.346
9 9

FIG. 8. Successive appearance of some series of second-order FIG. 9. Successive appearance of some more series of second-
secondary cascades around the first two sinks of the period-5 cagrder secondary cascades around the sinks of some first-order sec-
cade. The period-5 cascade itself is created around period 1 anshdary cascades, created around perigan@ shown earlier in Fig.
shown earlier in Fig. @). In each plot, the sampling period is same 3(b)]. In each plot, the sampling period is the same as that of the
as that of the respective sinka) Period-25, -20, and -15 cascades respective sink from the first-order casca@®.Period-30, -24, and
around period 5(b) Period-50, -40, and -30 cascades around period-18 cascades around period 6 of the period-6 cas¢hfBeriod-40,

10. -32, and -24 cascades around period 8 of the period-8 cas@ade.
Period-50, -40, and -30 cascades around period 10 of the period-10

val of the control parameter window where the respective G$25¢2de:
sink from the immediate lower-order secondary cascade ex-
ists. Therefore, all the GS sinks from a given orteaynth)  would observe the period-108 sink in place of the period-81
secondary cascade coexists in the phase space with the k. Similarly, if we choose the parameter value in the win-
spective GS sinks from all then¢ 1) number of lower-order dow of period 60 shown earlier in Fig. 1®)], we shall find
secondary cascade. For instance, in Fig. 12, we show a ca#lee coexistence of GS sinks of periods 3, 12, and 60 with the
where the parameter value is chosen within the windowperiod-1 sink. Within any of these parameter windows, if one
where period 81 remains stable. In this case, we find thexplores further, we believe one may observe further higher-
coexistence of GS sinks of period-81, -27, -9, and -3 with thedrder GS sinkgand the associated higher-order secondary
period-1 sink. In the phase space, the period 3 is locatedascades These phenomena apparently will contiracein-
around period 1, and period 9 around the periodF&y. finitum Let us denote the set of control parameter windows
12(a)]. Zooming the phase space around period 9, we findor all the first-order secondary cascadeseated around the
period 27 and period 81 around period [Fg. 12b)].% In- period ) by S;. Similarly, letS, denote all the control pa-
stead of choosing the parameter value in the period-81 winrameter windows for the second-order secondary cascades,
dow, if we choose anywhere in the period-108 window, onewhich appear around those first-order cascades. It is apparent
that S,CS,. Therefore, S;NS,=S,. Applying the self-
similarity, we can similarly state th&,CS,,_; whereS, is a
“Notice that the distance between the sinks from two consecutivéimilar set for a series ohth-order secondary cascades.
cascades decreases as the order of cascades increases. Therefore, S;NS,N ... NS,_1NS,=S,. As n—x, the

036210-6



SELF-SIMILAR ORGANIZATION OF GAVRILOV-. ..

PHYSICAL REVIEW E 65 036210

-0.24 T T T T T T é -0.43 T T T
p3 / A a
025 [ -
/ -0.44 |
026 | _
:S] p60
027 | P . -0.45 |p75 !
x 028 27 -0.46 |
-0.29 ﬁ w % i
’ -0.47
03 |pa5 \ o
031 \\< - -0.48
_0.32 :ﬁ 1 1 1 1 1 1 1
1.1555 1.156 1.1565 1.157 1.1575 1.158 1.1585 1.159 -0.49
n
-0.46 _/Q b i T T T T T
-0.28 | b
p108
0.47 —ﬂ p4s - -3
60 —a
P ’d -0.285 | p81
-0.48 |- A -
135
< P36 P 4 )
049 | /g‘ -0.29 | A
p27
05 ]
s -0.295 |
o5t . . . LS — ———
1103 11035  1.104 11045  1.105  1.1055 . . . . .
u 11588 1.15882 1.15884 1.15886 1.15888
u

FIG. 10. Successive appearance of some series of third-orde:

sec.ondary cascades around the first sink of each of the period-9 gnq FIG. 11.(a) Successive appearance of some series of third-order
period-12 cascades. The second-order cascades are shown earliegjn o qary cascades around the period-15 sink of the period-15 cas-
Fig. S(b). In each plot, the sampling period is the same as that of the.aje  The period-15 cascade itself is shown earlier in Fil). 5
respective sink(@) Period-45, -36, and -27 cascades around periotsering.75, -60, and -45 cascades are found around period 15. The
9. (b) Period-60, -48, and -36 cascades around period 12. sampling period is 15(b) The successive appearance of some
fourth-order secondary cascades, namely, period-135, -108, and -81
window width of each cascade also tends to zero. Thus, #ascades around period 27 of the period-27 cascade. In this plot, the
these limiting conditions, one may find a residual suliset, ~ Sampling period is 27.
an infinitely large number of parameter valyewhere an
infinitely large sequence of GS sinks will simultaneously co-and two dimensional, the order of occurence can change as
exist in the phase space. These observations are in godde value of) changeg21]. However, the occurrences of
agreement with the predictions of Newhouse, thus identifystable periodic orbits are not completely independent, as
ing the GS sinks as GSN sinks. We may extend a similademonstrated by Mindliet al.[22]. They have used a horse-
argument for the series of secondary cascades that are crghoe implication diagram to construct a minimal set of peri-
ated around stable period 2, after the homoclinic tangency addic orbits, which force the existence of all the remaining
the period-1 flip saddle. In this case also, we will reach to theperiodic states associated with a strange attractor, up to any
same conclusion. We conjecture that past homoclinic tangiven period. Notably, our analysis suggests that in the low-
gency of each flip saddle of the period-1 branch, there will balissipative limit, a large class of periodic and chaotic orbits
a residual subset where an infinitely large sequence of GSi¢ organized in the phase and parameter space in a self-
sinks will coexist in the phase space. Hence, we demonstragmilar manner.
a self-similar organization of GSN sinks in the low- Intuitively, we may find a certain “genealogy” in the or-
dissipative limit, created around the period-1 branch in theganization of the orbit structure. For instance, around every
Henon map. node of the period-1 branch, an infinitely large sequence of
In a broad class of one-dimensional, one-parameter magseriodn (n=...,5,4,3) saddle nodes appears sequentially.
with one maximum, the order of occurences of stable periThe newly born saddles and nodes may be referred to as
odic orbits along the parameter axis follow thlesequence “children,” while the respective nodes from the period-1
[20]. In the case of the H®n map, which is two parameter branch may be referred to as “parents.” Each child node
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later constitutes a first-order secondary cascade. Around eac 06 T - - - - T . ;

node of this cascade an infinitely large sequence of period: g4 * N a ’:_
n-tuple (n=...,5,4,3) saddle nodes appears in a similar 0z b X x|
manner. Again, the newly born orbits may be referred to as ’
children of the nodes from the first-order cascades. Thes or T
phenomena recur in a self-similar manner, giving birth to 02} g
higher-order and further higher-order “descendents” in the> | o ]
genealogical tree. Subject to the values of system param
eters, the parent nodes from the period-1 branch may coexis 06| T
in the phase space along with all their descendents. Forin 08| .
stance, in Fig. 1@), we show period 3 around period 1, and 4l ]
period 9 around period 3. In Fig. 8, we find period 27 x
around period 9, and period 81 around period®27. tepx X N ! ! . ! ! L]

The self-similarity here is very similar to what we observe 06 -04 02 0 02 04 06 08 1 12
in the driven low-dissipative Toda oscillati23]. Therefore, X
we expect that the sinks in Toda oscillator may also be re- 028 T T T T 6
ferred to as GSN sinks. Notably, a detailed numerical study . | |
of the bifurcation structures of a large number of single-well =
anharmonic oscillator&vhich include Duffing, Toda, Morse, 0.26 | a’ .
and Bubble oscillatojshad suggested some qualitative simi- 05 " .

" o

larity (universality in the development of the bifurcation
structures of these oscillatof26].° We expect that the fea- o o4
tures observed in Toda oscillator may be generic for this *
class of single-well anharmonic oscillators. Since Henon 023 | y
map is a standard model, in particular, among the maps, w 022 L 1
expect that the self-similar organization of the GSN sinks ’ -
observed in these two standard models, may offer some q21 | i
strong evidence towards establishing universality. Some
deeper invegtigations in other nonlinear systems may confirr 0-21.11 112 113 112 115 16 117
our suggestions further. X

To conclude, the numerical analyses of a low-dissipative
Henon map suggest the fo||owing features. As we increase FIG. 12. Simultaneous coexistence of a hierarchy of GS sinks in
the value of the control parameter, around each stable peridie phase spacg;=1.158 875(a) The period-3 sinkcross signs
of the period-1 branch, an infinitely large series of periogaround period 1(circle), and the period-9 sinkstar symbols
n-tupled sinks(created in saddle-node bifurcatioreppears ~around the period-3 sinkb) The period-27 sinkhollow square
in the following sequencen= . . . ,5,4,3). The limit of each symbolg around the period-9 sinfstar symbo), and the period-81

series is the infinitely large set of homoclinic points, created®"k (filled square symbojsaround the period-27 sink. In this plot,
at the homoclinic tangency of the respective flip saddlethe sampling period is nine.
(boundary saddle in the case of perigdTlhese observations
are in good agreement with the predictions of Gavrilov,manner. The limit of such a series is the infinitely large set
Silnikov, and Robinson. Thus, we may identify these sinks a®f homoclinic points, created at the homoclinic tangency of
Gavrilov-Silnikov sinks. Each GS sink later constitutes athe respective flilboundary saddle from the first-order
first-order secondary cascade i.e., a branch that survivesecondary cascade. Each second-order GS sink later consti-
within a small disjoint subinterval of the control parametertutes a second-order secondary cascade that survives within
window where the respective sink from the period-1 branchy small subinterval of the control parameter window, where
exists. The boundafffip) saddles of these first-order second- the respective GS sink from the first-order secondary cascade
ary cascades also exhibit homoclinic tangency. Past sucfists. These phenomena, comprising the homoclinic tan-
tangency, around the respective GS sink, an infinitely 'arg‘@ency of a flip(boundary saddle, followed by the sequential
series of second-order GS sinks seems to appear in a Sim”ﬁ[)pearance of an infinitely large series of perivtlpled

GS sinks around the respective lower-order GS sink, appear

to recur in a self-similar manner, creating higher-order

5The symbolic sequence of coexisting periodic orbits is arrangec(i?nd further higher-order GS sinks and the associated se-

in a lexicographical manner. If we denote the symbolic sequence Ocondar cascades. Each newlv created cascade survives
the fundamentallowes) period by®, then the child orbit, born in y . y

n tupling, will be described by the symbolic sequerb® . . .n within a small subinterval of the control parameter window
times. Thus, the lexicographical order of the symbolic sequences d¥here the respective GS sink from the immediate lower-

coexisting orbits can be noted. order secondary cascade exists. These phenomena appear to
5A detailed list of references, relevant in this context, may also becontinuead infinitum Therefore, in the limiting conditions,
found in Ref.[27]. an infinitely large sequence of GS sinks may coexist in the
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phase space for an infinitely large number of control paramlator are standard modelsne from maps and the other from
eter values. These observations are in good agreement witscillators, our observations may provide some strong evi-
the predictions of Newhouse. So the GS sinks may as well bdence towards universality in the self-similar organization of
referred to as Gavrilov-Silnikov-Newhouse sinks. Thus, weGSN sinks in the low-dissipative limit.

demonstrate a self-similar organization of GSN sinks in the

phase and parameter space. These features are very similar to

those we recently observed in a periodically forced, damped We are grateful to Dr. N. Venkatramani, L&PT Division,
Toda oscillatof23]. Since, the Heon map and Toda oscil- BARC for his encouragement of our work.
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