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Self-similar organization of Gavrilov-Silnikov-Newhouse sinks
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The numerical analyses of the He´non map suggest the following features. As we increase the value of the
control parameter around each stable period of the period-1 branch, an infinitely large series of periodn-tupled
saddle nodes appears in the following sequence (n5 . . . ,5,4,3). The limit of each series is the infinitely large
set of homoclinic points, created at the homoclinic tangency for the respective flip saddle~boundary saddle in
the case of period 1!. These observations are in good agreement with the predictions of Gavrilov, Silnikov, and
Robinson. Each newly created sink, referred to as Gavrilov-Silnikov~GS! sink, later constitutes a first-order
secondary cascade. The flip~boundary! saddles of these cascades also exhibit homoclinic tangency. Past such
tangency, around the respective GS sink, an infinitely large series of periodn-tupled saddle nodes (n
5 . . . ,5,4,3) seems to appear in a similar manner. The newly created GS sinks later constitute second-order
secondary cascades. These phenomena, comprised of the homoclinic tangency of a flip~boundary! saddle,
followed by the sequential appearance of an infinitely large sequence of periodn-tupled saddle nodes around
the respective GS sink, appear to recur in a self-similar manner, creating higher-order and further higher-order
GS sinks and the associated secondary cascades. Each secondary cascade survives within a small subinterval of
the control parameter window where the respective GS sink from the immediate lower-order secondary cas-
cade exists. These processes appear to continuead infinitum. Therefore, in the limiting conditions, an infinitely
large sequence of sinks may simultaneously coexist in the phase space for an infinitely large number of control
parameter values. These observations are in good agreement with the predictions of Newhouse. Thus, the GS
sinks may be identified as Gavrilov-Silnikov-Newhouse~GSN! sinks that are organized in a self-similar
manner in the phase and parameter space. These features are very similar to those we recently observed in a
periodically forced, damped Toda oscillator@B. K. Goswami, Phys. Rev. E62, 2068~2000!#. Since, the He´non
map and Toda oscillator are standard models~one from the maps and the other from the oscillators!, our
observations may provide some strong evidences towards universality in the self-similar organization of GSN
sinks in the low-dissipative limit.

DOI: 10.1103/PhysRevE.65.036210 PACS number~s!: 05.45.Ac, 05.45.Pq, 47.52.1j, 42.65.Sf
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The two most fascinating fundamental features in non
ear science are~i! universality and~ii ! order~self-similarity!
within complexity @1–3#. For instance, let us consider th
classic example of chaos that could be an exceedingly c
plex irregular state of a nonlinear system. Notably, ch
reveals fractal nature in the projected phase space~maps!
with inherent self-similarity@4#.1 Such self-similarity has
been observed in a large number of nonlinear systems~maps!
in the interdisciplinary area of nonlinear science. Thus,
self-similarity is a universal feature of chaos.

From chaos, we draw attention to another complex
contrasting scenario, predicted by Gavrilov and Silnikov@7#,
and Newhouse@8#. In the case of one-parameter diffeomo
phisms, Gavrilov and Silnikov@7#, as we notice from Rob-
inson’s theoremsA andB @9#, have predicted the sequenti

*Email address: bgoswami@apsara.barc.ernet.in
†Email address: n9026014@ccs.iitb.ac.in
1In the case of a chaotic state created in the sequence of p

doubling, or the union of several such chaotic states via crises@5#,
the self-similarity of the chaotic orbit may partly be attributed to t
fact that the periodic states in Feigenbaum sequence obey a ce
scaling phenomenon in the phase space@6#.
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appearance of an infinitely large set of sinks@to be referred
to as Gavrilov-Silnikov~GS! sinks# in the neighboring pa-
rameter space of the homoclinic tangency for a dissipa
saddle. Notably, under similar circumstances, Newhouse@8#
has predicted~theoremC of Robinson@9#! that, in a residual
subset in the neighboring parameter space, an infinitely la
number of sinks~known as Newhouse sinks! may simulta-
neously coexist in the phase space. Such a complex sce
has been studied by various researchers to reveal s
deeper insight about many intricate issues, namely, the w
hyperbolic sets@9,10#, the persistent homoclinic tangenc
@9–11#, zero Lebesgue measure of the set of Newhouse
rameter values@12,13#, basin boundary metamorphoses@14#,
basin organizations@15#, and some other related phenome
@16,17#.

Notably, from the numerical analyses of the periodica
forced, damped Toda oscillator model@18# of the class-B
lasers@19#, we have demonstrated@23# the Newhouse sinks
in a self-similar bifurcation structure formation@24#. We re-
view here Ref.@23# in brief. Past homoclinic tangency for
period-3 boundary saddle, our observations suggest
around every stable period~say, of period 332m21;
m51,2,3, . . . ) of the period-3 branch, an infinitely large
sequence of saddle nodes~of period 3n32m21;
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n5 . . . ,5,4,3) appears sequentially. The newly created no
later constitute their period doubling sequences~first-order
secondary cascades!. Each secondary cascade exists in a s
interval in the control parameter window where the resp
tive sink from the period-3 branch remains stable. Arou
each stable orbit of these secondary cascades, an infin
large series of periodn-tupled saddle nodes appears sequ
tially in a similar manner. Each respective node later con
tutes a second-order secondary cascade. These pheno
were recurrent in a self-similar manner, creating higher-or
and further higher-order secondary cascades, around
period-3 branch. Each secondary cascade exists in a sub
val in the control parameter window where the respect
sink ~around whom the cascade is created in some proce
n tupling! from the immediate lower-order secondary ca
cade remains stable. Therefore, each stable orbit from
given order secondary cascade coexists in the phase s
with the respective stable periodic orbits from all the low
order secondary cascades. Thus, subject to the choice o
rameter values, the limit of such a sequence of coexis
sinks could be infinitely large. In other words, the se
similar appearance of the secondary cascades suggest
an infinitely large sequence of sinks may coexist in the ph
space for an infinitely large number of points in the cont
parameter space, close to the homoclinic tangency of
period-3 boundary saddle. These observations are in g
agreement with the predictions of Newhouse. Therefo
these observations suggest in a certain sense some
~self-similarity! within the complex scenario, predicted b
Gavrilov, Silnikov, and Newhouse.

In the current paper, we are encouraged to investig
whether the self-similar organization of the Newhouse si
could be a universal feature. A judicious approach, we
lieve, would be to investigate the organization of the sinks
another standard model, preferably from maps. We cons
the Hénon map that indeed suggests a self-similar organ
tion of the sinks, very similar to what we observed in t
Toda oscillator@23#.

While presenting the evidence for self-similar organiz
tion of the sinks, the current analyses will be more comp
hensive, in comparison to our previous work@23#, towards a
complete identification of the sinks. For example, in the c
of the Toda oscillator, we did not investigate the homoclin
tangency of any flip saddle of the period-3 branch. Nor
we do so for any boundary~flip! saddle of any secondar
cascade. We believe, such investigations would have he
us to explore the limits of the sequences of the per
n-tupled saddle nodes. As a consequence, the possibility
the respective nodes being identified as GS sinks also
mained unexplored. In the present paper, we investig
along these directions. Most importantly, our observatio
will suggest that every homoclinic tangency of the bound
~flip! saddle will be followed with a sequential appearance
infinitely large number GS sinks~created in saddle-node b
furcations!. In other words, we will show the self-simila
appearance of higher order and further higher order of
sinks ~and the associated secondary cascades!. Apparently,
each secondary cascade would survive within a small s
interval of the control parameter window where the resp
03621
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tive GS sink from the immediate lower-order secondary c
cade exists. Therefore, at the limiting conditions, due to s
similarity, one may expect an infinitely large number
coexisting GS sinks at an infinitely large number of para
eter values. These observations will be in good agreem
with the predictions of Newhouse. Thus, we will identify th
GS sinks as Gavrilov-Silnikov-Newhouse~GSN! sinks, orga-
nized in a self-similar manner in the phase and param
space. We consider the Henon map@4,25# described by

xn11512mxn
21yn ,

yn1152Jxn , ~1!

whereJ50.98 ~a low-dissipative case!. In Fig. 1, we show
the period 1 branch where the period 1 is created in a sad
node bifurcation. The invariant manifolds of the period
boundary saddle undergo first homoclinic tangency atm5
20.6076@Fig. 2~a!#. Past such tangency, as we increase
value ofm further, we observe the sequential occurrence
apparently an infinitely large sequence of period-n(n
5 . . . ,5,4,3) saddle nodes around the period-1 sink. T
limit of this sequence is the infinite set of homoclinic poin
created at the homoclinic tangency. These are in accorda

FIG. 1. Bifurcation diagram of the period-1 branch (p1). The
period-1 boundary and flip saddles are shown by segmented li
0-2
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SELF-SIMILAR ORGANIZATION OF GAVRILOV- . . . PHYSICAL REVIEW E 65 036210
with the predictions of Gavrilov and Silnikov, thus identify
ing the nodes as GS sinks. Each sink~say of period-n) later
constitutes a first-order secondary cascade~a period-n
branch!. For instance, in Fig. 2~b!, we show the sequentia
appearance of period-5, -4, and -3 cascades around the
riod 1. From this figure onwards, a period-n cascade~i.e., a
period-n branch! will be denoted bypn. Each cascade exist
in a disjoint subinterval of the control parameter windo
where the period 1 remains stable.2

After the period doubling, the period-1 sink becomes
flip saddle and a stable period 2 is created. The invar
manifolds of the period-1 flip saddle also undergo first h

2Henceforth, by the word ‘‘disjoint’’ we imply that each seconda
cascade of a given order, created around the same sink, appea
separate subinterval.

FIG. 2. ~a! Homoclinic tangency of the period-1 bounda
saddle atm520.6076. The stable and unstable manifolds are,
spectively, denoted by 1s and 1u. One component of the stabl
manifold is accumulating near the other component. Similarly,
component of the unstable manifold is accumulating near the o
component. The white spot inside the dense unstable manifold
dicates the location of the period-1 sink.~b! The successive appea
ance of a series of first-order secondary cascades, namely, per
-4, and -3 cascades around the period 1. From this figure onwa
a period-n cascade~i.e., a period-n branch! will be denoted bypn.
03621
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moclinic tangency atm53.222 @Fig. 3~a!#. Past such tan-
gency, as we increase the value ofm further, again we ob-
serve the sequential occurrence of apparently an infini
large sequence of period-2n(n5 . . . ,5,4,3) saddle node
around the period-2 sink. These observations are in g
agreement with Robinson’s predictions.3 The respective GS
sinks constitute another series of first-order secondary
cades. For instance, in Fig. 3~b!, we show the sequentia
appearances of period-10, -8, and -6 cascades around
period 2. Each cascade exists in a disjoint subinterval of
control parameter window where the period 2 remains sta
We conjecture that for each successive stage of period d
bling in the period-1 branch, one would observe again
homoclinic tangency of the respective flip saddle, follow
by sequential appearance of an infinitely large sequenc

in a

3In the case of period doubling, the orientations of the invari
manifolds are not preserved. According to Robinson’s theoremA
@9#, the difference of periodicity between successive sinks is tw
the periodicity of the flip saddle. This is indeed what we observ

-

e
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n-

-5,
s,

FIG. 3. ~a! Homoclinic tangency of the period-1 flip saddle
m53.222. The stable and unstable manifolds are, respectively,
noted by 1s and 1u. Two white spots inside the dense unstab
manifold indicate the location of period-2 sink.~b! The successive
appearance of a series of first-order secondary cascades, na
period-10, -8, and -6 cascades around period 2. Each cascad
the period-2 sink are sampled every two periods.
0-3



iv
in
ad
e
th
y

cr
tr

a
ta

io

o
e

ilo
ri
F
-3
l
e

in
s
6
a
.
ge
nk

-
F
-3
ca
o

k.
-5
d

mall
re
ade
of

s-
GS
des
er.
4
l

d, re-
g

ry
of
ks of

Fig.

ar

u-

ho

ry
ec-

s

ther

y cas-
d 3.

riods.

BINOY KRISHNA GOSWAMI AND SOURISH BASU PHYSICAL REVIEW E65 036210
period n-tupled first-order GS sinks around the respect
sink from the period-1 branch. Each newly created GS s
later will constitute another first-order secondary casc
that will survive within a small disjoint subinterval of th
control parameter window where the respective sink from
period-1 branch exists. These features are schematicall
lustrated in Fig. 4. The period-1 branch is denoted byP.
Pn ,Qn ,Tn represent the first-order secondary cascades
ated, respectively, in period pentupling, quadrupling, and
pling around thenth sink of the period-1 branch.

Notably, the boundary saddles of the first-order second
cascades also undergo homoclinic tangency. Again, each
gency ~say of the period-m saddle! is followed by the se-
quential appearance of an infinitely large sequence of per
mn (n5 . . . ,5,4,3) saddle nodes around the period-m sink.
The limit of such a sequence is the infinitely large set
homoclinic points, created at the respective tangency. Th
are again in good agreement with the predictions of Gavr
and Silnikov. The respective GS sinks later constitute a se
of second-order secondary cascades. For instance, in
5~a!, we show the homoclinic tangency of the period
boundary saddle, and in Fig. 5~b!, we show the sequentia
appearances of period-15, -12, and -9 cascades around p
3. After period doubling (3→6), the manifolds of period-3
flip saddle also exhibit homoclinic tangency@Fig. 6~a!#. Past
such tangency, an infinitely large sequence of period-6n(n
5 . . . ,5,4,3) saddle nodes appear around the period-6 s
The newly created GS sinks later constitute another serie
second-order secondary cascades. For instance, in Fig.~b!,
we show the successive appearance of period-30, -24,
-18 cascades around the period 6 of the period-3 branch
Figs. 7 and 8, we show some more examples that sug
occurrence of similar phenomena around the first two si
of each of period-4 and period-5 cascades. In Fig. 7~a!, we
show the successive appearance of period-20, -16, and
cascades around the period 4 of the period-4 cascade. In
7~b!, we show the successive appearance of period-40,
and -24 cascades around the period 8 of the period-4
cade. In Fig. 8~a!, we show the successive appearance
period-25, -20, and -15 cascades around the period-5 sin
Fig. 8~b!, we show the successive appearance of period
-40, and -30 cascades around the period 10 of the perio

FIG. 4. Schematic illustration of a series of first-order second
cascades around the sinks of the period-1 branch~denoted byP).
The secondary cascades, created around thenth sink ~of period
2n21; n51,2,3) of the period-1 branch, in period tripling, quadr
pling, and pentupling are, respectively, denoted byTn ,Qn ,Pn .
Only one component of each secondary cascade has been s
The segmented lines denote the boundary saddles.
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cascade. Each second-order cascade survives within a s
disjoint subinterval of the control parameter window whe
the respective GS sink from the first-order secondary casc
exists. We conjecture that, past the homoclinic tangency
each flip~boundary! saddle of any first-order secondary ca
cade, one would find an infinite series of second-order
sinks ~and the associated second-order secondary casca!
around the respective first-order GS sink in a similar mann
For a schematic illustration, we may refer back to Fig.
where we have to assume theP branch denotes in genera
any first-order secondary cascade. AlsoPn ,Qn ,Tn would
represent the second-order secondary cascades create
spectively, in period pentupling, quadrupling, and triplin
around thenth GS sink of the given first-order seconda
cascadeP. In Fig. 9, we show some additional evidences
second-order secondary cascades, created around the sin
period-10, -8, and -6 cascades that are shown earlier in

y

wn.

FIG. 5. ~a! Homoclinic tangency of the period-3 bounda
saddle atm51.035. The stable and unstable manifolds are, resp
tively, denoted by 3s and 3u. The sampling period of the manifold
is three. One component of the unstable manifold~with a few spi-
rals! approaches the period-1 sink. The white spot inside the o
dense component indicates the location of the period-3 sink.~b! The
successive appearance of a series of second-order secondar
cades, namely, period-15, -12, and -9 cascades around perio
Each cascade and the period-3 sink are sampled every three pe
0-4
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3~b!. In Fig. 9~a!, we show the successive appearance
period-30, -24, and -18 cascades around period 6 of perio
cascade. In Fig. 9~b!, we show the successive appearance
period-40, -32, and -24 cascades around the period-8 sin
the period-8 cascade. In Fig. 9~c!, we show the successiv
appearance of period-50, -40, and -30 cascades aroun
period-10 sink of the period-10 cascade.

Interestingly, the entire phenomena, comprised of the
moclinic tangency of a boundary~flip! saddle, followed by
the sequential appearance of an infinitely large sequenc
periodn-tupled (n5 . . . ,5,4,3) GS sinks~created in saddle
node bifurcations! around the respective lower-order GS si
seems to recur in a self-similar manner. Also, each ne
created GS sink later constitutes a higher-order secon
cascade. For example, we show some third-order secon
cascades in Figs. 10 and 11. In Fig. 10~a!, we show the
sequential appearances of period-45, -36, and -27 secon
cascades around period 9. Figure 10~b! shows similar ap-

FIG. 6. ~a! Homoclinic tangency of the period-3 flip saddle
m51.237 55. The stable and unstable manifolds are, respecti
denoted by 3s and 3u. The sampling period of the manifolds i
three. The white spots inside the core dense regions of the uns
manifold indicate the location of period-6 sink.~b! The successive
appearance of a series of second-order secondary cascades, n
period-30, -24, and -18 cascades around period 6 of the peri
branch. Each cascade and the period-6 sink are sampled eve
periods.
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pearances of period-60, -48, and -36 cascades around p
12 of period-12 cascade. Figure 11~a! shows sequential ap
pearances of period-75, -60, and -45 cascades around p
15. Finally, in Fig. 11~b!, we show an example of the forma
tion of fourth-order secondary cascades around the period
sink. We show the sequential appearances of period-1
-108, and -81 cascades around period 27.

These observations suggest a self-similar organization
the GS sinks~and the associated secondary cascades!. For
schematic illustration, we refer back to Fig. 4 where we
sume thatP branch represents in general a secondary casc
of any given order.Pn ,Qn ,Tn(n51,2,3, . . . ) represent the
next higher-order secondary cascades created, respect
in period pentupling, quadrupling, and tripling aroundnth
GS sink of the cascadeP. The limit of each GS sequenc
would be the infinite set of homoclinic points, created at t
homoclinic tangency of the respective saddle. Each ne
created GS sink starts a new higher-order secondary casc
Each new cascade survives within a small disjoint subin

ly,

ble

ely,
-3
six

FIG. 7. Successive appearance of some series of second-
secondary cascades around the first two sinks of the period-4
cade. The period-4 cascade itself is created around period 1
shown earlier in Fig. 2~b!. In each plot, the sampling period is th
same as that of the respective sink.~a! Period-20, -16, and -12
cascades around period 4.~b! Period-40, -32, and -24 cascade
around period 8.
0-5
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val of the control parameter window where the respective
sink from the immediate lower-order secondary cascade
ists. Therefore, all the GS sinks from a given order~saynth!
secondary cascade coexists in the phase space with th
spective GS sinks from all the (n21) number of lower-order
secondary cascade. For instance, in Fig. 12, we show a
where the parameter value is chosen within the wind
where period 81 remains stable. In this case, we find
coexistence of GS sinks of period-81, -27, -9, and -3 with
period-1 sink. In the phase space, the period 3 is loca
around period 1, and period 9 around the period 3@Fig.
12~a!#. Zooming the phase space around period 9, we
period 27 and period 81 around period 27@Fig. 12~b!#.4 In-
stead of choosing the parameter value in the period-81 w
dow, if we choose anywhere in the period-108 window, o

4Notice that the distance between the sinks from two consecu
cascades decreases as the order of cascades increases.

FIG. 8. Successive appearance of some series of second-
secondary cascades around the first two sinks of the period-5
cade. The period-5 cascade itself is created around period 1
shown earlier in Fig. 2~b!. In each plot, the sampling period is sam
as that of the respective sink.~a! Period-25, -20, and -15 cascad
around period 5.~b! Period-50, -40, and -30 cascades around per
10.
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would observe the period-108 sink in place of the period
sink. Similarly, if we choose the parameter value in the w
dow of period 60@shown earlier in Fig. 10~b!#, we shall find
the coexistence of GS sinks of periods 3, 12, and 60 with
period-1 sink. Within any of these parameter windows, if o
explores further, we believe one may observe further high
order GS sinks~and the associated higher-order second
cascades!. These phenomena apparently will continuead in-
finitum. Let us denote the set of control parameter windo
for all the first-order secondary cascades~created around the
period 1! by S1. Similarly, let S2 denote all the control pa
rameter windows for the second-order secondary casca
which appear around those first-order cascades. It is appa
that S2,S1. Therefore, S1ùS25S2. Applying the self-
similarity, we can similarly state thatSn,Sn21 whereSn is a
similar set for a series ofnth-order secondary cascade
Therefore, S1ùS2ù . . . ùSn21ùSn5Sn . As n→`, the
e

der
as-
nd

d

FIG. 9. Successive appearance of some more series of sec
order secondary cascades around the sinks of some first-order
ondary cascades, created around period 2@and shown earlier in Fig.
3~b!#. In each plot, the sampling period is the same as that of
respective sink from the first-order cascade.~a! Period-30, -24, and
-18 cascades around period 6 of the period-6 cascade.~b! Period-40,
-32, and -24 cascades around period 8 of the period-8 cascad~c!
Period-50, -40, and -30 cascades around period 10 of the perio
cascade.
0-6
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window width of each cascade also tends to zero. Thus
these limiting conditions, one may find a residual subset~i.e.,
an infinitely large number of parameter values!, where an
infinitely large sequence of GS sinks will simultaneously c
exist in the phase space. These observations are in g
agreement with the predictions of Newhouse, thus ident
ing the GS sinks as GSN sinks. We may extend a sim
argument for the series of secondary cascades that are
ated around stable period 2, after the homoclinic tangenc
the period-1 flip saddle. In this case also, we will reach to
same conclusion. We conjecture that past homoclinic t
gency of each flip saddle of the period-1 branch, there will
a residual subset where an infinitely large sequence of G
sinks will coexist in the phase space. Hence, we demons
a self-similar organization of GSN sinks in the low
dissipative limit, created around the period-1 branch in
Hénon map.

In a broad class of one-dimensional, one-parameter m
with one maximum, the order of occurences of stable p
odic orbits along the parameter axis follow theU sequence
@20#. In the case of the He´non map, which is two paramete

FIG. 10. Successive appearance of some series of third-o
secondary cascades around the first sink of each of the period-9
period-12 cascades. The second-order cascades are shown ea
Fig. 5~b!. In each plot, the sampling period is the same as that of
respective sink.~a! Period-45, -36, and -27 cascades around per
9. ~b! Period-60, -48, and -36 cascades around period 12.
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and two dimensional, the order of occurence can chang
the value ofJ changes@21#. However, the occurrences o
stable periodic orbits are not completely independent,
demonstrated by Mindlinet al. @22#. They have used a horse
shoe implication diagram to construct a minimal set of pe
odic orbits, which force the existence of all the remaini
periodic states associated with a strange attractor, up to
given period. Notably, our analysis suggests that in the lo
dissipative limit, a large class of periodic and chaotic orb
is organized in the phase and parameter space in a
similar manner.

Intuitively, we may find a certain ‘‘genealogy’’ in the or
ganization of the orbit structure. For instance, around ev
node of the period-1 branch, an infinitely large sequence
period-n (n5 . . . ,5,4,3) saddle nodes appears sequentia
The newly born saddles and nodes may be referred to
‘‘children,’’ while the respective nodes from the period-
branch may be referred to as ‘‘parents.’’ Each child no
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FIG. 11. ~a! Successive appearance of some series of third-o
secondary cascades around the period-15 sink of the period-15
cade. The period-15 cascade itself is shown earlier in Fig. 5~b!.
Period-75, -60, and -45 cascades are found around period 15.
sampling period is 15.~b! The successive appearance of som
fourth-order secondary cascades, namely, period-135, -108, an
cascades around period 27 of the period-27 cascade. In this plo
sampling period is 27.
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later constitutes a first-order secondary cascade. Around
node of this cascade an infinitely large sequence of per
n-tuple (n5 . . . ,5,4,3) saddle nodes appears in a sim
manner. Again, the newly born orbits may be referred to
children of the nodes from the first-order cascades. Th
phenomena recur in a self-similar manner, giving birth
higher-order and further higher-order ‘‘descendents’’ in t
genealogical tree. Subject to the values of system par
eters, the parent nodes from the period-1 branch may coe
in the phase space along with all their descendents. Fo
stance, in Fig. 12~a!, we show period 3 around period 1, an
period 9 around period 3. In Fig. 12~b!, we find period 27
around period 9, and period 81 around period 27.5

The self-similarity here is very similar to what we obser
in the driven low-dissipative Toda oscillator@23#. Therefore,
we expect that the sinks in Toda oscillator may also be
ferred to as GSN sinks. Notably, a detailed numerical st
of the bifurcation structures of a large number of single-w
anharmonic oscillators~which include Duffing, Toda, Morse
and Bubble oscillators! had suggested some qualitative sim
larity ~universality! in the development of the bifurcatio
structures of these oscillators@26#.6 We expect that the fea
tures observed in Toda oscillator may be generic for t
class of single-well anharmonic oscillators. Since Hen
map is a standard model, in particular, among the maps
expect that the self-similar organization of the GSN sin
observed in these two standard models, may offer so
strong evidence towards establishing universality. So
deeper investigations in other nonlinear systems may con
our suggestions further.

To conclude, the numerical analyses of a low-dissipat
Henon map suggest the following features. As we incre
the value of the control parameter, around each stable pe
of the period-1 branch, an infinitely large series of peri
n-tupled sinks~created in saddle-node bifurcations! appears
in the following sequence (n5 . . . ,5,4,3). The limit of each
series is the infinitely large set of homoclinic points, crea
at the homoclinic tangency of the respective flip sad
~boundary saddle in the case of period 1!. These observation
are in good agreement with the predictions of Gavrilo
Silnikov, and Robinson. Thus, we may identify these sinks
Gavrilov-Silnikov sinks. Each GS sink later constitutes
first-order secondary cascade i.e., a branch that surv
within a small disjoint subinterval of the control parame
window where the respective sink from the period-1 bran
exists. The boundary~flip! saddles of these first-order secon
ary cascades also exhibit homoclinic tangency. Past s
tangency, around the respective GS sink, an infinitely la
series of second-order GS sinks seems to appear in a si

5The symbolic sequence of coexisting periodic orbits is arran
in a lexicographical manner. If we denote the symbolic sequenc
the fundamental~lowest! period byF, then the child orbit, born in
n tupling, will be described by the symbolic sequenceFF . . . n
times. Thus, the lexicographical order of the symbolic sequence
coexisting orbits can be noted.

6A detailed list of references, relevant in this context, may also
found in Ref.@27#.
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manner. The limit of such a series is the infinitely large
of homoclinic points, created at the homoclinic tangency
the respective flip~boundary! saddle from the first-orde
secondary cascade. Each second-order GS sink later co
tutes a second-order secondary cascade that survives w
a small subinterval of the control parameter window, whe
the respective GS sink from the first-order secondary casc
exists. These phenomena, comprising the homoclinic
gency of a flip~boundary! saddle, followed by the sequentia
appearance of an infinitely large series of periodn-tupled
GS sinks around the respective lower-order GS sink, app
to recur in a self-similar manner, creating higher-ord
and further higher-order GS sinks and the associated
condary cascades. Each newly created cascade sur
within a small subinterval of the control parameter windo
where the respective GS sink from the immediate low
order secondary cascade exists. These phenomena app
continuead infinitum. Therefore, in the limiting conditions
an infinitely large sequence of GS sinks may coexist in

d
of

of

e

FIG. 12. Simultaneous coexistence of a hierarchy of GS sink
the phase space;m51.158 875.~a! The period-3 sink~cross signs!
around period 1~circle!, and the period-9 sink~star symbols!
around the period-3 sink.~b! The period-27 sink~hollow square
symbols! around the period-9 sink~star symbol!, and the period-81
sink ~filled square symbols! around the period-27 sink. In this plo
the sampling period is nine.
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phase space for an infinitely large number of control para
eter values. These observations are in good agreement
the predictions of Newhouse. So the GS sinks may as we
referred to as Gavrilov-Silnikov-Newhouse sinks. Thus,
demonstrate a self-similar organization of GSN sinks in
phase and parameter space. These features are very sim
those we recently observed in a periodically forced, dam
Toda oscillator@23#. Since, the He´non map and Toda oscil
ld

th

th

03621
-
ith
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lator are standard models~one from maps and the other from
oscillators!, our observations may provide some strong e
dence towards universality in the self-similar organization
GSN sinks in the low-dissipative limit.

We are grateful to Dr. N. Venkatramani, L&PT Division
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