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Lyapunov instability for a periodic Lorentz gas thermostated by deterministic scattering
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In recent work a deterministic and time-reversible boundary thermostat called thermostating by deterministic
scattering was introduced for the periodic Lorentz [faisys. Rev. Lett84, 4268(2000]. Here we assess the
nonlinear properties of this dynamical system by numerically calculating its Lyapunov exponents. Based on a
revised method for computing Lyapunov exponents, which employs periodic orthonormalization with a con-
straint, we present results for the Lyapunov exponents and related quantities in equilibrium and nonequilib-
rium. Finally, we check whether we obtain the same relations between quantities characterizing the micro-
scopic chaotic dynamics and quantities characterizing macroscopic transport as obtained for conventional
deterministic and time-reversible bulk thermostats.
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[. INTRODUCTION periodic Lorentz ga§25]. The periodic Lorentz gas consists
of a particle that moves through a triangular lattice of hard
The investigation of nonequilibrium transport processes irflisks and is elastically reflected at each disk collision. It
many-particle systems generally requires modeling the interS€rves as a standard model in the field of chaos and transport
action between a particle and a thermal reservoir. Commoht4.28. The advantage of a one-particle system is that it
approaches for such a modeling are deterministic and timfHects more strongly and transparently the nonequilibrium
reversible thermostafd—4]. Conventional types, such as the properties induced by a thermostat. For this reason the Lor-

) : .~ entz gas appears to be an appropriate tool with which to
Gauss_lan and the Nodtoover thermosfcat_, are bas_epl on in- compare the properties of nonequilibrium steady states ob-
troducing a momentum dependent friction coefficient into

. . . i . “tained from different deterministic and time-reversible ther-
the microscopic equations of moti¢h—9]. Though the mi-  p\qtating mechanisms. The study of different models de-
croscopic equations of motion of these systems are time regiping the interaction between particles and thermal
versible, the macroscopic dynamics is irreversible in nonyeseryoir and the identification of their common properties is
equilibrium, leading to momentum and energy fluxes withcrycial to obtaining a general characterization of nonequilib-
well-defined transport coefficients,6,10-14, which ap-  rjum steady states.
pears to be a paradox. However, investigations of the micro- To investigate whether the nonequilibrium properties of
scopic dynamics with methods from dynamical systemconventional deterministic and time-reversible thermostats
theory could resolve this paradox by showing that the microare of general validity, or just characterize these specific
scopic dynamics is nonlinear and highly unstgiii2,14 and  types of systems, an alternative deterministic and time-
leads to a phase space volume contraction onto a fractal ateversible thermostat called thermostating by deterministic
tractor[11,15,16. From the analysis of conventional thermo- scattering has been introduced for the periodic Lorentz gas
stats, further relations between quantities characterizing thig4,27]. This thermostat is based on specifically modeling the
microscopic dynamics and quantities characterizing macroenergy transfer related to a microscopic collision process be-
scopic transport could be established. At the heart of suctween particle and disk, where the disk mimics a thermal
relations there is an identity between phase space volumeservoir with infinitely many degrees of freedom. In non-
contraction and thermodynamic entropy production. On thesquilibrium under an external electric field this mechanism
basis of this identity the Lyapunov exponents could be reieads to an on average constant kinetic energy of the particle
lated to the transport coefficients of a system, which has beeresulting in a nonequilibrium steady state. Furthermore, the
formulated as the Lyapunov sum ryl&l,17-21. phase space volume contracts onto an attractor similar to the
These characteristic features of thermostated manymultifractal attractor found for the Gaussian thermostated
particle systems have been recovered for specific ond-orentz gas. However, differences appear in the bifurcation
particle systems, the Gaussian thermostated periodic Lorentiagram and in the field dependence of the conductivity. This
gas[11,15,18,19,21-24and the NoséHoover thermostated alternative thermostat has later been applied to a heat and
shear flow[28].
In this work we focus on the microscopic properties of
*Present address: Computational Molecular Biology, Max Planckhermostating by deterministic scattering in the periodic Lor-
Institute for Molecular Genetics, Ihnestr. 73, D-14195 Berlin, Ger-entz gas by numerically calculating the Lyapunov exponents.
many. Electronic address: katja.rateitschak@molgen.mpg.de As quantities from dynamical systems theory, Lyapunov ex-
TElectronic address: rklages@mpipks-dresden.mpg.de ponents allow a detailed characterization of the microscopic

1063-651X/2002/663)/03620911)/$20.00 65 036209-1 ©2002 The American Physical Society



K. RATEITSCHAK AND R. KLAGES PHYSICAL REVIEW E65 036209

stability. In particular, they will enable us to check the gen-sphere interactions and applied it to the Gaussian thermo-
eral validity of relations between quantities from dynamicalstated Lorentz gag21,29,35. Here the tangent vectors are
systems theory and statistical mechanics as obtained for cotransformed at the moment of a collision according to the
ventional deterministic and time-reversible thermostats. Weollowing rule [29]:

first explain the algorithm used to calculate the Lyapunov M M

exponents for the Lorentz gas as thermostated by determin- ,_ oM oVt _

istic scattering. Numerical computations will then show that or'= ar or+ ar (D) =FM(ID)]| o7 2

the standard Gram-Schmidt orthonormalization has to be

modified, resulting in a variant of this method called con-Equation(2) is valid for arbitrary systems composed of a
straint orthonormalization. Beside the results for theflow F and a time-discrete ma. It takes into account that
Lyapunov exponents we present results for the Kap|an-Y0rk@ trajectory and a satellite trajectory collide with the disk at
dimension and for the phase space volume contraction. Wdifferent space points and with a time deldy.,

compare these results as obtained for our model with the 5

results as known for the Gaussian thermostated Lorentz gas Sto=— tor.m
[21,29, and with results for a heat and shear flow thermo- ¢ (v,n) ’

stated by deterministic scatteriri@0]. Finally, we check

whether the phase space volume contraction is equal to tﬁclzéglﬁgiaonnlf);?ri unit vector perpendicular to the surface at the

thermodynamic entropy production and whether the . . .

Lyapunov sum rule holds for our mechanism. Before we establish the equations of motions for the tan-
gent vectors of the Lorentz gas as thermostated by determin-

istic scattering we briefly summarize the full equations of

motion of Refs[4,27] for a particle described by the phase

space vectol'=(r,v). In the bulkI' evolves according to

Il. ALGORITHM FOR THE CALCULATION OF THE
LYAPUNOV EXPONENTS

In a smoothd-dimensional system the equations of mo- 2
tion for a phase space vectby r=e—=+Vvt+rg,
r=F(D),
V=gt+Vy, 3
and the corresponding equations of motionddangent vec- _ o
tors 8T'=(&r,6V), wheree is an external electric field of strength=|€| gen-
erating a nonequilibrium situation. The basic idea of thermo-
JF stating by deterministic scattering is now that at a collision,
or'=-5or. energy is transferred such that the resulting velocity distribu-
tion for the particle is canonical in equilibrium. In a way, it
are integrated to obtaid Lyapunov exponents results in a deterministic and time-reversible formulation of
stochastic boundary conditiof27,28. For this purpose the
) |6 (1)| collision rules have been defined as follows: The velocity of
)‘:Jm f'”m' D the particle and its direction of flight are changed at a colli-
sion with the disk according to

The Lyapunov exponents are a measure used to characterize
the stability of the dynamicis31,32. The maximal Lyapunov
exponent measures the m_aX|maI exponential d|ve_rgence ofyhere y is the angle of incidenceX(y)=sin|y], B is the
two initially neighboring pointss I'(0). However, during the baker mag31], and

time evolution every tangent vector will move into the fastest ’

(y",0")=(X"1YHeBe(X(y),Y(v)), 4

growing direction due to the instability of the dynamics. All 2 , v
these vectors will thus become indistinguishable and their Yo (v)=—\/—=vp V@D +erf —) (5)
norm will diverge. The algorithm of Benettin avoids this a V2T

problem by a periodic Gram-Schmidt reorthonormalization

of the tangent vectors thus enabling one to compute the full/ith T as @ parameter corresponding to the temperature of

spectrum of Lyapunov exponents associated with thd€ particleT=(v?)/2 ate=0 in equilibrium. The geometry
d-dimensional phase spafe3,34. of the periodic Lorentz gas and the relevant variables are

In the periodic Lorentz gas the time-continuous flow de-shown in Fig. 1. To ensure that the system _is time reversible,
scribing the dynamics of a phase space volume vetor ~ the forward klf"lk‘?B acts if O< y=</2, andB is replaced by
the bulk is interrupted by a time-discrete msbdescribing 1S inverseB™~ if —/2<y<0. To avoid any symmetry

the transformation of at the moment of a collision breaking induced by this combination of forward and back-
' ward baker, we alternate their applicatiomjimvith respect to
I'=M(I). the positiong of the colliding particle on the circumference.

For the spacing between two neighboring disks with the ra-
Dellago and co-workers have developed an algorithm to caldius R=1 we choose, following the literaturg¢ll,21],
culate the Lyapunov exponents for particle systems with harev=0.2361. Investigating this system in nonequilibrium by
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@ {m;,m,} are the slopes of the baker m4p,0.3, or the
slopes of the inverse baker mép.5, 2, respectively.

In the periodic Lorentz gas as thermostated by determin-
istic scattering the dynamics of four orthonormal tangent
vectors has to be investigated to obtain four Lyapunov expo-
nents that completely characterize the stability in the four-
dimensional phase space. Before we present our results for
the Lyapunov spectrum, we wish to derive explicit expres-
sions for two other interesting quantities.

Ill. PHASE SPACE VOLUME CONTRACTION

FIG. 1. (a) Elementary cell of the periodic Lorentz gas on a  The phase space volume contract®is equal to the sum

triangular lattice (b) Definition of the relevant variables. of the Lyapunov exponen{82,36,

switching on an external electric fiekt>0 leads to a non- P=2 . @

equilibrium steady state with an average constant kinetic en- =

ergy of the particle{v?)=const, i.e., the system is thermo-

stated. In the periodic Lorentz gas as thermostated by deterministic

The equations of motion for the tangent vectérk inthe  scattering only the change of a phase space volume element

bulk can now be derived from Eg&3) as oT' at the moment of a collision as described by ).

contributes toP. The mean exponential rate of the phase
( 5r’) (1 ty/er space volume contractiddcan then be calculated according
ov') \o 1/\év/) to

aor’
aol

The transformation rules for the tangent vectors at the mo- _
ment of a collision are obtained by inserting the collision P={In
rules for the phase space veclonf Eq. (4) into Eq. (2),

> , ®

where
or'\ (1 0)for 1 0\/v v’5
av'|=\a B/lov/T|la B)le) Tl e oo
©) d8T"| | 98 (aér) asr, asr) aer,
where déT | | aév' aév'| \adry adry 9oy dsry
aor  Jdov
(9Ui, ﬂvi/
Aij=_- and Bj=—-—. 98v}, adv) dbvy IV,
i j .
dévy dovy  JSvy IOV
The components of the submatéxread
The partial derivatives of E(6) read
duy  Tyvy vy Ty
arx_r_Z[_h1+1]’ ?y_r_Z[hl_l]: (95r)r(_1+ . n, oo, n,
aory (v vX)(v,n)’ a&ry_(vy vy)(v,n)'
v rw, ! rw,
y YUX y xYx
—=—[h;— —=—[—h+
Iy T (hy—1], ary r [=ha+1], asr, (oo n,  dory L (oo ny
= Ux™Ux v Ta =1t (vyTuy)
and the components of the submatBare 90 (v,n)" dory (v.n)
! / ’ ’ ddv, ddv,,
duy  vyUy , duy Uxly , X _ X _
avxz7hl+vxvxh21 E=—7h1+vyvxhzy ddv, % ddv, Bot,
N vy, v, vy, dovy o
y__ TYUX ’ Uy TXEX ’ = R .
E— _UZ h1+Unyh2, avy—_vz h1+UyUyh2, 195UX BlO! a(;)xvy Bll
with Inserting these expressions into Ef) yields
v’ (r,v) v v'2—p? (%) —(?
= — — = — —_— P:—.
hi=my— )’ hy mzv,sexr{ >T | 5T 9
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The phase space volume contraction depends thus only dluctuations parallel and perpendicular to the reservoir, the
the average transfer of kinetic energy to the reservoir. Equacorresponding equations for the velocity distributions of the
tion (9) is valid in equilibrium as well as in nonequilibrium. normal and tangential components andv,, respectively,
An analogous result has been obtained for collisions with d@ave to be calculated. For this purpose, first the analogous
flat wall in a heat and shear flow thermostated by determinequation forg(y) corresponding to Eq12) must be derived.
istic scatterind 28], however, in case of shear the expressionKnowing that in equilibriumg(y) =1 because of symmetry
for P turned out to be more complicated. and @, y) = cosy at the disk leads to

If P<O the phase space volume contracts onto a fractal
attractor. The geometric properties of the attractor can be
related to the Lyapunov exponents by the Kaplan-Yorke con-
jecture,Dxy=D;. Here D, is the information dimension
[31] and Dy is the Kaplan-Yorke dimension defined by Combining these two equations yields the full transformation

Qmap( Y)
[cogy)[”

2 (y)=consiX (13

DWW ©)o(7)= const : :
Dyy=]j+ |)\j+1| ) (10 ew)ely _U|COS{’y)| Omad V) @mad 7)-
wherej is the largest integer for which!_,\;>0. Changing to local Cartesian coordinates, {v;) corotating

with the positiong at the disk and applying the transforma-

IV. THERMODYNAMIC ENTROPY PRODUCTION tion dvdvy=v dv dy results in

AND RESERVOIR TEMPERATURE

e(vn)e(vy)= X OmadVn)@madvy)-  (14)

The macroscopic properties of nonequilibrium steady v|cogy)|

states can be characterized by quantities from thermodynam-
ics and statistical physics. In this work we want to checkNoting that|v,|=v|cos()| and matching the variables on
whether we can relate the thermodynamic entropy producboth sides, Eq(14) can be decomposed into

tion dS
(V)= Omadt) s (15
dQ
dS=+-, (1) with —w<p,<» and
;
t ; const
o0 the phase space volume contraction. To calculate the ther- 0(vn)= "1 X CrmadVn) (16)
modynamic entropy production for thermostating by deter- " ol mapTnt

ministic scattering we have to calculate the temperature of

the reservoifT, in nonequilibrium. As discussed in Rgp7], ~ With 0<v,<=. Before we come to the reservoir tempera-
in nonequilibrium the temperature related to the particle, ofure definitions that are based on these densities, we remark

respectively the temperature in the bilk defined via equi- that the disk that serves as the thermal reservoir is fixed and

partitioning of energy, is greater than the parametric temSannot recognize any current. In other words, only the ki-
peratureT in Eq. (5) and increases with the field strength. Netic energy of the particle in the fixed frame of the bulk
Moreover,T,, is inhomogeneously distributed in the bulk be- 2Epr=(v?) is relevant for the interaction with the reservoir,
cause the thermostat acts only at the boundary. In this sectidid no average current needs to be subtracted. Defining now
we derive an expression for the temperature of the reservoli**] as the average oV@ap, E. (15) implies for the tan-
T, similarly to how it has been done in R¢28]. gential componentvy) =[v¢], thus leading to the definition

If we assume equipartitioning of energy of particle andof T, as
reservoir at the wall, we can define the reservoir temperature ) '
T, indirectly via the velocity distribution of the particle at the Lol +[ve7]
moment of the collision denoted @&y, For the sake of v 4 '
simplicity, here we do not explicitly consider the dependence
of T, on the positions of the colliding particle at the disk. Analogously the average over the map density corresponding
An expression for the temperature of the reservoir can theto (v2) can be calculated from E@16) to
be derived from the temperature in the bulk on the basis of

the relation between the map densiy,,, and the time- 5 *
continuous density in the bulk as given by Eq(5) in Ref. , __vne(vn)duy ,JUlemap(U”)dU"
[27]1 <Un>: o = % l
d =
Qma;{v) f_xe(vn) Un f_w|vn|ema;{vn)dvn
e(v)=consX ———. (12
v _ [|Un|]

The precise derivation of this equation can be found in Sec. i ’
11 B 2 of Ref. [27]. To obtain the expressions for the velocity [vnl
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where the denominator is obtained from joint normalizationYorke dimension is equal to the dimension of the phase
over the ingoing and outgoing fluxes, is then defined as  space,Dyxy=d=4. In addition, the parametric temperature
T, the temperature in the bulk,, and the reservoir tempera-

1 [|vg[+vy] tureT,, are all equalT=T,=T,.
nTo27 1 1 We now turn to an even more detailed analysis of the
m + v_’} dynamical instability of our model system by following ideas
n summarized in Refd.36,38. If a dynamical system is er-
with —%<y,<0 and O<v/ <. godic_,_the Lyapunov exponents do not depend on the in_itial
The total temperature of the reservair is consequently ?Ond't'ons of the tangent vc—:"ctors,'gnd thus_ they only yield
the average of, andT,,, mformat_lon about_the global instability. This |mpl_|es tha_lt_ Eq.
(1) provides no direct way to assess the local instability of
T+ T, the system at specific values of phase space variables such as
Tr:T- (17)  the angle of incidence at a disk and the position of the

colliding particle 8. In Refs.[36,38, two slightly different

T, can be calculated as an average ogeor locally in a Way.s'have been proposed to access information on local in-
small intervalAB. We note that our result foF, is slightly ~ Stapilities depending on these parameters. Here we use the
different from the result in Ref.28], which, strictly speak- approach_ proposed_m Re38] that characterizes the local
ing, is only valid if the ingoing and outgoing densities aredeformatlon of a typical tangent vectéll™ at the moment of

symmetrical. a collision by introducing the quantity

This definition of the temperature is exact in equilibrium; ST
however, in the case of a nonequilibrium situation E4G®) Ne(siny, 8)= < In| |> (18)
and(13) are not valid anymore. A more detailed analysis of ¢ ' |or| /"

these shortcomings leads to the conclusion Thatalculated
according to Eq(17) will be greater than the real tempera- Where the brackets indicate an average over all collisions in a
ture of the reservoir for higher field strend®7]. One would ~ respective small interval around and/or y. The physical
only obtain the real temperature of the reservoir if one werdnotivation for defining this quantity is that any tangent vec-
to use the correct relation between map density and timelor quickly orients itself into the direction of fastest growth.
continuous density in nonequilibrium, and this is not known.Accordingly, the full memory of the maximum instability of
In any case, a lower bound for the temperature of the resethe system is contained in the orientation of the tangent vec-
voir that we denote a%;, can be calculated by only taking tor thus representing a “needle” in phase space that very
into account the velocity of the particle after a collision. ~ Sensitively measures the local changes of the stability at a
collision. Therefore, this quantity is a very sensitive function
V. EQUILIBRIUM of y and 8. In Ref.[38] this quant_ity has been called a local .
Lyapunov exponent; however, this term has also been used in
The numerical calculation of the Lyapunov spectrum forthe literature to indicate the dependence of the Lyapunov
the Lorentz gas as thermostated by deterministic scatteringxponents, Eq1), on initial conditions in case the dynamics
according to the method presented in Sec. Il leads to thes nonergodid 32]. To avoid possible confusion, and by fol-
following result in equilibrium: {\}={1.8695,0.0104, lowing Ref.[36] where closely related quantities have been
—0.0104;-1.8693. These data appear to be at variancedefined, here we denole, as the local stretching rates of the
with the fact that in equilibrium two zero Lyapunov expo- system. Note that the clever and very simple definition by
nents have to exist, one associated with the direction of th&g. (18) makes at least the maximum local stretching rate
flow, and a second one resulting from the conjugate pairinglirectly accessible to computer simulations. In contrast, in
rule in equilibrium[32]. In the Appendix we report on tests Ref.[36] the full spectrum of these rates has been defined in
to detect the reason for this discrepancy and we propose anproper comoving coordinate system. This makes their defi-
alternative method to perform the periodic orthonormaliza-hition more convenient in mathematical terms, but also less
tion called constraint orthonormalization. The application ofaccessible for straightforward numerical computations. Both
constraint orthonormalization leads to a Lyapunov spectrunthese different definitions are related via coordinate transfor-
in equilibrium of {\}={1.8695,0.0000,0.0000,1.8695, mations[39]. Unfortunately, local stretching rates are not
thus correctly containing two zero Lyapunov exponentscoordinate invariant, thus yielding different values depend-
whereas the first and the fourth Lyapunov exponent are equaig on their precise definition, even in conjugate dynamical
to the respective exponents obtained from ordinary Gramsystems.
Schmidt orthonormalization; see also Fig. 3. In agreement A, as a function ofg for thermostating by deterministic
with the on-average zero energy transfer between particlscattering in comparison to elastic collisions is presented in
and reservoir, the sum of the Lyapunov exponents and thEig. 2(a) showing that the conventional hard disk Lorentz
global phase space volume contraction is zero. Furthermorgas and our thermostated version of it share the same prop-
the Lyapunov exponents trivially fulfill the conjugate pairing erties. The maxima/minima of(3) correspond to the di-
rule related to the Hamiltonian character of the dynamics irrections of maximal/minimal distances between neighboring
equilibrium. The probability density in the Lorentz gas cell is disks, respectively. Results for the conventional Lorentz gas
uniform in equilibrium and, as a consequence, the Kaplanin a more detailed view of phase space, i»],sin(y)] for
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FIG. 2. Local stretching rate in equilibriunfa) thermostating 0.4 -2.00 +
by deterministic scatteringsolid curve, elastic collisiongdashed _05 s -2.05 :
curve for all y, (b)—(e) thermostating by deterministic scattering, 0.0 0.5 1.0 0.0 0.5 1.0
() 18]<0.00001, (c) |B—/2|<0.00001, (d),(e) refined local € €

stretching rate(d) | 3— /2| <0.000 01,(e) enlarged sector ofd).
The quantities plotted in this and in the following figures are di-
mensionless.

FIG. 3. Field dependence of the four Lyapunov exponents in
nonequilibrium; filled circles: Gram-Schmidt orthonormalization,
empty circles: constraint orthogonalization as defined in the text. In

. this and in the following figures the error for the results is less then
|3]<0.00001 as presented in RE38], have shown thatthe gy 154

local stretching rate\. is a singular function of sinf (see

also Ref[36]). Related results fox [ sin(y)] for the Lorentz  shown in Fig. 3, where both results from the standard
gas as thermostated by deterministic scattering are presentgtethod as well as from the constraint method are presented.
in Fig. 2. The curve in Fig. @) looks qualitatively very Only one zero Lyapunov exponent exists in nonequilibrium
similar to the curve in Fig. 1 df38]. However, the numerical associated with the direction of the flow. For higher field
results for\ [ sin(y)] of our system are not sufficiently accu- strength unconstraint Gram-Schmidt orthonormalization cor-
rate[40] to study the existing discontinuities on a finer scale,rectly turns the second tangent vector in the direction of the
as it has been done in Fig. 2 of R€88]. To perform such flow, \,<10™* for £,>0.5.

investigations in a slightly more detailed way we looked at The Lyapunov spectrum as a function of the field strength
the refined, decomposed local stretching rale, obtained from constraint orthonormalization is also pre-

— (In(|ST])/(|5T,))) that characterizes the deformation of the sented in Fig. 3. As in equilibrium, the results of the two

methods differ only for the second and third Lyapunov ex-
x component of a tangent vector only. The results>\fprr are

ponent fore,<0.5. The differences for the third Lyapunov
presented in Figs.(d) and 2e). Figure Ze) shows an en- exponent are of the same size as the differences for the sec-
larged sector of Fig. @) where one can see a roughly sym- ond Lyapunov exponent. The second Lyapunov exponent ob-
metric profile composed of maxima and minima on a finetained by the contraint method is zero for all field strengths
scale. The apparent symmetry of most of these peaks sugerresponding to the constrained tangent vector in the direc-
gests that these oscillations are not due to numerical errortion of the flow. The third Lyapunov exponent decreases with
We consider this as an indication that for the Lorentz gas amcreasing field strength that is related to the dominant en-
thermostated by deterministic scattering at least the refinedrgy transfer in the direction of the particle to the disk. The
local stretching rate\c could be a singular function of dependence of the third and of the fourth Lyapunov expo-
sin(y). It may be somewhat surprising that such specific dy__nents on the field strength appears to be a power law which

namical properties of the conventional, unthermostated Lor'S & Pehavior that has also been observed for the Gaussian
ermostated Lorentz gas for small enough field strength

entz gas persist in our thermostated system as well. Howev . . -
this leads to the conclusion that the geometric instability ofl 1- According to the Pesin theoref82], the only positive

the system is more important for these characteristics thahyapur?ov exponent is equal to the Kolmogorov-Sinai en-
the one resulting from the modifications related to our spelf@PY Nks:
cific scattering mechanism.

hKSZZi )\IJr .
VI. NONEQUILIBRIUM . . ) . .
Interestingly, its curve is nonmonotonic. For small field
In nonequilibrium we choose the electric field such thatstrength, the dynamics in configuration space appears to be
ex>0,&e,=0. The field accelerates the particle, and energy islominated by the fact that the trajectory of the particle is
transfered on average to the disk resulting in a nonequilibgetting adjusted in the direction of the field, and the
rium steady state. As a consequence, the global phase spaelmogorov-Sinai entropy decreases. For higher field
volume contraction given by E¢9) is negative. The detailed strength the increasingly disordered dynamics in velocity
dependence of the Lyapunov spectrum on the field strength ispace related to an increase of the bulk temperatgiseems
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FIG. 4. Field dependence of various important quantities in non-t. IFIG_ihSt.thdff_erkenttfqulgnttltles teb:/a_ltz)atsgd atdthe _collltslon (ﬁf a par-
equilibrium: (a) black: phase space contraction raté®, white: icle wi ¢ disk at field strength, = 0.5: (a) density at a collision

irreversible entropy productiothS; (b) conjugate pairs of Lyapunov $(B); (b) local stretching ratex.(B); (c) reservoir temperature
exponents, blacka;+\,, white: N\,+\3; (c) Kaplan-Yorke di- (B)-
mensionDgy ; (d) reservoir temperatur&, (black) and its lower

boundT,, (white). The local expansion rate.(8) as defined in Eq(18) is

presented in Fig.®) and can be compared with(3) shown
to become more important, and the Kolmogorov-Sinai enin Fig. Xa). One still recovers remnants of the periodic equi-
tropy increases. The same field dependence of thlbrium distribution of\.; see Fig. 2a). However, they are
Kolmogorov-Sinai entropy has been observed in a shear flowtrongly deformed by the anisotropy induced by the field,
as thermostated by deterministic scatteri@]. It would be ~ and the maxima and minima are much more pronounced. In
interesting to know whether this is a general property appearcontrast to equilibrium, there exist two absolute maxima, one
ing in field-driven system as thermostated by deterministicround 8~ =/6 and another aroun@~2m— /6, and an
scattering. In contrast to this observation, the Kolmogorov-absolute minimum aroun@~ . The maxima and minima
Sinai entropy monotonically decreases for the Gaussian thegf A¢() occur just opposite to the maxima and minima of
mostated Lorentz gas because the constraint of the bulk theg(). This is in agreement with the physical interpretation
mostat onto the dynamics increases with increasing fieldhat a more unstable dynamics leads to a more dilute particle
strength[21,42. Whether the irregularities on the fine scale density in phase space. To extend the comparison, the tem-
in Fig. 3 are a property of the dynamics or numerical fluc-perature of the reservoif, as a function ofg calculated
tuations could not be decided on the basis of the present dataccording to Eq(17) is presented in Fig.(8). The distribu-
The sum of the Lyapunov exponents is negative and action of peaks in\;(8) andT,(8) is very similar. This might
cording to Eqg.(9) equal to the phase space volume contracbe related to the fact that both quantities illustrate somewhat
tion P. As presented in Fig.(4), P decreases with increasing irregular behaviori; characterizes the instability of the dy-
field strength. The density of the attractor remains phas@amics andT, is equal to the mean kinetic energy of the
space filling but shows a nonuniform and complicated strucdegrees of freedom of the reservoir. The analog®dgpen-
ture as shown in the Poincasection in Fig. 4a) of Ref.[4]. dence of\, and T, points again to a close relation between
Therefore, we can assume that the Hausdorff dimenSign dynamical system theory and statistical mechanics. At
is equal to the dimension of the phase spgrzd=4, asis B~ the distributions of botix. and T, show a more com-
also the case for Gaussian thermostated periodic Lorenfalicated structure. This is probably a consequence of the dy-
gases. In contrast, the Kaplan-Yorke dimendnp, defined namics being directed parallel to the field resulting in the
by Eq. (10) is not an integer anymore, as presented in Figglobal minimum ofi. on a coarse scale, whereas for otfSer
4(c). This provides quantitative evidence for the fractal struc-the dynamics is more chaotic. For more detailed views of the
ture of the attractor according to the conjectlygy=D;. phase space for the local stretching rate in analogy to Fig. 2
Some of the conventional deterministic and time-in equilibrium we could not get qualitative good resyi§)].
reversible bulk thermostats fulfill the conjugate pairing rule Thus, whethek () is a singular function in nonequilibrium
saying that the Lyapunov exponents can be grouped inton a fine scale remains an open question.
pairs such that , +X\_=const[3,20]. Figure 4b) shows The dependence dff, on the field strength according to
that the conjugate pairing rule does not hold for our modelthe definition in Eq.(17), in which T, is averaged ovep,
However, this does not come as a big surprise because it and the lower bound, as defined below this equation are
well known that even conventional thermostats do not exshown in Fig. 4d). In particular, the results fof (&) con-
hibit conjugate pairing if thermostated at the boundariedirm that T, is always greater in nonequilibrium than the
[26,43. parametric temperaturg, T,>T.
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extrapolation, i.e., the assumptions made in the derivation of
Eq. (17) do not hold in nonequilibrium, but at least they yield
a reasonable estimate. Note that the kinetic energy in this
limit is still always greater than the lower bound for the
reservoir temperaturé,;> T, , which will be important for
our following discussion of entropy production.

The external driving force performs work on the system

and causes a macroscopic flow characterized by a positive

conductivity c>0 [27]. At the same time, work is trans-
FIG. 6. Probability density at the moment of a collision fay ~ formed into heat and in turn removed by the thermostat lead-

tangential velocity, and(b) normal component, at field strength  ing to a positive thermodynamic entropy production. Starting

£,=0.5. Solid curve, density before collision; dashed curve, densityfrom Eq.(11), the irreversible entropy production in the bulk

after collision; long dashed curve, density in equilibrium. dSis easily computed by defining the heat productitipas

the change of the kinetic energy of the particle in the bulk,

More detailed information related to the deviations be-dEp:/dt, and feeding in the bulk equations of motion Eq.
tween reservoir temperature and parametric temperature afd- This leads to the well-known expression of entropy pro-
obtained by studying the map densitigs,,{v;) and duction via Joule heating
Omadvn) at a collision as represented in Fig. 6. The devia- 60,
tions between ingoing and outgoing densities in both cases ds= XX
are reminiscent of an average transfer of kinetic energy from Ty

particle to reservoir, as it is necessary to compensate t . ' i
influx of energy caused by the electric field to obtain a non}}Fhe numerical result for the field dependence of the thermo

equilibrium steady state. However, in the case of the periodi<(:jynamlc entropy production according to this equation is
presented in Fig. (4).

Lorentz gas, taking the thermodynamic limit leaves the sys? .
tem precisely as it is. Consequently, there is no thermody:- On the other hand, as discussed above the heat produced

namic way to get rid of the difference between ingoing andm the bulk must leave as an outward flux across the walls

outgoing velocity distribution. But these differences are thedbsorbed by the thermal reservoir. Correspondingly, comput-

. . A . ing the average change of the kinetic energy during a free
dynamical reason why in nonequilibrium the reservoir tem-,,. . . )
. . . flight from the equations of motion yields
peratureT, is typically not equal to the parametric tempera-
ture T, because this would only be the case if both distribu- (VY —(v'?)
tions were converging to th@ocal) equilibrium distribution evy)= — %
in the thermodynamic limit, as included in these figures. This

aspect will become important for understanding our result§yhere the right hand side is just the average transfer of ki-
on the relation between phase space contraction and entropyjc energy at a collision. Inserting this result into EtP)
production below. leads to

In Fig. 7, the kinetic energy of the particle in the bulk
averaged ovep, Epf=<v2>/2, is presented as a function of
the distanced from the disk. The profile oE is inhomo-
geneous as expected. Fdr—0, E,¢ should approach the
temperature of the reservoir defined via equipartitioning ofComparing now Eq(21) with Eq. (9) yields the important
energy, thus providing an alternative definition of the reserresult that the identity between thermodynamic entropy pro-
voir temperature based on the bulk dynamics in the inneduction and phase space volume contraction does not hold
ring around the disk. However, it is not possible to safelyfor the Lorentz gas as thermostated by deterministic scatter-
extrapolate to this limiting value on the basis of the presening. Instead, these two quantities just differ by the factor
data[40]. ComparingE,; for d—0 with T, shows, in par-  T/T,(&y),
ticular, thatT,>E,; for e,=1 excluding convergence via

. (19

(20

o 0D

2T, @D

dS=—-P——. 22
(@ 0.605 (b) Ti(ex) 22
0788 To explicitly compare these two quantities, the field depen-
5 0.595 5 0.775 dence of —P is also presented in Fig.(&. As we have
u w discussed above, there is some ambiguity in defining the res-
0.765 ervoir temperaturd, ; however, we emphasize that all our
0.585 ‘ 0.755 ‘ applied definitions and bounds lead to the result th& and
0.00 035 0.10 0.00 0-35 0.10 dS are inherently different in nonequilibrium. This is also

clear from the way the thermostat works in our model, as

explained above.
As has been done in conventional thermostats, starting
from Eq. (22) a relation between the electrical conductivity

FIG. 7. Profile of the full kinetic energl,; of the particle in the
bulk, blackE, white reservoir temperatur; : () field strength
£,=0.5,(b) e,=1.
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and the phase space volume contraction can now be estatic collision of a particle with a hard disk, as it is also mod-
lished by using Eq(19) and replacing the average current eled in granular materials by using restitution coefficients.

according to the definition of the conductivity Thus, applying constraint orthonormalization might be help-
ful for exactly computing Lyapunov spectra in low-
(v)) dimensional systems of granular type a's.well. On the basis of
o= - the Lyapunov exponents, further quantities have been calcu-

lated to characterize the nonequilibrium steady state. The
comparison of the results obtained for thermostating by de-
terministic scattering with the ones known for conventional

thermostats leads to the following conclusions.

(1) The sum of the Lyapunov exponents for thermostating
ey ey by deterministic scattering is negative in nonequilibrium, in

agreement with the phase space volume contraction onto an

This equation is formally identical to the Lyapunov sum rule attractor. For thermostating by deterministic scattering only
obtained for the conventional thermostats. The Only diﬁer'one Lyapunov exponent is zero in nonequ”ibrium related to
ence is the constant factdrthat, for conventional thermo- tne direction of the flow. Similar results can be expected for
stats, corresponds to the temperature of the reservoir. If thge NoSeHoover thermostated Lorentz gas, where the calcu-
Lyapunov sum rule applies, it shows that macroscopic traNS;tions of the Lyapunov exponents have not yet been per-

port can be directly understood in terms of the microscopiG,meq. n contrast, for the Gaussian thermostated Lorentz
dynamics characterized by the sum of the Lyapunov eXpogas, two Lyapunov exponents are zero in nonequilibrium be-

nents. . .
However, we remark that the existence of a Lyapunovcayse the thermostat keeps the kinetic energy of the particle
strictly constant.

sum rule in thermostated systems of the simple type like the . . .
one above seems to be the exception rather than the rule. Fo (2) The Kaplan-Yorke dimension calculated on the basis

example, a difference between phase space volume contra%{ the Lyapunov exponent is not an integer in nonequilib-
tion and thermodynamic entropy production has also beefUMm: Providing quantitative evidence that the attractor of
obtained for a shear flow as thermostated by deterministi"€rmostating by deterministic scattering in the periodic Lor-
scattering 28]. For this system the expressions PanddS €Ntz gas exhibits a fractal structure analogous to the conven-
can be rather complicated. Consequently, the Lyapunov surfPnal bulk thermostats.
rule does not hold and a similar relation has not been found (3) The identity between thermodynamic entropy produc-
in addition. Furthermore, a variation of the Nedeover and ~ tion and phase space volume contraction does not hold for
of the Gaussian thermostat did not lead to an identity bethermostating by deterministic scattering. Instead, these two
tweenP anddS implying the invalidity of the Lyapunov sum quantities differ by a field dependent factor. The reason for
rule as well, as discussed in Refg&5,44. this difference is that the temperature of the reservoir of ther-
In general, the relation between phase space volume comostating by deterministic scattering depends on the field
traction and thermodynamic entropy production, and the corstrength, in contrast to Gaussian and Nésever thermo-
responding relation between transport coefficient andtats. This result is important, since this identity has, until
Lyapunov exponents, will depend on the details of the mi-now, been accepted as a general characterization of nonequi-
croscopic energy transfer between particle and reservoifiprium steady states generated by deterministic and time-
Bas_ed on our studies in Ref4,25,27,28 we conclude_ that reversible thermostats.
an identity betweerP and dSappears only to be valid for 4y Syrprisingly, although there is no identity we can still

what might be called *ideal” thermostats, meaning that en-egiapish a relation between conductivity and Lyapunov ex-
ergy is exchanged between subsystem and reservoir by Sy, nents for thermostating by deterministic scattering. This
ficiently 'S|mple coupllng rules as provided, for example, byequation is formally identical to the Lyapunov sum rule for
conventional Gaussian and Neleover thermostats. conventional thermostats. As far as we know, our model thus
provides a first example of a system where there is no iden-
VIl. CONCLUSIONS tity, but where nevertheless there is a simple relation between
In this work we have numerically calculated the ransport coefficients and dynamical instabilities similar to

Lyapunov exponents for the Lorentz gas thermostated by dé&onventional thermostats. _

terministic scattering. The Gram-Schmidt orthonormaliza- N summary, we find that the existence of fractal attractors
tion, a fundamental ingredient of the standard method usetd nonequilibrium steady states is a common feature that
to calculate Lyapunov exponents, led to an incorrect resulthermostating by deterministic scattering shares with con-
for the Lyapunov spectrum by applying this thermostat. Weventional thermostats. Physically speaking, the fractal char-
modified this method by imposing an additional constraint,acter reflects the extreme rarity of nonequilibrium states rela-
summarized as constraint orthonormalization, and found retive to equilibrium ones. To look for additional common
sults that are in agreement with expectations from dynamicgbroperties of all deterministic and time-reversible thermo-
systems theory. We wish to remark that the phenomenostats remains an important question, which is intimately re-
causing our numerical difficulties is reminiscent of an inelas{ated to obtaining a general characterization of nonequilib-

yielding
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rium steady states. Such a characterization might result in &al direction of the flow. Since we are introducing an addi-

more general relation between quantities of thermodynamitional constraint this way, we call it constraint orthonormal-

interest and the indicators of dynamical chaos at the microization. It consists of the following steps.

scopic level, from which the relations obtained for the ther- (1) Choose suitable initial conditions for the orthonormal

mostating mechanisms considered above could appear g§stem. The first tangent vector is situated in the direction of

special cases. the flow, 6T = (v40/v0,0y0/v0,0,0), and the other tangent
vectors are orthonormal to it.
ACKNOWLEDGMENTS (2) At every orthonormalization the first tangent vector is

) . ) forced to point in the direction of the flow,6I';
We are indebted to C. Dellago for his assistance concemn=(y /y,v,/v,0,0). This step corrects the very small devia-
ing the numerical calculation of the Lyapunov exponentsyons of the first tangent vector from the direction of the flow

and we thank Professor G. Nicolis for his ongoing supportegiting from a collision with the disk, as will be explained
and encouragement in this research. K.R. thanks the Eurgs more detail below

pean Commission for a TMR grant under Contract No. : .
ERBFMBICT96-1193 and the foundation D. & A. van ., > 'ne second, third, and fourth tangent vectors are or

. . ! thonormalized again starting from the first one according to
Buuren for financial support. R.K. wishes to acknowledge, :

the method of Gram-Schmidt.
support from the MPIPKS. S . o
The application of constraint orthonormalization leads to

the following Lyapunov spectrum in equilibrium{\}
APPENDIX: CONSTRAINT ORTHONORMALIZATION ={1.8695,0.0000,0.0000,1.869%, see also Fig. 3. Com-
eparing these results to the previous ones obtained from the

In this Appendix we describe numerical problems in th =
calculation of Lyapunov exponents for our system and intro—Standard method\ }={1.8695,0.0104; 0.0104;- 1.869%

duce an alternative orthonormalization scheme called corsNoWs that the Gram-Schmidt orthonormalization led to a
straint orthonormalization to solve these problems. wrong result only for the second and third Lyapunov expo-

As was explained in Sec. V, by standard Gram-Schmidf'€nts. The explanation for this numerical problem is as
orthonormalization we have obtained the result that in equifollows. In equilibrium the average energy transfer to the
librium no zero Lyapunov exponent exists, but only two ex-reservoir is zero. Still, at any collision, energy is transfered
ponents being close to zero, which appears to be at variangdther from the particle to the reservoir or in the opposite
with expectations from dynamical systems theory. We havelirection. According to Eq(9) the phase space volume thus
therefore performed the following tests to detect the reasotocally contracts or expands although thiebal phase space
for this discrepancy. volume contraction is zero. However, as shown by &q.

(1) We have numerically calculated the Lyapunovthe phase space contraction is intimately related to the
exponents by investigating the dynamics of a trajectory andorresponding (un)stable directions in phase space.
four satellite trajectories, i.e., for finite but small distances.Consequently, the local contractions and expansions at a
The Lyapunov spectrum obtained by this method was theollision change the orientation and the norm of the tangent
same. vectors in a nontrivial way. The Gram-Schmidt orthonormal-

(2) Changing parameters such as the interdisk distance ization reacts to these changes by turning the corresponding
the parametric temperatufie the dimensionality of the res- tangent vectors out of the previously neutral directions. The
ervoir [4,27], the slope of the baker map, and replacing thequestion of why the Gram-Schmidt procedure does not con-
baker map by more complicated two-dimensional maps suclierge to the two existing neutral directions at least in the
as the cat map or the standard njaf] did not improve the long time limit could not be completely resolved even by
result. very detailed numerical investigations of the dynamics. Pos-

(3) We have followed the temporal evolution of two sibly some kind of resonance phenomenon between local
points on the same trajectory for about 20 collisions withoutphase space contraction and expansion at the collision and
orthonormalization and by choosing as initial conditides ~ Gram-Schmidt orthonormalization after the collision leads to
that the points are slightly displaced along the trajectory buthe corresponding tangent vectors adjusting themselves
have the same velocity, arid) that the points have the same somewhat symmetrically around these two neutral directions
configuration space coordinates but slightly different veloci-{45].
ties. We could then show that two neutral directions exist To obtain the correct Lyapunov exponents #or<0.5
corresponding tda) the direction of the flow an¢b) to one  in nonequilibrium, we applied a suitably adjusted version
direction perpendicular to the flow. of constraint orthonormalization as used in equilibrium:

The third test indicates that two zero Lyapunov exponent$n order to achieve two points on a trajectory staying on
indeed exist. Thus, there must be a numerical problem behe same trajectory after a collision, their initial states
cause of standard Gram-Schmidt orthonormalization that essnd velocities have to be chosen such that the points have
tablishes an orthonormal system of the tangent vectors on thbe same velocity at the moment of the collision. This
basis of the most unstable direction. To cure that problemgondition leads to the components for the first tangent
we propose an alternative method to perform the periodivector 6T'1={vyg,vy0,8x0}. Note that 6I' is not
orthonormalization. This method establishes an orthonormaiormalized here. The other steps are then the same as in
system of the tangent vectors starting from the existing neuequilibrium.

036209-10



LYAPUNOV INSTABILITY FOR A PERIODIC LORENTZ . . . PHYSICAL REVIEW E 65 036209

[1] D. J. Evans and G. P. MorrisStatistical Mechanics of Non- [25] K. Rateitschak, R. Klages, and W. G. Hoover, J. Stat. Phys.

equilibrium Liquids(Academic Press, London, 1990 101, 61 (2000.
[2] W. G. Hoover,Computational Statistical Mechani¢Elsevier, ~ [26] C. P. Dettmann, irHard Ball Systems and the Lorentz Gas
Amsterdam, 1991 editeq by D: Szasz, Springer Sgries in Encyclopedia of Math-
[3] G. P. Morriss and C. P. Dettmann, Chas321(1998. ematical SciencegSpringer, Berlin, 2000
[4] R. Klages, K. Rateitschak, and G. Nicolis, Phys. Rev. L&t. [27] Tég%?tze(;tgghak' R. Klages, and G. Nicolis, J. Stat. Pigg.
4268(2000. [28] C. Wagner, R. Klages, and G. Nicolis, Phys. Re\6@& 1401
[5] W. G. Hoover, A. J. C. Ladd, and B. Moran, Phys. Rev. Lett. (1999.
48, 1818(1982. [29] C. Dellago, H. A. Posch, and W. G. Hoover, Phys. ReG3:
[6] D. J. Evans, J. Chem. Phys8, 3297(1983. 1485(1996.
[7] D. J. Evanset al, Phys. Rev. A28, 1016(1983. [30] C. Wagner, J. Stat. Phy88, 723(2000.
[8] S. Nose J. Chem. Phys81, 511(1984. [31] H. SchusterDeterministic Chaos2nd ed.(VCH Verlagsge-
[9] W. G. Hoover, Phys. Rev. 81, 1695(1985. sellschaft mbH, Weinheim, 1989
[10] D. J. Evans and B. L. Holian, J. Chem. Phg8, 4069(1985.  [32] J.-P. Eckmann and D. Ruelle, Rev. Mod. PHy#.617(1985.
[11] B. Moran and W. G. Hoover, J. Stat. Phyk8, 709 (1987). [33] G. Benettin, L. Galgani, A. Giorgili, and J.-M. Strelcyn, Mec-

[12] B. L. Holian, W. G. Hoover, and H. A. Posch, Phys. Reuv. Lett. canicals, 9 (198_0' ) .
50, 10 (1987. [34] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Physica

D 16, 285(1985.
[13] W. G. Hoover, Phys. Rev. &7, 252 (1988. [35] C. Dellago and H. A. Posch, Phys. Rev5E 2401(1995.

[14] W. G. Hoover,Time Reversibility, Computer Simulation, and [36] P. Gaspard,Chaos, Scattering, and Statistical Mechanics

Chaos(World Scientific, Singapore, 1999 (Cambridge University Press, Cambridge, 1998
[15] W. G. Hoover and B. Moran, Phys. Rev.4®, 5319(1989. [37] K. Rateitschak and R. Klaggsnpublisheg
[16] G. P. Morriss, Phys. Lett. A34, 307 (1989. [38] C. Dellago and W. G. Hoover, Phys. Lett.268 330 (2000.

[17] H. A. Posch and W. G. Hoover, Phys. Rev38 473(1988. [39] P. Gaspardunpublishedl
[18] N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Y. G. Sinai, [40] One week CPU time was not sufficient to increase the quality

Phys. Rev. Lett70, 2209(1993. of the results.

[19] N. L. Chernov, C. L. Eyink, J. L. Lebowitz, and Y. G. Sinai, [41] G. Morriss, C. P. Dettmann, and D. J. Ishister, Phys. R&4,E
Commun. Math. Physl54, 569 (1993. 4748(1996.

[20] D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev. A42] C. P. Dettmann, G. P. Morriss, and L. Rondoni, Phys. Rev. E
42, 5990(1990. 52, R5746(1995.

[21] C. Dellago, L. Glatz, and H. A. Posch, Phys. Re\6E 4817 [43] H. A. Posch and W. G. Hoover, Phys. Rev38, 2175(1989.
(1995. [44] R. Klages and K. Rateitschgkinpublished

[22] J. Lloyd, L. Rondoni, and G. P. Morriss, Phys. Re\b® 3416  [45] This failure of the Gram-Schmidt orthonormalization was not
(19949. detected in related calculations for a shear flow as thermo-

[23] J. Lloyd, M. Niemeyer, L. Rondoni, and G. P. Morriss, Chaos stated by deterministic scatterii@0]. We suspect that, be-
5, 536 (1995. cause of the many elastic particle-particle collisions in the

[24] C. P. Dettmann and G. P. Morriss, Phys. Revh& 4782 bulk, in this system it has quantitatively negligible conse-
(1996. guences.

036209-11



