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General relation between quantum ergodicity and fidelity of quantum dynamics
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A general relation is derived, which expresses the fidelity of quantum dynamics, measuring the stability of
time evolution to small static variation in the Hamiltonian, in terms of ergodicity of an observable generating
the perturbation as defined by its time correlation function. Fidelity forergodicdynamics is predicted to decay
exponentiallyon time scale}d22, d; strength of perturbation, whereas faster, typicallyGaussiandecay on
shorter time scale}d21 is predicted forintegrable, or generallynonergodicdynamics. This result needs the
perturbationd to be sufficiently small such that the fidelity decay time scale is larger than any~quantum!
relaxation time, e.g., mixing time for mixing dynamics, or averaging time for nonergodic dynamics~or Ehren-
fest time for wave packets in systems with chaotic classical limit!. Our surprising predictions are demonstrated
in a quantum Ising spin-(1/2) chain periodicallykicked with a tilted magnetic field where we find finite
parameter-space regions of nonergodic and nonintegrable motion in the thermodynamic limit.

DOI: 10.1103/PhysRevE.65.036208 PACS number~s!: 05.45.2a, 03.65.Yz, 75.10.Jm
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The quantum signatures of various types of classical m
tion, ranging from integrable to ergodic, mixing and chaot
are still lively debated issues~see, e.g., Ref.@1#!. Most con-
troversial is the absence of exponential sensitivity to va
tion of initial condition in quantum mechanics, which pr
vents direct definition of quantum chaos@2#. However, there
is an alternative concept that can be used in classical as
as in quantum mechanics@3#: One can study the stability o
motion with respect to small variation in the Hamiltonia
Clearly, in classical mechanics this concept, when applie
individual trajectories, is equivalent to sensitivity to initi
conditions. Integrable systems with regular orbits are sta
against small variation in the Hamiltonian~the statement of
KAM theorem!, wheres for chaotic orbits varying the Hami
tonian has similar effect as varying the initial condition: e
ponential divergence of two orbits for two nearby chao
Hamiltonians.

The quantity of the central interest here is thefidelity of
quantum motion. Consider a unitary operatorU being either
~i! a short-time propagator, or~ii ! a Floquet mapU5T̂ exp
@2i*0

pdtH(t)/\# of ~periodically time-dependent! Hamil-
tonian H@H(t1p)5H(t)#, or ~iii ! a quantum Poincare´
map. The influence of a small perturbation to the unita
evolution, which is generated by a Hermitian operatorA,
Ud5U exp(2iAd),d being a small parameter, is described
the overlap^cd(t)uc(t)& measuring the Hilbert space dis
tance between exact and perturbed time evolution from
same initial pure stateuc(t)&5Utuc&,ucd(t)&5Ud

t uc&,
where integer t is a discrete time~in units of the periodp)
@4#. This defines thefidelity

F~ t !5^Ud
2tUt&, ~1!

where the average is performed either over a fixed pure s
^•&5^cu•uc&, or, if convenient, as a uniform average ov
all possible initial stateŝ•&5(1/N)tr(•),N being the Hilbert
space dimension. The quantityF(t) has already raised con
siderable interest, though under different names and inter
tations: First, it has been proposed by Peres@3# as a measure
of stability of quantum motion. Second, it is theLoschmidt
1063-651X/2002/65~3!/036208~5!/$20.00 65 0362
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echo measuring thedynamical irreversibility of quantum
phases, used, e.g., in spin-echo experiments@5# where one is
interested in the overlap between the initial stateuc& and a
stateUd

2tUtuc& obtained by composing forward time evolu
tion, imperfect time inversion with a residual interaction d
scribed by the operatorAd, and backward time evolution
Third, the fidelity has become a standard measure chara
izing the loss of phase coherence in quantum computa
@6#. Fourth, it was used to characterize ‘‘hypersensitivity
perturbation’’ in related studies@7#, though in different con-
texts of stochastically time-dependent perturbation.

The main result of this paper is a relation of the fidelity
ergodic properties of quantum dynamics, more precisely
the time autocorrelation function of the generator of the p
turbationA. Quantum dynamics of finite and bound system
has always adiscrete spectrumsince the effective Hilbert
space dimensionN is finite, hence it isnonergodicandnon-
mixing @8,9#: time correlation functions have fluctuating tai
of order ;1/N. In order to reach genuine complexity o
quantum motion with possibly continuous spectrum one
to enforceN→` by considering one of the following two
limits: quasiclassical limit of effective Planck’s constant\
→0, or thermodynamic limit~TL! of number of particles, or
size L→`. Our result is surprising in the sense that it pr
dicts theaveragefidelity to exhibit exponential decay on
time scale}d22 for ergodic systems~i.e., such that the inte-
grated time autocorrelation ofA is finite!, but much faster,
typically Gaussian decay on a shorter time scale}d21 for
integrable and general nonergodic systems~i.e., such that
time averaged autocorrelation ofA is nonvanishing!. Our
theory on fidelity is very general and can be extended to
perturbed unitary evolution, either in quantum, quasiclas
cal, or even classical~Liouvillian! context. In this paper we
apply it to thequantum many-bodyproblem in TL, in par-
ticular in thekicked Ising model~KI !, namely, the Ising spin-
(1/2) chain periodically kicked with a tilted homogeneo
magnetic field. KI is particularly interesting since it po
sesses parameter-space regions with positive measur
nonergodicbehavior in TL surrounding the integrable cas
@10# of vanishing measure, which is an additional eviden
©2002 The American Physical Society08-1
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for a conjecture@9# on existence of intermediate, nonint
grable and nonergodic quantum motion of disorderless in
acting many-body systems in TL.

We start by rewriting the fidelity~1! in terms of a Heisen-
berg evolution of the perturbationAtªU2tAUt

F~ t !5^eiA0deiA1d
•••eiAt21d&5T̂K )

t850

t21

exp~ iAt8d!L
~2!

which is achieved byt insertions of the unityU2t8Ut8 and
recognizing U2(t821)Ud

†Ut85exp(idAt821). T̂ is a left-to-
right time ordering. Next we make an expansion ind ex-
pressing the fidelity in terms of correlation functions

F~ t !511 (
m51

`
i mdm

m!
T̂ (

t1 ,t2 . . . tm50

t21

^At1
At2

•••Atm
&. ~3!

Being interested mainly in the absolute valueuF(t)u, we will,
in the following, choose perturbations with vanishing fir
momentaª(1/t)( t850

t21 ^At8&50 so that the series~3! starts
at m52, since a shift by a multiple of unityA→A2a1
simply rotates the fidelityF(t)→exp(2iad)F(t). To second
order ind we have

F~ t !512
d2

2 (
t852t

t

~ t2ut8u!CA~ t8!1O~d3!, ~4!

where it is assumed that two-point time correlation funct
is homogeneousCA(t82t)ª^AtAt8&, as is the case for uni
form average over initial stateŝ•&5tr(•)/N. Equation~4!
reveals a simple general rule: the stronger the correla
decay, the slower is the decay in fidelity, and vice ver
Below we discuss two different cases in the limitN→`.

(I) Ergodicity and fast mixing. Here we assume tha
CA(t)→0 sufficiently fast that the total sum converges,SA

ª(1/2)( t52`
` CA(t),uSAu,`. For timest much larger than

the so-calledmixing time scale t@tmix , which effectively
characterizes the correlation decay, e.g.,tmix
5( tutCA(t)u/( tuCA(t)u, it follows that the fidelity drops lin-
early in timeFe(t)512t/te1O(d3) on a scale

te5SA
21d22. ~5!

In order to show even stronger result, we further assu
fast mixing with respect to product observablesBtt8
5AtAt8 with ^Btt8&5CA(t82t), of order k>2, namely
^Bt1t2

Bt3t4
•••Bt2k21t2k

&→) j 51
k ^Bt2 j 21t2 j

& as t1 ,t2 , . . . are

ordered andt2 j 112t2 j→`. Therefore, the leading contribu
tion for large t to eachm term of Eq. ~3! comes from se-
quences (t1 ,t2 , . . . ,tm) where consecutive pairs (t2 j 21 ,t2 j )
are close to each other,t2 j2t2 j 21&tmix . Since for oddm
time indices cannot be paired these terms should vanish
ymptotically ~as t→`! relatively to evenm terms. Thus we
can evaluate (2k21)!! equivalent evenm52k terms in Eq.
~3! ask tuple of independent sums overt j85t2 j2t2 j 21 giv-
ing, for t@tmix ,
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Fe~ t !5 (
k50

`
~21!k~2k21!!!2 kd2kSA

k

~2k!!
5exp~2t/te!. ~6!

Note that formulas~5! and~6! remain valid in a more genera
case of inhomogeneous time correlation where one sho
takeSAª limt→`(1/t)( t,t850

` ^Btt8&.
(II) Nonergodicity. Here we assume that the autocorre

tion function of the perturbation does not decay asympt
cally but has a nonvanishing time average,DA

ª limt→`(1/t)( t850
t21 CA(t8), though the first moment is van

ishing^A&50. For timest larger than theaveraging time tave
in which a finite time average effectively relaxes into t
stationary valueDA , we can write fidelity to second orde
which decays quadratically in time,Fne(t)512(1/2)
3(t/tne)

21O(d3), on a scale

tne5DA
21/2d21. ~7!

More general result can be formulated in terms of a tim
averaged operatorĀª limt→`(1/t)( t850

t21 At8 , namely, for t
@tave Eq. ~3! can be rewritten as

Fne~ t !511 (
m52

`
i mdmtm

m!
^Ām&5^exp~ iĀdt !&. ~8!

Global behavior ofFne(t) for nonergodic systems, wher
higherm terms of Eq.~3! become important, depends gene
ally on the full sequence of moments^Ām&. We argue below,
by giving an example of spin-(1/2) chains, that there a
large classes of perturbing operators where these mom
can be shown to possess normal Gaussian behavior, yiel
Eq. ~9!. Nonergodic behavior is certainly present for gene
observables incompletely integrable systemswhere a se-
quence of conservation laws can be used to estimate
time-averaged correlatorDA @11#, but we wish to make a
stronger statement, namely, that there is a generic regim
intermediate dynamics in nonintegrable systems display
nonergodic behavior@9#.

Let us now apply our theory to quantum spin-(1/2) cha
described by Pauli operatorss j

xyz on a periodic lattice of size
L, j 1L[ j , acting on a Hilbert space of dimensionN52L,
fix the averagê •&5tr(•)/N, and assume that our Floque
operatorU is translationally invariant~TI! on a lattice. It is
useful to introduce a set oflocal TI observablesZs

5L21/2( js j
s0s j 11

s1
•••s j 1n

sn , of order n!L, where s
5@s0 ,s1 , . . . ,sn#,s0 ,snP$x,y,z%,sjP$0,x,y,z%,1< j <n21,
and s j

0
ª1. Using ^s j

ssk
r &5d j ,kds,r one may derive a con

traction formula

^Zs1
Zs2

•••Zs2k
&5 (

all pairings

ø$a,b%5$1 . . . 2k%

)
a,b

dsa
,sb

1O~L21!,

while for odd number̂ Zs1
Zs2

•••Zs2k11
&5O(L21), hence

Zs become independentGaussianfield variables in TL de-
pending on a multi-indexs of variable but finite length.
Therefore, any TIpseudolocal~PL! observableA, having by
definition @9# l 2-expansion in the basisZs ~when L5`),
8-2
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GENERAL RELATION BETWEEN QUANTUM ERGODICITY . . . PHYSICAL REVIEW E65 036208
namely, A5(sasZs ,^A2&5(suasu2,`, possesses norma
Gaussian momentŝ A2k&5(2k21)!! ^A2&k@11O(L21)#.
Further, for a general TI PL observableA, its time averageĀ
is also TI PL, since it can be formally expanded in terms
Zs due to construction ofĀ, and such expansion isl 2 since

^Ā2&5^ĀA&5DA,^A2& @12#. However, for a more genera
non-TI PL observableA, i.e., such that itslinear projectionto
the space of TI observables (1/L)(n50

L21AusW j→sW j 1n
is PL, one

cannot generally show thatĀ is TI PL although we believe
that this is a typical situation, which we can prove in tw
cases.

~i! If the spectrum of propagatorU is nondegenerate~for
any finiteL), then the matrix ofĀ is diagonal in the eigen
basis ofU and Ā is TI due to Bloch theorem.

~ii ! If the system is integrable having a complete set of
PL conservation lawsQn ,n51,2 . . . in thesense that$Qn%
is a complete set of eigenvectors of the Heisenberg m
ÛA5U†AU for eigenvalue 1, then the time average is
projection Ā5(n^QnA&Qn @assuming that̂ QnQm&5dnm#
which is TI PL. This is the case for KI model studied belo
Finally, assuming either~i!, ~ii !, or simply TI PL perturbation
A, we find that moments of time-averageĀ are Gaussian

^Ā2k&5(2k21)!!DA
k @11O(L21)#. Summing up the for-

mula ~8! produces Gaussian decay

Fne~ t !5exp@2~ t/tne!
2/2#, ~9!

for t@tave, on a time scale~7!, which can be computed in
typical integrable situation~ii ! as shown bellow.

Few remarks on the case of finite dimensionN,` are in
order.

~1! F(t) will then start fluctuating around zero with mag
nitudeFfluct;N 21/2 for very long times t.t* (N) where the
time scale t* (N) is determined from the condition
F(t* )uN5`5Ffluct .

~2! F(t) decays all the way down to;N 21/2 only for a
typical or random initial state uc& with ;N nonvanishing
random components when expanded in the eigenbasis oU,
or for an average overuc&. If on the other hand one conside
the initial state that, when expanded either in the eigenb
of U or of Ud , contains essentially only few, saym domi-
nating components, e.g., theregular coherent state of Pere
@3#, thenF(t) is a quasiperiodic function withm small fre-
quencies}d and amplitudes;1/m21/2.

~3! Even in asymptotically ergodic situation the corre
tion CA(t) has a plateau for finiteN, which can be estimated
using a random matrix model for the observableA in the
eigenbasis of the propagatorU as DA;DA* (N)ªcA /N
wherecA is some constant with respect toN. The nonvan-
ishing correlation plateau gives a dominant contribution
Eq. ~4! resulting in a quadratic~or Gaussian! decay ofF(t)
as soon as te.SAuN5` /DA* , i.e., when d,dp(N)ª
SA

21cA
1/2N 21/2. Thisperturbativeregime of very small pertur-

bation strength, existing for finiteN only, is consistent with
the first-order perturbation expansion of eigenstates ofUd in
terms of the eigenbasis ofU @13#.
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Consider an example of KI model with the Hamiltonian

HKI~ t !5 (
j 50

L21

$Jzs j
zs j 11

z 1dp~ t !~hxs j
x1hzs j

z!%, ~10!

where dp(t)5(md(t2mp), with a Floquet mapU5exp
(2iJz(jsj

zsj11
z )exp@2i(j(hxsj

x1hzsj
z)#, where we take units

such thatp5\51, depending on a three independent para
eters (Jz ,hx ,hz). KI is integrable for longitudinal (hx50)
and transverse (hz50) fields @10#, and has finite paramete
regions of ergodic and nonergodic behaviors for a tilted fi
~see Fig. 1!. The nontrivial integrability of a transverse kick
ing field, which somehow inherits the solvable dynamics
its well-known autonomous version@14#, is quite remarkable
since it was shown@10# that the Heisenberg dynamics can
calculated explicitly for observables that are bilinear

Fermi operatorscj5(s j
y2 is j

z)) j 8
j 8, js j 8

x with time correla-
tions decaying to the nonergodic stationary values
uCA(t)2DAu;t23/2 @10#. For DA we find explicit expres-
sions, the simplest,

Dsx5
max$ucos~2Jz!u,ucos~2hx!u%2cos2~2hx!

sin2~2hx!
~11!

andDM5LDsx, for the component of spins j
x , and the com-

ponent of magnetizationM5( js j
x , respectively.

In a general situation of nonintegrable KI we wish to te
our theory by a numerical experiment. We consider a line
three-dimensional parameter space with fixedJ51,hx51.4
and varyinghz exhibiting all different types of dynamics:~a!
hz50 integrable, ~b! hz50.4 intermediate~nonintegrable
and nonergodic!, and ~c! hz51.4 ergodicandmixing. In all
cases we fix the operatorA5M , which generates the pertu
bation of KI model with hx→hx1(hx

21hz
2h coth)d/h2

1O(d2),hz→hz1hxhz(12h coth)d/h21O(d2), where h
5Ahx

21hz
2, and varyL andd. Since we want the perturba

tion strength to be sizeL independent, we scale it by fixing
d85dAL/L0 whereL0ª24. Time evolution has been com
puted efficiently by iterating the factored Floquet map~in
terms of one-spin and two-spin propagators—quant
gates!, requiring}L2L computer operations per iteration p
initial state. In integrable case~a! we confirm saturation of
correlations to the theoretical value@10# DM50.485 126L
@Fig. 1~a!#, as well as Gaussian decay of fidelity~9! with
time scaletne given by Eq.~7!, which terminates att'tne*
5tne(ln N)1/2 @Fig. 2~a!#. In nonintegrable~intermediate!
case~b!, we find persisting nonergodic and nonmixing b
havior since rescaled correlation functions of typical obse
ablesCA(t)/^A2& relax on a shortL-independent time scale
to a nonvanishing valueDA /^A2& and converge to TL very
quickly with increasing sizeL @Fig. 1~b!#, but as opposed to
integrable case~a! the relaxation appears to be exponent
uCM(t)2DMu/L;exp(2t/tave) with tave'7.2 @inset 1~b!#.
Such behavior has been observed for other two compon
of the magnetizationM y,Mz and supports existence of inte
mediate dynamics observed previously in kickedt-V model
@9#. In Fig. 2~b! we confirm Gaussian decay ofF(t) pre-
8-3
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dicted Eq. ~7! from numerically observed value ofDM

50.293L, again up to timetne* (2L). In ergodic case~c! we
find fast decay of correlation functions fitting well to an e
ponential uCM(t)u/L;exp(2t/tmix), with tmix'6.0. Conse-
quently we find exponential decay ofF(t) of Eqs.~6! and~5!
using SM5(1/2)( tCM(t)'2.54L, up to the saturation time
te* 5(1/2)teln N @Fig. 2~c!#.

In conclusion, we have presented a simple theory for
stability of quantum motion with respect to a static perturb
tion of the evolution operator in the limit of Hilbert spac
dimensionN→`, characterized by the fidelity measuring th
distance between time evolving states. The fidelity was
pressed in terms of integrated time-correlation functions
the perturbing operator, showing that faster decay of co
lations gives slower decay of fidelity, meaning that ‘‘chaoti
dynamics is more stable in Hilbert space than ‘‘regular’’ o
~unless the state that one is looking at is simply related to
eigenstates of the system!. In the two limiting cases of mix-
ing and integrable~or more generally, nonergodic! dynamics
we find, respectively, exponential and Gaussian decay.
example, our finding is predicted to have strong implicat
for the stability of quantum computation with respect
static imperfections~e.g., uncontrollable residual interactio
among qubits! ~see, e.g., Ref.@15# for a partial result in this
direction!. In other words, Eq.~5! is a version of the

FIG. 1. Correlation decay for three cases of KI:~a! integrable
hz50, ~b! intermediatehz50.4, and~c! ergodichz51.4, for differ-
ent sizesL520,16,12@solid-dotted connected curves, almost ind
tinguishable in~a!,~b!#. Circles ~a! show exactL5` result. Chain
lines are theoretical/suggested asymptotics~see text!.
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fluctuation-dissipationformula for the ‘‘dissipation coeffi-
cient’’ 1/te of Eq. ~6!, which diverges in nonergodic regime
If the system has a well-defined classical limit then our f
mula ~5! has a clear and simple classical limit\→0 too,
with an integrated classical autocorrelation function sub
tuting the quantum one@16#. However, we note that our re
sults on fidelity decay remain valid only if the limitd→0 is
considered prior to the limit\→0 as the two limits obvi-
ously do not commute. Furthermore, in systems havin
chaotic classical limit, short-time behavior of the fidelity d
cay up to the Ehrenfest time;2 ln \ will also depend on the
structure of the initial state, which may range from a minim
uncertainty wave packet~coherent state! to a maximum en-
tropy random state. These issues are dicussed in deta
Ref. @17#. We speculate that our finding is a manifestation
‘‘the structural invariance’’@18# of quantum chaotic dynam
ics. Although in this paper our theory has been demonstra
in a specific kicked many-body problem, namely, t
quantum-kicked Ising spin-(1/2) chain, we should emphas
that it should be generally valid~within the time and pertur-
bation scales depending on the Hilbert space dimension! and
thus applicable to any unitary evolution, in particular, also
any experimentally interesting quantum dynamics.

The author acknowledges G. Usaj and H. M. Pastaw
for discussions in the initial stage of this work, and T.
Seligman and M. Zˇnidarič for very stimulating discussions
and collaboration on related projects. The work was s
ported by the Ministry of Education, Science and Sport
Slovenia.

FIG. 2. Absolute fidelityuF(t)u for three cases of KI:~a! inte-
grablehz50, ~b! intermediatehz50.4, and~c! ergodichz51.4, for
different sizesL520,16,12 and different scaled perturbationsd8.
Chain curves give theoretical predictions.
8-4
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