PHYSICAL REVIEW E, VOLUME 65, 036208
General relation between quantum ergodicity and fidelity of quantum dynamics
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A general relation is derived, which expresses the fidelity of quantum dynamics, measuring the stability of
time evolution to small static variation in the Hamiltonian, in terms of ergodicity of an observable generating
the perturbation as defined by its time correlation function. Fidelityefgodicdynamics is predicted to decay
exponentiallyon time scalex§ 2, 6~ strength of perturbation, whereas faster, typic@ligussiandecay on
shorter time scale< 5! is predicted forintegrable or generallynonergodicdynamics. This result needs the
perturbations to be sufficiently small such that the fidelity decay time scale is larger thanqamgntum
relaxation time, e.g., mixing time for mixing dynamics, or averaging time for nonergodic dynéoniEiren-
fest time for wave packets in systems with chaotic classical)lir@ir surprising predictions are demonstrated
in a quantum Ising spin-(1/2) chain periodicakycked with a tilted magnetic field where we find finite
parameter-space regions of nonergodic and nonintegrable motion in the thermodynamic limit.
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The quantum signatures of various types of classical moecho measuring thedynamical irreversibility of quantum
tion, ranging from integrable to ergodic, mixing and chaotic,phasesused, e.g., in spin-echo experimefi$where one is
are still lively debated issugsee, e.g., Ref1]). Most con- interested in the overlap between the initial stat and a
troversial is the absence of exponential sensitivity to variastateU ;'U"|¢) obtained by composing forward time evolu-
tion of initial condition in quantum mechanics, which pre- tion, imperfect time inversion with a residual interaction de-
vents direct definition of quantum chaf®. However, there  scribed by the operatohd, and backward time evolution.
is an alternative concept that can be used in classical as wethird, the fidelity has become a standard measure character-
as in quantum mechani¢8]: One can study the stability of jzing the loss of phase coherence in quantum computation
motion with respect to small variation in the Hamiltonian. [6]. Fourth, it was used to characterize “hypersensitivity to
Clearly, in classical mechanics this concept, when applied tperturbation” in related studig’], though in different con-
individual trajectories, is equivalent to sensitivity to initial texts of stochastically time-dependent perturbation.
conditions. Integrable systems with regular orbits are stable The main result of this paper is a relation of the fidelity to
against small variation in the Hamiltonidthe statement of ergodic properties of quantum dynamics, more precisely to
KAM theorem), wheres for chaotic orbits varying the Hamil- the time autocorrelation function of the generator of the per-
tonian has similar effect as varying the initial condition: ex- turbationA. Quantum dynamics of finite and bound systems
ponential divergence of two orbits for two nearby chaotichas always aliscrete spectrunsince the effective Hilbert
Hamiltonians. space dimensiof\is finite, hence it imonergodicand non-

The quantity of the central interest here is figelity of  mixing[8,9]: time correlation functions have fluctuating tails
quantum motion. Consider a unitary operatbbeing either  of order ~1/V. In order to reach genuine complexity of
(i) a short-time propagator, dii) a Floquet magJ =§’exp quantum motion with possibly continuous spectrum one has
[—iffdH(7)/A] of (periodically time-dependentHamil-  to enforce N —o by considering one of the following two
tonian H[H(7+p)=H(7)], or (iii) a quantum Poincare limits: quasiclassical limit of effective Planck’s constant
map. The influence of a small perturbation to the unitary—0, or thermodynamic limifTL) of number of particles, or
evolution, which is generated by a Hermitian operafor sizeL—cc. Our result is surprising in the sense that it pre-
U s=U exp(—iAd),8 being a small parameter, is described bydicts theaveragefidelity to exhibit exponential decay on a
the overlap(s(t)|#(t)) measuring the Hilbert space dis- time scalex 52 for ergodic systemé.e., such that the inte-
tance between exact and perturbed time evolution from th@rated time autocorrelation &k is finite), but much faster,
same initial pure state|y(t))=UY ), |ps(t))=UYy),  typically Gaussian decay on a shorter time scak * for
whereinteger tis a discrete timdin units of the periocp) ~ integrable and general nonergodic systefins., such that

[4]. This defines thdidelity time averaged autocorrelation & is nonvanishing Our
theory on fidelity is very general and can be extended to any
F(t)=(Uj'UY, (1) perturbed unitary evolution, either in quantum, quasiclassi-

cal, or even classicdLiouvillian) context. In this paper we
where the average is performed either over a fixed pure statgply it to thequantum many-bodproblem in TL, in par-
(-)=(yl-|4), or, if convenient, as a uniform average over ticular in thekicked Ising modelKI), namely, the Ising spin-
all possible initial state§- )= (1/N)tr(-),N being the Hilbert  (1/2) chain periodically kicked with a tilted homogeneous
space dimension. The quanti(t) has already raised con- magnetic field. Kl is particularly interesting since it pos-
siderable interest, though under different names and interpr&esses parameter-space regions with positive measure of
tations: First, it has been proposed by PéBjsas a measure nonergodicbehavior in TL surrounding the integrable cases
of stability of quantum motion. Second, it is th@schmidt [10] of vanishing measure, which is an additional evidence
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for a conjecturd9] on existence of intermediate, noninte-
grable and nonergodic quantum motion of disorderless inter-
acting many-body systems in TL.

We start by rewriting the fidelityl) in terms of a Heisen-
berg evolution of the perturbatiofy,:=U ~‘AU"

—1)K(2k—1)112ks%ksk
(2k)!

Fo(t) .(Zo ( =exp(—t/7e). (6)
Note that formulag5) and(6) remain valid in a more general
case of inhomogeneous time correlation where one should
take Sy:=lim_..(14) 2, _o(By).

(I Nonergodicity Here we assume that the autocorrela-
tion function of the perturbation does not decay asymptoti-
(2 cally but has a nonvanishing time averagé)
::IimHoo(llt)E:T:OCA(t’), though the first moment is van-
ishing(A)=0. For timest larger than theveraging time %,¢
in which a finite time average effectively relaxes into the
stationary valueD 5, we can write fidelity to second order,
which decays quadratically in timeF,{t)=1—(1/2)

X (t/ mhe) 2+ O(5%), on a scale

t—1
F(t):<eiA05eiA16_ . 'eiAt,15>:" H eX[XiAtr5)>
t'=0

which is achieved by insertions of the unityJ "t'U!" and
recoghizing U~ ~DUTu! =exp(sA,_,). T is a left-to-
right time ordering. Next we make an expansiondrex-
pressing the fidelity in terms of correlation functions

imsm t-1
T2 (AAL A (B
tm=0

tit .ty

F)=1+ 2, =D Y2671, @)
“

m!
More general result can be formulated in terms of a time-
averaged operatoh:=lim,_..(14)3!, *,A;, namely, fort
>t.e EQ. (3) can be rewritten as

Being interested mainly in the absolute val&gt)|, we will,

in the following, choose perturbations with vanishing first
momenta:=(1/t)2:f=10<At/>=O so that the serie3) starts

at m=2, since a shift by a multiple of unithA—A—al
simply rotates the fidelity=(t) —exp(—iad)F(t). To second

order in 8 we have

im My M

mi (A™ = (exp(iAdt)). (8)

Frdt)=1+ >,

m=2

Global behavior ofF,(t) for nonergodic systems, where
(4) higherm terms of Eq.(3) become important, depends gener-

ally on the full sequence of momentA™). We argue below,
by giving an example of spin-(1/2) chains, that there are
. , ) -~ large classes of perturbing operators where these moments
is homogeneou€(t' —t):=(AiAv), as is the case for uni- o5 he shown to possess normal Gaussian behavior, yielding
form average over initial statgs)=tr(-)/\. Equation(4) g4 (9). Nonergodic behavior is certainly present for generic
reveals a simple general rule: the stronger the correlatiogycarables incompletely integrable systenvehere a se-
decay, the slower is the decay in fidelity, and vice versag,ence of conservation laws can be used to estimate the
Below we discuss two different cases in the lioVit-cc. time-averaged correlatdd , [11], but we wish to make a

(I) Ergodicity and fast mixing Here we assume that g onger statement, namely, that there is a generic regime of
Ca(t)—0 sufficiently fast that the total sum converg&s,  jntermediate dynamics in nonintegrable systems displaying
:=(1/2)2{_ _.Ca(t),|Sa| <. For timest much larger than nonergodic behavidig].
the so-cal_lledmixing time scale%tmix, which effectively Let us now apply our theory to quantum spin-(1/2) chains
characterizes - the — correlation  decay,  €.0.Imx  described by Pauli operatos$¥Zon a periodic lattice of size
=Et|tpA(t)|/2t|CA(t)|, it follows that the fidelity drops lin- L,j+L=], acting on a Hilbert space of dimensiavi= 2",
early in timeF¢(t) =1t/ 7+ O(6°) on a scale fix the averagg(-)=tr(-)/N, and assume that our Floquet
operatorU is translationally invariant(TI) on a lattice. It is
useful to introduce a set ofocal Tl observablesZg

| V2 So.S1 . . . Sn S
In order to show even stronger result, we further assum&L =~ 2j0; 0%, -0}, of order n<L, where s

fast mixing with respect to product observablé; =[s0,S1, - - - Snl,S0.Sn e {X,Y,2},5;€{0X,y,z},1sj<n—1,
=AAy with (B )=Cu(t’'—t), of order k=2, namely and (_TJQ==1- Using(a;joy)= 6 s, one may derive a con-
<Btlt2|3t3t4. . 'BtZk_1t2k>_>H}(=1<Btz,-_1tz,-> asty,t,, ... are traction formula

ordered and,;  ; —ty;—. Therefore, the leading contribu-
tion for larget to eachm term of Eq.(3) comes from se-
quences{,t,, ... ty,) where consecutive pairgy 1,ty;)
are close to each othelp;—ty; 1=ty . Since for oddm ) 71
time indices cannot be paired these terms should vanish a¥hile for odd numbex(Zs Z, ---Zs, )=O(L""), hence

8 &
Fi)=1-— 2 (t=[t')Cat)+O(&%),
t'=—t

where it is assumed that two-point time correlation function

Te=S 16 2. (5)

Ufa.Bt={1 ... 2}

<Z§12§2. ' 'Z§2k>: 11 5§a’§ﬁ+0(l‘_1)'

all pairings a,B

ymptotically (ast— =) relatively to everm terms. Thus we
can evaluate (R—1)!! equivalent everm= 2k terms in Eq.
(3) ask tuple of independent sums ovﬁr:tzj—tzj_l giv-
ing, fort>t.,,

Z become independer@aussianfield variables in TL de-
pending on a multi-indexs of variable but finite length.
Therefore, any TpseudolocalPL) observableA, having by
definition [9] I%-expansion in the basig, (when L=cx),
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namely, A=Sa.Z,,(A?) =3 a/?<w», possesses normal Consider an example of KI model with the Hamiltonian
Gaussian moments A%¢) = (2k—1)!1(A2)1+O(L ™.
Further, for a general Tl PL observalfleits time averagé
is also Tl PL, since it can be formally expanded in terms of
Z, due to construction oA, and such expansion I€ since _
(A% =(AA)=D<(A?) [12]. However, for a more general where §(t)=2,5(t—mp), with a Floguet mapU=exp
non-TI PL observabld, i.e., such that itfinear projectionto (—13Zj0t07, Jexd —iZj(hof+h,0f)], where we take units
the space of Tl observables UEh;éA - - isPL, one such thap=7=1, dgpgndmg on a three mdependent param-
— Jrgn _ eters J,,h,,h,). Kl is integrable for longitudinal lf,=0)
cannot generally show thadt is Tl PL although we believe  gnq transversen,=0) fields[10], and has finite parameter
that this is a typical situation, which we can prove in two regions of ergodic and nonergodic behaviors for a tilted field
cases. _ (see Fig. 1 The nontrivial integrability of a transverse kick-
(i) If the spectrum of propagatdy is nondegeneratéfor  jng field, which somehow inherits the solvable dynamics of
any finiteL), then the matrix oA is diagonal in the eigen- its well-known autonomous versiga4], is quite remarkable

L-1
Hy ()= JEO {3,0707, 1+ 8,(D) (o +hoD)}, (10

basis ofU andA is Tl due to Bloch theorem. since it was showh10] that the Heisenberg dynamics can be
(i) If the system is integrable having a complete set of Ticalculated explicitly for obseryables that are bilinear in
PL conservation law§,,n=1,2. .. in thesense tha{Q,} Eermi Operatorscj=(a}’—iajz)H},<’a}‘, with time correla-

i§ a complete set of eigenvectors of the Heisenberg maggns decaying to the nonergodic stationary values as
UA=UTAU for eigenvalue 1, then the time average is a|Ca(t)—Da|~t~%? [10]. For D, we find explicit expres-

projection A= (Q,A)Q, [assuming tha{Q,Q.)=d,m]  Sions, the simplest,
which is Tl PL. This is the case for KI model studied below.

Finally, assuming eitheli), (i), or simply TI PL perturbation max|cog2J,)|,|cog2h,)|} — cog(2h,)
. . - . Da.x: N (11)
A, we find that moments of time-average are Gaussian sir?(2h,)
(A% =(2k—1)1'DX[1+O(L™Y)]. Summing up the for-
mula (8) produces Gaussian decay andD,,=LD ,x, for the component of spin}‘, and the com-
ponent of magnetizatioM =2 ja}‘, respectively.
Fodt)=exd — (t/ 7, %/2], 9 In a general situation of nonintegrable KI we wish to test

our theory by a numerical experiment. We consider a line in
for t>1,,, On a time scal€7), which can be computed in a three-dimensional parameter space with fixed1h,=1.4

typical integrable situatiofii) as shown bellow. and varyingh, exhibiting all different types of dynamicsa)
Few remarks on the case of finite dimensivfr < are in  h,=0 integrable (b) h,=0.4 intermediate (nonintegrable
order. and nonergodi; and(c) h,= 1.4 ergodicand mixing In all

(1) F(t) will then start fluctuating around zero with mag- cases we fix the operatér=M, which generates the pertur-
nitude F g~ ~ Y2 for very long times +t* (\) where the  bation of KI model with h,—h,+ (hZ+hZh coth)é/h?
time scale t*(N) is determined from the condition +O(8%),h,—h,+h.h,(1—hcoth)dh?>+O(5%), where h
F ()| v=o= Fiuet - =hZ+h?Z, and varyL and 5. Since we want the perturba-

(2) F(t) decays all the way down te "2 only for a  tion strength to be sizk independent, we scale it by fixing
typical or randominitial state|) with ~A" nonvanishing 5= 5\/L/L, whereL,:=24. Time evolution has been com-
random components when expanded in the eigenbagik of puted efficiently by iterating the factored Floquet mép
or for an average over)). If on the other hand one considers terms of one-spin and two-spin propagators—quantum
the initial state that, when expanded either in the eigenbasigates, requiring=L2" computer operations per iteration per
of U or of U, contains essentially only few, sag domi- initial state. In integrable cas@) we confirm saturation of
nating components, e.g., thegular coherent state of Peres correlations to the theoretical valyé0] Dy =0.485 126
[3], thenF(t) is a quasiperiodic function witm small fre-  [Fig. 1(a)], as well as Gaussian decay of fidelit9) with
quencies< 5 and amplitudes-1/m~*/%, time scaler,. given by Eq.(7), which terminates at~t},

(3) Even in asymptotically ergodic situation the correla- =7, {In MY [Fig. 2@]. In nonintegrable(intermediate
tion C4(t) has a plateau for finitd/; which can be estimated case(b), we find persisting nonergodic and nonmixing be-
using a random matrix model for the observa#lén the  havior since rescaled correlation functions of typical observ-
eigenbasis of the propagatdd as Da~Dj(N):=Ca/N  ablesC,(t)/(A?) relax on a short-independent time scale
wherec, is some constant with respect A6. The nonvan-  to a nonvanishing vaIu@A/<A2> and converge to TL very
ishing correlation plateau gives a dominant contribution toquickly with increasing sizé [Fig. 1(b)], but as opposed to
Eq. (4) resulting in a quadrati¢or Gaussiandecay ofF(t) integrable caséa) the relaxation appears to be exponential
as soon as7e>Sp|y-./Dx, i, when 6<&y(N):=  |Cy(t)—Dyl/L~exp(tit,d with t,e~7.2 [inset 1b)].
S;lc,ﬁ’zj\/* Y2 This perturbativeregime of very small pertur- Such behavior has been observed for other two components
bation strength, existing for finit& only, is consistent with  of the magnetizatioM¥,M? and supports existence of inter-
the first-order perturbation expansion of eigenstated pin mediate dynamics observed previously in kicked model
terms of the eigenbasis &f [13]. [9]. In Fig. 2b) we confirm Gaussian decay &f(t) pre-
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t FIG. 2. Absolute fidelity|F(t)| for three cases of Kl(a) inte-
grableh,=0, (b) intermediateh,= 0.4, and(c) ergodich,= 1.4, for
different sizesL=20,16,12 and different scaled perturbatiafis
Chain curves give theoretical predictions.

FIG. 1. Correlation decay for three cases of Kd) integrable
h,=0, (b) intermediateéh,= 0.4, and(c) ergodich,= 1.4, for differ-
ent sized =20,16,12[solid-dotted connected curves, almost indis-
tinguishable in(a),(b)]. Circles(a) show exact. =« result. Chain  fluctuation-dissipationformula for the “dissipation coeffi-
lines are theoretical/suggested asymptotgese text cient” 1/7, of Eq. (6), which diverges in nonergodic regime.

If the system has a well-defined classical limit then our for-
mula (5) has a clear and simple classical linkit—0 too,

. . . with an integrated classical autocorrelation function substi-
%0'293" again up to t|m_et:je(2L). _In ergo_d|c casec) we tuting the qugantum OnEL6]. However, we note that our re-
find fa;t decay of correlation functpns fitting well to an ex- gits on fidelity decay remain valid only if the lim#—0 is
ponential |Cy (t)|/L~exp(~ttmy), With tyyx~6.0. Conse-  considered prior to the limiti—0 as the two limits obvi-
quently we find exponential decay B{t) of Egs.(6) and(5)  ously do not commute. Furthermore, in systems having a
using Sy =(1/2)Z;Cy(t)~2.54., up to the saturation time chaotic classical limit, short-time behavior of the fidelity de-
te = (1/2)7dn N [Fig. 20)]. cay up to the Ehrenfest time — In % will also depend on the

In conclusion, we have presented a simple theory for thetructure of the initial state, which may range from a minimal
stability of quantum motion with respect to a static perturba-uncertainty wave packdtoherent stajeto a maximum en-
tion of the evolution operator in the limit of Hilbert space tropy random state. These issues are dicussed in detail in
dimension\— o, characterized by the fidelity measuring the Ref. [17]. We speculate that our finding is a manifestation of
distance between time evolving states. The fidelity was ex-the structural invariance18] of quantum chaotic dynam-
pressed in terms of integrated time-correlation functions ofcs. Although in this paper our theory has been demonstrated
the perturbing operator, showing that faster decay of correll @ specific kicked many-body problem, namely, the
lations gives slower decay of fidelity, meaning that “chaotic” quantum-kicked Ising spin-(1/2) chain, we should emphasize
dynamics is more stable in Hilbert space than “regular” onethat it should be generally valigvithin the time and pertur-
(unless the state that one is looking at is simply related to th@2tion scales depending on the Hilbert space dimensind
eigenstates of the systenin the two limiting cases of mix- thus appllc_:able to any unitary evolution, in partlc_:ular, also to
ing and integrabléor more generally, nonergodidynamics any experimentally interesting quantum dynamics.
we find, respectively, exponential and Gaussian decay. For The author acknowledges G. Usaj and H. M. Pastawski
example, our finding is predicted to have strong implicationfor discussions in the initial stage of this work, and T. H.
for the stability of quantum computation with respect to Seligman and M. Bidaric for very stimulating discussions
static imperfectionge.g., uncontrollable residual interaction and collaboration on related projects. The work was sup-
among qubits (see, e.g., Ref15] for a partial result in this  ported by the Ministry of Education, Science and Sport of
direction. In other words, Eq.(5) is a version of the Slovenia.

dicted Eq. (7) from numerically observed value ddy
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