PHYSICAL REVIEW E, VOLUME 65, 036207
Asymmetric unimodal maps at the edge of chaos
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We numerically investigate the sensitivity to initial conditions of asymmetric unimodal maps=1
—a|x% (i=1,2 correspond ta,>0 andx;<0, respectivelyz;>1, 0<as<2, t=0,1,2...) at theedge of
chaos. We employ three distinct algorithms to characterize the power-law sensitivity to initial conditions at the
edge of chaos, namely: direct measure of the divergence of initially nearby trajectories, the computation of the
rate of increase of generalized nonextensive entrofjgsand multifractal analysis. The first two methods
provide consistent estimates for the exponent governing the power-law sensitivity. In addition to this, we verify
that the multifractal analysis does not provide precise estimates of the singularity spé¢trynespecially
near its extremal points. Such feature prevents to perform a fine check of the accuracy of the scaling relation
betweenf(a) and the entropic index, thus restricting the applicability of the multifractal analysis for
studying the sensitivity to initial conditions in this class of asymmetric maps.
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[. INTRODUCTION edge of chaosg(t) presents strong fluctuations with time,
reflecting the fractal structure of the critical attractor, and Eq.
In recent years, there has been an increasing interest in ti{2) delimits the power-law growth of the upper bounds of the
behavior of the one-dimensional dissipative maps at theisensitivity function. These upper bounds allow us to estimate
chaos threshold1-9]. When the sensitivity to the initial the proper valueg* of the indexq for the map under con-
conditions is examined at the onset of chaos, the sensitivitgideration. This method has already been successfully used

function, defined through for a variety of one-dimensional dissipative maps such as
logistic [1], z-logistic [2], circle [3], z-circular[4] maps.
&t)= lim Ax(1) 1) The second method of estimating tiye value of the map

under consideration comes from the geometrical aspects of
the attractor at the chaos threshold. This method is based on
[whereAx(0) andAx(t) are the discrepancies of the initial the multifractal singularity spectruri(«), which reflects the
conditions at times 0 antl], can be put in a conveniently fractal dimension of the subset with singularity strength

Ax(0)—o0 Ax(0)”

generalized form [13,14. Thef(«) function is a downward parabolalike con-
cave curve and typically vanishes at two points, namely,
EO=[1+(1-rpt]Y D (geR), (2 ami, and amay, characterizing the scaling behavior of the

_ most concentrated and most rarefied regions on the attractor.
(solution 0f§=)\q§q) where\ q is the generalized Lyapunov The study of the scaling behavior of these regions led two of
exponent. This equation recovers the standard exponentigk to propose a scaling relation [&
form exp{\t) for g=1 (here,\; is the standard Lyapunov

exponenk, but genericallyg# 1 corresponds to a power-law 1 1 1
behavior. In this case, ik;<0 andg>1 (A\;>0 andq = - (g*<1). 3
<1) the system is said to heeaklyinsensitive(sensitive to 1-9* @min  %max

the initial conditions, a situation that is different from the
standard case where we hatenginsensitivity(sensitivity  This is, in fact, a fascinating relation since it connects the
for A;<0 (A1>0). power-law sensitivity to initial conditions of such dynamical
Although asymptotic power-law sensitivity to initial con- systems with purely geometrical quantities and consequently
ditions was observed previousft0—-12, &£(t) as given by  provides a completely different method for the determination
Eq. (2) provides a more complete description than jé&) of the properg* value of the map under consideration. This
«tY179) (t>1), in the sense that it provides not only the method has also been used so far for logigdil; z-logistic
exponent but also the coefficient, and moreover it is ex- [3], circle [3] and zcircular [4] maps, and the results ob-
pected to be correct not only at very large times but also atained for thegq* values are, within a good precision, the
intermediate times after a possibly quick transient. At thesame as those of the first method.
In order to make the situation even more enlightening, a
third method of obtaining the proper* value of a given

*Email address: tirnakli@sci.ege.edu.tr map has been introduced very recently using a specific gen-
"Email address: tsallis@cbpf.br eralization of the Kolmogorov-SindKS) entropy[5,6]. It is
*Email address: marcelo@fis.ufal.br known that, for a chaotic dynamical system, the rate of loss
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of information can be characterized by the KS entroldy)(  ones, another class ofi* values(above unity instead of
and it is defined as the increase, per unit time, of the standaraelow unity) has been found for-logistic casg23].
Boltzmann-Gibbs entropys;=—=" ,p;Inp, (we usekg Although these three different methods of finding
=1). In fact, the KS entropy is defined, in principle, through value have been already tested and numerically verified for a
asingle trajectoryin phase space based on the frequencies ofiumber of one-dimensional dissipative map families, it is no
appearance, in increasingly long strips, of symbolic sedoubt convenientin the spirit of further clarifying their do-
quences of the regions of the partitioned phase spasg  main of validity) to test them in more general grounds. For
However, apparently in almost all cases, this definition carexample, all the maps discussed so far belong to one-
be equivalently replaced by an ensemble-based procedurdimensional, dissipative, symmetric, one- or two-parameter
which is, no doubt, by far simpler computationally than theunimodal families. At this point, one can ask what happens
former procedure. This ensemble-based version is the one wer the (i) two- (or morg dimensional mapsji) conservative
use herein. On the other hand, it is worth noting that a singlemaps,(iii) asymmetric families. Needless to say, if any one
trajectory-based procedure has been used very recently @#f these cases could be analyzed with the above mentioned
[16]. three methods consistently, the scenario would obviously be-
From the Pesin equality, namell{; =\, if A;>0 and come more robust. In the present effort, we shall try to make
K,=0 otherwise, it is evident that the KS entropy is deeplya step forward addressing the poliit), namely, the asym-
related to the Lyapunov exponents. The KS entropy rate ignetric three-parameter family of logistic map of the form
then defined throughK;=Ilim,_limy,_,.limy_..S;(t)/t, )
wheret is the time,W is the number of regions in the parti- _ 1-alx | if x=0,
tion of the phase space aihtis the number of initial condi- Xee1= (X)) = 1-alx|?2 if x=0, 6)
tions (all chosen att=0 within one region among th&V
available onesthat are evolving in time. On the other hand, wherez; ,>1, 0<a<2, —1=<x<1 andt=0,12....
for the marginal cases whekg =0, a generalized version of

the KS entropyK, has been introducefl] as the increase | aAsyMMETRIC LOGISTIC MAP FAMILY: NUMERICAL

rate of a proper nonextensive entropic form, namely, RESULTS
w The properties of this kind of asymmetric map family
1-> [pi(H)]¢ have already been studig24—26. The asymmetric shape of
i

[

4) the map family is illustrated in Fig.(&) for a typical value of
(z1,2,) pair, whereas in Fig.(b) the bifurcation diagram has
been plotted. Before the onset of chaos, the sequence of bi-

This entropy enables a generalization of the standarduUrcations is the same as that of Feigenbaum, but in the cha-

Boltzmann-Gibbs statistids7,18 and it covers the BG en- otic region(after the onset of chapsthe relative sizes of the

tropy as a special case in tlge—1 limit. A general review various windows are quite different from those of the

and related subjects on this nonextensive formalism can belogistic map (namely, z;=2z,=z). Moreover, it is well
found in Ref.[19]; recent applications in high-energy phys- known that this map family fails to exhibit the metric uni-
ics, turbulence, and biology can be seen in REZ6], [21], versality of Feigenbaum. In this case, the scaling factors

and[22], respectively. Therefore, for the generalized version(Feigenbaum numbersye and 5 present an oscillatory di-

Sy(t)=———

o)

of KS entropy, the entropy rate is proposed to be vergent behaviof24,25. Same kind of oscillatory behavior
has also been observed for multifractal functida) [26].
Sy(t) Sinceq* values were not available for asymmetric logis-
Kg=Ilim lim l[im ——. (5)  tic map family, it was not possible to see the behaviogbf
t—oW—oN—w as a function of theZ;,z,) pairs. On the other hand, in a

very recent effor{7], in order to see this behavionithout

Consistently, the Pesin equality is also expected to be genefinding the precise values of ¢for (z;,,z,) pairs, one of us
alizable aKq=M\ if A(>0 andK,=0 otherwise. has used another technique based on the very recent gener-

Consequently, these ideas have been used very recently &tization of bit cumulants for chaotic systeri27,2§. In
construct a third method of estimating tg& values[5]. Itis  spite of the fact that ig-generalized bit cumulant theony,s
conjectured thati) a unique value of* exists such thak, a free parameter, it seems from the result$7@fthat asz,
is finite for g=qg*, vanishes forg>q*, and diverges foq —z,;—*oo, q* will approach unity, which is similar to the
<q*; (ii) this value ofg* coincides with that coming from behavior observed for symmetric maps studied sd ¥a4).
the other two methods described previously. These conjec- We are now prepared to proceed with our numerical re-
tures have been verified with numerical calculations, at thesults for the asymmetric logistic map family. First of all,
edge of chaos, for the standard logistic nj&p logisticlike  since our aim is to look at the properties of this family at the
map family, and generalized cosine m#g, which strongly  onset of chaos, the calculated values of the critical map pa-
supports the point that all three methods yield one and theameter &.) as a function of Z;,z,) pairs are given in Fig.
same speciad* value of a map under consideration. At this 2 and in Table I. It is evident that the behavioraf values
point, it is worth mentioning that when the initial conditions with respect to £,—z;) is very similar to the tendency @f.
are very spread in phase spa@estead of the localized values of thez-logistic family with respect to parameter
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FIG. 2. The behavior of the critical map parameter as a
(b) function of (z,—z;) for two typical inflection parameter pairs. The
0 dotted lines are guides to the eye.
\ };_'7;; function [namely, the time evolution of Eq7)] has been
: ;‘ illustrated for two typical £;,z,) pairs. The slope of the
05 7 A1) upper bound has been calculated for each pair between the
x sg, time interval[4, 8.5. The calculation of the slope has been
t ﬁ done by taking into account the points that lie on the upper
0.0 bound within the above-mentioned time interval. We encoun-
;" tered that, as#,—z;) values become largéthat is the map
; becomes more asymmetricthe number of points that could
05 - (z,,2,)=(2,4) % be used in estimating the slope becomes fewer. For such
' TABLE I. The values ofa. andg* for various ,,z,) pairs.
1.0 N
(21,25) ac q
T T T 1
0.0 05 1.0 15 20 (2,1.25) 1.214034. .. 0.76:0.01
(2,1.4) 1.258639%. . . 0.62£0.01
a (2,1.5) 1.286139%. . . 0.58+0.01
FIG. 1. (@) Asymmetric shape of the map given by H@) for (2,1.6) 1.3120115. .. 0.49+0.01
the inflexion parameter pai2, 4). (b) The bifurcation diagram of (2,1.75) 1.34799A4!. . . 0.31+£0.01
the map for the same inflection parameter pair. (2,2) 1.4011558 . .. 0.24+0.01
(2,2.25) 1.44691(5. . . 0.36+0.01
A. First method (2,2.5) 1.4864508. . . 0.47+0.01
As already discussed above, this method is based on the (2:2.75) 1.520834.. ... 0.56+0.01
sensitivity to initial conditions and for the asymmetric logis-  (2:3) 1.5509455%. . . 0.63£0.01
tic map family, the sensitivity functiog(t) is given by (2,3.5) 1.6010988. .. 0.71+0.01
(2.5,1.6) 1.303343D. .. 0.72£0.01
' [df(x,) (2.5,1.75) 1.3374247. .. 0.61+0.01
In f(t):;l N | () (2.5,2) 1.3880585. . . 0.49+0.01
(2.5,2.5) 1.47055QD. . . 0.39+0.01
4 exhibits. at the chaos threshold aw d (2.5,3) 1.5341876 . . . 0.49+0.01
and exhibits, at the chaos threshold, a power-law divergence,
Vi) . (2.5,3.25) 1.5607041. . . 0.55+0.01
Eoct , from whereq* values can be calculated by (2.5,3.5) 1.584394%. . . 0.60+0.01
measuring, on a log-log plot, the upper bound slope 1/(1 (25 4) 1.6248812 . . . 0.67+0.01

—q*). In Fig. 3, forxy=0, the behavior of the sensitivity
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FIG. 3. Log-log plot of the sensitivity function versus time for

@ (2, 1.79 and(b) (2.5, 3 pairs.
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FIG. 4. The behavior ofi* values as a function ofz—z,) for
(2,z,) and (2.5z,). The dotted lines are guides to the eye. See the
Table for typical error bars.

ent number of iterationd) that prevents us from estimating
the exact values ok, and «,,,x from where we determine

g* values. Worse than that, this problem cannot be cured by
extrapolating the number of iterations to infinity as it is done
in Ref.[4] for the z-circular maps and9] for the single-site
map. Inz-circular case, the fluctuations are so systematic that
one can extrapolate the results to infinite number of iterations
with acceptable precision from wheuts,;,, and a4 values
could be deduced, whereas for asymmetric logistic family
this is not the case. To illustrate this, we plotted fife)
curve for the inflexion pair (2,3) in Fig. (8, where the
oscillatory behavior is evident. Moreover, we presented in
Fig. 5b), the extrapolation ofry,;, and a4 for the same
pair. It is clear from the confidence interval that it is not
possible to estimate their correct values due to large fluctua-
tions. This yields us to conclude that for this asymmetric
map family, the second method cannot be used easily to de-
termineq* values due to the unavoidable fluctuations in the
f(a) function. In fact, this result has also been supported by

cases, one should go for times larger than say(B.30oga-  a recent observation: One of us has shown rec¢@8ythat
rithmic scalg, which requires much more precision on the for zlogistic maps, the scaling relation given in E8) can
yalues ofa.. On the other hand_, for the_z{,zz) pairs g_iven be reexpressed as 14X)=[(z—1)In 2)[In ax(2)], which

in the Table, the above mentioned time interval is goodciearly points out that this scaling is dependent on Feigen-
enough to determine the slope. From this slope, for each paipam constani . Since for the asymmetric map family we
we ca_lculate*theq* values and in Fig. 4 we exhibit the 5.6 studying, as already mentioned, the Feigenbaum numbers
behavior ofq® as a function of £,—2z,) for two typical  gypiit oscillatory divergent behavid24,25, it is evident

. . o ) * . . .
plalrs. Itt IS .f,teen.tthhatt a?fi. .Zl) '?O'I?r?' itx’ dq be_comes. thatg* values cannot be easily and reliably inferred from the
closer to unity without attaining it. This tendency 1S Cor]S'S'scaling relation due to these fluctuations.

tent with the recent claim of Ref7] and also similar to the
behavior of symmetric map families studied so [far4,29. )
C. Third method
B. Second method Finally, in order to verify the results of the first method,
As mentioned previously, for this asymmetric family, the let us use the entropy increase rate procedure to estimate the
multifractal functionf(a) fluctuates considerably for differ- properg* values. The procedure is the following: First, we
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FIG. 5. (a) The behavior of () curve for various values of the FIG. 6. Time evolution of the entropy for three different values

number of iterations(b) The oscillatory behavior ofx,;, and °f d for @ (2, 1.75; (b) (2.5, 3 pairs. Insets: The nonlinearity

. The dotted lines are standard confidence interi@ismaPlot coefficientR versusg. The interval characterizing the intermediate
1"68( region is[13,31 for (a) and[7,25] for (b). The dotted lines are

guides to the eye.
partition the phase space intd equal cells, then we choose
one of them and seledtl initial conditions (all inside the Refs.[5,6], at the chaos threshold, very large fluctuations
chosen cejl As t evolves, these initial conditions spread appear in the entropy due to the fact that the critical attractor
within the phase space and naturally this gives us a sejccupies only a tiny part of the available phase space. To
{N;(t)} with =¥ |N;(t)=N, Vt, which consequently yields overcome this problem, we use a procedure of averaging
a set of probabilitiegp;(t)=N;(t)/N}. At the beginning of over the efficient initial conditions as discussed in Refs.
time, clearlyS,(0)=0, then it gradually exhibits three suc- [5.6]. Since this procedure is very time-consuming, we apply
cessive regions as first indicated in REg0] for a different it for two typical (z;,z,) pairs to check the results of the first
system. In the first region, the entropy is roughly constant irmethod. The results are given in Fig. 6. It is observed that,
time, then it starts increasing in the second region and finalljor all cases, in the intermediate region, the linear increase of
it tends towards its saturation value. This indicates that théhe entropy with time emerges only for a special valuejof
linear increase of the proper entropy is expected to emerge ifthamely,q*), and this value corresponds, within a good pre-
the second(intermediatg region. As clearly explained in cision, to the one obtained from the first method. On the
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other hand, forq<g* (gq>qg*) it curves upwardgdown-  curve with the power-law exponent governing the sensitivity
wards. To provide quantitative support to this, we fit the function. However, the numerical method used to compute
curves with the polynomiab,(t)=A+Bt+ Ct?in the inter-  f(«) exhibits large fluctuations when applied to these asym-
val [t1,t,] characterizing the intermediate region. The non-metric maps due to the divergent oscillatory behavior of the
linearity coefficientR=C(t;+1t,)/B is a measure of the im- Feigenbaum numbers. This feature makes the precise estima-
portance of the nonlinear term, therefoRe vanishes for a tion of the location of its extremal points difficult. It would
strictly linear fit. These results are given as insets of Fig. 6be valuable to have an alternative algorithm to compute the
f(a) curve that could overcome this point to allow a fine
Il. CONCLUSIONS check of the accuracy of the scaling relatidgqg. (3)] for
) ] . these asymmetric maps.

In this work, we performed an extensive analysis of the Finglly, the sensitivity to initial conditions was investi-
sensitivity_to initial conditions problem related to a family of gated by computing the rate of increase of generalized entro-
asymmetric maps at the edge of chaos. We have been pafies s, . At the edge of chaos, there is a particular entropic
ticularly interested in exploiting the connections between thg,gex g* for which the entropy grows, in the infinitely fine-
sensitivity function, generalized nonextensive entropies an@raining limit, at a stationary rate after a short initial tran-
the multifractal character of the critical attractor. sient. This method provides values fgf that are in agree-

A direct numerical computation of the sensitivity function ent with the ones obtained from the direct measure of the
&(t), which measures the temporal evolution of the distancensitivity function. Although being more time consuming,
between initially nearby trajectories, shows strong fluctuathe entropy measure is free from wild fluctuations and allows
tions whose upper bounds delimit a power-law gro@h)  for a relatively fine and confident estimateqf. Therefore,
«tM1-9%) The characteristic power-law exponent was deterthis method should be the starting point to investigate the
mined for several pairs of the inflexions at the left and rightpossibility of similar power-law sensitivity to initial condi-
of map inflexion point. For extremely asymmetric maps,tions in higher dimensional as well as conservative nonlinear
wild fluctuations do not allow the power-law exponents to bedynamical systemésee, for instance, Reff31]).
determined with high accuracy, but the general trend indi-
tr:iit(:ﬁa?saq* approaches unity in the limit of very asymmet- ACKNOWLEDGMENTS
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