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Second moment of the Husimi distribution as a measure of complexity of quantum states
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We propose the second moment of the Husimi distribution as a measure of complexity of quantum states.
The inverse of this quantity represents the effective volume in phase space occupied by the Husimi distribution,
and has a good correspondence with chaoticity of classical system. Its properties are similar to the classical
entropy proposed by Wehrl, but it is much easier to calculate numerically. We calculate this quantity in the
quartic oscillator model, and show that it works well as a measure of chaoticity of quantum states.
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I. INTRODUCTION

Although the quantum manifestation of chaos has b
extensively studied over the past few decades, to de
‘‘quantum chaos’’ is still the main problem in this field. Th
direct extension of the definition applicable to classical ch
seems to fail because of the linearity of the Schro¨dinger
equation. Since quantum mechanics contains classical
chanics as a limit, however, there must be something
quantum mechanics that produces classical chaos in the
sical limit.

There have been many attempts to define a measur
quantum chaos. There are some measures using the
statistics, but much more information could be obtained fr
analysis of individual quantum states. We can classify m
sures of complexity of quantum states into two types:

~1! Complexity of pure states.
~2! Complexity of an ensemble of quantum states.
For example, the von Neumann entropy of the dens

matrix belongs to type 2. In this paper, we focus on co
plexity of type 1.

Some quantities defined in terms of the expansion coe
cients are often used in numerical calculations. For insta
suppose a quantum state is expanded in an appropriate
$u i &%:

uw&5(
i

ci u i &. ~1!

Let us definepi5uci u2. Then the information~Shannon! en-
tropy

S52(
i

pi ln pi , ~2!

and moments of the distribution

Mk5(
i

pi
k , ~3!

are measures of localization~or delocalization! with respect
to this basis. In particular, the inverse of the second mom
1063-651X/2002/65~3!/036205~10!/$20.00 65 0362
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M2
21 is called the number of principal components~NPC!: it

becomes unity when the state has only one component, w
it becomesn when the probability is equally distributed ove
n basis vectors. Such quantities are easy to calculate. H
ever, an obvious defect is that the definition depends on
basis.

Wehrl has proposed a good measure of complexity
quantum states based on the Husimi distribution funct
rH(p,q) @1,2#. He called it ‘‘classical entropy,’’

S~rH!5E dpdqrH ln rH , ~4!

while in his paper ‘‘quantum entropy’’ denotes the von Ne
mann entropy of a density matrix. Note that the classi
entropy is applicable and takes various values also for p
states, while the quantum entropy always vanishes for th
Although Wehrl introduced the classical entropy as an
proximation to the quantum entropy, their values are not n
essarily close even in the limit\→0. ~See the discussion in
Ref. @4#.! According to our classification, we discuss th
classical entropy to describe complexity of type 1, i.e.,
pure states.

Chaoticity in classical mechanics can be characterized
the delocalization of orbits. In integrable systems, there
many constraints from symmetries, such that orbits are c
fined to low-dimensional tori. As the system becomes c
otic, the tori are destroyed and orbits can spread to hig
dimensional space. In highly chaotic systems, orbits spr
uniformly over the equienergy surface. Such systems
called ergodic. Among the several conditions to characte
chaoticity of classical mechanics, the ergodicity is a rat
weak one. For example, any one-dimensional tim
independent Hamiltonian system is ergodic, but never c
otic. However, in physically natural situations of man
dimensional systems, the ergodicity works as a definition
classical chaos.

We can expect a similar behavior in quantum mechan
The Husimi function is a function on phase space, and ta
only non-negative values while the Wigner function can
negative and is usually violently oscillating@4#. Hence the
Husimi function can be regarded as a probability distribut
©2002 The American Physical Society05-1
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in phase space, and its order of delocalization can be a m
sure of chaoticity of quantum states. In that sense, Weh
classical entropy seems to be a good candidate measur

However, Wehrl’s entropy is defined as an integral ov
phase space, and is not easy to calculate numerically. To
best of the authors’ knowledge, there is no calculation fo
more than one-dimensional system.~A calculation for a one-
dimensional time-driven system is in Ref.@4#.! The difficulty
mainly comes from the redundancy of the Husimi functio
the Husimi function ofk dimensional system is a function o
2k dimensional space, while a function onk dimensional
space is enough to keep the same information in either c
dinate or momentum representation.

Complex pure quantum states are usually represente
sets of expansion coefficients with respect to a basis. T
will be the case also in our following discussion. When w
calculate Wehrl’s entropy of a quantum state, the normal p
cedure is the following:

~1! Calculate the Husimi functionrH on many sampling
points$(pi ,qi)%.

~2! Take an averagêrH ln rH& over the sampling points.
However, this procedure seems to be overly excessive

cause we have all the information about the quantum sta
the set of expansion coefficients. There must exist some
mula to calculate the average directly from the coefficien
The main concern of this paper is to avoid the redundanc
the Husimi function in numerical evaluation of a suitab
measure of complexity. In other words, we wish to kno
how to get some averages related to the Husimi func
without actually calculating the Husimi function itself.

It seems difficult to derive a simple formula for the e
tropy because of the transcendental logarithmic functi
However, a simple formula is possible for an algebraic fu
tion. The second moment, which is the average of the sq
of the distribution function, is especially easy to calcula
We will show later a formula in which the second moment
the Husimi distribution is expressed directly in terms of e
pansion coefficients in the harmonic oscillator basis.~If the
quantum states are given by expansion coefficients in
other basis, we should calculate the transformation ma
and change the basis to the harmonic oscillator basis.! The
numerical effort is of orderN2 for a quantum state whereN
is the number of basis vectors. If we calculate the sec
moments for all quantum states given by diagonalization o
N3N matrix, the numerical effort is of orderN3, which is
the same as the order of the diagonalization of the matri

We represent the inverse of the second moment byW2,

W2~rH!5
1

M2~rH!
, ~5!

M2~rH!5E dpdq

~2p\!k
rH~p,q!2. ~6!

W2 represents the effective phase space volume occupie
the Husimi function. For example, ifrH takes the same valu
over a region with volumeV and takes zero value outside
it, W25V. The unit ofW2 is the Planck cell volume.
03620
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Next we summarize the main points of this paper. We u
the second moment of the Husimi distribution to define co
plexity of quantum states. It is a measure of delocalization
the Husimi distribution in phase space. It is defined in
base-independent way and has a good correspondence
complexity of classical mechanics. Moreover, we can cal
late it directly from expansion coefficients, without calcula
ing the redundant Husimi function. Therefore, it is not
difficult to evaluate numerically.

This paper is organized as follows. In Sec. II, we summ
rize the definition and some properties of the Husimi dis
bution function. In Sec. III, we derive the formula to calc
late the second moment of the Husimi distribution direc
from expansion coefficients in the harmonic oscillator bas
In Sec. IV, we introduce a model Hamiltonian and sho
numerical results that illustrate the meaning ofW2 as a mea-
sure of complexity. The final section is devoted to a su
mary. In Appendix, we show details of semiclassical calc
lations of the second moment of the Husimi distribution
integrable and ergodic limits.

II. HUSIMI DISTRIBUTION FUNCTION

In this section, we review some properties of the Husi
function @3#. We restrict ourselves to a one-dimensional s
tem for simplicity, but the generalization to many
dimensional systems is straightforward.

The Husimi function of a quantum stateuw& is defined as

rH,l~p,q!5u^z,luw&u2. ~7!

Here,uz,l& is a coherent state defined as an eigenstate f
complex eigenvaluez,

âluz,l&5zuz,l&, ~8!

whereâl is an operator withl as an arbitrary parameter,

âl5
1

A2\
S Alq̂1 i

p̂

Al
D . ~9!

The real and imaginary parts ofz are related to the phas
space point (p,q) by

q5A \

2l
~z1 z̄!, ~10!

p52 iAl\

2
~z2 z̄!. ~11!

It is not difficult to derive the relation

rH,l~p,q!5
1

p\E dp8 dq8 rW~p8,q8!expF2
1

\ H l~q82q!2

1
~p82p!2

l J G , ~12!

whererW is the Wigner function
5-2
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SECOND MOMENT OF THE HUSIMI DISTRIBUTION AS A . . . PHYSICAL REVIEW E65 036205
rW~p,q!5E dh^q2h/2uw&^wuq1h/2&eiph/\. ~13!

A stateuq& represents an eigenstate of the coordinate re
sentation. There, we see that the Husimi function is a kind
the coarse-grained Wigner function. The main advantag
the Husimi function is that it is non-negative, as is obvio
from the definition~7!. Hence the Husimi function can b
formally regarded as a probability distribution, whereas
Wigner function can not.

III. SECOND MOMENT OF THE HUSIMI DISTRIBUTION

In this section, we consider the second moment of
Husimi distribution

M2~rH!5E dp dq

2p\
rH~p,q!2, ~14!

5E d2z

p
u^zuw&u4. ~15!

Here and in the following we omitl for simplicity.
Suppose the quantum stateuw& is represented in the har

monic oscillator basis

uw&5 (
n50

`

cnun&, ~16!

thenM2 can be expanded as

M2~rH!5 (
n,n8

(
m,m8

cncn8cm* cm8
*

An!n8!m!m8!
E d2z

p
e22uzu2z̄n1n8zm1m8,

~17!

5 (
n,n8

(
m,m8

cncn8cm* cm8
*

An!n8!m!m8!

~n1n8!!

2n1n811
dn1n8,m1m8 .

~18!

Here, we used the following formulas:

^nuz&5e2uzu2/2
zn

An!
, ~19!

and

E d2z

p
e2uzu2z̄nzm5n!dn,m . ~20!

As a result, we obtain the formula

M2~rH!5
1

2 (
L50

`

uBLu2, ~21!

where

BL5(
j 50

L A L!

2L j ! ~L2 j !!
cjcL2 j . ~22!
03620
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Since there is a truncationn<N in the expansion~16! in any
real calculation, the sum~21! is also finite. The numerica
effort is of orderN2 for a quantum state.

The generalization to many-dimensional systems
straightforward. The result is

M2~rH!522k(
L

uBLu2, ~23!

wherek is the dimension of the system and

BL5(
j<L
A L!

2uLuj! ~L2 j!!
cjcL2 j . ~24!

Here,L and j are k-dimensional vectors whose componen
are non-negative integers. The factorial of those vect
means the product of all factorials of the vector compone
For example,

L! 5)
i 51

k

Li !. ~25!

The absolute value denotes

uLu5(
i 51

k

Li , ~26!

and j<L meansj i<Li for ; i .

IV. NUMERICAL RESULTS

A. Model

The model Hamiltonian we are considering here is tha
a two-dimensional quartic oscillator

H5
1

2
~px

21py
2!1

1

2
~x41y4!2kx2y2, ~27!

which has been adopted by many authors for the studie
level statistics and wave functions@5#. We put \51 and
regard all quantities as dimensionless.

This model has the simple scaling property,

H~a2px ,a2py ,ax,ay!5a4H~px ,py ,x,y!, ~28!

which means that the energy of the system does not es
tially change the dynamics. However, the parameterk
changes the nature of the system. The system is sepa
and integrable atk50, and becomes chaotic ask increases. It
is unbound fork.1. Meyer @6# has shown that for largek
values (>0.4) the classical phase space structure is alm
completely chaotic.

This system has a discrete symmetry calledC4v : The
Hamiltonian is invariant with respect to reflections aboux
axis, y axis and also about the linex5y. In this paper, we
treat only quantum states that are symmetric under all refl
tions. ~This symmetry class is labeledA1 in Ref. @7#.!
5-3
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FIG. 1. Poincare´ surface of
section atE51 and y50 for k
50.0 ~a!, 0.2 ~b!, 0.4 ~c!, and
0.6 ~d!.
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B. Structure of the classical phase space

Figure 1 shows the Poincare´ surfaces of section of this
system atk50.0, 0.2, 0.4, and 0.6. Atk50.0, the phase
space is completely occupied by tori. These tori are parti
destroyed atk50.2, and most of them seem to vanish atk
50.4. However, there are still many islands of stability. T
two most significant islands are atx50. These correspond t
the stable linear orbits onx5y and x52y. At k50.6, we
cannot recognize any structure. In this case, more than
of the orbits are unstable according to Ref.@6#.

C. Diagonalization of the Hamiltonian

We diagonalize the Hamiltonian~27! in the harmonic os-
cillator basis. The procedure we used is essentially the s
as that of Zimmermannet al. @8#. The bases belonging toA1
can be written as

unx ,ny&A1
5

unx ,ny&1uny ,nx&

A2~11dnx ,ny
!

, ~29!

where nx and ny are even non-negative integer andnx
>ny . Matrix elements of the Hamiltonian~27! can be cal-
culated analytically, and we obtain eigenenergies and eig
states by the diagonalization of this matrix. The trunca
03620
ly

%

e

n-
d

Hilbert space is spanned by the basis vectors with 0<nx
1ny<270, whose dimension is 4692.

Among the 4692 eigenstates we obtain by the diagon
ization, those having very large energies are not reliable
cause of the truncation error. Since the range of the valid
very much depends on the oscillator frequencyv of the har-
monic oscillator basis, we should choosev to optimize the
diagonalization. Because of the variational principle, eig
values obtained in the restricted Hilbert space are alw
higher than the real values, and the level density in that sp
is always smaller than the real one. Therefore, the minim
tion of trH ~the sum of the eigenvalues! can be a criterion to
choose the optimalv.

We putv57.0, which is chosen roughly to optimize th
diagonalization fork50.6, for all k. The comparison be-
tween the obtained level density and the semiclassical
shows that the maximum reliable energy isE5800;1000.

D. The second moment of the Husimi distribution and the
number of principal components

Figures 2, 3, 4, and 5 show the results of the numer
calculation of the inverse of the second moment (W2) of the
Husimi distribution fork50.0, 0.2, 0.4, and 0.6. We plotte
them for energy eigenstates withE<600. In each figure,
1000;1500 eigenstates are plotted. It takes about 30 min
5-4
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the NEC SX-5 in Osaka University to calculate the seco
moments for all~4692! eigenstates.

When we calculate the Husimi distribution,l in Eq. ~7! is
a free parameter. The simplest choice is to setl equal to the
harmonic oscillator frequency of the basis used for the
agonalization. In this case, we can directly calculate the s
ond moment using the formulas~23! and~24!. The results in
Figs. 2, 3, 4, and 5 are calculated using the optimized va
l57.0.

We also calculatedW2 for different values ofl. Figure 6
shows the results forl54.0, 7.0, and 10.0 atk50.2. Quali-
tative features of the figures seem unchanged, at least w
l is not so far from the optimized value. Whenl is far from
the optimized value, it is hard to obtain reliable results b
cause the number of basis vectors we need to represen
eigenstates is huge.

At k50.0, the system is separable into two on
dimensional systems. Therefore, eigenstates of the orig
system can be specified by quantum numbersmx and my ,
which label eigenstates of the one-dimensional systems.

We can assumemx>my without loss of generality in the
classA1. Figure 7 shows the results of a semiclassical cal

FIG. 2. Results of numerical calculation ofW2 at k50.0. The
solid line shows the ergodic limit calculated based on the Be
Voros hypothesis. The broken line shows the semiclassical u
limit based on the torus quantization. See Appendix.

FIG. 3. W2 at k50.2.
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lation based on the torus quantization.~For details of the
calculation, see Sec. 1 of the Appendix!. Semiclassical re-
sults and full quantum results have a good corresponde
except for the cases wheremx;my and my;0. Whenmx
;my , the assumption~A20! does not seem to apply. Whe
my;0, the quantum number is too small to use the semic
sical approximation.

In Fig. 3, the regular structure of Fig. 2 is partially d
stroyed, but there are still many regular series of eigensta
The most significant series, which is in the lowest part of
Fig. 3, corresponds to the stable diagonal periodic orbits
x5y andx52y. Figure 8 shows an eigenstate in the regu
series. There are also some series of regular eigenstates
are excited in the transverse direction to the periodic orb

The lowest series in Fig. 2 corresponds to the perio
orbits atx50 andy50, which are stable atk50.0. How-
ever, these orbits are unstable atk.0, and this series seem
to disappear ask increases.

The eigenstates corresponding to the torus withEx5Ey
are in the middle of Fig. 2.~See also Fig. 7.! As k increases,
this torus is quickly destroyed and two stable diagonal orb
are left. Islands of stability around these two orbits beco
the most significant structure in this system, and the eig
states localized around these orbits form the lowest serie
Fig. 3.

FIG. 4. W2 at k50.4.

FIG. 5. W2 at k50.6.

-
er
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At k50.4, as seen from Fig. 4, there are still regular se
that correspond to the diagonal orbits and the first exc
states in the transverse direction. However, most struct
seem to have been destroyed and many eigenstates are
the ergodic limit, as based on the Berry-Voros hypothe
~See Sec. 2 of the Appendix.!

At k50.6, no clear structure can be seen in Fig. 5, and
values ofW2 go up as a whole. However, the ergodic lim
based on the Berry-Voros hypothesis is still not reached,
some eigenstates have much smaller values than the lim

There may be several reasons for this. One reason we
think of is that the Wigner function in the Berry-Voros hy
pothesis does not satisfy the pure state condition of the d
sity matrix r̂25 r̂. Therefore, we might obtain better es
mates ofW2 by taking into account the pure state conditi
by successive iterations.~See Chap. 8 in Ref.@9#.! Another

FIG. 6. W2 at k50.2 for l54.0 ~a!, 7.0 ~b!, and 10.0~c!. The
values ofW2 depend onl, but the qualitative features remain un
changed.
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reason, which seems more important, is that there are w
localization phenomena likescars @10#. We found many
scarred eigenstates with smallW2 at k50.6.

At low energies (E,50), W2 of some eigenstates reac
the ergodic limit irrespective of the value ofk, but the figures
of these wave functions does not seem chaotic. The rea
for this is probably that the semiclassical approximation
used here is not good in this region. Our approximation
based on the idea that the local volume occupied by
Husimi distribution is the volume element of the invaria
manifold ~invariant torus or equienergy surface! multiplied

FIG. 7. Comparison between quantum results and semiclas
results based on torus quantization atk50.0. Pluses are the quan
tum results and circles are the semiclassical results. The broken
is the upper limit ~A23!, and the solid line is exactly one-ha
thereof. Eigenstates withmx5my are located on the solid line. In
the upper half of this figure, pluses and circles have a good co
spondence. However, very near the broken line, the correspond
is lost because the assumption~A20! is not good whenmx;my . In
the lower part of this figure, there are eigenstates with smallmy ,
and semiclassical values are a little higher than the exact value

FIG. 8. The density plot of the square of the 441st eigenfunct
at k50.2. E5320.8, W25157.2, NPC5102.8. The length of the
sides of this figure is 15. This state is completely localized arou
the diagonal orbits, and there is no node in the transverse direc
5-6
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FIG. 9. NPC atk50.0 ~a!, 0.2~b!, 0.4~c!, and 0.6~d!. Dots in~b! and~c! show the regular series corresponding to the diagonal orbits
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by the thickness factor of order\ l /2, wherel is the codimen-
sion of the manifold.~See Appendix.! However, this approxi-
mation fails when the scale of the invariant manifold is co
parable to the Planck constant. For example, in the lo
energy part of Fig. 2, the ergodic limit line is under the lim
based on the torus quantization. There seems no clear
tinction between chaotic and regular eigenstates at very
energies.

In Fig. 9, we plotted the NPC atk50.0, 0.2, 0.4, and
0.6. We can see regular structure in Fig. 9~a!. The structure is
gradually broken ask increases, and the points are lifted as
whole. In that sense, the behavior of NPC is similar to tha
W2. However, by comparing NPC andW2 of each eigenstate
we can see that the two quantities are not so similar.
instance, atk50.4, we can see regular series of eigensta
related to the diagonal orbits in both Fig. 4 and Fig. 9~c!.
However, the values of the NPC are not so small, and th
are many states lower than the series that seem to hav
clear structure. Therefore, in general,W2 seems more reli-
03620
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able than the NPC as a measure of complexity of quan
states. Some eigenstates that have small NPC are relat
the scars of the unstable linear orbits atx50 andy50. ~See
Fig. 10.! Importance of these eigenstates in the respo
function has been reported in Ref.@11#.

V. SUMMARY

In this paper, we proposed the second moment of the
simi distribution as a measure of complexity of quantu
states. Its inverse~we represent it byW2) shows the effective
volume occupied by the Husimi distribution function, an
serves as a measure of delocalization in phase space
calculated it for a quartic oscillator model, and showed tha
has a good correspondence with chaoticity of the class
system. We can calculate it directly from expansion coe
cients without numerical integration. Therefore, the calcu
tion is not so time consuming, and there is no numeri
error except for that contained in the quantum state itsel
5-7
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In the integrable case (k50.0), the values ofW2 have a
regular structure. Ask increases, the structure is gradua
destroyed and the values go up near the ergodic limit line
a whole. At k50.2 and 0.4, there are many regular ser
related to stable islands in classical phase space. Evenk
50.6, the values ofW2 of some eigenstates are much low
than the ergodic limit based on the Berry-Voros hypothe
and they seem to be related to scars of unstable peri
orbits.

To generalize the idea of this paper to many-body syste
using generalized coherent states is interesting. It will
reported in a forthcoming paper@14#.
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APPENDIX: SEMICLASSICAL CALCULATIONS

In this appendix, we give, for comparison, semiclassi
estimates for the second momentM2.

1. Integrable case„kÄ0…

In this case, the model Hamiltonian is separable,

H~px ,py ,x,y!5h~px ,x!1h~py ,y!, ~A1!

h~p,x!5
1

2
~p21x4!. ~A2!

FIG. 10. 754th eigenstate atk50.4. E5443.6, W2

5545.1, NPC554.1. NPC of this state is very small, thoughW2 is
not so small and its structure is not so clear. We can see sca
linear orbits atx50 andy50.
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Therefore, we first derive a semiclassical formula for t
Husimi function of eigenstates of~A2!. After that, it is easy
to construct the semiclassical eigenstates of Eq.~A1!, taking
into account discrete symmetries.

a. One-dimensional problem

The action variable of the one-dimensional system is

I 5
1

2p R p dx, ~A3!

5
4

3p
~2E!3/4C, ~A4!

C5E
0

1 dx

A12x4
5

1

4A2p
GS 1

4D 2

. ~A5!

The semiclassical eigenvalues are determined by the B
Sommerfeld quantization condition

I ~Em!5~2m11!p\, ~A6!

i.e.,

Em5
1

2 S 3p

4CD 4/3S m1
1

2D 4/3

. ~A7!

The semiclassical Wigner function of the eigenstate is

rW~p,q!5
1

2p
d„I @E~p,q!#2I ~Em!…, ~A8!

and the Husimi function is obtained by Gaussian smear
thereof,

rH,l~p,q!5
1

p\E dp8 dq8 expF21

\ H l~q2q8!2

1
~p2p8!2

l J GrW~p8,q8!. ~A9!

By changing coordinatesq→q/Al,q8→q8Al,p→Alp,p8
→Alp8, this becomes equivalent to using the modifi
Hamiltonian

H5
l

2
p21

1

2l2
q4, ~A10!

and putting parameterl51 in the Gaussian.
In this case, the Husimi function near the equienergy s

face can be written approximately@4#

rH~s,j!5
2Ap\

TugradH~s!u
expF2

~j2j0!2

\ G . ~A11!

Here,s is a coordinate that parametrizes the equienergy
face. j is the other coordinate, andj5j0 corresponds to a
point on the surface.s andj are assumed to be orthonorma
T is the period, whose explicit form is

of
5-8
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T54C~2E!21/4. ~A12!

To calculate M2(rH), we introduce new coordinate
(E,u) as

p5A2E

l
sinu, ~A13!

q5~2E!1/4Al cos1/2u. ~A14!

Then

M2~rH!5E dj ds

2p\
rH,x~j,s!2, ~A15!

5
A2p\

T2 E duUds

duU 1

ugradE~u!u2
, ~A16!

5
1

32C2
A2p\

E

3E
0

p/2 du

A1

l
cos4 u1

l

4A2E
sin2 u cosu

. ~A17!

b. Two-dimensional solutions

Since the model~27! has some discrete symmetries, w
have to take them into account when we construct semic
sical eigenstates. For example, in the classA1, an eigenstate
is written as

umx ,my&A1
5

umx ,my&1umy ,mx&

A2~11dmx ,my
!

, ~A18!

whereumx ,my& is the product of one-dimensional eigensta
of Eq. ~A2!, and bothmx andmy are even.

If mxÞmy , the Husimi function of the eigenstate is

u^zumx ,my&A1
u25

1

2
~ u^zumx ,my&u21u^zumy ,mx&u2

12 Rê mx ,myuz&^zumy ,mx&!. ~A19!

In the semiclassical approximation,umx ,my& and umy ,mx&
correspond to different tori. Therefore, we assume

^mx ,myuz&^zumy ,mx&;0. ~A20!

Under this assumption,

rH(umx ,my&A1
)

5H 1

2
[rH(umx ,my&)1rH(umy ,mx&)] (mxÞmy),

rH(umx ,my&) (mx5my).

~A21!
03620
s-

The second moments are

M25H 1

2
M2~Emx

!M2~Emy
! ~mxÞmy!,

M2~Emx
!M2~Emy

! ~mx5my!.

~A22!

Here, M2(E) denotes the second moment of the on
dimensional problem at energyE, whose explicit form is
given in Eq. ~A17!. En is the nth eigenenergy of the one
dimensional problem, as given in Eq.~A7!.

If we changeEx and Ey fixing the total energyE5Ex
1Ey , the productM2(Ex)M2(Ey) takes its minimum value
at Ex5Ey becauseM2(E) behaves likeEa with 21/2<a
<21/4. Therefore, the upper limit ofW2 with fixed E @we
denote this asW̄2(E)# is

W̄2~E!5
2

M2S E

2 D 2 . ~A23!

W2 of the eigenstates withmx;my are close toW̄2, but if
mx5my , W2 of the state is one half ofW̄2.

2. Ergodic limit

In this subsection, we calculate the Husimi distributi
corresponding to the Berry-Voros hypothesis@12,13# and the
second moment thereof.

The Berry-Voros conjecture can be stated as saying
the Wigner function for the stationary state of an ergo
system is approximately

rW~p,q!5NWd$E2H~p,q!%, ~A24!

where the normalization is, ink dimensions,

NW5F E dpdq

~2p\!k
d$E2H~p,q!%G21

. ~A25!

The Husimi functionrH,l is obtained by smearing Eq.~A24!

by the Gaussiane2lq22p2/l. From the discussion in the pre
vious section, we can see that this is equivalent to using
modified Hamiltonian

H5
l

2
~px

21py
2!1

1

2l2
~x41y4!2

k

l2
x2y2, ~A26!

and puttingl51 in the Gaussian.
We use coordinates (E,u1 ,u2 ,u3), which are related to

original coordinates by the following equations:

px5A2E

l
cosu1 cosu2 , ~A27!

py5A2E

l
cosu1 sinu2 , ~A28!
5-9
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x5
E1/4Al

f ~u3!
sin1/2u1 cosu3 , ~A29!

y5
E1/4Al

f ~u3!
sin1/2u1 sinu3 , ~A30!

where

f ~u!5H 1

2
~cos4 u1sin4 u!2k cos2 u sin2 uJ 1/4

.

~A31!

The normalization constant of the Wigner functionNW is
determined as

NW
215E dpdq

~2p\!2
d„E2H~p,q!…, ~A32!

5
4pAE

~2p\!2E0

p/2 du

f ~u!2
, ~A33!

5
A2E

p\2
KSA11k

2 D . ~A34!

Here,K is the complete elliptic integral. The Husimi functio
in this case is

rH~p,q!5
NH

ugradH~s!u
expF21

\
~j2j0!2G , ~A35!

whereNH5NW /Ap\ is the normalization constant.s is the
coordinate that parameterizes the equienergy surface, as
and j are orthonormal coordinates. The second momen
rH is

M2~rH!5E dj ds

~2p\!2
rH~j,s!2, ~A36!
03620
of

5
NH

2

~2p\!2
Ap\

2 E U]s

]u
U du

ugradH~u!u2
.

~A37!

Here

ugradH~u!u252E cos2 u11
4E3/2

f ~u3!6
sin3 u1$cos6 u31sin6 u3

1K~K22!cos2 u3 sin2 u%, ~A38!

and u]s/]uudu is the volume of a small three-dimension
region formed by (du1 ,du2 ,du3). After lengthy, but
straightforward calculation we obtain

U]s

]u
U5 E2

2 f ~u3!2
cos4 u11

4E5

f ~u3!4
cos2 u1

3sin2 u1$ f 8~u3!21 f ~u3!2%. ~A39!

Finally we obtain the following formula:

M2~rH!

5
NH

2 pAE

2~2p\!3/2
E

0

2p

du3

3E
0

p/2 cosu1du1

f ~u3!2A2lE cos2 u11
4E3/2

l
g~u3!sin3 u1

,

~A40!

where

g~u!5
cos6 u1sin6 u1k~k22!cos2 u sin2 u

f ~u!6
. ~A41!
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