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Second moment of the Husimi distribution as a measure of complexity of quantum states
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We propose the second moment of the Husimi distribution as a measure of complexity of quantum states.
The inverse of this quantity represents the effective volume in phase space occupied by the Husimi distribution,
and has a good correspondence with chaoticity of classical system. Its properties are similar to the classical
entropy proposed by Wehrl, but it is much easier to calculate numerically. We calculate this quantity in the
quartic oscillator model, and show that it works well as a measure of chaoticity of quantum states.
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I. INTRODUCTION M, ! is called the number of principal componei#PO): it
becomes unity when the state has only one component, while
Although the quantum manifestation of chaos has beeit becomes when the probability is equally distributed over
extensively studied over the past few decades, to define basis vectors. Such quantities are easy to calculate. How-
“quantum chaos” is still the main problem in this field. The ever, an obvious defect is that the definition depends on the
direct extension of the definition applicable to classical chao$asis.
seems to fail because of the linearity of the Sclimger Wehrl has proposed a good measure of complexity of
equation. Since quantum mechanics contains classical meguantum states based on the Husimi distribution function
chanics as a limit, however, there must be something ip,(p,q) [1,2]. He called it “classical entropy,”
guantum mechanics that produces classical chaos in the clas-
sical limit.
There have been many attempts to define a measure of S(PH)ZJ dpdgpy Inpy, (4)
guantum chaos. There are some measures using the level
StatistiCS, but much more information could be obtained fron’\Nh”e in his paper “quantum entropy” denotes the von Neu-

analysis of individual quantum states. We can classify meamann entropy of a density matrix. Note that the classical

sures of complexity of quantum states into two types: entropy is applicable and takes various values also for pure
(1) Complexity of pure states. states, while the quantum entropy always vanishes for them.
(2) Complexity of an ensemble of quantum states. Although Wehrl introduced the classical entropy as an ap-

For example, the von Neumann entropy of the densityproximation to the quantum entropy, their values are not nec-
matrix belongs to type 2. In this paper, we focus on com-gssarily close even in the limit—0. (See the discussion in
plexity of type 1. Ref. [4].) According to our classification, we discuss the

Some quantities defined in terms of the expansion coeffig|assical entropy to describe complexity of type 1, i.e., of
cients are often used in numerical calculations. For instancepure states.
suppose a quantum state is expanded in an appropriate basischaoticity in classical mechanics can be characterized by
{li)}: the delocalization of orbits. In integrable systems, there are

many constraints from symmetries, such that orbits are con-
|(P>:2 cili). (1) fir!ed to Iovv_-dimensional tori. As the_ system becomes _cha-
i otic, the tori are destroyed and orbits can spread to higher
dimensional space. In highly chaotic systems, orbits spread
Let us definep;=|c;|?. Then the informatioiShannohen-  uniformly over the equienergy surface. Such systems are
tropy called ergodic. Among the several conditions to characterize
chaoticity of classical mechanics, the ergodicity is a rather
S= —E piInp;, 2) yveak one. For _ exa_lmple, any one-di_mensional time-
i independent Hamiltonian system is ergodic, but never cha-
otic. However, in physically natural situations of many-

and moments of the distribution dimensional systems, the ergodicity works as a definition of
classical chaos.
We can expect a similar behavior in quantum mechanics.
M= Z Py, () b q

The Husimi function is a function on phase space, and takes
only non-negative values while the Wigner function can be
are measures of localizatiqor delocalization with respect negative and is usually violently oscillatirig]. Hence the
to this basis. In particular, the inverse of the second momerttusimi function can be regarded as a probability distribution
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in phase space, and its order of delocalization can be a mea- Next we summarize the main points of this paper. We use
sure of chaoticity of quantum states. In that sense, Wehrl'she second moment of the Husimi distribution to define com-
classical entropy seems to be a good candidate measure. plexity of quantum states. It is a measure of delocalization of
However, Wehrl's entropy is defined as an integral overthe Husimi distribution in phase space. It is defined in a
phase space, and is not easy to calculate numerically. To thEse-independent way and has a good correspondence with
best of the authors’ knowledge, there is no calculation for a&zomplexity of classical mechanics. Moreover, we can calcu-
more than one-dimensional systefA.calculation for a one- late it directly from expansion coefficients, without calculat-
dimensional time-driven system is in R@4].) The difficulty  ing the redundant Husimi function. Therefore, it is not so
mainly comes from the redundancy of the Husimi function:difficult to evaluate numerically.
the Husimi function ok dimensional system is a function on  This paper is organized as follows. In Sec. Il, we summa-
2k dimensional space, while a function dndimensional rize the definition and some properties of the Husimi distri-
space is enough to keep the same information in either coobution function. In Sec. Ill, we derive the formula to calcu-
dinate or momentum representation. late the second moment of the Husimi distribution directly
Complex pure quantum states are usually represented &®m expansion coefficients in the harmonic oscillator basis.
sets of expansion coefficients with respect to a basis. Thigy Sec. IV, we introduce a model Hamiltonian and show
will be the case also in our following discussion. When wenumerical results that illustrate the meaning/éf as a mea-
calculate Wehrl's entropy of a quantum state, the normal prosure of complexity. The final section is devoted to a sum-

cedure is the following: mary. In Appendix, we show details of semiclassical calcu-
(1) Calculate the Husimi functiop; on many sampling lations of the second moment of the Husimi distribution in
points{(p; ,q;)}- integrable and ergodic limits.
(2) Take an averagépy In py) over the sampling points.
However, this procedure seems to be overly excessive be- II. HUSIMI DISTRIBUTION FUNCTION

cause we have all the information about the quantum state in ) ) ) _ o
the set of expansion coefficients. There must exist some for- [N this section, we review some properties of the Husimi
mula to calculate the average directly from the coefficientsfunction[3]. We restrict ourselves to a one-dimensional sys-
The main concern of this paper is to avoid the redundancy ofem for simplicity, but the generalization to many-
the Husimi function in numerical evaluation of a suitable dimensional systems is straightforward.
measure of complexity. In other words, we wish to know The Husimi function of a quantum stdte) is defined as
how to get some averages related to the Husimi function _ 5
without actually calculating the Husimi function itself. prA(P.@)=[(Z A )]* @)

It seems difficult to derive a simple formL_JIa fqr the en- Here,|z,\) is a coherent state defined as an eigenstate for a
tropy because of the transcendental logarithmic function .

. ; . X tomplex eigenvalue,

However, a simple formula is possible for an algebraic func-
tion. The second moment, which is the average of the square
of the distribution function, is especially easy to calculate.
We will show later a formula in which the second moment of
the Husimi distribution is expressed directly in terms of ex-
pansion coefficients in the harmonic oscillator badisthe A
guantum _states are given by expansion coefficignts in an- 5x=i \/X(A:{Jrii _ )
other basis, we should calculate the transformation matrix N NS
and change the basis to the harmonic oscillator bagte
numerical effort is of ordeN? for a quantum state whefé¢  The real and imaginary parts afare related to the phase
is the number of basis vectors. If we calculate the secondpace point§,q) by
moments for all quantum states given by diagonalization of a
Nx N matrix, the numerical effort is of ordeM®, which is _|*h =
the same as the order of the diagonalization of the matrix. a= ﬁ(ﬂ_z)’

We represent the inverse of the second momeni\by

ay|z,\)=2z\), (8)

wherea, is an operator with\ as an arbitrary parameter,

(10

N —
p=—i 7(2—2). (12

1
w =—, 5
2(pH) M(pry) )
It is not difficult to derive the relation
dpdg
AP | G PP © pH,A(p,q)=%J dp’ dg’ pw(p’.q )exp[—g NCIEE
W, represents the effective phase space volume occupied by n (p'—p)? 12
the Husimi function. For example, jf takes the same value )N ' (12)
over a region with volumé& and takes zero value outside of
it, Wo=V. The unit of W, is the Planck cell volume. wherepyy is the Wigner function
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. Since there is a truncatiom=N in the expansion16) in any
Pw(p,Q)=f dn(a—n/2le){elq+n/2)eP"". (13)  real calculation, the sur2l) is also finite. The numerical
effort is of orderN? for a quantum state.
A state|q) represents an eigenstate of the coordinate repre- The generalization to many-dimensional systems is
sentation. There, we see that the Husimi function is a kind otraightforward. The result is
the coarse-grained Wigner function. The main advantage of
the Husimi function is that it is non-negative, as is obvious

from the definition(7). Hence the Husimi function can be Ma(pn) =2 (23
formally regarded as a probability distribution, whereas the
Wigner function can not. wherek is the dimension of the system and
Ill. SECOND MOMENT OF THE HUSIMI DISTRIBUTION / LI
. . . BL=>, —CiC_;. (24
In this section, we consider the second moment of the =L 2\L|J!(|_—])! =

Husimi distribution
Here,L andj are k-dimensional vectors whose components

z(pH):JMpH(p q)2 (14) ~ are non-negative integers. The factorial of those vectors
2mh means the product of all factorials of the vector components.
For example,
d’z .
- [ izl 19 k
=_H1 L. (25)
-

Here and in the following we omit for simplicity.
Suppose the quantum stdtg) is represented in the har-

monic oscillator basis The absolute value denotes

o k
@)= 2 ciln), (16 L=2 Li, (26)
n= =
thenM, can be expanded as andj<L meansj;<L; for Vi.

*
CnCn’C*C ' d pA ,
My(pp)= 2 Z m”m 2\z| n+n’ m+m IV. NUMERICAL RESULTS

nn’ mm’ ynin'mm’tJ)  m A. Model

17
The model Hamiltonian we are considering here is that of
cncn,c*mc;, (n+n’)! a two-dimensional quartic oscillator

_ Snint mam: -
% r,% nin/tmim’t 2ntn’+1 e mem

1 1
(18 H= (Pt py) +5 (x*+y") —koy?, 27

Here, we used the following formulas: ) )
which has been adopted by many authors for the studies of

I level statistics and wave functiorj§]. We putA=1 and
(n|z)=e 1A72—, (190  regard all quantities as dimensionless.
Vnt This model has the simple scaling property,

and H(apy,a2p, ax,ay) = a’H(pe.py.Xy),  (28)

f —e 2770 7m =1 Snm (200  which means that the energy of the system does not essen-
tially change the dynamics. However, the parameker
changes the nature of the system. The system is separable
and integrable =0, and becomes chaotic kincreases. It
1 is unbound fork>1. Meyer[6] has shown that for largk
Mz(pH)ZE > B (21)  values &0.4) the classical phase space structure is almost
L=0 completely chaotic.
This system has a discrete symmetry call@g,: The
Hamiltonian is invariant with respect to reflections abaut
L Ll axis, y axis and also about the line=y. In this paper, we
L= 2 \ /m CL - (22)  treatonly quantum states that are symmetric under all reflec-
=0 J

tions. (This symmetry class is labeled; in Ref.[7].)

As a result, we obtain the formula

where
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B. Structure of the classical phase space Hilbert space is spanned by the basis vectors witnQ

Figure 1 shows the Poincasarfaces of section of this T+ My=270, whose dimension is 4692. ,
system atk=0.0, 0.2, 0.4, and 0.6. Ak=0.0, the phase Among the 4692 eigenstates we obtain by the diagonal-

space is completely occupied by tori. These tori are partially?ation, those having very large energies are not reliable be-
destroyed ak=0.2, and most of them seem to vanishkat cause of the truncation error. Since the range of the validity
=0.4. However, there are still many islands of stability. TheV€"Y much depends on the oscillator frequencyf the har-

two most significant islands arext 0. These correspond to Monic oscillator basis, we should chooseto optimize the
the stable linear orbits orR=y andx=—vy. At k=0.6, we diagonalization. Because of the variational principle, eigen-

cannot recognize any structure. In this case, more than 9od@|ues obtained in the restricted Hilbert space are always
of the orbits are unstable according to Riéf]. igher than the real values, and the level density in that space

is always smaller than the real one. Therefore, the minimiza-
tion of trH (the sum of the eigenvaluesan be a criterion to
choose the optimab.

We diagonalize the Hamiltoniaf27) in the harmonic os- We putw=7.0, which is chosen roughly to optimize the
cillator basis. The procedure we used is essentially the sam@iagonalization fork=0.6, for all k. The comparison be-
as that of Zimmermanat al.[8]. The bases belonging #,  tween the obtained level density and the semiclassical one
can be written as shows that the maximum reliable energyds 800~ 1000.

C. Diagonalization of the Hamiltonian

Ny, Ny +[ny,n R,
Ny Ny)a, = Imny) Iy, 1) (29 D. The second moment of the Husimi distribution and the
1

\2(1+ 5nx,ny) ’ number of principal components

Figures 2, 3, 4, and 5 show the results of the numerical
where n, and n, are even non-negative integer amg  calculation of the inverse of the second momeéf) of the
=n,. Matrix elements of the Hamiltoniaf27) can be cal- Husimi distribution fork=0.0, 0.2, 0.4, and 0.6. We plotted
culated analytically, and we obtain eigenenergies and eigerthem for energy eigenstates with<<600. In each figure,
states by the diagonalization of this matrix. The truncatedL000~ 1500 eigenstates are plotted. It takes about 30 min. on
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FIG. 2. Results of numerical calculation @f, at k=0.0. The FIG. 4. W, atk=0.4.

solid line shows the ergodic limit calculated based on the Berry-
Voros hypothesis. The broken line shows the semiclassical uppdation based on the torus quantizatigfror details of the
limit based on the torus quantization. See Appendix. calculation, see Sec. 1 of the Appendiemiclassical re-
sults and full quantum results have a good correspondence,
the NEC SX-5 in Osaka University to calculate the seconcexcept for the cases whera,~m, and m,~0. Whenm,
moments for al(4692 eigenstates. ~m,, the assumptioiiA20) does not seem to apply. When
When we calculate the Husimi distribution,in Eq.(7)is ~ m,~0, the quantum number is too small to use the semiclas-
a free parameter. The simplest choice is todsefjual to the  sjcal approximation.
harmonic oscillator frequency of the basis used for the di- In Fig. 3, the regular structure of Fig. 2 is partially de-
agonalization. In this case, we can directly calculate the seastroyed, but there are still many regular series of eigenstates.
ond moment using the formul&83) and(24). The results in  The most significant series, which is in the lowest part of the
Figs. 2, 3, 4, and 5 are calculated using the optimized valu€ig. 3, corresponds to the stable diagonal periodic orbits at

A=7.0. x=y andx= —Yy. Figure 8 shows an eigenstate in the regular
We also calculatedlV, for different values of\. Figure 6  series. There are also some series of regular eigenstates that
shows the results for=4.0, 7.0, and 10.0 &=0.2. Quali- are excited in the transverse direction to the periodic orbits.

tative features of the figures seem unchanged, at least when The lowest series in Fig. 2 corresponds to the periodic
\ is not so far from the optimized value. Whens far from  orbits atx=0 andy=0, which are stable a=0.0. How-
the optimized value, it is hard to obtain reliable results be-ever, these orbits are unstablekat0, and this series seems
cause the number of basis vectors we need to represent the disappear ak increases.

eigenstates is huge. The eigenstates corresponding to the torus Mk E,

At k=0.0, the system is separable into two one-are in the middle of Fig. 2See also Fig. 7 As k increases,
dimensional systems. Therefore, eigenstates of the originahis torus is quickly destroyed and two stable diagonal orbits
system can be specified by quantum numbegsand my, are left. Islands of stability around these two orbits become
which label eigenstates of the one-dimensional systems. the most significant structure in this system, and the eigen-

We can assumen,=m, without loss of generality in the states localized around these orbits form the lowest series in
classA;. Figure 7 shows the results of a semiclassical calcufFig. 3.
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FIG. 6. W, atk=0.2 forA=4.0(a), 7.0 (b), and 10.0(c). The
values ofW, depend o\, but the qualitative features remain un-
changed.

At k=0.4, as seen from Fig. 4, there are still regular series
that correspond to the diagonal orbits and the first excited
states in the transverse direction. However, most structures
seem to have been destroyed and many eigenstates are near
the ergodic limit, as based on the Berry-Voros hypothesis.
(See Sec. 2 of the Appendix.

At k=0.6, no clear structure can be seen in Fig. 5, and the
values ofW, go up as a whole. However, the ergodic limit
based on the Berry-Voros hypothesis is still not reached, and
some eigenstates have much smaller values than the limit.

There may be several reasons for this. One reason we can
think of is that the Wigner function in the Berry-Voros hy-
pothesis does not satisfy the pure state condition of the den-

FIG. 8. The density plot of the square of the 441st eigenfunction

sity matrix p?=p. Therefore, we might obtain better esti- atk=0.2. E=320.8, W,=157.2, NPG-102.8. The length of the
mates ofW, by taking into account the pure state condition sides of this figure is 15. This state is completely localized around

by successive iterationgSee Chap. 8 in Ref9].) Another
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FIG. 9. NPC ak=0.0(a), 0.2(b), 0.4(c), and 0.6(d). Dots in(b) and(c) show the regular series corresponding to the diagonal orbits.

by the thickness factor of ordéf’?, wherel is the codimen- able than the NPC as a measure of complexity of quantum
sion of the manifold(See Appendiy.However, this approxi- States. Some eigenstates that have small NPC are related to
mation fails when the scale of the invariant manifold is com-the scars of the unstable linear orbitscat0 andy=0. (See
parable to the Planck constant. For example, in the lowFig. 10) Importance of these eigenstates in the response
energy part of Fig. 2, the ergodic limit line is under the limit function has been reported in RéL1].

based on the torus quantization. There seems no clear dis-

tinction between chaotic and regular eigenstates at very low V. SUMMARY

enler:gll:eiz.' 9, we plotted the NPC &=0.0, 0.2, 0.4, and In this paper, we proposed the second moment of the Hu-
0.6. We can see regular structure in Figg)9The structure is  Simi distribution as a measure of complexity of quantum
gradually broken ak increases, and the points are lifted as astates. Its invers@ve represent it byV,) shows the effective
whole. In that sense, the behavior of NPC is similar to that ovolume occupied by the Husimi distribution function, and
W,. However, by comparing NPC aMi, of each eigenstate, serves as a measure of delocalization in phase space. We
we can see that the two quantities are not so similar. Fogalculated it for a quartic oscillator model, and showed that it
instance, ak=0.4, we can see regular series of eigenstatebas a good correspondence with chaoticity of the classical
related to the diagonal orbits in both Fig. 4 and Fi¢gc)9 system. We can calculate it directly from expansion coeffi-
However, the values of the NPC are not so small, and thereients without numerical integration. Therefore, the calcula-
are many states lower than the series that seem to have fion is not so time consuming, and there is no numerical
clear structure. Therefore, in gener#, seems more reli- error except for that contained in the quantum state itself.
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Therefore, we first derive a semiclassical formula for the
Husimi function of eigenstates ¢A2). After that, it is easy

to construct the semiclassical eigenstates of(Bd,), taking
into account discrete symmetries.

a. One-dimensional problem

The action variable of the one-dimensional system is

1
|=zﬂgpd& (A3)
4
=§(2E)3’4C, (A4)
oo 1odx 1 F<12 (A5)
o1—x* 427 \4] "

FIG. 10. 754th eigenstate atk=0.4. E=443.6,W, The semiclassical eigenvalues are determined by the Bohr-
=545.1, NPC=54.1. NPC of this state is very small, though is Sommerfeld quantiza’[ion condition
not so small and its structure is not so clear. We can see scars of

linear orbits atx=0 andy=0. I(Em)=(2m+1)7h, (A6)

In the integrable casekE&0.0), the values oW, have a  1-€.,
regular structure. Ak increases, the structure is gradually 1 /37408 43
destroyed and the values go up near the ergodic limit line as E :_(_77) (m+ _) ) (A7)
a whole. Atk=0.2 and 0.4, there are many regular series mo2\4C 2
related to stable islands in classical phase space. Evkn at . . . . . .
= 0.6, the values o¥V, of some eigenstates are much IOWerThe semiclassical Wigner function of the eigenstate is
than the ergodic limit based on the Berry-Voros hypothesis, 1
ang they seem to be related to scars of unstable periodic pW(p,q)zzé(l[E(p,q)]—|(Em)), (A8)
orbits.

.TO generah;e the idea of this paper to manyjbody sy;temgnd the Husimi function is obtained by Gaussian smearing
using generalized coherent states is interesting. It will b%hereof
reported in a forthcoming papé€t4]. '
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A 1
H=>p’+—a*, (A10)
APPENDIX: SEMICLASSICAL CALCULATIONS 2\

In this appendix, we give, for comparison, semiclassica@nd putting parameter=1 in the Gaussian.

estimates for the second momevit. In this case, the Husimi function near the equienergy sur-
face can be written approximate]g]
1. Integrable case(k=0) 2
2\mh (§—&o)
In this case, the model Hamiltonian is separable, PH(S, &)= TgradH(s)| ex;{ i (A11)
H(Px.Py.%,Y) =h(p«.X) +h(py.Y), (AD) " Here,sis a coordinate that parametrizes the equienergy sur-
1 face. ¢ is the other coordinate, angl= &, corresponds to a
L T2 4 point on the surfaces and¢ are assumed to be orthonormal.
h(p.x) 2(p X0 (A2) T is the period, whose explicit form is
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T=4C(2E) ¥4 (A12) The second moments are
To calculate M,(py), we introduce new coordinates 1M E IML(E (m£m.)
(E,0) as M,= 2 2l mx) 2( my) X o (A22)
2E M2(Em)M2(En)  (me=m,).
p=\/—siné, (A13)
A
Here, M,(E) denotes the second moment of the one-
q=(2E)1’4\/Xcos”2 0. (A14) d?mengional problem a_lt energy, v_vhose explicit form is
given in Eq.(A17). E, is the nth eigenenergy of the one-
Then dimensional problem, as given in EG7).
If we changeE, and E, fixing the total energye=E,
déds +E,, the productM,(E,)M,(E,) takes its minimum value
Malpr)= | 5o Pradés s)”, (ALS) 4 E.=E, becauseM,(E) behaves likeE® with —1/2<a

< —1/4. Therefore, the upper limit diV, with fixed E [we

\/277 denote this adV,(E)] is
(A16)
d¢9
WAHE)= ——. (A23)
1 2wk 2 y (E)Z
= _ 2 E
32c2 VvV E
2 do W, of the eigenstates witm,~m, are close to,, but if
X fo . (A7) m,=m,, W, of the state is one half diV,.
1
—cog 0+ Sir? 6 cosé
\/)\ A+/2E 2. Ergodic limit
_ _ _ In this subsection, we calculate the Husimi distribution
b. Two-dimensional solutions corresponding to the Berry-Voros hypothesi®, 13 and the

Since the mode(27) has some discrete symmetries, we S€cond moment thereof.
have to take them into account when we construct semiclas- 1he Berry-Voros conjecture can be stated as saying that
sical eigenstates. For example, in the clagsan eigenstate the Wigner function for the stationary state of an ergodic

is written as system is approximately
My, my)+|m, ,my) pw(P,d)=Nwo{E—H(p,a)}, (A24)
My, = \/m ' (A18) where the normalization is, ik dimensions,
where|m,,m,) is the product of one-dimensional eigenstate dpdq -
of Eq. (A2), and bothm, andm, are even. Nw= 2t HNE-H(p,9)}| . (A25)

If m,#m,, the Husimi function of the eigenstate is

1 The Husimi funcuorpH ) is obtained by smearing E¢A24)
|<Z|mx:my>A1|2:§(|<z|mx:my>|2+|<Z|my1mx>|2 by the Gaussiae ¢~ P’*. From the discussion in the pre-
vious section, we can see that this is equivalent to using the
+2 Rgm,,my[z)(zm,,m,)).  (A19)  modified Hamiltonian

In the semiclassical approximatiofm,,m,) and |m,,m,) A 1 K
correspond to different tori. Therefore, we assume H= E(prr p§)+m(x4+ yh - szyz, (A26)

(my,my[z)(zlm,,m,)~0. (A20) _ _ _
and puttingh =1 in the Gaussian.
Under this assumption, We use coordinatesk( 6, 6,,65), which are related to
original coordinates by the following equations:
PH(| my vmy>A1)

[2E
: x= \] & cosé 05, A27
§[PH(|mx,my>)+pH(|my,mx>)] (my#=my), p N C0S03 €080, (A27)
pu(lmy,my)) (my=m,). >E -
(A21) Py=N C0s6; Sin 6, (A28)
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E1/4
X= 76, sin*2 9, cosds, (A29)

El/4
Y="Fo sint2 ¢, sin6;, (A30)

where
1 1/4
f(a)z:i(cos4 6+ sin® ) —k cos 6 sir? 0]

(A31)

The normalization constant of the Wigner functiNg, is
determined as

~y_ [ dpdg __
Nw j(z 72 S(E—H(p,a)), (A32)
4m\E (2 d
= A
(2mh)2)o f(0)2 (A33)
J2E 1+K
w—ﬁ( E A

Here,K is the complete elliptic integral. The Husimi function

in this case is

(A35)

_ Ny -1 2
PH(IO,Q)—WGX T(f—fo)

whereNy =N,/ 7% is the normalization constandr is the

coordinate that parameterizes the equienergy surfacegand

PHYSICAL REVIEW E 65 036205

(27Tﬁ)2 0
(A37)
Here
3/2
|gradH ( 6)|?=2E cog 01+—)Gsin3 61{cod 65+ sir® 6,
3
+K(K—2)cog 65 sir? 6}, (A38)

and|do’/36|/d@ is the volume of a small three-dimensional

and ¢ are orthonormal coordinates. The second moment of

pH is

dédo
(27h)?

Ma(pn) = pu(€,0)?, (A36)

region formed by d6,,d6,,d63). After lengthy, but
straightforward calculation we obtain
dor E? 4E®
——cod 6,+ cog 6,
30 2f(93)2 f(63)*
X sir? 6,{f'(63)%+f(65)?}. (A39)
Finally we obtain the following formula:
Ma(pn)
B NEﬂT\/E J‘Zﬂ' p
202mh)32lo 0
/2 COSGld 01
x fO E3/2 !
f(03)2\/2)\E cos 6, + g(63)sin® 6,
(A40)
where
cod +sin® 6+ k(k—2)cos A sir? 6
g(0)= . (A41)

f(6)°
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