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Lotka-Volterra system in a random environment
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Classical Lotka-Volterra~LV ! model for oscillatory behavior of population sizes of two interacting species
~predator-prey or parasite-host pairs! is conservative. This may imply unrealistically high sensitivity of the
system’s behavior to environmental variations. Thus, a generalized LV model is considered with the equation
for preys’ reproduction containing the following additional terms: quadratic ‘‘damping’’ term that accounts for
interspecies competition, and term with white-noise random variations of the preys’ reproduction factor that
simulates the environmental variations. An exact solution is obtained for the corresponding Fokker-Planck-
Kolmogorov equation for stationary probability densities~PDF’s! of the population sizes. It shows that both
population sizes are independentg-distributed stationary random processes. Increasing level of the environ-
mental variations does not lead to extinction of the populations. However it may lead to an intermittent
behavior, whereby one or both population sizes experience very rare and violent short pulses or outbreaks
while remaining on a very low level most of the time. This intermittency is described analytically by direct use
of the solutions for the PDF’s as well as by applying theory of excursions of random functions and by
predicting PDF of peaks in the predators’ population size.

DOI: 10.1103/PhysRevE.65.036204 PACS number~s!: 05.45.2a
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I. INTRODUCTION

Classical Lotka-Volterra~LV ! model for oscillatory be-
havior of population sizes of two nonlinearly interacting sp
cies~predator-prey or parasite-host pairs! @1–4# is conserva-
tive. This means that sustained oscillations are regarde
being completely controlled by initial conditions, which a
‘‘never forgotten’’ by the system. Such nonrobust mod
have certain well-known drawbacks, in particular, they imp
unrealistically high sensitivity of the system’s behavior
environmental variations. The asymptotically stable mod
with internal dissipation and sustained external excitat
may be more adequate in this respect. Thus, the corresp
ing ‘‘generalized LV model’’@3,4# may be written as

u̇52mu1kbuv, v̇5av@11j~ t !#2buv2gv2,

^j~ t !&50, ^j~ t !j~ t1t!&5Dd~t!, ~1!

where u(t) and v(t) are population sizes of predators~or
parasites! and preys~or hosts!, respectively, whereasj(t) is
a zero-mean Gaussian random white noise with intensitD
andd is Dirac delta function, this white noise is interprete
in the Stratonovich sense, as a ‘‘physical’’ white noise@5–8#.
The random variations in the preys’ reproduction ratea
simulate temporal variations of the environmental conditio
~actually temporal random variations in the death rate
predatorsm were also accounted for in Refs.@3,4#!. The term
with squaredv governs self-limitation in the growth of th
prey population size in the absence of the predators. An
far as random oscillations in the system~1! are considered, it
provides ‘‘damping,’’ or feedback, which allows the syste
to ‘‘withstand’’ random environmental variations. The latt
are confined in this paper to those of the preys’ reproduc
factor.

The extended stochastic versions of the LV mode
system~1! and its generalizations to the cases of multip
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interacting species and/or more sophisticated interac
laws ~rather than that of just product-type!—have been stud-
ied in Refs.@3–5#, @9–14#. Equilibrium states and their sta
bility have been studied by direct application of the stoch
tic differential equations~SDE! calculus@9,10#. Probability
densities of the population sizes had been analyzed in
@10# for the case, where environmental variations may
represented as deterministic functions of time, depending
a finite number of random parameters~variables!. The ap-
proach based on the Fokker-Planck-Kolmogorov~FPK! par-
tial differential equation had been adopted in Refs.@4# and
@11# for approximate analysis of the stationary and tran
tional probability densities, respectively, for the cases wh
~random! variations in population sizes are small compar
with the corresponding mean values; direct perturbatio
approach and path integral approaches were used in Refs@4#
and @11#, respectively. It should be noted that in the impo
tant case of intermittent behavior in population size~s! the
level of random variations may be higher—and even mu
higher—compared with the corresponding mean values,
the above analyses may become inadequate for these c
More sophisticated stochastic models of population dyna
ics, including, for example, those with multiple stable eq
librium states, have been studied in Refs.@12–14# by direct
numerical simulation.

The system~1! had been studied in Ref.@3# by lineariza-
tion in the vicinity of its stable equilibrium state. Stochas
stability analysis for the linearized equations indicated ins
bility in the mean square of the population sizes at su
ciently high intensity of the white-noise fluctuations. Th
result had been interpreted in Ref.@3# as a potential for ex-
tinction of the populations due to environmental variation
However, exact solution for the complete~nonlinearized!
system~1!, obtained in Refs.@7,8#, indicates that this is no
the case: the populations cannot be killed solely by the ab
environmental variations@of course as long as the continuou
model ~1! remains applicable#.
©2002 The American Physical Society04-1



s
e
h
-

rm

ist
e
it

rs
s,
f

re
y
ict

e
-

m
t c
e

e

D

e

n

st

al

is,

can

ve

LV
ly
f

to
is

tors.
ted
e
o-
vi-

ex-
K
in

he

MIKHAIL F. DIMENTBERG PHYSICAL REVIEW E 65 036204
On the other hand, such a major event as stochastic in
bility of the linearized set of equations, as discovered in R
@3#, cannot remain completely unnoticed by the system. T
complete ‘‘nonlocal’’ nonlinear solution for the joint prob
ability density function~PDF! of the population sizes, which
indicates both of these state variables to beg-distributed sta-
tionary random processes, may experience major transfo
tions with increasingD @7,8#. Namely, the PDF~s! of u(t)
and/orv(t) may become singular at their origin~s!. This sin-
gularity is integrable, so that the populations still do ex
However, their behavior may become very different inde
from that in case of small environmental variations, exhib
ing so-called on-off intermittency, particularly of predato
or parasites. Namely, very rare short and intensive pulse
outbreaks inu(t) may be observed, with very small level o
u between these pulses; similar behavior ofv(t) is also pos-
sible. The analytical description of such a behavior is p
sented in this paper, as based on the use of the theor
excursion of random functions and on probabilistic pred
ing peaks ofu(t).

II. BASIC EXACT SOLUTION FOR PROBABILITY
DENSITY OF POPULATION SIZES

The logarithmic transformation

x5 ln u, v5 ln v, ~2!

reduces the SDEs~1! to the form

ẋ5]H/]y, ẏ52]H/]x2g~]H/]y!1aj~ t !, ~3!

where

H~x,y!5kb exp~y!2my1b exp~x!

2~a2gm/kb!x and g5g/kb, ~4!

~the common chain rule for differentiation has been us
here for the ‘‘physical’’ white noise rather than Ito differen
tiation formula@5–8#!. Note, that the functionH is different
from Hamiltonian of the classical conservative LV syste
which corresponds to the case of zero density-dependen
efficient, i.e.,g50. The difference will be seen to becom
especially important for small values of the parametera
2gm/kb in the Eq.~4!. This parameter is assumed in th
following to be positive and arbitrary otherwise.

The transformed random state variables have a joint P
which will be denoted byp(x,y,t). This PDF satisfies the
well-known FPK equation@4–8#, which for the present cas
of the SDEs~3! and ~4! is written as@7,8#

]p

]t
52

]

]x S ]H

]y
pD1

]

]y F]H

]x
p1g

]H

]y
pG1

a2D

2

]2p

]y2 .

~5!

Direct substitution shows, that the PDE~5! has the following
exact stationary~independent of time! solution:

p~x,y!5C exp@2~2g/kbDa2!H~x,y!#, ~6!
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where C is a constant to be found from the normalizatio
condition for the PDF@expression~4! for g had been used
here#.

Returning in the Eq.~6! to the original state variablesu, v
and imposing the normalization condition within the fir
quadrant of the (u,v) plane~that is, within positive values of
each of these state variables! yields the joint stationary PDF
w(u,v) of the population sizes as a product of the individu
one-dimensional~1D! PDF’s of u andv @7,8#,

w~u,v !5wu~u!wv~v !,

wu~u!5@~d/k!~du/k!~du0 /k!21

3exp~2du/k!#/G~du0 /k!,

wv~v !5@d~dv !dv021 exp~2dv !#/G~dv0!;

u05~a2gm/kb!/b; v05m/kb, d52g/Da2. ~7!

Here G is the Euler gamma function, whereasu0 , v0 are
clearly seen to be steady-state values ofu(t), v(t), respec-
tively, in the absence of the environmental variations; that
they correspond to zero right-hand sides of the Eqs.~1! with
j(t)[0. The equilibrium point (u0 ,v0) is a stable focus or
stable node as long asg.0. The solution~7! implies that
both population sizes are independentg-distributed station-
ary random processes. Their mean values and variances
be easily calculated asu0 , v0 andu0k/d, v0 /d, respectively.

Consider first of all conditions for existence of the abo
stationary PDF’s ofu(t) andv(t). Whilst the latter is seen to
exist always, as long as all parameters of the extended
model ~1! are strictly positive, the former does exist on
provided that the~asymptotically stable! steady-state size o
the predators population is positive, that is, if

u05~a/b!~12v0 /v* !.0, or v0,v* ,

where

v* 5a/g. ~8!

If the opposite inequality is satisfied, the PDF ofu(t) has a
nonintegrable singularity atu50, and thus degenerates in
the Dirac delta function at zero. The physical meaning
clear from the Eq.~8!, wherev* is clearly seen to be the
steady-state number of preys in the absence of preda
Namely, whenever growth of the prey population is restric
by the interspecific competition within the population, th
predators ‘‘are not needed’’ for the equilibrium, and the s
lution u50, v5v* is established in the absence of the en
ronmental variations. The first Eq.~1! becomes completely
irrelevant in this one-dimensional case. Theg-distribution
for the preys’ population size has been obtained for this
treme case in Ref.@4# as a solution to the stationary FP
equation, which is found to be the ODE rather than PDE
the 1D case.

This interpretation clearly correlates with the fact that t
point u50, v5v* 5a/g is actually the unstable equilibrium
point of the system~1! with j(t)[0, with the other equilib-
rium point (u0 ,v0) being stable as long asa2gm/kb.0
~yet another unstable equilibrium point~0, 0! does exist also,
4-2
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LOTKA-VOLTERRA SYSTEM IN A RANDOM ENVIRONMENT PHYSICAL REVIEW E65 036204
which remains unaffected by variations of the parametea
2gm/kb!. At the bifurcation pointa5gm/kb these two
equilibrium states merge, leaving only one equilibrium po
u50, v5v* 5a/g for a2gm/kb,0, which becomes
stable in this case. As will be seen, the on-off intermitten
becomes especially pronounced in the proximity of the bif
cation point, that is for small values of 12v0 /v* .

Assume now that the inequality~8! is satisfied. The solu-
tion ~7! indicates, that both PDF’s~of u(t) and ofv(t)! do
exist then, no matter how intensive are the white-noise e
ronmental variations. However, an important change in
population~s! may appear indeed for sufficiently largeD’s
~whereas for sufficiently smallD both PDF’s are asymptoti
cally Gaussian with sharp peaks at their respective mean
uesu0 ,v0!. It can be seen, that ifdv0,1 (du0 /k,1), then
wv(v)@wu(u)# has a singularity atv50 (u50). The singu-
larity is integrable, so that the stationary PDF does e
always, as had been noted in@7,8#. The question is: wha
does such a singularity mean as far as the real populat
are considered?

It will be shown in the following that the singularity~ies!
in the PDF~s! may basically imply the intermittency effec
or rare spontaneous on-off epidemic-type outbreaks in
population size~s!. The first indicator for such a behavio
may be obtained by calculating ratio of stay times above
below the mean level, say, for the parasites. Interpreting
ratio as that of the corresponding cumulative probabilit
and using the Eq.~7! yields

lu5
Prob~u.u0!

Prob~u,u0!
5

E
u0

`

wu~u!du

E
0

u0
wu~u!du

5
G~z0 ,z0!

G~z0!2G~z0 ,z0!
,

z05du0 /k, ~9!

where the functionG that depends on two arguments is t
incomplete gamma function.~Similar ratio may be calculated
for preys, using the last expression~9! with z05dv0 instead
of z05du0 /k* ! Asymptotic expressions for the comple
and incomplete gamma functions indicate that this ratio
proaches zero withz0→0, and approaches unity withz0
→`. Full curve ofl vs z0 in Fig. 1 shows this drop to be
very drastic whenz0 is small. Thus the on-off intermitten
behavior may be expected indeed foru(t) in this case. Of a
certain special interest may be the case wherev(t) remains
close to its mean or expected level. As can be seen from
Eqs.~7!–~9!, this will happen if

dv0@1, du0 /k!1, or

a~12v0 /v* !!kbDa2/2g!m. ~10!

Thus, the on-off intermittency in, say, population of parasi
with almost constant corresponding size of the hosts’ po
lation may be observed under one of the following con
tions:

~1! High death rate of predatorsm.
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~2! Small excess of the ‘‘isolated’’ equilibrium value o
the preys’ population sizev* , as governed by the interspe
cific competition, over its expected valuev0 ; this is case of
proximity to the bifurcation point of the system~1! without
parameter variations.

Figure 2 illustrates behavior of both populations as o
tained by direct Monte Carlo simulation of the system~1!.
The intermittency inu(t) is seen clearly, which, however, i
different from other known cases of intermittency, as stud
for example in Ref.@15#. A nonlinearly damped pendulum
under white-noise vertical vibrations of its suspension po
had been shown in Ref.@15# to exhibit intermittency when-
ever the intensity of the excitation only slightly exceeds
critical value for instability of the linearized model. The re
sponse PDF was shown, by approximate stochastic ave
ing method, to have the integrable singularity at zero in t
case—similarly to the present case with the PDF’s~7!. The
observed response samples, however, exhibited oscilla
behavior in Ref.@15#, so that even the name ‘‘turbulence
had been used. On the contrary, just a single peak or
break, say inu(t) is observed in the present case, so that t
intermittency in the LV system may be called ‘‘quasistatic
Its analytical study will be continued in the Sec. III where
in the remaining part of this section the dependence of po
lation sizes on the ‘‘new’’ parametersg andD will be sum-
marized.

First of all, as can be seen from the Eq.~7!, the PDF’s of
both u(t) and v(t) degenerate into Dirac delta-functions
zero if g50, DÞ0. This means extinction of both popula
tions in the absence of the interspecific competition
preys—the same conclusion as had been made in@3,5#. Fur-
thermore, proportional increase ofg andD ~with fixed value
of d! in the range of small nonzero values of both the
parameters does not change properties of both population
long as the ratiov0 /v* remains much smaller than unity@see
Eqs. ~7! and ~8!#. This limiting case may be called ‘‘quasi
conservative,’’ since each response cycle is close to tha
free oscillations of the classical LV system. It may be an
lyzed by the asymptotic method of averaging over the per
of the corresponding conservative system, as had b
shown in Ref.@3# for certain predator-prey pairs with mor

FIG. 1. Ratio of stay times above and below mean level fo
g-distributed stationary random process. Herezo5duo /k for u(t)
andzo5dvo for v(t), with the corresponding mean values beinguo

andvo , respectively.
4-3
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FIG. 2. Samples ofu(t) andv(t) as obtained
by Monte Carlo simulation for the system wit
a51/4, m54, k51, b51 and alsog50.06, D
51.92 ~a! and g50.05, D51.6 ~b!. ~all quanti-
ties nondimensional!.
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complicated interactions than in the classical LV system
nonstochastic case, and in Ref.@7#, @8# for the stochastic
case.

With further increase ofg andD, however, the influence
of the former of these parameters on the predators’ pop
tion becomes more complicated, as long as it leads to re
tion of the expected number of predators~but not preys!. The
reduction is seen to be especially drastic when the co
sponding limiting value of the preys’ population size due
interspecific competitionv* becomes only slightly highe
than its expected sizev0 . This is the case, where predato
become close to extinction due to food shortage, and
on-off intermittent behavior in their population size may
expected indeed. Two pairs of short samples of popula
sizes in Fig. 2 were obtained for the same time interval a
same values of parameters of the classical LV syst
namely a51/4, m54, k51, b51, whereasg50.06, D
03620
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51.92 in Fig. 2~a! andg50.05,D51.6 in Fig. 2~b!. Thus, in
both casesd51, dv054, and the samples ofv(t) are seen to
be very similar accordingly; this should be expected sin
they have the same PDF. And as long as the parameterdv0
of this PDF is larger than unity, the processv(t) does not
exhibit any intermittency. On the other hand, values
du0 /k are different in these two cases but less than unity
both. Thus, intermittency inu(t) is seen in both cases ac
cordingly, with outbreaks inu(t) being more violent and
more frequent in Fig. 2~b! whereu0 is higher. The expected
frequency of such outbreaks will be considered in the S
III.

Yet another example of the on-off intermittency is illu
trated in Fig. 3, for the casea51, m51, b5k51, g50.5,
D55. Here bothdv0 anddu0 /k are less than unity, and th
on-off intermittency is seen in both populations according
It may be added, that all samples in the Figs. 2 and 3 exh
h

FIG. 3. Samples ofu(t) andv(t) as obtained

by Monte Carlo simulation for the system wit
a51, m51, b5k51, g50.5, D55 ~all quanti-
ties nondimensional!.
4-4
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LOTKA-VOLTERRA SYSTEM IN A RANDOM ENVIRONMENT PHYSICAL REVIEW E65 036204
behavior, which does not resemble-oscillations in the cla
cal LV system. This should be expected in view of suf
ciently high values ofg and thus ofv0 /v* , which make the
system~1! strongly nonconservative.

III. EXCURSIONS AND PEAKS OF PREDATORS’
POPULATION SIZE

Using the basic solution~7! certain other response cha
acteristics of interest may be calculated. The first of thes
based on the theory of excursions of random functions@16#
is an expected numbern1(u) of upcrossings per unit time o
a given arbitrary levelu by u(t). Substituting Eq.~7!, to-
gether with the first Eq.~1! into the basic relation@16# for
such upcrossings yields@7,8#

n1~u!5E
0

`

u̇w~u,u̇!du̇5E
v0

`

kbu~v2v0!w~u,v !dv

5~kb/d!~dv0!dv0~du/k!du0 /k exp~2dv02du/k!

3@G~dv0!G~du0 /k!#21. ~11!

The latter formula provides just the expected frequency
oscillations if upcrossings of the mean or expected levelu
5u0) are considered,

n1~u0!5n` f ~dv0! f ~du0 /k!,

n`5 lim
d→`

n1~u0!5V/2p,

V5b~ku0v0!1/2,

f ~z!5@~2p!1/2zz21/2exp~2z!#/G~z!, ~12!

~the quantityV can be clearly identified here as the system
natural frequency of small oscillations, that is, oscillatio
with small deviations ofu(t), v(t) from their steady values!.
This expression clearly indicates, in particular, that the pe
of u(t) may become very rare indeed whenu0 is small—
particularly, at small values of the second cofactor in the
~8!, that is, if the expected preys population sizev0 ap-
proaches its ‘‘isolated’’ equilibrium valuev* as governed by
interspecific competition. Furthermore, ratio of the two qua
tities in the left-hand sides of Eqs.~11! and ~12! may be
calculated as

n̄~u!5n1~u!/n1~u0!5~u/u0!du0 /k exp@2~d/k!~u2u0!#.

~13!

This function has its peak atu5u0 ~with the peak value
clearly being equal to unity!. For small values ofu0 it de-
creases very rapidly with decreasingu below this mean level,
whereas its decay rate with increasingu for u.u0 is much
slower. This behavior perfectly correlates with the pu
shape ofu(t) as illustrated in Fig. 2, which corresponds
the ‘‘quasistatic’’ on-off intermittency. Expected number
crossings of a certain very small levelu.u0 , which may be
assigned as a threshold for extinction of the population, m
be used to predict probability for extinction. Such a pred
03620
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tion may be based on the asymptotic Poisson law for cro
ings of levels with large deviations from mean@16#.

It may also be of interest to study peaks ofu(t), so as to
predict ~probabilistically! level of the intermittent outbreak
in the parasites’ population size together with their fr
quency. In view of the first Eq.~1! peak ofu(t) corresponds
to a crossing of the levelv0 by v(t). Denoting peak values
of u(t) by U(t), we may then use Eq.~4! for H(U,v0) as an
implicit definition of U in terms ofH. Returning in Eq.~4! to
the original variablesu, v yields then

H5kbv02m ln v01bU2~a2gm/kb!ln U. ~14!

Consider now the stationary solution~6! to the FPK Eq.~5!,
which may be regarded as a probability densityp(H) of H
~the normalization condition that governs the coefficientC
would be different in this case but for simplicity we sha
keep the notation!. Introducing now nonlinear transformatio
~14! we may obtain PDF of peaksp(U) in terms ofp(H)
using basic formula for such a transformation@7,8#. Restrict-
ing analysis to the case of ‘‘positive’’ peaks, i.e., those w
U.u0 , yields then

p~U !5p@H~U !#udH/dUu5Cb~12u0 /U !v0
dv0

3exp~2dv0!Udu0 /k exp~2dU/k!. ~15!

Normalization condition for this PDF for ‘‘positive’’ peaks
may be written as

E
u0

`

p~U !dU5Cb~k/d!~du0 /k!11v0
dv0~ I 12z0I 0!

3exp~2dv0!51,

where

z05du0 /k and I 05E
z0

`

zz021e2zdz5G~z0 ,z0!,

I 15E
z0

`

zz0e2zdz5G~z011,z0!.

Using relation for the incomplete gamma function@17#,

G~z011,z0!5z0G~z0 ,z0!1z0
z0 exp~2z0!

to calculate the normalization constant, yields finally t
PDF of peaks as

p~U !5~d/k!~12u0 /U !~U/u0!du0 /k

3exp@2~d/k!~U2u0!# for U.u0 . ~16!

Same approach can be used to calculate the PDF for ‘‘ne
tive’’ troughs of u(t), if desirable, by applying the Eq.~15!
with the negative sign ofdU/dH.

Solving the equation (d/dU)@ ln p(U)#50 to find maxi-
mum of the PDF~16! yields the most probable valueUm of
the peak heightU as Um5u01su . Heresu5Au0k/d is a
standard deviation of the predators population size, wh
can be much higher than the mean population size as
cussed in the Sec. II.
4-5
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IV. CONCLUSIONS

Classical LV model is the simplest model for nonline
dynamic interaction between two populations. Since it h
been first developed in 1920’s a lot of other models w
suggested, with more sophisticated interaction laws@1–4,9–
14#. However, the generalized LV model~1! with the simple
product-type nonlinear interaction may still provide adequ
description for certain specific predator-prey or parasite-h
pairs, as long as it accounts for interspecific competit
within preys’ population and for temporal variations of th
environmental conditions. In particular, the important ph
nomenon of the ‘‘quasistatic’’ on-off intermittency can b
described, as had been demonstrated in this paper by ex
itly calculating certain relevant statistical characteristics
the population sizes oscillations. Since the present type
intermittency implies short violent pulses or outbreaks in
predators’ number, the expected time between these pu
~reciprocal to calculated the expected number of pulses
unit time!, as well as probabilistic characteristics of the
height may be of importance for applications, as long as
kind of behavior is observed for certain forest parasites~see,
e.g., Fig. 14 in Ref.@3#; the reported case of seven outbrea
in budworm population in forests of Quebec, Canada si
1710 may also be mentioned here@18#!. Such outbreaks may
sometimes be observed on the background of almost
stant preys’ population size—particularly, when the latter
only slightly higher than its threshold value that correspon
to extinction of predators.

While the above conclusions concerning intermitten
had been made by analysis of the specific stochastic sy
~1!, it may be speculated that any general dynamic sys
with randomly varying parameters should exhibit the ‘‘qu
sistatic’’ type of the on-off intermittency in the vicinity of th
bifurcation point of its ‘‘mean’’ part.
s

d

m
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Finally, certain comments on other laws for temporal e
vironmental variations seem to be relevant. In particular,
counting for periodicity~e.g., seasonal! in these variations
may be important for certain applications. The case of si
soidal parameter variations in the LV system has been s
ied in Ref. @19#, where the model~1! was considered with
j(t) replaced by« sinvt andg50. The potential for subhar
monic response was discovered, that is, for response
frequency being integer divisor of the excitation frequen
an interesting case of application of the general theory
certain observed phenomena in population dynamics is
scribed in@19#. The subharmonic response, however, may
quite sensitive to imperfect periodicity of the excitation. Th
had been demonstrated in@20# for a ~strongly nonlinear! sys-
tem with impacts using model of sinusoidal excitation w
white-noise phase modulation; this model can be easily
corporated into the stochastic differential equations calcu
as demonstrated in Ref.@21#. The results highlighted
excitation/system bandwidth ratio as the key parameter,
fluencing response both at principal resonance and at sub
monics, in particular, the latter may be greatly reduced
random temporal variations in the excitation frequen
Similar study seems to be appropriate for the system~1! with
j(t) replaced by the~narrow-band! sinusoid with white-
noise phase modulation andgÞ0 ~the latter requirement is
necessary, as long as such random excitation would alw
contain a resonant harmonic!.
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