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Lotka-Volterra system in a random environment
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Classical Lotka-VolterrdLV) model for oscillatory behavior of population sizes of two interacting species
(predator-prey or parasite-host paiis conservative. This may imply unrealistically high sensitivity of the
system’s behavior to environmental variations. Thus, a generalized LV model is considered with the equation
for preys’ reproduction containing the following additional terms: quadratic “damping” term that accounts for
interspecies competition, and term with white-noise random variations of the preys’ reproduction factor that
simulates the environmental variations. An exact solution is obtained for the corresponding Fokker-Planck-
Kolmogorov equation for stationary probability densiti®DF's) of the population sizes. It shows that both
population sizes are independepntistributed stationary random processes. Increasing level of the environ-
mental variations does not lead to extinction of the populations. However it may lead to an intermittent
behavior, whereby one or both population sizes experience very rare and violent short pulses or outbreaks
while remaining on a very low level most of the time. This intermittency is described analytically by direct use
of the solutions for the PDF's as well as by applying theory of excursions of random functions and by
predicting PDF of peaks in the predators’ population size.
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[. INTRODUCTION interacting species and/or more sophisticated interaction
laws (rather than that of just product-type-have been stud-
Classical Lotka-VolterraLV) model for oscillatory be- ied in Refs.[3-5], [9—-14]. Equilibrium states and their sta-
havior of population sizes of two nonlinearly interacting spe-bility have been studied by direct application of the stochas-
cies (predator-prey or parasite-host paif—4] is conserva- tic differential equationgSDE) calculus[9,10]. Probability
tive. This means that sustained oscillations are regarded @fensities of the population sizes had been analyzed in Ref.
being completely controlled by initial conditions, which are [10] for the case, where environmental variations may be
“never forgotten” by the system. Such nonrobust modelsrepresented as deterministic functions of time, depending on
have certain well-known drawbacks, in particular, they implya finite number of random parameterariables. The ap-
unrealistically high sensitivity of the system’s behavior to proach based on the Fokker-Planck-KolmogotB®PK) par-
environmental variations. The asymptotically stable modelsja| differential equation had been adopted in Réf.and
with internal dissipation and sustained external excitatiorf11] for approximate analysis of the stationary and transi-
may be more adequate in this respect. Thus, the correspongonal probability densities, respectively, for the cases where

ing “generalized LV model’[3,4] may be written as (randon) variations in population sizes are small compared
with the corresponding mean values; direct perturbational
U=-—mut+kBuv, v=av[1l+E&(t)]-Buv—y? approach and path integral approaches were used in [Rgfs.
and[11], respectively. It should be noted that in the impor-
(&(1))=0, (&M)&(t+7)=Dd(7), (1)  tant case of intermittent behavior in population é&rehe

level of random variations may be higher—and even much

where u(t) andv(t) are population sizes of predatofsr  higher—compared with the corresponding mean values, and
parasitesand preysor hosts, respectively, wherea&(t) is  the above analyses may become inadequate for these cases.
a zero-mean Gaussian random white noise with interi3ity More sophisticated stochastic models of population dynam-
and ¢ is Dirac delta function, this white noise is interpreted ics, including, for example, those with multiple stable equi-
in the Stratonovich sense, as a “physical” white ndiSe 8. librium states, have been studied in Ré¢fs2—14 by direct
The random variations in the preys’ reproduction rate numerical simulation.
simulate temporal variations of the environmental conditions The systen{1) had been studied in Rdf3] by lineariza-
(actually temporal random variations in the death rate ofion in the vicinity of its stable equilibrium state. Stochastic
predatorsnwere also accounted for in Ref8,4]). The term  stability analysis for the linearized equations indicated insta-
with squaredv governs self-limitation in the growth of the bility in the mean square of the population sizes at suffi-
prey population size in the absence of the predators. And asiently high intensity of the white-noise fluctuations. This
far as random oscillations in the systéin are considered, it result had been interpreted in RE8] as a potential for ex-
provides “damping,” or feedback, which allows the systemtinction of the populations due to environmental variations.
to “withstand” random environmental variations. The latter However, exact solution for the completaonlinearized
are confined in this paper to those of the preys’ reproductiosystem(1), obtained in Refs|7,8], indicates that this is not
factor. the case: the populations cannot be killed solely by the above

The extended stochastic versions of the LV model—environmental variationf course as long as the continuous
system(1) and its generalizations to the cases of multiplemodel (1) remains applicable
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On the other hand, such a major event as stochastic instathere C is a constant to be found from the normalization
bility of the linearized set of equations, as discovered in Refcondition for the PDHexpression(4) for g had been used
[3], cannot remain completely unnoticed by the system. Thénerd.
complete “nonlocal” nonlinear solution for the joint prob- Returning in the Eq(6) to the original state variablas v
ability density function(PDF) of the population sizes, which and imposing the normalization condition within the first
indicates both of these state variables toybdistributed sta- quadrant of the,v) plane(that is, within positive values of
tionary random processes, may experience major transformaach of these state variablgselds the joint stationary PDF
tions with increasingd [7,8]. Namely, the PDE) of u(t) w(u,v) of the population sizes as a product of the individual
and/orv (t) may become singular at their origg). This sin-  one-dimensionall1D) PDF’s ofu andv [7,8],
gularity is integrable, so that the populations still do exist.

However, their behavior may become very different indeed w(u,v)=wy(u)w,(v),
from that in case of small environmental variations, exhibit- _
ing so-called on-off intermittency, particularly of predators, wy(u)=[(8Tk)(8ufk) ot

or parasites. Namely, very rare short and intensive pulses, or x exp(— du/k) /T (Sug/k),
outbreaks inu(t) may be observed, with very small level of
u between these pulses; similar behaviow ¢f) is also pos- w,(v)=[8(8v)% 0 Lexp— 6v) /T (Svy);

sible. The analytical description of such a behavior is pre- )
sented in this paper, as based on the use of the theory of Uo=(a—ym/kB)/B; vo=m/kB, &=2y/Da”. (7)
excursion of random functions and on probabilistic predict-

ing peaks ofu(t). Here I is the Euler gamma function, whereag, v, are

clearly seen to be steady-state values), v(t), respec-
tively, in the absence of the environmental variations; that is,

IIl. BASIC EXACT SOLUTION FOR PROBABILITY they correspond to zero right-hand sides of the Etjswith

DENSITY OF POPULATION SIZES £(t)=0. The equilibrium point (q,v,) is a stable focus or

The logarithmic transformation stable node as long ag>0. The solution(7) implies that
both population sizes are independendistributed station-

= = ary random processes. Their mean values and variances can
x=Inu, v=Inv, (2 y ran p :
be easily calculated ag, vg andugk/ 8, vo/ 8, respectively.
reduces the SDEA) to the form Consider first of all conditions for existence of the above

stationary PDF’s ofi(t) andv(t). Whilst the latter is seen to
x=0H/dy, y=-—dHlIox—g(dHldy)+a&(t), (3)  exist always, as long as all parameters of the extended LV
model (1) are strictly positive, the former does exist only
where provided that thdasymptotically stablesteady-state size of
the predators population is positive, that is, if
H(x,y)=kB exp(y) —my+ B exp(x)

—(a—vym/kB)x and g= y/kp, (4)

Up=(al/B)(1—vylv,)>0, or vo<v,,

where

(the common chain rule for differentiation has been used
here for the “physical” white noise rather than Ito differen-
tiation formula[5-8]). Note, that the functiotd is different  If the opposite inequality is satisfied, the PDFuft) has a
from Hamiltonian of the classical conservative LV system,nonintegrable singularity ai=0, and thus degenerates into
which corresponds to the case of zero density-dependent cthe Dirac delta function at zero. The physical meaning is
efficient, i.e.,y=0. The difference will be seen to become clear from the Eq(8), wherev, is clearly seen to be the
especially important for small values of the parameter steady-state number of preys in the absence of predators.
—ym/kB in the Eq.(4). This parameter is assumed in the Namely, whenever growth of the prey population is restricted
following to be positive and arbitrary otherwise. by the interspecific competition within the population, the
The transformed random state variables have a joint PDFpredators “are not needed” for the equilibrium, and the so-
which will be denoted byp(x,y,t). This PDF satisfies the lution u=0,v=v, is established in the absence of the envi-
well-known FPK equatiofi4—8], which for the present case ronmental variations. The first EGl) becomes completely

vy=aly. (8

of the SDEs(3) and(4) is written as[7,8] irrelevant in this one-dimensional case. Thalistribution
for the preys’ population size has been obtained for this ex-
ap d (dH J |oH oH a’D 9%p treme case in Ref4] as a solution to the stationary FPK
oy P T oy X PO P o equation, which is found to be the ODE rather than PDE in

(5  the 1D case.
This interpretation clearly correlates with the fact that the
Direct substitution shows, that the PD® has the following pointu=0,v=v, =a/y is actually the unstable equilibrium

exact stationaryindependent of timesolution: point of the systenil) with £(t)=0, with the other equilib-
rium point (Ug,vo) being stable as long ag— ym/kB3>0
p(x,y)=C exfd — (2y/kBD a®)H(x,y)], (6) (yet another unstable equilibrium poitt, 0) does exist also,
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which remains unaffected by variations of the parameter 1 I T
—vym/kB). At the bifurcation pointa=ym/kg these two
equilibrium states merge, leaving only one equilibrium point A(z,) //l
u=0, v=v,=aly for a—ym/kB<0, which becomes °
stable in this case. As will be seen, the on-off intermittency 0.5 -l -
becomes especially pronounced in the proximity of the bifur- {
cation point, that is for small values of-lvy/v, .
Assume now that the inequalit) is satisfied. The solu-
tion (7) indicates, that both PDF'®f u(t) and ofv(t)) do 05 :0 ;0
exist then, no matter how intensive are the white-noise envi- z
ronmental variations. However, an important change in the o
populatiorts) may appear indeed for sufficiently larggs FIG. 1. Ratio of stay times above and below mean level for a
(whereas for sufficiently smald both PDF's are asymptoti- . gistributed stationary random process. Hege: du, /k for u(t)

cally Gaussian with sharp peaks at their respective mean v. dz,= v, for v(t), with the corresponding mean values being
uesug,vo). It can be seen, that Bvy<1 (6uyg/k<<1), then  andv,, respectively.

w, (v)[wy(u)] has a singularity a¢ =0 (u=0). The singu-
larity is integrable, so that the stationary PDF does exist ) S
always, as had been noted [if,8]. The question is: what (2) Small excess of the “isolated” equilibrium value of

does such a singularity mean as far as the real populatiori@€ Preys’ population size, , as governed by the interspe-
are considered? cific competition, over its expected valug; this is case of

It will be shown in the following that the singularites) proximity to th.e pifurcation point of the systefi) without
in the PDRs) may basically imply the intermittency effect, Parameter variations.
or rare spontaneous on-off epidemic-type outbreaks in the Figure 2 illustrates behavior of both populations as ob-
population sizés). The first indicator for such a behavior tained by direct Monte Carlo simulation of the systém.
may be obtained by calculating ratio of stay times above andhe intermittency iru(t) is seen clearly, which, however, is
below the mean level, say, for the parasites. Interpreting thidifferent from other known cases of intermittency, as studied
ratio as that of the corresponding cumulative probabilitiefor example in Ref[15]. A nonlinearly damped pendulum
and using the Eq.7) yields under white-noise vertical vibrations of its suspension point

had been shown in Ref15] to exhibit intermittency when-

* ever the intensity of the excitation only slightly exceeds its
wy(u)du o . o . .
Prol{u>uy) Ug I'(z9,20) critical value for instability of the linearized model. The re-
" Prolu<ug) [ T T(z9)-T(20,20) sponse PDF was shown, by approximate stochastic averag-
f w,(u)du ' ing method, to have the integrable singularity at zero in this
0

case—similarly to the present case with the PDF)s The
observed response samples, however, exhibited oscillatory
Zo=duo/k, (9 pehavior in Ref[15], so that even the name “turbulence”
had been used. On the contrary, just a single peak or out-

where the functior” that depends on two arguments is the break, say iru(t) is observed in the present case, so that this

incomplete gamma functioSimilar ratio may be calculated intermittency in the LV system may be called “quasistatic.”

for prfys' using the last e_xpress@) \.Nlth Zo= v, instead Its analytical study will be continued in the Sec. Ill whereas
of zg=duy/k,) Asymptotic expressions for the complete .

and incomplete gamma functions indicate that this ratio ap'—n _the r(_emaining pa‘r‘t of tPis section the depen_dence of popu-
proaches zero wittzy—0, and approaches unity with, Iatlo_n sizes on the “new” parametergand D will be sum-
—o0. Full curve of\ vs z, in Fig. 1 shows this drop to be Marized. ,

very drastic whergy is small. Thus the on-off intermittent First of all, as can be seen f'rom th.e E@), the PDF_S of
behavior may be expected indeed fdt) in this case. Of a both L_J(t) anduo(t) deg_enerate into _Dlrgc delta-functions at
certain special interest may be the case whet@ remains ~ 2€r0 if y=0, D#0. This means extinction of both popula-
close to its mean or expected level. As can be seen from thigons in the absence of the interspecific competition of

Egs.(7)—(9), this will happen if preys—the same conclusion as had been madd,H. Fur-
thermore, proportional increase gfandD (with fixed value
ovg>1, dSugl/k<l, or of §) in the range of small nonzero values of both these
parameters does not change properties of both populations as
a(l—volv, )<kBDa?2y<m. (100  long as the rati /v, remains much smaller than unjtyee

Egs. (7) and(8)]. This limiting case may be called “quasi-
Thus, the on-off intermittency in, say, population of parasitesconservative,” since each response cycle is close to that of
with almost constant corresponding size of the hosts’ popufree oscillations of the classical LV system. It may be ana-
lation may be observed under one of the following condi-lyzed by the asymptotic method of averaging over the period
tions: of the corresponding conservative system, as had been
(1) High death rate of predators. shown in Ref[3] for certain predator-prey pairs with more
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FIG. 2. Samples ofi(t) anduv(t) as obtained
by Monte Carlo simulation for the system with
a=1/4, m=4, k=1, B=1 and alsoy=0.06,D
=1.92 (a) and y=0.05,D=1.6 (b). (all quanti-
ties nondimensional

1600 1650 1700 1750 1800
(b) t

complicated interactions than in the classical LV system for=1.92 in Fig. 2a) andy=0.05,D=1.6 in Fig. Zb). Thus, in
nonstochastic case, and in R¢T], [8] for the stochastic both case$=1, dvy=4, and the samples of(t) are seen to
case. be very similar accordingly; this should be expected since
With further increase ofy and D, however, the influence they have the same PDF. And as long as the parandeigr
of the former of these parameters on the predators’ populasf this PDF is larger than unity, the proces&) does not
tion becomes more complicated, as long as it leads to reduexhibit any intermittency. On the other hand, values of
tion of the expected number of predatfosit not preys The  Suy/k are different in these two cases but less than unity in
reduction is seen to be especially drastic when the corresoth. Thus, intermittency im(t) is seen in both cases ac-
sponding limiting value of the preys’ population size due tocordingly, with outbreaks iru(t) being more violent and
interspecific competitiorv, becomes only slightly higher more frequent in Fig. ®) whereu, is higher. The expected
than its expected size,. This is the case, where predators frequency of such outbreaks will be considered in the Sec.
become close to extinction due to food shortage, and thdl.
on-off intermittent behavior in their population size may be Yet another example of the on-off intermittency is illus-
expected indeed. Two pairs of short samples of populatiorated in Fig. 3, for the case=1, m=1, =k=1, y=0.5,
sizes in Fig. 2 were obtained for the same time interval and =5. Here bothsv, and duy/k are less than unity, and the
same values of parameters of the classical LV systenpn-off intermittency is seen in both populations accordingly.
namely a=1/4, m=4, k=1, =1, whereasy=0.06, D It may be added, that all samples in the Figs. 2 and 3 exhibit

45

40
35
30
251 —Uu FIG. 3. Samples ofi(t) andv(t) as obtained
o . v by Monte Carlo simulation for the system with
15 | a=1,m=1, B=k=1, y=0.5,D=5 (all quanti-
10 ties nondimensional
5
0

] 5 40
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behavior, which does not resemble-oscillations in the classition may be based on the asymptotic Poisson law for cross-
cal LV system. This should be expected in view of suffi-ings of levels with large deviations from meft6].

ciently high values ofy and thus ofvy /v, , which make the It may also be of interest to study peaksugt), so as to
system(1) strongly nonconservative. predict (probabilistically level of the intermittent outbreaks
in the parasites’ population size together with their fre-
Ill. EXCURSIONS AND PEAKS OF PREDATORS’ quency. In view of the first Eq1) peak ofu(t) corresponds
POPULATION SIZE to a crossing of the leval, by v(t). Denoting peak values

) ) . . of u(t) by U(t), we may then use E@4) for H(U,v) as an
Using the basic solutiok7) certain other response char- jpjicit definition of U in terms ofH. Returning in Eq(4) to
acteristics of interest may be calculated. The first of these ag,q original variabless, v yields then

based on the theory of excursions of random functidr&
is an expected number, (u) of upcrossings per unit time of H=kBvo—mInvy+BU—(a—ym/kB)InU. (14
a given arbitrary level by u(t). Substituting Eq.(7), to-
gether with the first Eq(1) into the basic relation16] for
such upcrossings yields,8]

Consider now the stationary soluti¢®) to the FPK Eq/(5),
which may be regarded as a probability dengifyH) of H
(the normalization condition that governs the coefficiént

3 o * would be different in this case but for simplicity we shall
n.(u)= fo UW(U'U)dUZJ kBu(v—vo)w(u,v)dv keep the notation Introducing now nonlinear transformation
vo (14) we may obtain PDF of peaks(U) in terms ofp(H)
=(kBI8)(6v4)?0( Sulk) o’k exp( — dvy— Sulk) using basic formula for such a transformat{ai8]. Restrict-
ing analysis to the case of “positive” peaks, i.e., those with
X[T(8ve)(8uglk)] L. (1) y>u,, yields then

The latter formula provides just the expected frequency of p(U)=p[H(U)]|dH/dU|=CB(1—us/U)v "
oscillations if upcrossings of the mean or expected leuel ( 0
=u,) are considered, X exp(— 6v )UK exp(— SU/K). (15)

N, (ug)=n.,f(dvy)f(Suy/k), Normalization condition for this PDF for “positive” peaks
may be written as

n,.= limn, (ug)=Q/27, B

’ f p(U)dU=CB(K/ &) ™o/ 1y (1, 74l )

0= B(kuguo) ™2 °

Xexp(—dovg)=1,

f(z)=[(2m) "%z Y2exp —2)]IT (2), (12)
where
(the quantityQ) can be clearly identified here as the system’s "
natural frequency of small oscillations, that is, oscillations Zo=6uy/k and |0:f 720 e 2dz=T(z9,20),
20

with small deviations ofi(t), v(t) from their steady values
This expression clearly indicates, in particular, that the peaks .
of u(t) may become very rare indeed whap is small— |1:f JzZOe*ZdZZF(zoJrl,zo).
particularly, at small values of the second cofactor in the Eq.

(8), that is, if the expected preys population sizg ap-
proaches its “isolated” equilibrium value, as governed by

)

Using relation for the incomplete gamma functidv],

interspecific competition. Furthermore, ratio of the two quan- T(zo+ 1,20) = 20T (20,20) + Z2° €XQ — 25)
tities in the left-hand sides of Eq$11l) and (12) may be ' ’ 0
calculated as to calculate the normalization constant, yields finally the

PDF of peaks as
p(U)=(8/K)(1—ug/U)(Ulug) o’k
xexd —(8/k)(U—ug)] for U>uy. (16)

n(u)=n,(u)/n, (Uo)=(u/ug)*o’* ex — (8/k)(u—uo)].
13

This function has its peak ai=u, (with the peak value

clearly being equal to unijy For small values ofi, it de-  Same approach can be used to calculate the PDF for “nega-
creases very rapidly with decreasingpelow this mean level, tive” troughs ofu(t), if desirable, by applying the E¢15)
whereas its decay rate with increasimdor u>u, is much  with the negative sign oiU/dH.

slower. This behavior perfectly correlates with the pulse Solving the equationd/dU)[In p(U)]=0 to find maxi-
shape ofu(t) as illustrated in Fig. 2, which corresponds to mum of the PDH16) yields the most probable valug,, of

the “quasistatic” on-off intermittency. Expected number of the peak height) asU,,=uy+o,. Hereo,=+ugk/é is a
crossings of a certain very small leweb u,y, which may be  standard deviation of the predators population size, which
assigned as a threshold for extinction of the population, magan be much higher than the mean population size as dis-
be used to predict probability for extinction. Such a predic-cussed in the Sec. Il.
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IV. CONCLUSIONS Finally, certain comments on other laws for temporal en-
Classical LV model is the simplest model for nonlinear vironmental variations seem to be relevant. In particular, ac-

dynamic interaction between two populations. Since it had:ounting. for periodicity(e.g.., sea§on)§1lin these variations_,
been first developed in 1920's a lot of other models werd"@Y P€ important for certain applications. The case of sinu-
suggested, with more sophisticated interaction 1fivs4,9— _30|d.al parameter variations in the LV system has been. stud-
14]. However, the generalized LV modd) with the simple  1€d in Ref.[19], where the mode(1) was considered with
product-type nonlinear interaction may still provide adequaté (t) replaced by sinwt andy=0. The potential for subhar-
description for certain specific predator-prey or parasite-hosionic response was discovered, that is, for response with
pairs, as long as it accounts for interspecific competitiorfrequency being integer divisor of the excitation frequency;
within preys’ population and for temporal variations of the an interesting case of application of the general theory to
environmental conditions. In particular, the important phe-certain observed phenomena in population dynamics is de-
nomenon of the “quasistatic” on-off intermittency can be scribed in[19]. The subharmonic response, however, may be
described, as had been demonstrated in this paper by expliquite sensitive to imperfect periodicity of the excitation. This
ity calculating certain relevant statistical characteristics ofhad been demonstrated[i20] for a (strongly nonlinearsys-

the population sizes oscillations. Since the present type akm with impacts using model of sinusoidal excitation with
intermittency implies short violent pulses or outbreaks in thewhite-noise phase modulation; this model can be easily in-
predators’ number, the expected time between these pulsggrporated into the stochastic differential equations calculus,
(reciprocal to calculated the expected number of pulses pefs demonstrated in Ref{21]. The results highlighted
unit time), as well as probabilistic characteristics of their excitation/system bandwidth ratio as the key parameter, in-
height may be of importance for applications, as long as thigiuencing response both at principal resonance and at subhar-
kind of behavior is observed for certain forest parasi®e®, monics, in particular, the latter may be greatly reduced by
e.g., Fig. 14 in Ref3]; the reported case of seven outbreaksrandom temporal variations in the excitation frequency.
in budworm population in forests of Quebec, Canada sinc&imilar study seems to be appropriate for the systBrmwith
1710 may also be mentioned h¢s]). Such outbreaks may g(t) replaced by the(narrow-bandl sinusoid with white-
sometimes be observed on the background of almost conpise phase modulation ang# 0 (the latter requirement is

stant preys’ population size—particularly, when the latter isnecessary, as long as such random excitation would always
only slightly higher than its threshold value that correspondsontain a resonant harmopic

to extinction of predators.
While the above conclusions concerning intermittency
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