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Self-organized critical system with no stationary attractor state
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A simple model economy with interacting producers and consumers is introduced. When driven by extremal
dynamics, the model self-organizestto an attractor state, but to an asymptote, on which the economy has a
constant rate of deflation, is critical, and exhibits avalanches of activity with power-law distributed sizes. This
example demonstrates that self-organized critical behavior occurs in a larger class of systems than so far
considered: systems not driven to an attractive fixed point, but, e.g., an asymptote, may also display self-
organized criticality.

DOI: 10.1103/PhysRevE.65.036147 PACS nun)er05.65+b, 02.50.Le, 05.40.Fb, 87.23.Ge

[. INTRODUCTION product produced by agent number 1. We assume that
individual agents do not consume their own production, so in

It has been amply demonstrated by now that some driveprder to consume they must trade, and in order to trade they
extended dissipative systems will self-organize into a commust produce. Agent numberproduces a quantitg,, of a
plex critical state in which events of all sizes occur. Thisgood, which is sold at a pricp, per unit to his neighbor
phenomenon, called self-organized criticali§O0 [1], has  numberedn—1. He subsequently buys and consumes the
been invoked to explain phenomena such as the experimeguantity q,,,., of the good produced by his neighbor num-
tally observed behavior of flux lines in highs supercon- beredn+ 1, who subsequently buys the good produced by
ductors[2], solar flares, and earthquakid. Several theo- his neighbor numbered+ 2, etc. until all agents have made
retical models that exhibit SOC have been constructedwo transactions. This process is repeated, say once each day.
[1,4,5], for a recent review, sefs]. In all these models the The goal of each agent is to maximize his utility function
SOC state is 4statistically stationary stat¢7,8].

Here we demonstrate by example that one may observe Up=—¢(dn) +d(dn+1), 1)
SOC behavior also in systems that have no stationary attrac-
tor state. Thus, we extend the class of dynamical systems il
Whlch_one may expect to find SOC. _The example is a simple PrGn=Prs 10 1- )
one-dimensional model economy driven by extremal dynam-
ics. In this model, agents interact with each other through ghe first term—c in the utility function in Eq.(1) represents
fixed set of rules. As in standard economic the¢ly)],  the agent’s cost, or discomfort connected with the production
agents have utility functions that they try to maximize. Butof q,, units of the good he produces. This discomfort is an
contrary to classical economic equilibrium theory, we haveincreasing function of}, andc is convex because, say, the
no “central agent,” “market maker,” or “auctioneer.” Maxi-  individual agent grows tired. An example could be a pizza
mization of utility functions is left to individual agents. baker; by the end of a long working day the utility gained by

Agents are rational and never change their strategies, onkaking in another customer is very small compared to the
their prices and the quantities they buy and produce. By theigtility of going home to sleep. In other words, we are mod-
transactions, agents make a profit, positive or negative. Theling individual agents and not economomies of scale.
agent who makes the most negative profit of all agents in the The second terrd is the utility of the good he buys from
system then changes his price slightly in a manner that inhis neighbor. Its marginal utility is a decreasing function of
creases his profit. In the next time step, the agents do anothguantityq, sod is an increasing, but concave, function. This
round of optimized transactions, and the agent now havinghoice ofc andd is common in economics, see, efd.1].
the most negative profit changes his price. This process is The constraint Eq(2) is the simplest possible. It ex-
repeatecad infinitum presses that the agents do not trust money, they accept

After a transient period, the system arrives in a state wittmoney as currency, but do not want to possess any at the end
long-range spatial correlation@ower lawg and deflation  of the day. Also, of course, the agents do not want to run out
with constant rate. The distribution of profits displays a dis-of money since that would prevent them from obtaining the
tinct threshold. Avalanches of causally connected pricaytility they need. Agents have infinite credit in the sense that
changes by agents with profits below this threshold are obno strict limit to spending is enforced. However, they always
served. The size distribution for avalanches follows a powetry to balance their spending according to the constraint in

hile satisfying the constraint

law. Eq. (2).
An explicit utility function is chosen for illustration and
IIl. THE MODEL analysis,
ConsiderN agents numbered=1,2, ... N. Agent num- 1 2 —
. e —— + .
ber n sells his product to agent number-1 and buys the Un Z(q“) 2\ ®
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An agent knows the prices of his two neighbors at all times 0.02
but not how much they want to buy or sell. A similar, but 0.015 |
locally driven, model with myopic agents was invoked in
[12] in order to explain the dynamic origin of the value of 0.01 ¢
money. o 0005
Based on his utility function and the prices he knows, B :
each agent plans how much to produce and how much to < 0k
purchase, assuming that everything he produces will be sold, 0,005 Feuii
and that all he wants to purchase will be available. The task
is a simple optimization problem with solution 0.01 t
13 0.015 : : ;
(prod)_ ( Pn ) @ 0 500 1000 1500 2000
n Prs1 agent number
and FIG. 1. Distribution of profits after 2 10° time steps,7max
=0.1%, rescaled by exp(2.50820 "t); notice thed function at
413 zero profit. The dashed line marks the threshold vafye
qml_a]r.wt): (i (5) —0.005~f..
Pn+1

change in price—increasing or decreasing it by some random

We note in Eqs(4) and(5) that the levels of production and amount. If the direction of the price change is also random,
intended consumption are independent of absolute prices, &e price performs a random walk. The number of price
they depend only on ratios. All prices may be multiplied by achanges necessary for a single agent to “get it right,” i.e., to
common factor and leave quantities produced and consumd@wer his price enough, is then distributed as the first-return
unchanged. time for an unbiased random walker. We choose to let our

The process is initiated by choosing some initial, randomgents have the necessary insight to lower their price since
values for the prices. Next, agent numiveimplements his the added randomness will only have the mentioned analyti-
plan by producing the quantityt?®®, and setting it for sale cally predictable effect, hence it does not require computer
at the pricep,. However, his customer, agent number Simulation. o _ .
—1, has planned to buy the quanti§f®™, and will do so if When agenh lowers his price, his estimate of how much
enough goods are available, i.e., dﬁ]want)squrod.)_ If he should_ optimally produce and consume a!so drops. Con-
qgwant)>q$1prod.), agentn—1 buys the quantity available versely, his custome_r, agent-1, raises his est!mate of how
g9 Thus, the traded amount is q(e®) much he should optlmally _buy. Agemts supplier, agent
N (prod) (want n +1, does not changhis estimates of how much he should
=min(G, O ' - produce and consume, and consequently he risks producing

At the end of the day, agemthas, unwillingly, made the 1,516 than he can sell. In this way an agent with negative
profit profit increases his profit by lowering his price, while poten-

tially “passing on” the problem of negative profit to his sup-
Sn=Pndy Y= Pn+ 10075 ©) p“ei passing p gative p p

After some time, agents in the economy who lose money,
react by changing their prices, which is the only variable
controlled by agents in this model. We assume that the agent In a simulation of the model\ agents are initially given
losing most money per cycle is the first to react. With no lossandom prices drawn from a uniform distribution on the in-
of generality, we set the time that passes before this happemesrval [1,2]. The interval[1,2] is an arbitrary choice. The
to a single cycle, say, one day. We also assume that after eachly demand on the initial prices is that they are positive.
price change, a new cycle and comparison of profits is madRelative price changes are drawn from a uniform distribu-
to find which agent now loses most money. As can be seetion on the interval 0,7,a-
from Egs.(4)—(6), an agent with negative profit increases his  The updating scheme i$) the levels of production and
profit by lowering his price. This result does not depend onintended consumption are found from E@4) and (5), (ii)
the specific choice in Eq3). Studying a more general ver- the profit of each agent is determined from E8), (iii) the
sion of the utility functionu,= —aq?+bg?, ,, we find with  agent with the lowestmost negative profit is found, and
the specified set of rules that deflation will occur as long agiven a new, lower pric@— p(1— #); (iv) go to (i).
a>pB>0. We employed periodic boundary conditions with+ 1

We model the economic considerations of our agent by=1 andN=0 and studied systems of various sizes, ranging
letting him lower his price by some small, random percent-from 200 to 20000 agents, on time scales from some hun-
age » of his presently charged price. Agents that do notdreds to 18 updates, and withy,, ranging from 0.1% to
know calculus, have no memory, or in some other way havd0%. Results turned out to be insensitive to the particular
little economic insight can also be modeled. Such agents dealue used fory,.. After an initial transient period, the
not realize that they will improve their circumstances bysystem organized itself into a state where the spatial distri-
lowering their price, instead they may attempt a randombution of profits exhibit a clear threshofg(t), see Fig. 1.

IIl. COMPUTER SIMULATION
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FIG. 2. Spatiotemporal distribution of the losing agents in an 9o

economy withN=200 agents, after the initial transient. Abscissa
shows loser’s coordinate. Ordinate shows time.

Few or no agents are found to have profits below this thresh-
old, and those found tend to be spatially located near the
“loser.”

Figure 2 shows how the loser’s role moves through the
system. There is a clear drift in one direction, because of the
left-right asymmetry of the utility function.

The spatial correlations of the loser positions were exam-
ined by measuring the distribution of distances between suc-
cessive losers. If the spatial jumxpbetween two successive 115 2 2i5 3
losers was more than half the system size to the right, it was
counted as a jump to the left. The distribution of distances
between successive losers follows a power-law distribution FIG. 3. Distribution of the spatial separation between successive
asymptotically at large distances, i.e., the system is criticallosers. Economy with 2000 agent®,,=0.1%, 1§ time steps
We fitted[13] the distribution of distances between succes-sampled after the initial transient phage) Jumps to the right.
sive losers to the expression (Jumps to the left have a similar looking distributiob) Same
data as in(a), but binned. Plot shows mean and root mean square
deviation of data in each bin, as well ag¢ fit of Eq. (7) to the
data shown i@ and similar data for jumps to the left. Exponents
{190 =1.844+0.002 and#{*"=2.021+0.002. The backing of
see Fig. 3, and found the exponent value§9=1.844  the fit is P, (> x?) =70%.
+0.002 and#(®™=2.021+ 0.002. HereC is a constant that
takes into account the approximately flat distribution of Figure 4 shows a log-log plot of the avalanche size distri-
“avalanche starters.” An avalanche starter is an agent wittbution for a system of 2000 agents. Measurements were
profit above the threshold, who is chosen as the loser by ounade during 10 time steps, after discarding the first®10
algorithm on the rare occasions when no losers with subtime steps. We clearly see a power |&S)o«S~ 148003
threshold profits are left in the systems. The value of the exponent=1.48+0.03 is indistinguishable

Since agents keep lowering their prices, the threshold ifirom 3/2, the latter being the exponent of the distribution of
profit distributions decreases to zero, exponentially in timefirst-return times for an unbiased random walker.
f(t)cexp(—kt), wherek=(#%)/[N(1—(7%))] to leading or- When studying the avalanche size distribution for varying
der in(#), and(-) denotes an ensemble or time average positions of the thresholf}, [15], a distribution function of a
The relation foik is only a first approximation since the loser form well-known from percolation theoifyL 6] suggests itself
often has to change his price more than once in order t®(S)=S" "g(S(f.— f,)*”), where the Fisher exponent,
increase his profit enough. A better approximation includingnow plays the role of the avalanche size distribution coeffi-
this effect is used in the actual rescaling. When all profits areient. g(x) is a scaling function, with the propertiegx)
rescaled by exjf), we obtain stationariness in the threshold —0 for x—«, g(x)—g(0) for x—0, and o is the ava-
fo="1(1). lanche cutoff exponenitl7]. Hence, the system cannot be

We next consider the activity below a threshdigsf,  adequately described in terms of a simple unbiased random
and define an avalanche as the duration of causally corwalker.
nected activity below this threshold. We refer to this duration The exponent value 3/2 is also characteristic of mean-field
as the avalanche siz8& When all agents are above the theory, and was, e.g., obtained in the mean-field treatment of
threshold there is no active avalanche by our definition othe Bak-Sneppen modpd], which has some similarity with
avalanches. the model treated here. However, as showrlig@| for the

logyo[P(x)]

logyo(x)

Px)=AXx ™"+ B(N-x)" ™" "+C, (7)
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0 ' ' ' found with exponentsr(®M=2.02 and#("9"=1.84, and a
70% backing of the fit.

The system’s dynamics doe®t have an attractive fixed
point, but only an attractive asymptote, and contrary to other
SOC systemsieverreaches a stationary state. We then res-
caled the system to @tatistically stationary state where the
definition of avalanches was possible. After this rescaling,
we found a power law for the distribution of avalanche sizes
with exponentr=1.5.

Thus, we have demonstrated by example that many more
5 , , 3 driven dynamical systems than hitherto realized may be
0 1 2 3 found to be self-organized critical. The class of systems that

l0g10(S) may exhibit SOC behavior now also include systems that do
o o - not have an attractive fixed point for their dynamics.

FIG. 4. Distribution of avalanche sizes in the critical state. The  The deflation in our model economy is not caused by a
si_ze of an avalanc_he is the number of subsequent system updatgsy, ;itaneous change of prices by all agents in the system,
with (rescalegi profits less tharf,=—0.0057. nor by a random scatter of such changes. Rather, price
o . changes propagate in avalanches. So although the effect is

simplest possible SOC systenj19], the exponent 3/2 can a4 at the macroscale of the whole economy, the world is
also occur in a system with fluctuations. Finally the exponenguite “turbulent” on the microscale experienced by the indi-
3/2 is common to all critical branching procesg@§]. So vidual agent.
one cannot, from the value of our exponent, conclude that e system studied here is brutally minimalistic. There is
mean-field theory is exact for our model in one dimension. room for several amendments towards improved realism,
with little loss in simplicity. In one dimension, a richer, but
IV. DISCUSSION AND CONCLUSION also more complicated, dynamics can be achieved simply by
We have shown that our model economy evolves to letting agents with zero profit inc_rease t.heir pri_ces. This al-
dows for an economy with alternating periods of inflation and

cr_itical state Wh‘?” driven by extreme_ll dynamics. This.occursdeflation. On a two-dimensional square lattice, each agent
W'thOl.Jt f(ljne tuning ﬂf p_ararr;]eterﬁ, .e., the %SFe.m IS fself'can have two suppliers and two customers, allowing for
gggg;zfnék\é\ge i??gn%?:l;? ,tb\t?ér; ?se;:r?nn;?(in r'\ggge?na?lu%ompetition, hence a marketlike scenario. In this sense, net-
driven SOC models local By assigpning an updag'][e probabili}[/works with hlg.her.coordm_atlon numbers are more rr—;ahsnc.

; L Xve expect criticality also in these cases, but with different
to all sites have so far only led to the loss of criticality and exponents
speculations that some temperaturelike parameter has to be '
set to zero in order for criticality to appeg21]. ACKNOWLEDGMENTS
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