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Self-organized critical system with no stationary attractor state

Simon F. No”rrelykke and Per Bak
The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark

~Received 10 December 2001; published 7 March 2002; publisher error corrected 11 March 2002!

A simple model economy with interacting producers and consumers is introduced. When driven by extremal
dynamics, the model self-organizesnot to an attractor state, but to an asymptote, on which the economy has a
constant rate of deflation, is critical, and exhibits avalanches of activity with power-law distributed sizes. This
example demonstrates that self-organized critical behavior occurs in a larger class of systems than so far
considered: systems not driven to an attractive fixed point, but, e.g., an asymptote, may also display self-
organized criticality.
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I. INTRODUCTION

It has been amply demonstrated by now that some dri
extended dissipative systems will self-organize into a co
plex critical state in which events of all sizes occur. Th
phenomenon, called self-organized criticality~SOC! @1#, has
been invoked to explain phenomena such as the experim
tally observed behavior of flux lines in high-Tc supercon-
ductors@2#, solar flares, and earthquakes@3#. Several theo-
retical models that exhibit SOC have been construc
@1,4,5#, for a recent review, see@6#. In all these models the
SOC state is a~statistically! stationary state@7,8#.

Here we demonstrate by example that one may obs
SOC behavior also in systems that have no stationary at
tor state. Thus, we extend the class of dynamical system
which one may expect to find SOC. The example is a sim
one-dimensional model economy driven by extremal dyna
ics. In this model, agents interact with each other throug
fixed set of rules. As in standard economic theory@10#,
agents have utility functions that they try to maximize. B
contrary to classical economic equilibrium theory, we ha
no ‘‘central agent,’’ ‘‘market maker,’’ or ‘‘auctioneer.’’ Maxi-
mization of utility functions is left to individual agents.

Agents are rational and never change their strategies,
their prices and the quantities they buy and produce. By t
transactions, agents make a profit, positive or negative.
agent who makes the most negative profit of all agents in
system then changes his price slightly in a manner that
creases his profit. In the next time step, the agents do ano
round of optimized transactions, and the agent now hav
the most negative profit changes his price. This proces
repeatedad infinitum.

After a transient period, the system arrives in a state w
long-range spatial correlations~power laws! and deflation
with constant rate. The distribution of profits displays a d
tinct threshold. Avalanches of causally connected pr
changes by agents with profits below this threshold are
served. The size distribution for avalanches follows a pow
law.

II. THE MODEL

ConsiderN agents numberedn51,2, . . . ,N. Agent num-
ber n sells his product to agent numbern21 and buys the
1063-651X/2002/65~3!/036147~5!/$20.00 65 0361
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product produced by agent numbern11. We assume tha
individual agents do not consume their own production, so
order to consume they must trade, and in order to trade t
must produce. Agent numbern produces a quantityqn of a
good, which is sold at a pricepn per unit to his neighbor
numberedn21. He subsequently buys and consumes
quantity qn11 of the good produced by his neighbor num
beredn11, who subsequently buys the good produced
his neighbor numberedn12, etc. until all agents have mad
two transactions. This process is repeated, say once each

The goal of each agent is to maximize his utility functio

un52c~qn!1d~qn11!, ~1!

while satisfying the constraint

pnqn5pn11qn11 . ~2!

The first term2c in the utility function in Eq.~1! represents
the agent’s cost, or discomfort connected with the product
of qn units of the good he produces. This discomfort is
increasing function ofq, and c is convex because, say, th
individual agent grows tired. An example could be a piz
baker; by the end of a long working day the utility gained
taking in another customer is very small compared to
utility of going home to sleep. In other words, we are mo
eling individual agents and not economomies of scale.

The second termd is the utility of the good he buys from
his neighbor. Its marginal utility is a decreasing function
quantityq, sod is an increasing, but concave, function. Th
choice ofc andd is common in economics, see, e.g.,@11#.

The constraint Eq.~2! is the simplest possible. It ex
presses that the agents do not trust money, they ac
money as currency, but do not want to possess any at the
of the day. Also, of course, the agents do not want to run
of money since that would prevent them from obtaining t
utility they need. Agents have infinite credit in the sense t
no strict limit to spending is enforced. However, they alwa
try to balance their spending according to the constrain
Eq. ~2!.

An explicit utility function is chosen for illustration and
analysis,

un52
1

2
~qn!212Aqn11. ~3!
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An agent knows the prices of his two neighbors at all tim
but not how much they want to buy or sell. A similar, b
locally driven, model with myopic agents was invoked
@12# in order to explain the dynamic origin of the value
money.

Based on his utility function and the prices he know
each agent plans how much to produce and how muc
purchase, assuming that everything he produces will be s
and that all he wants to purchase will be available. The t
is a simple optimization problem with solution

qn
(prod.)5S pn

pn11
D 1/3

~4!

and

qn11
(want)5S pn

pn11
D 4/3

. ~5!

We note in Eqs.~4! and~5! that the levels of production an
intended consumption are independent of absolute price
they depend only on ratios. All prices may be multiplied by
common factor and leave quantities produced and consu
unchanged.

The process is initiated by choosing some initial, rand
values for the prices. Next, agent numbern implements his
plan by producing the quantityqn

(prod.), and setting it for sale
at the pricepn . However, his customer, agent numbern
21, has planned to buy the quantityqn

(want) , and will do so if
enough goods are available, i.e., ifqn

(want)<qn
(prod.). If

qn
(want).qn

(prod.), agent n21 buys the quantity available
qn

(prod.). Thus, the traded amount is qn
(trad.)

5min(qn
(prod.),qn

(want)).
At the end of the day, agentn has, unwillingly, made the

profit

sn5pnqn
(trad.)2pn11qn11

(trad.). ~6!

After some time, agents in the economy who lose mon
react by changing their prices, which is the only variab
controlled by agents in this model. We assume that the a
losing most money per cycle is the first to react. With no lo
of generality, we set the time that passes before this hap
to a single cycle, say, one day. We also assume that after
price change, a new cycle and comparison of profits is m
to find which agent now loses most money. As can be s
from Eqs.~4!–~6!, an agent with negative profit increases h
profit by lowering his price. This result does not depend
the specific choice in Eq.~3!. Studying a more general ve
sion of the utility functionun52aqn

a1bqn11
b , we find with

the specified set of rules that deflation will occur as long
a.b.0.

We model the economic considerations of our agent
letting him lower his price by some small, random perce
age h of his presently charged price. Agents that do n
know calculus, have no memory, or in some other way h
little economic insight can also be modeled. Such agents
not realize that they will improve their circumstances
lowering their price, instead they may attempt a rand
03614
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change in price—increasing or decreasing it by some rand
amount. If the direction of the price change is also rando
the price performs a random walk. The number of pr
changes necessary for a single agent to ‘‘get it right,’’ i.e.,
lower his price enough, is then distributed as the first-ret
time for an unbiased random walker. We choose to let
agents have the necessary insight to lower their price s
the added randomness will only have the mentioned ana
cally predictable effect, hence it does not require compu
simulation.

When agentn lowers his price, his estimate of how muc
he should optimally produce and consume also drops. C
versely, his customer, agentn21, raises his estimate of how
much he should optimally buy. Agentn’s supplier, agentn
11, does not changehis estimates of how much he shou
produce and consume, and consequently he risks produ
more than he can sell. In this way an agent with negat
profit increases his profit by lowering his price, while pote
tially ‘‘passing on’’ the problem of negative profit to his sup
plier.

III. COMPUTER SIMULATION

In a simulation of the model,N agents are initially given
random prices drawn from a uniform distribution on the i
terval @1,2#. The interval @1,2# is an arbitrary choice. The
only demand on the initial prices is that they are positiv
Relative price changesh are drawn from a uniform distribu
tion on the interval@0,hmax#.

The updating scheme is~i! the levels of production and
intended consumption are found from Eqs.~4! and ~5!, ~ii !
the profit of each agent is determined from Eq.~6!, ~iii ! the
agent with the lowest~most negative! profit is found, and
given a new, lower pricep→p(12h); ~iv! go to ~i!.

We employed periodic boundary conditions withN11
51 andN50 and studied systems of various sizes, rang
from 200 to 20 000 agents, on time scales from some h
dreds to 108 updates, and withhmax ranging from 0.1% to
10%. Results turned out to be insensitive to the particu
value used forhmax. After an initial transient period, the
system organized itself into a state where the spatial dis
bution of profits exhibit a clear thresholdf c(t), see Fig. 1.

FIG. 1. Distribution of profits after 23107 time steps,hmax

50.1%, rescaled by exp(2.509231027t); notice thed function at
zero profit. The dashed line marks the threshold valuef 05
20.0057< f c .
7-2
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Few or no agents are found to have profits below this thre
old, and those found tend to be spatially located near
‘‘loser.’’

Figure 2 shows how the loser’s role moves through
system. There is a clear drift in one direction, because of
left-right asymmetry of the utility function.

The spatial correlations of the loser positions were exa
ined by measuring the distribution of distances between s
cessive losers. If the spatial jumpx, between two successiv
losers was more than half the system size to the right, it
counted as a jump to the left. The distribution of distanc
between successive losers follows a power-law distribu
asymptotically at large distances, i.e., the system is criti
We fitted @13# the distribution of distances between succ
sive losers to the expression

P~x!5Ax2p(right)
1B~N2x!2p(left)

1C, ~7!

see Fig. 3, and found the exponent valuesp (right)51.844
60.002 andp (left)52.02160.002. HereC is a constant tha
takes into account the approximately flat distribution
‘‘avalanche starters.’’ An avalanche starter is an agent w
profit above the threshold, who is chosen as the loser by
algorithm on the rare occasions when no losers with s
threshold profits are left in the systems.

Since agents keep lowering their prices, the threshold
profit distributions decreases to zero, exponentially in tim
f c(t)}exp(2kt), wherek5^h&/@N(12^h&)# to leading or-
der in ^h&, and ^•& denotes an ensemble or time avera
The relation fork is only a first approximation since the los
often has to change his price more than once in orde
increase his profit enough. A better approximation includ
this effect is used in the actual rescaling. When all profits
rescaled by exp(kt), we obtain stationariness in the thresho
f c5 f c(t).

We next consider the activity below a thresholdf 0< f c
and define an avalanche as the duration of causally c
nected activity below this threshold. We refer to this durat
as the avalanche sizeS. When all agents are above th
threshold there is no active avalanche by our definition
avalanches.

FIG. 2. Spatiotemporal distribution of the losing agents in
economy withN5200 agents, after the initial transient. Abscis
shows loser’s coordinate. Ordinate shows time.
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Figure 4 shows a log-log plot of the avalanche size dis
bution for a system of 2000 agents. Measurements w
made during 107 time steps, after discarding the first 106

time steps. We clearly see a power lawP(S)}S21.4860.03.
The value of the exponentt51.4860.03 is indistinguishable
from 3/2, the latter being the exponent of the distribution
first-return times for an unbiased random walker.

When studying the avalanche size distribution for varyi
positions of the thresholdf 0 @15#, a distribution function of a
form well-known from percolation theory@16# suggests itself
P(S)5S2tg„S( f c2 f 0)1/s

…, where the Fisher exponentt,
now plays the role of the avalanche size distribution coe
cient. g(x) is a scaling function, with the propertiesg(x)
→0 for x→`, g(x)→g(0) for x→0, and s is the ava-
lanche cutoff exponent@17#. Hence, the system cannot b
adequately described in terms of a simple unbiased ran
walker.

The exponent value 3/2 is also characteristic of mean-fi
theory, and was, e.g., obtained in the mean-field treatmen
the Bak-Sneppen model@4#, which has some similarity with
the model treated here. However, as shown in@18# for the

FIG. 3. Distribution of the spatial separation between succes
losers. Economy with 2000 agents,hmax50.1%, 108 time steps
sampled after the initial transient phase.~a! Jumps to the right.
~Jumps to the left have a similar looking distribution!. ~b! Same
data as in~a!, but binned. Plot shows mean and root mean squ
deviation of data in each bin, as well as ax2 fit of Eq. ~7! to the
data shown in~a! and similar data for jumps to the left. Exponen
p (right)51.84460.002 andp (left)52.02160.002. The backing of
the fit is Pn8(.x2)570%.
7-3



en

th
n.

ur
el
ou
lly
ilit
nd
o

e
tiv

her
es-
e
ng,
es

ore
be
hat
do

y a
em,
rice
ct is
d is
i-

is
sm,
t
by

al-
nd
ent
for
net-
tic.
nt

.

he
da
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‘‘simplest possible SOC system’’@19#, the exponent 3/2 can
also occur in a system with fluctuations. Finally the expon
3/2 is common to all critical branching processes@20#. So
one cannot, from the value of our exponent, conclude
mean-field theory is exact for our model in one dimensio

IV. DISCUSSION AND CONCLUSION

We have shown that our model economy evolves to
critical state when driven by extremal dynamics. This occ
without fine tuning of parameters, i.e., the system is s
organized. We emphasize that the extremal driving of
model makes it nonlocal. Attempts at making extrema
driven SOC models local by assigning an update probab
to all sites have so far only led to the loss of criticality a
speculations that some temperaturelike parameter has t
set to zero in order for criticality to appear@21#.

We studied the spatial correlations in the system by m
suring the distribution of spatial separations of consecu
activity in the system. Two power laws~left and right! were

FIG. 4. Distribution of avalanche sizes in the critical state. T
size of an avalanche is the number of subsequent system up
with ~rescaled! profits less thanf 0520.0057.
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found with exponentsp (left)52.02 andp (right)51.84, and a
70% backing of the fit.

The system’s dynamics doesnot have an attractive fixed
point, but only an attractive asymptote, and contrary to ot
SOC systemsneverreaches a stationary state. We then r
caled the system to a~statistically! stationary state where th
definition of avalanches was possible. After this rescali
we found a power law for the distribution of avalanche siz
with exponentt51.5.

Thus, we have demonstrated by example that many m
driven dynamical systems than hitherto realized may
found to be self-organized critical. The class of systems t
may exhibit SOC behavior now also include systems that
not have an attractive fixed point for their dynamics.

The deflation in our model economy is not caused b
simultaneous change of prices by all agents in the syst
nor by a random scatter of such changes. Rather, p
changes propagate in avalanches. So although the effe
gradual at the macroscale of the whole economy, the worl
quite ‘‘turbulent’’ on the microscale experienced by the ind
vidual agent.

The system studied here is brutally minimalistic. There
room for several amendments towards improved reali
with little loss in simplicity. In one dimension, a richer, bu
also more complicated, dynamics can be achieved simply
letting agents with zero profit increase their prices. This
lows for an economy with alternating periods of inflation a
deflation. On a two-dimensional square lattice, each ag
can have two suppliers and two customers, allowing
competition, hence a marketlike scenario. In this sense,
works with higher coordination numbers are more realis
We expect criticality also in these cases, but with differe
exponents.

ACKNOWLEDGMENTS

S.F.N. thanks H. Flyvbjerg and I. M. Tolic´ for helpful
discussions and the Lo”rup Foundation for financial support

tes
ett.

hts

if

r

@1# P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett.59, 381
~1987!; Phys. Rev. A38, 364 ~1988!.

@2# S. Field, J. Witt, and F. Nori, Phys. Rev. Lett.74, 1206~1995!.
@3# P. Bak, How Nature Works~Oxford University Press, New

York, 1997!.
@4# P. Bak and K. Sneppen, Phys. Rev. Lett.71, 4083 ~1993!; H.

Flyvbjerg, K. Sneppen, and P. Bak,ibid. 71, 4087~1993!.
@5# D. Wilkinson and J.F. Willemsen, J. Phys. A16, 3365~1983!;

P. Bak, K. Chen, and C. Tang, Phys. Lett. A147, 297 ~1990!;
Z. Olami, H.J.S. Feder, and K. Christensen, Phys. Rev. L
68, 1244~1992!.

@6# D.L. Turcotte, Rep. Prog. Phys.62, 1377~1999!.
@7# By stationary we mean that no temporal rescaling is perform

in order to study the model, e.g., all thresholds are fixed.
that sense, we consider the Bak-Sneppen model to be sta
ary, as do its inventors, in spite of any observed aging effe
@8#. A recent stick-slip model that converges to an equilibriu
when driven in a global and deterministic manner, and
t.

d
n
n-

ts

s

fixed thresholds and ‘‘ . . . is stationary and critical in the vari-
ables relevant to the dynamics’’@9# is also stationary according
to our definition.

@8# S. Boettcher and M. Paczuski, Phys. Rev. Lett.79, 889~1997!;
D. Head, Eur. Phys. J. B17, 289 ~2000!.

@9# K.-t. Leung, J.V. Andersen, and D. Sornette, Phys. Rev. L
80, 1916~1998!.

@10# R. Richter,Money~Springer, New York, 1989!, Chap. 1.
@11# A. Trejos and R. Wright, J. Polit. Econom.103, 118 ~1995!.
@12# P. Bak, S.F. No”rrelykke, and M. Shubik, Phys. Rev. E60, 2528

~1999!.
@13# The fit is a nonlinear least squares fit using as weig

@P(xi)#21/2C5(3.360.4)31028 but can be fixed to zero
without any change in the value of the exponentsp (right) and
p (left). The backing is the probability of obtaining a worse fit
the experiment is repeated, see, e.g.,@14#.

@14# N. C. Barford,Experimental Measurements: Precision Erro
and Truth, 2nd ed.~Wiley, New York, 1985!, p. 130.
7-4



h

SELF-ORGANIZED CRITICAL SYSTEM WITH . . . PHYSICAL REVIEW E65 036147
@15# S. F. No”rrelykke, Candidatus Scientiarum thesis, Niels Bo
Institute, 1999.

@16# D. Stauffer and A. Aharony,Introduction to Percolation
Theory~Taylor & Francis, London, 1994!, Chap. 2.

@17# M. Paczuski, S. Maslov, and P. Bak, Phys. Rev. E53, 414
~1996!.

@18# R. Bundschuh and M. La¨ssig, Phys. Rev. Lett.77, 4273
03614
r ~1996!.
@19# H. Flyvbjerg, Phys. Rev. Lett.76, 940~1996!; 77, 4274~1996!.
@20# T. E. Harris, The Theory of Branching Processes~Springer,

Berlin, 1963!.
@21# M. Vergeles, Phys. Rev. Lett.75, 1969 ~1995!; R. Cafiero

et al., Phys. Rev. E58, 3993 ~1998!; A. Gabrielli, G. Cal-
darelli, and L. Pietronero,ibid. 62, 7638~2000!.
7-5


