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Log-periodic oscillations have been found to decorate the usual power-law behavior found to describe the
approach to a critical point, when the continuous scale-invariance symmetry is partially broken into a discrete-
scale invariance symmetry. For Ising or Potts spins with ferromagnetic interactions on hierarchical systems, the
relative magnitude of the log-periodic corrections are usually very small, of order. 1 growth processes
[diffusion limited aggregatiofDLA)], rupture, earthquake, and financial crashes, log-periodic oscillations with
amplitudes of the order of 10% have been reported. We suggest a “technical” explanation for this 4 order-of-
magnitude difference based on the property of the “regular functig(X) embodying the effect of the
microscopic degrees of freedom summed over in a renormalization giR@ approachF(x)=g(x)

+ 1~ *F(yx) of an observabl& as a function of a control parameterFor systems for which the RG equation

has not been derived, the previous equation can be understood as a Ipickegral, which is the natural tool

for describing discrete-scale invariance. We classify the “Weierstrass-type” solutions of the RG into two
classes characterized by the amplitugof the power-law series expansion. These two classes are separated
by a novel “critical” point. Growth processe®LA), rupture, earthquake, and financial crashes thus seem to
be characterized by oscillatory or bounded regular microscopic functions that lead to a slow power-law decay
of A,, giving strong log-periodic amplitudes. If in addition, the phase®gpfare ergodic and mixing, the
observable presents self-affine nondifferentiable properties. In contrast, the regular function of statistical phys-
ics models with “ferromagnetic”-type interactions at equibrium involves unbound logarithms of polynomials
of the control variable that lead to a fast exponential decag,pfjiving weak log-periodic amplitudes and
smoothed observables.
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[. INTRODUCTION tion of the observable. For systems for which the RG equa-
tion has not been derived, the RG equation can be under-
The existence of log-periodic oscillatory corrections tostood without reference to the RG as a Jackgoregral[9],
the power-laws associated with critical phenomena andwhich is the natural todl10,11] for describing discrete-scale
more generally, to observables of systems endowed with thi@variance. Here, we do not discuss the mechanisms by
scale-invariance symmetry has been recognized since thwhich the continuous scale-invariance symmetry is broken to
1960s(see[1] for a recent review and references thejein give discrete-scale invariance but rather present a phenom-
The log-periodic oscillations result from a partial breakdownenological approach based on the functional RG/Jackson
of the continuous scale-invariance symmetry into a discreteg-integral equation.
scale-invariance symmetry, as occurs for instance in hierar- Using the Mellin transform applied to the formal series
chical lattices. solution of the renormalization group, we identify two broad
However, for one of the most studied class of modelsclasses of systems based on the nature of the decay with
exhibiting these oscillations, i.e., Potts model with ferromag-ordern of the amplitudesA, of the power-law series expan-
netic interactions on hierarchical lattices, the relative magnision of the observable:
tude of the log-periodic corrections are usually very small, of (1) Systems with quasiperiodic “regular part” and/or with
order 10°° [2]. In contrast, in growth processédiffusion ~ compact support have coefficiems, decaying as a power
limited aggregation(DLA)] [3,4], rupture[5], earthquakes law A,~n"P, leading to strong log-periodic oscillatory am-
[6], and financial crashel7,8] amplitudes of the order of plitudes; if in addition, the phases &, are ergodic and
10% have been reported. mixing, the observable presents singular properties every-
Here, we propose an explanation for this puzzling obserwhere, similar to those of ‘Weierstrass-type” functions.
vation of an 4 order-of-magnitude difference based on the (2) Systems with nonperiodic “regular part” with un-
nature of the microscopic interactions of the systems. Withirbound support haveA, decaying as an exponentia#,
a renormalization groufRG) approach, an observable at one ~e™ " of their ordern, leading to exceedingly small log-
scale can be related by a functional relation to the sameeriodic oscillatory amplitudes and regular smooth observ-
observable at another scale, with the addition of the contriables.
bution of the degrees of freedom left over by the procedure We find families of “regular parts” that belong to both
of decimation or of change of scale. This contribution isclasses, with a “critical” transition from the first to the other
called the “regular part” of the renormalization group equa- as a parameter is varied.
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TABLE 1. Synthesis of the different classes of Weierstrass-type functions according to the general classif2atioA,
~(1/nP)e *"ei*n of the expansioril8) in terms of a series of power laws . The parameters, =0, andy, are determined by the form
of g(x) and the values ofc and y. All numerical values given in this table correspondnte- 0.5w=7.7 corresponding tey=2.26 and
u=+y=1.5. The last two columns quantify the amplitude of the log-periodic oscillations with respect to the leading real power law.

a(x) p K n |An:1/An:O| |An:2/An:0|
cosk) m+1/2 0 on In(wn) 0.065 0.032
exp(—x) m+1/2 (m/2)w on In(on) 5.12x10° 7 1.432x10 12
exf —cx]cosks)? m+1/2 (/2] - @) w wn In(wn)

(1+x>)71 0 (712)w (m/2)m 9.901x 10 © 4.414<10 1
log(1+x) 1 Tw —m 4.045< 10 *? ~0
exp(x" m/h+1/2 (wi2h) o [(wn)/h]In(wn) 0.064 h=50) 0.03 1=50)
4.386<10° 4 (h=2) 6.177% 107 (h=2)
sin()/x® m+ 5+1/2 0 — on In(wn) 0.044 (5=0.1) 0.021 $=0.1)
0.091 (6=-0.1) 0.049 ¢=-0.1)
Si(x) m+3/2 0 on In(on) 4.199<10°3 1.053x 10 3
1-xM 0<x<1 2 0 ™ 0.064 (h=50) 0.031 p=50)
0.012 h=2) 3.146x10° % (h=2)

g =cosa ands=sina.

A known example of a system of the first class is the 1
g-state Potts model withantiferromagnetic interactions f(x)=—f(¥x). (1)
[12,13. Another example is the statistics of closed-loop self- H”
avoiding walks per site on a family of regular fractals with asuch scale invariance occurs for instance at the critical
discrete-scale-invariant geometry such as the Sieirpinskointst=t of systems exhibiting a continuous phase transi-
gasket[14]. A known example of the second class is thetjon. The renormalization group theory has been developed
g-state Potts model witferromagneticnteractions2]. to provide an understanding of the emergence of the self-

~ Section Il introduces the renormalization group with asjmilar property(1) from a systematic scale change and spin
single control parameter, its formal solution with the pres-decimation procedurfl7].

ence of log-periodic corrections associated with discrete- cCalling K the coupling(e.g., K=e”T for a spin model
scale invariance. Section Ill uses the Mellin transform tOWhereJ is interaction coefficient and is the temperatube
resum the formal series solution of the renormalization grougind R the renormalization group map between two succes-
into a power-law series. Section IV presents the general clasiye magnification steps, the free enerfgper lattice site,

sification within the two classes alluded to above in terms Obond' atom or element Obeys the self-consistent equation,
the leading exponential or power-law decay of the coeffi-

cients of this power-law expansion. It examines the condi-
tions under which the observable can develop nondifferen-
tiable fractal properties similar to Weierstrass-type functions.
A family of “regular parts” is introduced that exhibits a criti- whereg is a regular part that is made of the free energy of
cal transition between the two classes. Section V presentde degrees of freedom summed over two successive renor-
many more examples of both classes. Section VI concludesnalizations,u>1 is the ratio of the number of degrees of
Table | offers a synthesis of the classification in terms of thefreedom between two successive renormalizations. In gen-
decay of the coefficientd,, of the power series expansion of eral, this relationshig2) is an approximation whose validity
the observable for various choices of the “regular part” of requires the study of the impact of many-body interactions.
the renormalization group. When these higher-order interactions can be considered sec-
ondary as the scale of description increagesresponding to
so-called “irrelevant” operatops expression2) becomes as-
II. "WEIERSTRASS-TYPE FUNCTIONS” FROM ymptotically exact at large scales. For perfectly self-similar
DISCRETE RENORMALIZATION GROUP EQUATIONS problems, for instance, for physical systems with nearest-

Speaking about a material shape, a mathematical object &eighbor interactions defined on regular geometrical fractals
function, the symmetry of scale invariance refers to theirSuch as the Cantor set, the Sierpinsky Gasket, etc., or on
invariance with respect to changes of scales of observatioffgular hierarchical lattices, expressit®) is exact at all
(see[15,16 for general introductions In a nutshell, scale Scales. _
invariance simply means reproducing itself on different time !t is solved recursively by

1
f(K)=g(K)+ ;f[R(K)], 2

or space scales. Specifically, an observédttat depends on = 4
a “control” parameterx is scale invariant under the arbitrary F(K)= ~ olRM(K 3
changex— yx if there is a numbey(7y) such that () Z’o ,u”g[ (0] &
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whereR(™ is thenth iterate of the renormalization transfor- der casea=b discovered by Cellerier before 1850, is not
mation. Around fixed pointfR(K.) =K., the renormaliza- nondifferentiable in a strict sense since it possesses infinite
tion group map can be expanded up to first ordé€ inK. as  differential coefficients at an everywhere dense set of points
R(K)=y(K—K_). Posing x=K—K,, we have R™(x)  [21]. Richardson is credited with the first mention of the
=+"x and the solutior(3) becomes potential usefulness for the description of the nature of the
continuous-everywhere nondifferentiable Weierstrass func-

©

1 N tion [22]. Shlesinger and co-workef®3] have previously
f(x)=n§=:0 ﬁgh’ x]. (4 noticed and studied the correspondence betweeri4Egnd
the Weierstrass function.
In principle, Eq.(4) is only applicable sufficiently “close” to If one is interested in the nonreguler nonanalyti¢ be-

the critical pointx=0, that the higher-order terms in the havior only close to the critical point=0, the regular part
expansiorR(K) = (K —K_) can be neglected. The effect of can be dropped and the analysis of Eb.is sufficient. It is
nonlinear corrections terms f&®(K) have been considered then easy to show that the most general solution of(Exjs
in [2,12]. (see[1] and references thergin

The form(3) or (4) has not been derived from first prin-
ciples for growth, rupture, and other out-of-equilibrium pro- F(x)=xM P('”_X> @
cesses alluded to above, even if there are various attempts to Iny/’
develop approximate RG descriptions on specific models of
these processes. It may thus seem a little premature to usghere
this discrete renormalization group description for these sys-
tems. Actually, expressiofd) can be obtained without any In w
reference to a renormalization group approach: as soon as the m=-——, (8
system exhibits a discrete-scale invariance, the natural tool is
provided byq derivatives[11] from which it is seen that
expression4) is nothing but a Jacksoq integral[9] of the
functiong(x), which constitutes the natural generalization of
regular integrals for discretely self-similar systefig]. The
way the Jackson integral is related to the free energy of a
spin system on a hierarchical lattice was explainefilBj.

In the mathematical literature, the functiof) is called a
Weierstrass-type functiprto refer to the introduction by
Weierstrass of the functiofiL9]

andP(y) is an arbitrary periodic function of its argument
of period 1. Its specification is actually determined by the
regular partg(x) of the renormalization group equation, as
shown for instance in the explicit solutigd#). The scaling
law f(x)~x™ implied by Eq.(7) is a special case of E¢6)
obtained by puttingc=0 and replacindh by x in Eq. (6).

The Laplace transfornfi_ (B) of f(x) defined by Eq(4)
also obeys a renormalization equation of the ty®)e Denot-
ing g.(B), the Laplace transform of the regular paitx),

o we have
fw= >, b"cogamx], (5)
n=0 Ex: 1
fL(B)= 2, ——=alB/Y" 9
corresponding to the special cage=1/b, y=a, and g(x) L n=0 (MV)ngL['B v

=cogwx]. To the surprise of mathematicians of the 19th

century, Weierstrass showed that the functi®nis continu-  and

ous but giﬁerentiable nowhere, providek®<<1l,a>1, and

ab>1+ 5. Note that, in the context of the renormalization B

group of critical phenomena, the conditiars y>1 implies fL(B)=au(B)+ ﬂfL(;) (10
that the fixed poinK. is unstable. Hardy was able to im-

prove later on the last bound and obtain that the Weierstrasphe general solution of Eq10) takes the same form as Eq.
function (5) is nondifferentiable everywhere as soonads  (7),

>1 [20]. In addition, Hardy showed that it satisfies the fol-

lowing Lipschitz conditioncorresponding to self-affine scal- In B8

ing) for ab>1, which is much more than just the statement fL(B)= ﬂPL<|_)’ (11

of nondifferentiability, B ny
fw(x+h)—fy(x)~|h|™, forall x where whereP| (y) is an arbitrary periodic function of its argument

y of period 1.
m=In[1/b]/Ina. (6)

III. RECONSTRUCTION OF “WEIERSTRASS-TYPE

Note that forab>1, m<1, expressior6) shows thatfy(x FUNCTIONS” FROM POWER SERIES EXPANSIONS

+h)—fw(x)>|h| for h—0. As a consequence, the ratio
[ fw(x+h)—Tfw(x)]/h has no limit that recovers the property  Following[2,24], we use the Mellin transform to obtain a
of nondifferentiability. Continuity is obvious from the fact power-law series representation of the Weierstrass-type func-
thatf,(x+h) —f(x) —0 ash—0 sincem>0. For the bor-  tion (4). The Mellin transform is defined as
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CIEN)

(12 -
Iny’

(19

f(s)EJ xS (x)dx.
0 n
The Mellin transform(12) provides a reconstruction of the This approach is similar to the one developed[25] for
infinite sum of the Weierstrass-type functié$) as a sum of  “fractal strings” # (for instance, the complementary of the
power-law contributionsA,x™°n with “universal” complex triadic Cantor set is a special fractal strindheir fractal
exponentss, determined only by properties of the hierarchi- properties are fully characterized by the introduction of the
cal construction and not by the functig{x), with ampli-  “geometric zeta function’Z,(s), which can be shown to be
tudesA,, controlled by the form of the regular pagtx). nothing but the Mellin transform of the measure defined on
These “nonuniversal” amplitudes in turn control the shapethe fractal stringsee[25], p. 73. In particular, the poles of
of the functionf(x), its differentiability or nondifferentiabil-  £,(s) give the complex fractal dimensions of the fractal
ity as well as its self-affindfractal) properties, as we shall strings, similarly to the role played here by the complex ex-

describe in the sequel.
The Mellin transform of Eq(4) reads

S

ponentss,, defined by Eq(15).
The regular parf,(x) of f(x) defined in Eq(17) is gen-
erated by the poles of(s) if any, located ats=—n, n

f(s)= atd 3(s) (13) =0,1... . Theresidues of these poles give the coefficients
wys—1 ' B, of the expansion of the regular part as follows:
whe.re (j(s) is the.MeIIip transform ofg(x). The inverse fr(X):E B, x". (20)
Mellin transformation off (s), n=0
F(x0) = 1 Cﬂwf(s)x‘sds (14 IV. CLASSIFICATION OF WEIERSTRASS-TYPE
270 Jomiw ' FUNCTIONS

allows us to reconstrudt(x) as an expansion in singular as A. Classification

well as regular powers ofin order to unravel its self-similar The representation(18) offers a classification of
properties. Indeed, the usefulness of the Mellin transform isVeierstrass-type functions as follows. We will work in the
that power-law behaviors spring out immediately from theclass ofg(x) [not covering of course all possible types of
poles off(s), using Cauchy’s theorem. behavior of A(n)] where the coefficient®\, can be ex-

In inverting the Mellin transform, we have two types of pressed as the product of an exponential decay by a power

poles. The poles of the Mellin transforgnof the analytical ~Prefactor and a phase
functiong(x) occur in general at integer values and contrib- 1
ute only to the regular paifft (x) of f(x), as expected since
g(x) is a regular contribution. The poles of the first term
[yl (uy3—1)] in the right-hand sider.h.s) of Eq. (13)
stem from the infinite sum over successive embeddings
scales and occur at=s, where

1 .
— T A KNLIYy

An iy e e for large n, (21
0\gherep, k=0, andy, are determined by the form of(x)
and the values ofu and vy. This class is broad enough to
include many physically interesting shapeg¢x) as will be
20 illustrated at length below.

—n,

Sp=—m+i
n Iny

(15
1. Justification of the classification
The parameterizatiof21) can be seen to result from very
general theorems on the Mellin transfofi®6,27. Let us
assume that the functiay(x) defined forx>0 is continuous

andmis given by Eq.(8). Their amplitudeA,, is obtained by
applying Cauchy’s theorem and is given by the residues

. s—S, . exp(—2mhi). a(s) and satisfies the following conditions:
lim ————g(s)= | 9(8)=1,,- (10
sosny 1 ny ny lg(x|=<c.x¥ 0<x=<1; |g(X|<c, xf, 1<x<o,
22
The resulting expression fdi(x) is (22
wherea> 3. Then, its Mellin transform is a reguladiffer-
f(x)=1f(x) +f,(x), (17)  entiable function inside the strip— a<Re(s)<— 3. One
) o should also bear in mind that R0 because of the con-
where the singular pafty(x) is given by straints imposed by the very formulation of the problem. All
" functions that we shall consider below as examples belong to
f(x)= 2 AX S (18) th(=T class of c_qntinuous functions satisfying slightly more re-
=0 stricted conditiong26] such as Eq(22) with >0 and g

=0. As a consequence, their Mellin transform is regular for

and —a<Re(s)<0. For instanceg(x)=cosk)—1 corresponds
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to a=1 andB=0. The same conditions apply to In{x) Violations of the _parameterizatidr?l) regardingA, oc-
and expEx)—1. For the stretched exponential function CUr when the conditions of the theorefi26] are changed,
exp(—x")—1 with h>0, we havea=h and agains=0. e.g., when the argument is replaced by, say, In(%) or

when singularities are introduced into the functg(x). This
can be seen from E@19) that shows thaf,, is proportional
the Mellin transform ofg(t) expressed at=s,=—m
inw where

We are interested igﬂ-s?) =g(—m+inw), particularly as
n goes to infinity. The general condition that is usually im-
posed on this quantity in order to ensure the existence of it
inverse Mellin transform i$27] +

2

w= |n_’y (28)

g(—m+inw)—0 as n— +w. (23
Again, A, must be designed in such a way that it satisfie
this condition automatically.

Let us consider some simple but vivid examples, intende
to illustrate how a power-law and exponential decaypfas 1 [+ )
a function ofn emerges from simple functions satisfying the An:FJ du G(u)e'", (29
conditions stated above. We also note that, whér) pos- [
sesses discontinuities of the first kind, it still yields the de-here
pendence Eq21) of A, as a function oh. Maybe the sim-
plest function leading ta\, with a power-law decay is G(u)=e"t"Mg(eY). (30)

SPosing u=Inx, the Mellin transform becomes a Fourier
éransform

g(x)=0, 0<x<1l and g(x)=-1, 1<x<ew, (24) It is clear that, by a suitable choice gfx), any dependence
of A, can be obtained. For instance, for
which leads tog/(§)=l/s, which is regular within the strip 32—l
x»<Re(s)<0. The corresponding,, decays in amplitude as G(u)=u""e"*", (31)

n~1 for largen. Different strip geometries lead to the same . ‘ . . .
power-lawgdecay oh.  for inpstgnce we obtamAn~e‘V‘mcos{ y2an], which exhibits an oscilla-
n tory stretched-exponential decay intermediate between the
g(x)=x3 0<x<1 and g(x)=0, 1<x<o, (25) exponential ¢>0) and pure power-law decax € 0) of Eq.
(21). However, the choice Eq31) corresponds to a rather
with Mellin transform g(s)=(s+a)~! with —a<Re(s) SPecial choice for

<0. Let us also consider
(|nx)—3lze—allnx

g(x)=0, 0<x<1 and g(x)=-—x?, 1<x<w, (26) 9(x)= x1—m ’ (32)
which leads to a similar Mellin transforrgf(§)=(s+ a)~ ! In this caseg(x)— +« for x—0, and this case is outside

but a different strip geometry Rg{< —a. The slightly more  the domain of validity(22) of the theorenj26,27]. Consider
complicated example of a continuous function composed oélso the following example

power laws
| IN(1K?
g(x)=(b—a) !x?, 0<x<1 gx)=m""exg = —,—|, (33
and leading tog(s) = exp, valid for arbitrarys, which leads to
. . . 2 N . _
g(x)=(b—a) xP, 1<x<b, 27 A, with amplitude decaying as exp() asn—o. This ex

ample is also characterized by a pathological behavior for
x— +o of g(x) that diverges faster than any power law.

leads tog(s)=(s+a) *(s+b) ' with —a<Re@®)<-b  Apother pathological example is

and the amplitude oA, decaying asm~ 2. The analysis of
these examples and of their Mellin transformsats,, dem- g(x)= 172~ Y2 cod (1/4)In(1/x)%— 7/4], (34
onstrate that particulars of the strip geometry in the variable

s are not important when one is concerned with the large leading tog(s) = coss?, valid for arbitrarys, which yieldsA,,
asymptotic behavior ofi(s,). The asymptotic power decay With an amplitude growing as exg(asn— + . This vio-
of A, as a function ofi can be dominated by an exponential lates the condition on the Mellin transform given|[&v].
decay, as we shall see in more details below. For instance, The existence of discontinuities @f(x), as one might
the continuous function formed by compounded power lawgxpect from the theorefi26,27, also violates the parameter-

9(x) = (L/m)x(1+x) ! leads to ization (21) of A,. Considerg(x)=—(1/m)x¥4(1-x)"*
with an integrable singularity, which givegs) =tan(ms),
g/(Bz —csqms), —1<Re(s)<O0, —1/2<Re(s)<0, andA, with an amplitude bounded from
below by a constant as— +. This absence of decay al-
yielding A, decaying as expfn) asn— +x, lows us to reject this type of function, since a decaygfis
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required by[27]. In constrast, a logarithmic singularity, as N  ——
for instance ing(x)=(1)In|(1+x)/(1—1)|, is allowed. In
this case, this giveg(s)=s"*tanh(rs),—1<Re(s)<0, and
the amplitude ofg(s,) exhibits periodic modulations as
—+0o as  n Ysink(3mm)+cos(3rwn)] Y sin(mwn)
+isinh(mm)]. Another example with the logarithmic func-
tion (93) discussed below gives a power-law decay with a
logarithmic correction as shown by E@5) due to the pres- s 2-
ence of the singularity.

In conclusion, as long as the conditions of theor&®]
on Mellin transforms hold, the dependence Af as n
— +o given by Eq.(21) will hold as well. Violations of the
theorem due to a change of variable or to the presence o , . , ,
simple poles lead either to a faster decay or to a nondecayini 00 0.2 0.4 06 0.8 10
A,. Allowing for logarithmic singularities withing(x) X
brings in logarithmic or oscillatory corrections #y, as a
function of n.

44 44

14

0

FIG. 1. Power-law expansion pafi{ given by Eq.(18) for the
Weierstrass function(5), with N=1 (solid), N=2 (dash, N=3
(dot) oscillatory terms, respectively. Hersy=0.250=6.3 corre-

2. Beyond the linear approximation of the renormalization sponding toy=2.7 andu=1.28. As the number of complex expo-
group map nents increases, the number of the oscillations increase.

The asymptotic expansid21) uses the linear approxima- When x>0, the modulus o\, decay exponentially fast

tion RM(x)=9"x that allows us to transform the general 1 yero. Hencef(x) is differentiable at all orders. This can
solution (3) into the Weierstrass-type functio@). As we  pe seen from the fact that

said, Eq.(4) is only applicable sufficiently “close” to the
critical pointx=0, such that the higher-order terms in the 4/t (x)
expansionR(x)= yx can be neglected. The linear approxi-
mation ofR™M(x) = y"x is bound, however, to become incor-
rect asn becomes very large, i.e., in the region determining (39
the singular behavior. As discussed [i§,24], the crucial
property missed by the linear approximation is thét) is

analytic only in a sectotargx|<# while we treated it as

analytic in the cut plangargx|<sr. This implies that the tude bounded by a constant time$exg —qn] since s,)
exponential contributiore™ “" of the true asymptotic decay X(—8,—1)---(—s,—/+1) is bounded from above tr;y a
of the amplitudes of successive log-periodic harmonics i%onstz:nt timesy” . 'Fhe/ sum is thus controlled by the expo-

slower than found from the linear approximation, and goe%entially fast decaying coefficients, and converges to well-

;S e*"‘;”t.hThg_ ang![ee depend? sp':_ecifically on tge. flow map defined values for any’. As a consequence of the exponen-
(x) of the discrete renormalization grolip] and is gener- tial decay of the coefficientd,,, the log-periodic oscillations

ill())/ _of or;jer (11:f'o(;”|oCI?r$SIﬁC%ttl|ort] |nHtwo SechO IIandK y are extremely small.
| I?hnOme ”te yt IS ]:su t'e yé er?j, W$IS al '('iot?]SI € Another obvious way to ensure differentiability even
only the Weierstrass-type functiorié) and will revisit the when k=0 (see the following sectionis to truncate the

impact of nonlinear terms of the renormalization group Map, imbern of powersx~* in the sum(18) to a finite value
in a future communication.

R E (—Sn)(—sn—l). . .(_Sn_/+1)AnX—sn—/
- n=0

is absolutely convergent for any order of differentiation.
Taking into account thgk ~Sn~“|=x™"" is independent of
and can be factorized, theh term in the sum has an ampli-

N
N _ —
3. k>0: C* differentiability f§ )(X)—go Apx™ o, (36)

The general solutiofi7) remains true for any choice of the ) ) o _
regular parg(x) with the exponenin given by Eq.(8). This An example. withN=1,2,3 is shown in Fig. 1 for the Weier-
implies that there will always be an order of differentiation Strass function ¢==/2 andp=m-+3). ForN=1, the real
sufficiently large such that it becomes infinitexat 0 [12].  part f{(x) is given by
This is the crux of the argument on the existence of the

singularity atx=0. Here, we investigate the differentiability f(l)(x):ao 1+ AH:OXmJr |[An=1 XM cod w In(x) + ¢)
S L

of f(x) for nonzero values df, i.e., away from the unstable 3 3o

critical pointx— 0. Expression{18) with Eq. (15) provides a

direct way for understanding the origin of the singular be- M

havior atx— 0, asx™ is in factor of an infinite sum of oscil- aO:M_ 1’ (37)
latory terms with log-periodic oscillations condensing geo-

metrically asx—0. wherew is given by Eq.(28) and
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Im(A,—1) We conjecture the following conditions for nondifferen-
ReA 1) +km, k=0,£1,.... (38 tiability from the singular power-law expansion of
n=1 Weierstrass-type functions. Provided thiai <=0 and (2)

This expressiori37) is based on the singular pd8) of  the phaseg, are ergodic and, using a generalization of Har-

the Mellin decomposition of the discrete-scale invariancedy’s conditionab>1 for the Weierstrass function, the small-

(DSI) Eq. (4). It applies not only to the Weierstrass function est order” ;, of differentiation off(x) [defined by Eq(18)

but also to any function of the forrt4). Keeping only the ~With exponentss, given by Eq.(15) with Eq. (8)] that does

first two terms recovers exactly the log-periodic formula in-not exist is such that

troduced in the study of precursors of material failure

[5,28,29, earthquakes precursof6,30,31, and of precur-

o= arctarE

; . 1
sors of financial crashdg,32). 5< p—/min<§, (44)
4. Critical behavior and nondifferentiability
Expression18) with Egs.(15) and(21) shows thaff4(x) ie.,
has the same differentiability properties as
+o 1 3
E _peiwnxm—i27rnlln Y. (39) min=Int p— 2 (45)
n=1N

Changing variable—y=Inxn y, this reads is the integer part op— 3. In particular, with ergodic phases

b ¥, of zero mean, the functiony(x) is nondifferentiable for
ey —exdi(—2mny+¢,)]. 40 p<3/2
ngl nP HLi( Y+ )] 40 It follows from Lebesgue’s theorem on continuous func-
) . o o o tions of bounded variations that a nondifferentiable function
With respect to the differentiability property, it is sufficient to js not a function of bounded variation. Therefore, a nondif-

study the real part of the infinite sum that reads ferentiable function is everywhere oscillating and the length
o of arc between any two points on the curve is infirji2d].
— 2 cod 2mny+ ] This explains the observation below that the regular part
Kp,{z// }(y)— P . (41) . L . L.
n n=1 n g(x) must contain oscillations or must exhibit a compact

support(so that it has a discrete Fourier sefigs order for
This expression allows us to recover some important results(x) to be nondifferentiable or for some of its derivatives to
in the case where the phasgg are sufficiently random so pe nondifferentiable. Actually, Weierstrass-type functitfis
that the numerators ci@rmy-+ ] take random uncorrelated are believed to have the same Hausdorff dimensiemas
signs with zero mean. Then, the siy (, ,(y) truncated at  the Weierstrass functiof®) for arbitrary regular parg(x), as
n=T has the same convergence propertiesTiore as long as it is a bounded almost periodic Lipschitz function of
order B>m [34]. The examples organized below in two
dw, classes illustrate and make precise this conditiong(x).
X(T):Lt_p' (42 We indeed find that nondifferentiability occurs at a finite
order of differentiation only for functiong(x) that are peri-

wheredW, is the increment of the continuous white noise odic or with compact support.
Brownian motion of zero mean and correlation function It appears, however, that there is not yet a general under-

(dW,dW, )= 8(t—t)dt where 5 is the Dirac function. We standing of whether there exists a necessary and sufficient
get(X(T))=0 and its variance is condition for the differentiability of a function on an interval.

It is well known that continuity is necessary for differentia-
T Tdt bility but is not sufficient as shown by the Weierstrass func-
([X(T)]2>=f f (thth,>t‘pt"p=f —, (43)  tion and other examples above. The restriction of bounded
11 1P variations has also proved insufficient: although a continuous
function must possess a differential coefficient almost every-
where, yet there are examples of such functions that do not
possess differential coefficients at unenumerable sets of
points that are everywhere der[$4].

which is finite for T— +o if p>1/2. This entails the con-
vergence forp>1/2 of the infinite series41) for most
phases), that are sufficiently ergodic and mixing. We thus
expect thath,{g,,n}(y) and as a consequenégx) are con-
tinuous functions fop>1/2. We can proceed similarly for
studying their/’s derivative. With respect to the conver- B. General condition for k=0

gence property, taking the’s derivative has the effect of | et us consider a regular functigg(x) that is either pe-
changingp into p— /" in Eq. (42). We thus expedK, , 1(Y)  riodic with periodX or with compact support over the inter-
and as a consequenégx) to be differentiable of order”  val [0,X] and zero outside. It can then be expanded as a
for p>/+1/2. Fourier series
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+

adp .
9=+ kgl [a, cog 27k x/X) + by sin( 27k x/X)],
(46)

whereag,aq,byq, ..., by, ... are arbitrary real numbers.
The behavior of the coefficient,, is controlled by the

Mellin transformg(s,) of g(x) as shown by Eq(19). For
g(x) periodic with zero mearg,=0 and

- X~ gf ax  — § by
g(sn) = 7 coisn)kzlﬁwn(sn)k:lﬁ,

(47)

where cogs) and sirfs) are the Mellin transform of cosand
sinx. Now, a general theorem on the Fourier series of peri
odic functions tells us that, i§(x) has continuous deriva-
tives up to order included and if the derivative of orddsr
obeys the Dirichlet conditions, then the coefficienisand
b, decay for largek as 1k"*%, i.e., there is finiteM’'>M
>0 such thatM'/k"*1>|a,|>M/K""1 and M'/k" 1> |b,|
>M/K" "1 If g(x) is discontinuous at a discrete set of
points, this corresponds to takimg=0 in the previous for-
mula. The Dirichlet conditions aréi) g(x) is continuous or
possess only a finite number of discontinuiti€s) each
point of discontinuityxy is a discontinuity of the first kind,
i.e., it is such that the limits to the lefi(x—x4) and to the
right g(x—x4) are finite;(iii) the interval[0,X] can be di-
vided into a finite set of subintervals on each of whix)
is monotonic.

We can thus write

Sh T —inw
2M<%) gﬁ\(Sn)kZl k|:+1—m
R X \Sn__ T —inw
<g(sn)<2M’<Z) sin(sn)kzl pEe (48)
The sum
+o
2 kf(r+17m+inw)' (49)
k=1

is nothing else but the celebrated zeta functigy) of Rie-
mann[35,36, with the correspondencg=o+it, o=r+1
—m, t=nw. It is known [35,3¢ that |{(c+it)|<C, (|t
|+1)Y¥27¢ for <0, where C, decreases such as
(27e)” Y2 for o— — o, and it does not satisfy a better es-
timate in this half plane. For Qo<1 corresponding to 0
<m=1 andp=0, {(o+it)|<Kt?~92In(t) uniformly for
some constankK. However, we need the behavior 6{o
+it) for o=r+1—m>0. It is obtained by using the rela-
tion £(s)=257% 1sin(ms/2)I'(1—s){(1—s), which can be

PHYSICAL REVIEW E65 036142

argument with negative real pafin our case for negative
1-o and large n), (2<C(|n|+1)¥2 1~
=C(|n|+1)Y2" "M Therefore, the product of these two
terms is of the order of and the whole sum decay is slower
than exponential.

This shows that the sutt#9) is of orderO(1/n"*(1/2~m)

and thusg(s,) is asymptotically a negative power affor
largen. This demonstrates that any periodic continuous func-
tion g(x) leads to a power-law decay fé, as a function of

n.

The same approach can be usedd(x) not periodic but
defined on a compact suppdid X]. The discrete Fourier
series expansior46) still holds for xe[0,X] while g(x)
=0 for x outside. A similar expression to E@L7) then holds
in which a;#0 in general and in which the Mellin trans-

forms cogs) and sirfs) are defined over the intervg0 X].

C. Bifurcation from wild to smooth Weierstrass-type
functions: An example using damped oscillators for the regular
part of the renormalization group equation

As a first example, let us consider the regular géx) of
the renormalization group equation defined as

g(x)=e %@Xcod xsin(a)], with ae 5

o
o,—} (50)

The parametew quantifies the relative strength of the oscil-
latory structure ofg(x) versus its “damping.” Fora= /2,
Eq. (4) with Eq. (50) recovers the initial functiori5) intro-
duced by Weierstrass with=1/u, a=+, and cosfx) re-
placed by cos); for =0, g(x)=exg —x] has no oscilla-
tion anymore and corresponds to a pure exponential
relaxation considered if83].

Plugging Eq.(50) in Eq. (4) gives

[’

1 -
f(x)= nzo —,Y(Z—D)n exd —cog a)y"x]cod y"x sin(@)],
(51

where

In
D=2-m=2———. (52
Iny
The exponenb turns out to be equal to the fractal dimension
of the graph of the Weierstrass function obtained &or
= /2. Recall that the fractal dimension quantifies the self-
similarity properties of scale-invariant geometrical objects.
Note that xD<2 as I<u<1y, which is the condition of
nondifferentiability found by Hardy20] for the Weierstrass
function. The graph of the Weierstrass function is thus more
than a line but less than a plane. Fox 7/2, f(x) is smooth,

separated into two parts that can be evaluated. Namelyonfractal D=1), and its graph has the complexity of the

sin(7/2s]I'(1—s), recast in the variable=1-s, takes the
familiar form cos[7/2]z)T"(z), which behaves for large as
n~"tM=12 The other termy(1—s)={(z) can be evaluated
using the expression presented above fortfignction of an

line. Actually, there are several fractal dimensions. It is
known that the box countingcapacity, entropic, fractal,
Minkowski) dimension and the packing dimensions of the
Weierstrass function are all equal®o37] given by Eq.(52)
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Fig. 2 (a)
0.0 0.2 0.4 0.6 0.8 1.0 50.0 0.2 04 0.6 0.8 1.05
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34
46
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FIG. 2. Quasi-Weierstrass function f@@ «= 7/2, (b) a=0.9937/2=1.56,(c) a=0.97/2=1.414, andd) a=0, for m=0.25w=7.7,
usingN= 32 terms to estimate the sur(l). IncreasingN does not change the results.

for = /2. It is conjectured but not proved that the Haus-and not to the exponential. This problem is absent when the
dorff fractal dimension of the graph of the Weierstrass func-cosine in the definition ofj(x) is replaced by the sine func-
tion obtained fora= /2 is also equal td given by Eq. tion.

(52). It is known that the Hausdorff dimension of the graph  As we shall discuss below, the modificationg(fx) into

of f(x) does not excee® but there is no satisfactory con- the modified function

dition to estimate its lower boun4]. —costa)x )

Figure 2 shows the functio51) for a=m/2=1.5708 gu(x)=e cogxsin(a)]—1 (54
(pure Weierstrass function: panel), a«=0.9937/2=1.56
(panelb), a=0.97/2=1.414(panelc), anda=0 (paneld).

The Mellin transform ofg(x) defined by Eq.(50) for
—1<Rgs]=—m<0 [which is the interval of interest, as
seen from Eq(15)] is [38]

gives (j(s)zl“(s)cos@s) without the correction—1/s for

—1<Rgs]=—-m<0 and leads to the so-called Mandelbrot-

Weierstrass function. Similar “counterterm” should be intro-

duced for stretched exponential and in similar cases. They do

not bring any extra contributions to the Mellin transform.

1 The regular part,(x) defined by Eq(20) of f(x) defined
N~ = in Eqg. (17) corresponding tag(x) defined by Eq.(50) is
g(s)=T'(s)cod as) s’ 63 generated by the poles of(s), located ats=-—n, n

=0,1...,sincel’(s) is analytic on the whole complex plane

where I'(s) is the gamma function reducing B(s)=(s  €xcluding these simple polei39]. Using the expression

—1)! for integer arguments The additional term-1/s dis- ~ Ress__,I'(s)=(—1)"/n!, we obtain its explicit form(20)

appears for & Rqs]. For values of the exponemn larger ~ With

than 1, i.e., Res]<—1, additional correction terms should (—1)"

bg added to Eq53) [38]. These additional terms only con- B(n)= ~ cog an). (55)

tribute to the power-law dependence of the amplitudes nt o u—yn
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Note the particularly simple expression of the first téBm  spins where the orderin the sum(18) plays the role of the
=ul(u—1). For |x|<1, this constant term provides the distancer between two spins. In this analogy, the “correla-
only non-negligible contribution of the regular pdf(x) to  tion length” is proportional to I~ ([7/2]—a) ! and di-
f(x), whose behavior is completely controlled by the sumverges at the critical point= /2.

fs(x) of singular power laws.

The amplitudesA,, defined by Eq(19) corresponding to D. Role of the phase: Localization and delocalization of
g(x) defined by Eq(50) are singularities
['(s,)coq as,) The phaseg, defined in Eq(21) play an essential role in
Ana)= ———— (56)  the construction of the self-affine nondifferentiable structure

ny of the Weierstrass-type functions. To stress this fact, let us

The singular par(x), which is defined by Eq(18) where ~ consider several cases using different phaggswith the
the exponents, are given by Eq(15), satisfies the exact Same absolute valuga,| of the amplitudes. This study par-

scale-invariance equatid). allels in a sense that of Berry and LewWi$l] and of Hunt
The asymptotic behavior of the amplitudas given by [42] but is distinct from it in an essential way as the phases
Eq. (56) is considered here decorate the amplitudgsn Eq. (18) of the

power series expansion, rather than the phases of the cosine
in Eq. (5). Actually, Berry and Lewis study a slight modifi-

am T .
An(a)~ mex;{ —wn(E—a gleninten = n_ oo, cation of the Weierstrass functigf) defined as
n
(57) i ) )
fwm= b"(1—coga"mx]), 61
with m=(In w)/(In ). The angular log frequency is de- WM ( fa'mx]) (61

fined by Eq.(28). In order to obtain Eq(57), we have used
the asymptotic dependence of thefunction asymptote for Proposed by Mandelbrg#3], which has the property of di-
complexz [39] rectly satisfying the “self-affine” property1) with u=1/b
andy=1. As discussed above, the choice Ezf}) for g(x),
[(z)=e@ V2272 |7|>1, (58 which gives EQ.(61) up to a sign, has the advantage of
. ) ] N getting rid of the— 1/s correction in its Mellin transforng53)
Expression(57) is of the form (21) with p=m+3, x  that makes thus more apparent and direct its self-similar
= o([7/2] - a), and ¢, = wn In(wn). properties.
For a=0, Hunt[42] is able to show that, by replacing the argument
a"mx of the cosine bya"wx+ 6,, whered,, are uncorre-

A (0)~ e (mongionin(en) o 59 lated ra_ndom phases, the Hagsdorﬁ dimension of the phase-
n(0) nm+(112) - (59 randomized Weierstrass functions=2—m.
As we have shown above, the fast exponential decay of 1. Localization of singularities

A,(0) ensures the differentiability df(x) at all orders. Ac-
tually, the fast decay of,(0) washes out any observable
oscillatory structure from the function as seen in Fi¢d)2
However, there are very tiny log-periodic oscillations of am- o
plitude less than 510 7 (see Table)l that are, however, fo(X)= 2 |Ag(/2)|x 5, (62)
unobservable at the scale of the plot of Figd)2 n=0

For a=m/2 (Weierstrass function the exponential part
disappears and

Let us first study the case wheig is put equal to 0, i.e.,
we construct a phase-locked Weierstrass function as

i.e., by constructing the singular part as the sum over power
laws with amplitudes equal to the modulus of the amplitudes
(56) obtained for the Weierstrass function with= 7/2, i.e.,

glenin(on = n_, o 60)  |An(/2)|=|{T'(sp)cod(m/2)s,]}/Iny, but without the
phase. As a consequence, E§Q) is changed to

An(/2)~ M 172

This situation corresponds to the cgse m+3, =0, and

¥,=ownlIn(wn) in expression(21) of the classification of |A(7/2)|=C

Sec. IV A. The cancellation of the exponential termAip is

due to the very peculiar compensation of the exponential )

decay ofl'(s,) by the exponential growth of casg,) in Eq.  WhereC is a constant. o

(53), which occurs only forx= /2. Figure 3 shows the functiofy(x) defined by Eq(62) for
The original Weierstrass functias) is thus seen as a very m=0.2 (panela) and m=0.65 (panelb). Rather than the

special “critical” or bifurcation point of the class of familiar nondifferentiable self-affine corrugated structure of

Weierstrass-type function@l) with Eq. (50). The analogy the Weierstrass functiorig(x) seems to be differentiable ev-

goes further as the expressi1) for the amplitude®\, has  erywhere except for a discrete infinity of spikes at positions

the same structure as the correlation function of a system of,, whereu is an integer running from- to +, orga-

—nm+(l/2)’ for n—oo, (63
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0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0

T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

X axis title

FIG. 4. Graph of fy(x) defined by Eq. (65 with ¢,
=w In(wn), m=0.2, w=7.7, and usindN= 1000 terms in the sum.

<3/2,G4(x) goes to a finite value as—x, but with an
infinite slope (since 0<m—3<1) according to G¢(x)
~ constant- |x—x,| ™~ (42,

Another example of “localization of singularities” is pro-
vided by the function

©

fs(X) — E nfmf(lIZ)eiw In(wn)y =Sy (65)
n=1
3 T T T T T T T T 3
00 0z 04 08 08 Figure 4 shows this functiofy(x) defined by Eq(65) with
(b) X m=0.2w=7.7. One can observe a log-periodic set of struc-

tures, each structure composed of log-periodic oscillations

FIG. 3. Panelsa andb showf¢(x) defined by Eq(62) with zero . . . . .
s(x) y Eq(62) converging to singular points beyond which damped oscilla-

phasei,,=0 for m=0.2 andm=0.65, respectively, with the same *~ -
w=17.7, constructed by truncating the sum at Mie 29 term. The  tion can be observed. Here, the phage=w In(wn) is not

tiny regular oscillations result from the truncation to a firlitend varyingsfast enough witln to scramble the complex power
slowly vanish wherN— . They are thus spurious finite-size ef- lawsX™ ", except at isolated points.

fects. Figure 5 shows the graph of

nized according to a geometric log-periodic structure. This o0 0.2 0.4 06 08 10
discrete set of spikes decorates the leading singular behavic '° — 1 - 1 - 19
f(x)~x™ for x—0 of the general solutiof7). Note that, in

this case, the periodic functidd([ In x]/[In y]) of the general

solution (7) is formed by the set of spikes geometrically ° "

converging to the origin.

The spikes seem to diverge far=0.2 while they con-
verge to a finite value fom=0.65, as far as the numerical
construction suggests. Appendix A examines some differen-*
tiability properties of Eq.(62). Appendix B shows that the 57
functional shapes of the spikes forsx,= 1/y" with u inte-

ger are given by 1 1
1 0 U q0

Gg(x)~ m (64) 00 o2 04 06 08 1.0
u X
Thus, for 0<m<1/2 (panela of Fig. 3), the spikes corre- FIG. 5. Graph off(x) defined by Eq.66) with i,=wn, m
spond to a divergence 0B (x) as x—x,. For 1/2<m =0.2, 0=7.7, and withN= 1000 terms in the sum.
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0.0 02 0.4 0.6 0.8 1.0
. . . u . o . u . 3

fS(X):nZl n7m7(1/2)eiwnxfsn, (66)

with m=0.2w=7.7, and phaseg,= wn. Again, the phases
are not sufficiently random to make the function irregular, 1 i
except at isolated points where the constructive interference
of the phases lead to the isolated singularities. 0 0

Note that both function$65) and (66) can be analyzed S;
with the method of Appendix B to obtain the functional form -1 7
of the singularities. 1

2. Mixing phases

In contrast to the previous examples where the phages
are too regular, let us now take 00 02 o4 o8 o8 10

X

#9=wnIn(wn) (67)
FIG. 6. Graph ofS,(x) defined by Eq(69) for the phases/")
corresponding to the asymptotic depende(@® of the am-  defined by Eq(70) with m=0.25w=7.7N=1000.
plitudesA,, of the Weierstrass function. The phagé3) are
ergodic and mixing on the unit circle. The correspondingpower-law decay. As a resuB;(x) and S,(x) exhibit very
function is clear nondifferentiable features shown in Figs. 6 and 7.
" Another very simple example of an ergodic phase is the
S(x)= S n-m-(W2)gionin(en)y s, 68) quadratic rotator with irrational rotation numbex®<1,
n y3) =@ 27Rn, (72)
which we call the “log-periodic Weierstrass” function to _ . .
stress the fact that it is constructed by summing log-periodid € Most irregular phase is obtained Rrg=(5-1)/2
power lawsx % [see for instance expressi¢87)] with am- =0'.618 033 9885’. - WhICh is the Golden mean whose
plitudes determined by the asymptotic behavior of the ampliin Property is that it is the least-well approximated by a
tudes of the power expansion of the Weierstrass functioh@tional number. The co_rresp()gndmg “Golden-mean log-
itself. The exponents, are again determined by EqLs) ~ Periodic Weierstrass functionS;”(x) defined by Eq.(69)
with m given by Eq.(8). By constructing Eq(68), we are with Eq. (72) is shown in Fig. 8. Other examples wifR
stripping off the Weierstrass function of its regular part and=74= 0-725 39818. » and Rzll?: 0.36787944 . ..
of all features that are unrelated to its fundamental nondiflead toS§™(x) and S§*(x) shown in Figs. 9 and 10. To
ferentiability and self-affine properties. The definition of this €ach irrational numberR corresponds an interesting
“log-periodic Weierstrass” function(68) and its many gen- \Weierstrass-type functions whose delicately corrugated self-
eralizations studied below exemplifies the construction deaffine structure is encoded in the number-theoretical proper-
veloped hereS(x) exhibits the same nondifferentiability as ties of its corresponding irrational numbier
does the Weierstrass function. In all these caSgs), is non- Note that if Eq(72) is changed ta/t), = )+ 27R, the
differentiable sincg=m-+ 3<%, in agreement with the con- corresponding observablé(x) becomes smooth almost
jecture of Sec. IV A.

Consider the general case g 02 o4 0 e 0 6 W
— —m—(1/2) F(i)yy—S 154 q15
S(x)=2n expli yp))x . (69) . .
=1
" 1.0 4 —q1.0
As other examples, let us now take 1
0.5+ 05
Y= wn? 70 S 4tk ‘
0.0 ' I - 0.0
and !
-0.5 ‘ ! 405
Y= wee, (79) - |
1.0 1.0
and form the corresponding sums fer 1 and 2.¢E,0) . zﬁﬁl), - . - . - T : T
0.0 0.2 04 0.6 0.8 1.0

and ¢{?) cause similar irregular oscillations of ¢g&'] be-
tween—1 and+1 as a function oh, allowing for a non-

trivial and complex interactions of singularities whose am-  FIG. 7. Graph ofS,(x) defined by Eq(69) for the phaseg/{?)
plitudes (most important as we have seeexhibit a slow defined by Eq(71) with m=0.5=8N=200.

X
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. : v T v T v T v T . T : . : . : . : . :
154 415 1.0 4 -4 1.0
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g e
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FIG. 8. “Golden-mean log-periodic Weierstrass function”  FIG. 10. “e-log-periodic Weierstrass functior8y defined by
SP(x) defined by Eq.(69) with Eq. (72) for m=0.50=7.7N  EQq. (69 with Eq. (72 andR=e=2.718... form=0.5w=7.7N
=500. =500.

everywhere except at isolated poirigdso organized accord- A. Other examples of theC™ differentiable family «>0

ing to a geometrical series as described in AppendixThe For a general statistical mechanics model, the regular part
ergodic but nonmixing properties of the linear rotation mapg(x) of the free energy has generally the form of the loga-
does not scramble the phases sufficiently to create nondifferithm of a polynomial inx. Factorizing the polynomial, we
entiability. do not lose generality by consideriggx) given by

g(x)=In(1+x), (73
V. ILLUSTRATION OF THE CLASSIFICATION .
for which
Different physical problems will be encoded by different

regular partg(x) quantifying the impact on the observable -
f(x) of the degrees of freedom summed over two successive 9(5= Sainss (74)
magnifications with the ratia. For a given physical prob-
lem, we perform the Mellin transform of(x). Then, to-
gether with the renormalization group structg, its for-
mal solution(3), and its expansior4) close to the leading
critical pointx=0 leading to Weierstrass-type functions, the
classification(21) of the preceding section allows us to char-

The poles ofg occur fors=—n, n>0, and contribute as
already described only to the regular partf ¢X). Therefore,
the Mellin transform off (x) is

S
acterize the possible nondifferentiability and scaling proper- f(s)= 17 T (75
ties of the observabl&(x). wyS—1 ssin(sm)
0.0 o 02 03 04 05 06 The regular part, determined by the polesat—n, n>0,
2.0 . : . : . : . : . : . 2.0 reads
* (_ 1)m+l
f(0= 3, BMX", B(m)=-——— ——.
m=1 m  u=y"
(76)
S, Note that constant term is absent. The singular part is
- T 1
fs(x)= AX 5 Ajm— ————. 7
s nZIO " " n y sin(7sp) sy (77
5 -_— 45 The coefficient®A,, converge to zero extremely fast for large
0.0 0.1 0.2 0.3 0.4 0.5 0.6 n
X
FIG. 9. “m/4-log-periodic Weierstrass functior&{™" defined A~ Zg-mong-imm o o (78)
by Eg.(69) with Eq. (72 andR=7/4 for m=0.5w=7.7N=500. "n ' '
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wherew is given by EQ.(28). This corresponds tp=1, «
= 7w, andy,= —am in the general classificatiof21).
For the “Lorentzian,”
gx)=(1+x*)71, (79
the coefficientsA,, of the power-law expansiof6) of the
singular partf4(x) are

P 80
N 21ny sin(w/2s,)’ (80)

with an asymptotic behavior given by
Anwef(ﬂ'/Z)wnei(ﬂ'IZ)m’ N— oo, (81)

This corresponds tp=0, k= (7/2)w, andy,,= 7/2m in the

general classification(21). The exponential decay rate
(7/2)w in this Lorentzian case is half that for the logarithm

function (73). Both lead toC™ differentiable functions with
extremely small amplitudes of log-periodic oscillatiofzee
Table ).

For so-called stretched-exponential functions

gx)=e*", h>0, (82)

we obtain

I'(s,/h)
n(h = n(yh (83
and
1 T ~wn

An(h)~an+1/2ex —En ex |Tln(wn), n—co,
(84)

Log-periodic stretched-exponential functidg(x,h) and all
its derivatives (on x) converge. This corresponds tp
=(m/h)+(1/2), k=(m/2)(w/h), andy,= (wn/h)In(wn) in
the general classificatidi21). Sincex>0, the corresponding

singular functionfy(x) is differentiable at all orders. How-
ever, a limit of nondifferentiability at isolated points can be

reached formally by taking the limih—o for which p
—1/2, k—07", and,—0. Then,f{(x) exhibits the nondif-
ferentiability at pointsx, verifying x,=1/y" defined in Eq.

(B1) studied in Sec. IV D 1. This is shown in Figs. 11 with

the dependence ofy(x,h) on the parameteh. As h in-
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0.0 0.2 0.4 0.6 0.8 1.0

0.0 . T r T r T r T r 0.0

-0.5 --05

1.0 —-1.0

1.5 1 --15
f .

2.0 ~J —4-20
-25
-3.0 4

T T T T T

0.0 0.2 04 0.6 0.8 1.0

FIG. 11. Singular parf(x) of the Weierstrass-like function for
the regular functiomy(x) equal to the stretched exponenti@p) for
h=5 (solid line), h=10 (dashed ling h=20 (dotted ling, h=50
(dashed-dotted line and h=100 (dashed-dot-dotted lingfor m
=04w=7.7TN=22.

for f(x) to be nondifferentiable or for some of its derivatives
to be nondifferentiable. We illustrate this remark by several
examples.

1. Generalized periodic processes

Let us consider the function generalizing the sine function
by taking an arbitrary real expone#t

sin(x)

X§

g(x)= . (85)

The Weierstrass function is recovered 0. The coeffi-
cients A, of the expansion in power series of the singular
part can be obtained by a simple shiftin the expression
obtained for the Weierstrass function

I'(s,— &)sin

1
EW(Sn_ 5)}

An(é): In y

(86)

For m+6<1, the log-periodic generalized sine function
fs(x,6) as well as its associated Weierstrass-type function
are continuous but nondifferentiable.

The asymptotic behavior of the coefficief, is

creasesg(x) becomes more-and-more localized close to the
origin andfg(x) exhibits more-and-more pronounced steps.
Formally, the limith—« allows us to crossover from the
classk>0 to the classc=0.

A,(8)~n"m " Y2exd —iwnIn(wn)], n—w. (87

This corresponds to p=m+46+1/2, k=0, and 4y,
=wnlIn(wn) in the general classificatiof21). Figure 12
shows the generalized sine functibyix, o) for different val-
We have noted above that a nondifferentiable function igies of 8 for 6= —0.1 (solid line), 5=0 (dashed ling and
everywhere oscillating and the length of arc between any tw@=0.1 (dotted ling for m=0.4 andw="7.7.
points on the curve is infinite21]. Its regular generatay(x) Another interesting case is the sine integrai(x)
must thus contain oscillations or must exhibit at least com= Si(x)= [dv[(sinv)/v]. The coefficient\, of the power-
pact supportso that it has a discrete Fourier seyigsorder  law series of the singular part are given by

B. Other examples of the Weierstrass-type function clasg=0

036142-14
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0.0 0.2 0.4 0.6
3.0 . ; . . . ;

0.8
— 3.0

0.0 . . . . . ;
0.0 0.2 0.4 06

0.0
0.8

X

FIG. 12. Singular parfy(x,d) of the Weierstrass-like function
for the regular functiog(x) given by Eq.(85) for §=—0.1 (solid
line), =0 (dashed ling and §=0.1 (dotted ling for m=0.4w
=7.7N=27).

F(sn)sin(zwsn)
An=" sainy ’ (88
with asymptotics
An~n‘m‘3’2ex;{—iwn In(wn)+ gm , N—o, (89)

corresponding top=m+3/2, k=0, and ¢,=wnIn(wn)
+(@/2)m in the general classificatio(1). All three func-
tions f(x), fs(x), andS(x) defined by Eq(68) have a con-
tinuous but nondifferentiable first derivative for<1. How-

ever, the delicate log-periodic corrugations are enhanced iquence, they are the most singular points. An analysis similar

the graph ofS(x).

2. Localized processes

Let us now study functiong(x) with compact support
such as

g(x)=(1—-xM""1, 0=x<1, g(x)=0
for x>1 with h=1 and v=2. (90

The coefficientsA,, of the power series expansion of the
singular partF¢(x) are

_ B(v,5,/h)
Ap(v,h)= W

where B(x,y)=[T'(X)I"(y)]/[T'(x+y)] is the B function.
Figure 13 shows the functiofi(x) obtained from the direct

91
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0.0 02 0.4 0.6 08
3.0 . ; . : . . . ;

1.0
3.0

2.5 -25

2.0 1 —420
1.54 415
1.0+ - 1.0

05 -05

0.0 . r . T . T . r
0.0 0.2 0.4 0.6 0.8

0.0

X

FIG. 13. Weierstrass-type functidiix) for compactg(x) given
by Eqg.(90) with v=2h=2 for m=0.5w=7.7N=47.

teaux and steps shown in Fig. 14 is reminiscent of the struc-

tures found for rupturgs,28,29 and earthquakeg$,30] pre-
cursors.
The asymptotic behavior &&,(v) is

i

An(vyh)"“_, with v=2, n—o, (92)
nV

corresponding top=wv, k=0, and ¢,=m in the general
classification(21).

As the phaseg),,= 7 are constant and their contribution
can be factorized, the functid(x, v) has a behavior similar
to the function(62) analyzed in Sec. IV D 1. In particular, we
recover the fact that the poinig,=1/y" given by Eq.(B1)
make the imaginary contribution af *n vanish. As a conse-

to that presented in Sec. IVD 1 can be performed.

0.0 0.2 0.4 0.6 0.8
0.0 . r . T . r . T

0.0

-0.5 \i

-1.5

-2.5 4

-3.0

0.0
X

FIG. 14. Evolution of the “singular partf4(x) corresponding to

sum(4). Figure 14 shows how the shape of the log-periodicakhe compact regular pag(x), Eq. (90) for »=2 with increasing

structures steepen with increasihg as the functiong(x)
evolves from a half? shape to the plateag{ 0<x<1)=1

abruptness ofj(x) quantified by the exponert h=2 (solid), h
=5 (dash, h=10 (dot), h=20 (dash dot, h=50 (dash-dot-dot

and 0 otherwise. The log-periodic geometrical series of plah=100 (short dash for m=0.50=7.7N=47.
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0.0 02 04 0.6 08 1.0 0.0 02 0.4 0.6 08 1.0
0 , . , ; . . , . , 0 . ; . . . . . ; .
h“\ 0.8 dos
2 1-2 0.6 - dos
f f o4l H04
-4 4
0.2 Jo02
6 46
0.0 , . . . . . . . . 0.0
, r , r . . , T , ; T ]
0.0 02 04 06 08 1.0 00 0 0 08 08 0

X
X

FIG. 15. Weierstrass-type functiof{x) corresponding to the FIG. 16. Weierstrass-type functiof(x) corresponding to the

regular partg(x) defined by Eq(93) with compact support, with regular partg(x) defined by Eq(96) with compact support, with
m=05w=7.7N=47. m=0.5w=7.7N=47.

Another example corresponds to the logarithmic functionVhere ¥ is again the logarithmic derivative of tHe func-
tion. The asymptotic behavior of the coefficierts is

g(xX)=In(1-x), 0<x<1 and g(x)=0 for x>1,
1
(03 AnMEQXF{i
with compact support. Figure 15 shows the corresponding

Weierstrass function i=0.5w=7.7N=47). The coeffi-
cients in the power expansion are given by

, (n—), (98

o))
arctan — |+
m
corresponding tp=1, =0, andy,= arctan[wn/m])+ in
the general classificatiof21). The relative amplitudes of the

1 two first power-law terms are given byA,_i/A,—g|
A,=——[V(1+s,)—¥(1)], (94) =0.016,|A_»/A,-o|=7.738<1073 for m=0.5w=7.7.

Sn Thus, even if the asymptotic decay is almost the same as for
Eqg. (93 up to the logarithmic correction, the log-periodic

whereWV is the logarithmi rivative of th€ function. ; ;
ere® 1 the ‘oga ¢ derivative of the' functio amplitudes of the leading terms are a factor of 10 smaller.

The asymptotic behavior of the coefficiers is

In(n) ) 2 In(wn) VI. DISCUSSION
A~ = exg iy —arcta E— +r

, (N—x),
This paper has studied the solutions of &), which can
(95) be understood as a renormalization group equation with a

corresponding t@=1, k=0, and ¢, = arctar[2 In(ewn) ]/} _single controllp.aram_eter or more .gene.rally as the Jackson
in the general classificatiof21). The logarithmic “correc- integral describing dlscrete—scalejmvanant systems. We havg
tion” to the power law 1h comes from the singularity at emphases on 'ghe_factors c_ontrolllng the presence and ampli-
=1. This example illustrates a possible cause for a deviatio o_Ie of log-periodic corrections to the leading power-law so-
from the classification(21). Such modification, however, 'ution. We have used the Mellin transform to resum the for-
does not change the qualitative picture as they correspond fg2! series solution of the DSI equation into a power-law
the next subdominant correction to the power-law contribu-S€Mes and have presented a general classification within two

tion to A,, . classes . L ” .
The relative amplitudes of the two first power-law terms (1) Systems with quasiperiodic *regular part” and/or with

are given by |An_1/A,_o|=0.143,|A, /A, | c?tmgact support present strong log-periodic oscillatory am-
=0.086, n=0.50w="7.7). plituaes.

For the nonsingular compact logarithmic regular part (2) Systems with nonper!od|c “regular part_” W'th un-
bound support have exceedingly small log-periodic oscilla-

g(x)=In(1+x), 0<x<1 and g(x)=0 for x>1, tory amplitudes and regular smooth observables.
(96) In systems for which the renormalization group equation
has been explicited, systems of the first class are associated
Fig. 16 shows the corresponding Weierstrass-type functiowith “antiferromagnetic” interactions. Systems of the second
f(x). The coefficients in the power series expansion are  class occur when the microscopic interactions are domi-
nantly “ferromagnetic.”
97) We hope to quantify in fl_,lture works how these f_acts may
' help interpret the observation of strong log-periodic oscilla-

1 Sh 1‘1,1 Sh
T2/ V22

n2— S
nNe=3 2

1
Ap=— 5

n

036142-16



LOG-PERIODIC ROUTE TO FRACTAL FUNCTIONS PHYSICAL REVIEW B5 036142

tions in out-of-equilibrium growth processes, rupture, earth- (2m)P ((wp)[ y
d
2

quakes, and in finance. Our analysis of its impact on the Kp(Y)=r(p)S€ 1—P,E) —é“(l—p,l
“regular part” g(x) of the DSI equation shows thajf(x)

plays a key role and may record the nature of interactions y
that lead to its different classes of behavior. However, deter- - E) ) (A3)
mining the observables that take the place of the equilibrium

free energy for growth models that could be obtained recurwhere{(s,v) =3[ v+k] % is the generalized Riemarih
sively (via a renormalization group transformatjpnor  function[44].

equivalently, the identification of the meaning of the function =~ For p>0 and except for the special valye-0 modulus
g(x), remains an unsolved problem in gendssle, however, 27, Ky(y) is finite and differentiable. To see this, let us
the iterative conformal mapping used in the theory ofconsider rational values gf2w=r/q with q=2, wherer/q

diffusion-limited aggregation, which provides a scaling func-is the irreducible representation of the ratiopéls. We can
tion for DLA [45]). rearrange the series in EGA2) into g subseries as follows:

i 1 § gl2m(q—1)(r/q)
K =R +
"R 2 kg B (ka1

ACKNOWLEDGMENT

We are grateful to A. Erzan for a discussion on Jackson’s = el2m(a=2)/a) o efzmeie)
i i i +p—t )
integral and for supplying the corresponding references. & (kq-2)° &1 (kq—q+2)P

© ei27-r(r/q) q © ei211-j(r/q)
APPENDIX A: DIFFERENTIABILITY PROPERTIES OF +> —— | =Re>, (E A
THE “LOCALIZATION OF SINGULARITIES” k=1 (kgq—g+1)P =1\ k=0 (kg+])P
Using the asymptotic expressidB3), we can write Z (3 ei2mitla)
J ymp P =Re>, (2 — . (A4)
k=0 1i=1 (ka+j)P
- 1 In x
REF(X)]=G(X)+x" > —— cod 27n—|, We expand
n=n n™* 2 Iny oo P p(ptD) P
(A1) 1/(kg+j)P=(kq) 1_k_qJ+TW+'”
and get

where G(x)=22f:O|An(7-r/2)|x*Sn is a regular function. . ;
TN 1 o
Rd f4(x)] denotes the real part df(x) and we have used K (V[27= =R i2m(r/q)
Eqg. (15). The second term of the r.h.s. of H&1), which can plyl2m=r/q) ekz'o kq)P 12‘1 €
be called the singular part of Re(x)] and is denoted q
G4(X), is a sum starting at an index that is taken suffi- 32 jei2mi(ria) 4 p(p+1)

ciently large such that the asymptotic expresgi68 holds a ka'=1 2(kq)?
to within any desired degree of accuracy. :
The singular parG4(x) has the same analytical behavior L2 2 (r/q)
as the function XJZI "€ e (AS)

Calling w, the qth root of 1, i.e.w,=¢€'2™9, we have then

1 1 WotWot - +wi i wi=(1-wg)/(1-w)=0.  Hence,

Kp(y)=2>, — cosny), p=m+3, (A2)  the first sum={_,e'?71(79) in Eq. (A5) is identically zero.
n=Ln The other sums are nonzero and finite. We thus get

0

]

Cy(r,

where y=2mInx/Iny. This function is a special case of Kp(y/2w=r/q)=z k(+?), (AB)
Kp.1s3(y) defined by Eq(41) for ,=0. k=0 kP

This functionK ,(y) has been studied in the literature for \yhere
special cases. When the real partpofs larger than 1, the .
sum is absolutely convergent for adl Restricting our atten- 1 i2mi(r] _ p(p+1) ,
tion to real exponentsp, the series K,(y=m) C(r,q)= qp+1R 121 e/?m/a| —pj+ 2(kq)
=—37_[(—1)""YnP], which corresponds toy=(2/
+1)7 where/ is an arbitrary integer, is convergent for all p(p+1)(p+2) ,
positivep to K ,(y= ) = (1—2'"P){(p) [40], where{(p) is T ekg? VT (A7)

the Riemann{ function. Obviously,K,(y=2m) is infinite
for p<1 and we show below that,(y—27) has a power- is bounded from above ak— +. The expressiorn(A6)
law singularity. Forp>1, K,(y) can be expressed as shows thak (y/27=r/q) is finite for anyp>0. Now, since
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rational numbers are dense among real numbers, i.e., any
irrational number can be approached arbitrarily close by a o

rational number, by the condition of continuity,(y) is fi-
nite everywhere, except fo/27=r/q with q=1. Differen-
tiating the expression (A2) gives the series

¥ (1P~ Ysin(ny). By the same reasoning leading to Eq.
(A6), this derivative is bounded from above by a constant

times=_,(1/nP) that is convergent fop>1. This shows
thatK(y) is differentiable forp>1, and thus Re¢(x)] is
differentiable for m>1/2. This approach is not powerful
enough, however, to treat the casec1/2.

APPENDIX B: FUNCTIONAL SHAPE OF THE
DENUMERABLE SET OF DISCRETE SINGULARITIES
RESULTING FROM THE “LOCALIZATION OF
SINGULARITIES”

We now examine the special cagRm=r/q with q=1.
From the expressiofAl), the values,,, which are such that
Inx,/In v is an integer—u, i.e.,

Xy= 1/, (B1)

PHYSICAL REVIEW E65 036142

2mN\e
co Iy
Gs(he)~ Zn pm+ 172 (B3)
Posingn’=Int(n\), Gs(A€) can be rewritten
2mn’e
% AT (L2) co W
G he)~xT >
s un':Int[nr)\] A n/m+(1/2)
2mn’e
o co in
—xM\m-(112) 2 ~— (B4
u o <] n/m+(172)

Note the presence of the additional multiplicative term
AT (2N i the sum of(B4). The numeratoh™" (2 stems
from replacingn by n’=Int(n\) in 1/n™" 2, The other
factor 1A is the “Jacobian” of the change from to n’
=Int(n\). ExpressionB4) can then be rewritten as

make all the cosine terms in the infinite sum in phase and

equal to 1. Thus,

Ge(Xy) =X" ; (B2)

m+(12)°

which diverges fom=1/2. At the border casen=1/2, the
divergence is logarithmic. SimilarlydGg/dx|,— X, diverges

for m<3/2 as an additional power of is brought to each

G(he)=\""(2AG(e)+H,(e), (B5)
where
2mn’e
Intfn,A]—1 CO n >
H(e)=Am"@2 > (B6)

Wh ! m+(172)

is a regular function ofe. The singular part ofG4(€) is
solution of G¢(Ae) =~\™" MG (¢), i.e.,

term in the sum by taking the derivative. This and expression

(B1) explain the graphs of Fig. 3.
The functional shapes of the spikes for-x, can be de-
termined as follows. Fox—x,,,

Inx 27ne
cos 2mn——|=co
Iny Iny
where e= (x xy)/x, and O(€?) represents a term propor-
tional to €2. Let us now construct and compa@(e) and

Gs(Ne), Where)\ is an arbitrary number. Up to first order in
€, we have

+0(€?),

G(€)~em (¥2), (B7)
This confirms that, for m<1/2 (panela of Fig. 3), the
spikes correspond to a divergence@{x) asx— x, accord-
ing to Gy(x)~1[x—x,|*™™ For 1/2<m<3/2, G4(x)
goes to a finite value ag—x, but with an infinite slope
(since O<m—3<1) according to G¢(x)~constant |x
—x,|™ 2, The borderline casen=1/2 can actually be
summed exactly a§,_1(y)=— 2In(2[1—cosy]) [40]. When
y—0 modulo 27, K,_,(y) diverges as In(3) and thus
G4(€) diverges assy(e)~In|x,/(Xx—x,)|.
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