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S. Gluzman1 and D. Sornette1,2,3

1Institute of Geophysics and Planetary Physics, University of California Los Angeles, Los Angeles, California 90095-1567
2Department of Earth and Space Sciences, UCLA, Box 951567, Los Angeles, California 90095-1567

3Laboratoire de Physique de la Matie`re Condense´e, CNRS UMR 6622 and Universite´ de Nice-Sophia Antipolis,
06108 Nice Cedex 2, France

~Received 27 June 2001; revised manuscript received 5 December 2001; published 7 March 2002!

Log-periodic oscillations have been found to decorate the usual power-law behavior found to describe the
approach to a critical point, when the continuous scale-invariance symmetry is partially broken into a discrete-
scale invariance symmetry. For Ising or Potts spins with ferromagnetic interactions on hierarchical systems, the
relative magnitude of the log-periodic corrections are usually very small, of order 1025. In growth processes
@diffusion limited aggregation~DLA !#, rupture, earthquake, and financial crashes, log-periodic oscillations with
amplitudes of the order of 10% have been reported. We suggest a ‘‘technical’’ explanation for this 4 order-of-
magnitude difference based on the property of the ‘‘regular function’’g(x) embodying the effect of the
microscopic degrees of freedom summed over in a renormalization group~RG! approachF(x)5g(x)
1m21F(gx) of an observableF as a function of a control parameterx. For systems for which the RG equation
has not been derived, the previous equation can be understood as a Jacksonq integral, which is the natural tool
for describing discrete-scale invariance. We classify the ‘‘Weierstrass-type’’ solutions of the RG into two
classes characterized by the amplitudesAn of the power-law series expansion. These two classes are separated
by a novel ‘‘critical’’ point. Growth processes~DLA !, rupture, earthquake, and financial crashes thus seem to
be characterized by oscillatory or bounded regular microscopic functions that lead to a slow power-law decay
of An , giving strong log-periodic amplitudes. If in addition, the phases ofAn are ergodic and mixing, the
observable presents self-affine nondifferentiable properties. In contrast, the regular function of statistical phys-
ics models with ‘‘ferromagnetic’’-type interactions at equibrium involves unbound logarithms of polynomials
of the control variable that lead to a fast exponential decay ofAn giving weak log-periodic amplitudes and
smoothed observables.

DOI: 10.1103/PhysRevE.65.036142 PACS number~s!: 05.70.Jk, 47.53.1n
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I. INTRODUCTION

The existence of log-periodic oscillatory corrections
the power-laws associated with critical phenomena a
more generally, to observables of systems endowed with
scale-invariance symmetry has been recognized since
1960s~see@1# for a recent review and references therei!.
The log-periodic oscillations result from a partial breakdo
of the continuous scale-invariance symmetry into a discr
scale-invariance symmetry, as occurs for instance in hie
chical lattices.

However, for one of the most studied class of mod
exhibiting these oscillations, i.e., Potts model with ferroma
netic interactions on hierarchical lattices, the relative mag
tude of the log-periodic corrections are usually very small
order 1025 @2#. In contrast, in growth processes@diffusion
limited aggregation~DLA !# @3,4#, rupture @5#, earthquakes
@6#, and financial crashes@7,8# amplitudes of the order o
10% have been reported.

Here, we propose an explanation for this puzzling obs
vation of an 4 order-of-magnitude difference based on
nature of the microscopic interactions of the systems. Wit
a renormalization group~RG! approach, an observable at on
scale can be related by a functional relation to the sa
observable at another scale, with the addition of the con
bution of the degrees of freedom left over by the proced
of decimation or of change of scale. This contribution
called the ‘‘regular part’’ of the renormalization group equ
1063-651X/2002/65~3!/036142~19!/$20.00 65 0361
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tion of the observable. For systems for which the RG eq
tion has not been derived, the RG equation can be un
stood without reference to the RG as a Jacksonq integral@9#,
which is the natural tool@10,11# for describing discrete-scal
invariance. Here, we do not discuss the mechanisms
which the continuous scale-invariance symmetry is broken
give discrete-scale invariance but rather present a phen
enological approach based on the functional RG/Jack
q-integral equation.

Using the Mellin transform applied to the formal seri
solution of the renormalization group, we identify two broa
classes of systems based on the nature of the decay
ordern of the amplitudesAn of the power-law series expan
sion of the observable:

~1! Systems with quasiperiodic ‘‘regular part’’ and/or wit
compact support have coefficientsAn decaying as a powe
law An;n2p, leading to strong log-periodic oscillatory am
plitudes; if in addition, the phases ofAn are ergodic and
mixing, the observable presents singular properties ev
where, similar to those of ‘Weierstrass-type’’ functions.

~2! Systems with nonperiodic ‘‘regular part’’ with un
bound support haveAn decaying as an exponentialAn
;e2kn of their ordern, leading to exceedingly small log
periodic oscillatory amplitudes and regular smooth obse
ables.

We find families of ‘‘regular parts’’ that belong to bot
classes, with a ‘‘critical’’ transition from the first to the othe
as a parameter is varied.
©2002 The American Physical Society42-1
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TABLE I. Synthesis of the different classes of Weierstrass-type functions according to the general classification~21!, An

;(1/np)e2kneicn of the expansion~18! in terms of a series of power lawsx2sn. The parametersp, k>0, andcn are determined by the form
of g(x) and the values ofm and g. All numerical values given in this table correspond tom50.5,v57.7 corresponding tog52.26 and
m5Ag51.5. The last two columns quantify the amplitude of the log-periodic oscillations with respect to the leading real power la

g(x) p k cn uAn51 /An50u uAn52 /An50u

cos(x) m11/2 0 vn ln(vn) 0.065 0.032
exp(2x) m11/2 (p/2)v vn ln(vn) 5.1231027 1.432310212

exp@2cx#cos(xs)a m11/2 (@p/2#2a)v vn ln(vn)
(11x2)21 0 (p/2)v (p/2)m 9.90131026 4.414310211

log(11x) 1 pv 2pm 4.045310212 '0
exp(2xh) m/h11/2 (p/2h)v @(vn)/h# ln(vn) 0.064 (h550) 0.03 (h550)

4.38631024 (h52) 6.17731027 (h52)
sin(x)/xd m1d11/2 0 2vn ln(vn) 0.044 (d50.1) 0.021 (d50.1)

0.091 (d520.1) 0.049 (d520.1)
Si(x) m13/2 0 vn ln(vn) 4.19931023 1.05331023

12xh 0,x,1 2 0 p 0.064 (h550) 0.031 (h550)
0.012 (h52) 3.14631023 (h52)

ac5cosa ands5sina.
he

lf
a
sk
he

a
s
te
to
u
la
o

ffi
d
e
ns
-
en
de
th
f
of

ct
e
tio

e

y

ical
si-
ped
elf-
in

es-

n,

of
nor-
of
en-

ns.
sec-

lar
st-

tals
r on
A known example of a system of the first class is t
q-state Potts model withantiferromagnetic interactions
@12,13#. Another example is the statistics of closed-loop se
avoiding walks per site on a family of regular fractals with
discrete-scale-invariant geometry such as the Sieirpin
gasket@14#. A known example of the second class is t
q-state Potts model withferromagneticinteractions@2#.

Section II introduces the renormalization group with
single control parameter, its formal solution with the pre
ence of log-periodic corrections associated with discre
scale invariance. Section III uses the Mellin transform
resum the formal series solution of the renormalization gro
into a power-law series. Section IV presents the general c
sification within the two classes alluded to above in terms
the leading exponential or power-law decay of the coe
cients of this power-law expansion. It examines the con
tions under which the observable can develop nondiffer
tiable fractal properties similar to Weierstrass-type functio
A family of ‘‘regular parts’’ is introduced that exhibits a criti
cal transition between the two classes. Section V pres
many more examples of both classes. Section VI conclu
Table I offers a synthesis of the classification in terms of
decay of the coefficientsAn of the power series expansion o
the observable for various choices of the ‘‘regular part’’
the renormalization group.

II. ‘‘WEIERSTRASS-TYPE FUNCTIONS’’ FROM
DISCRETE RENORMALIZATION GROUP EQUATIONS

Speaking about a material shape, a mathematical obje
function, the symmetry of scale invariance refers to th
invariance with respect to changes of scales of observa
~see@15,16# for general introductions!. In a nutshell, scale
invariance simply means reproducing itself on different tim
or space scales. Specifically, an observablef that depends on
a ‘‘control’’ parameterx is scale invariant under the arbitrar
changex→gx if there is a numberm(g) such that
03614
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f ~x!5
1

m
f ~gx!. ~1!

Such scale invariance occurs for instance at the crit
pointst5tc of systems exhibiting a continuous phase tran
tion. The renormalization group theory has been develo
to provide an understanding of the emergence of the s
similar property~1! from a systematic scale change and sp
decimation procedure@17#.

Calling K the coupling~e.g., K5eJ/T for a spin model
whereJ is interaction coefficient andT is the temperature!
and R the renormalization group map between two succ
sive magnification steps, the free energyf per lattice site,
bond, atom or element obeys the self-consistent equatio

f ~K !5g~K !1
1

m
f @R~K !#, ~2!

whereg is a regular part that is made of the free energy
the degrees of freedom summed over two successive re
malizations,m.1 is the ratio of the number of degrees
freedom between two successive renormalizations. In g
eral, this relationship~2! is an approximation whose validity
requires the study of the impact of many-body interactio
When these higher-order interactions can be considered
ondary as the scale of description increases~corresponding to
so-called ‘‘irrelevant’’ operators!, expression~2! becomes as-
ymptotically exact at large scales. For perfectly self-simi
problems, for instance, for physical systems with neare
neighbor interactions defined on regular geometrical frac
such as the Cantor set, the Sierpinsky Gasket, etc., o
regular hierarchical lattices, expression~2! is exact at all
scales.

It is solved recursively by

f ~K !5 (
n50

`
1

mn g@R(n)~K !#, ~3!
2-2
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LOG-PERIODIC ROUTE TO FRACTAL FUNCTIONS PHYSICAL REVIEW E65 036142
whereR(n) is thenth iterate of the renormalization transfo
mation. Around fixed pointsR(Kc)5Kc , the renormaliza-
tion group map can be expanded up to first order inK2Kc as
R(K)5g(K2Kc). Posing x5K2Kc , we have R(n)(x)
5gnx and the solution~3! becomes

f ~x!5 (
n50

`
1

mn g@gnx#. ~4!

In principle, Eq.~4! is only applicable sufficiently ‘‘close’’ to
the critical point x50, that the higher-order terms in th
expansionR(K)5g(K2Kc) can be neglected. The effect o
nonlinear corrections terms forR(K) have been considere
in @2,12#.

The form ~3! or ~4! has not been derived from first prin
ciples for growth, rupture, and other out-of-equilibrium pr
cesses alluded to above, even if there are various attemp
develop approximate RG descriptions on specific model
these processes. It may thus seem a little premature to
this discrete renormalization group description for these s
tems. Actually, expression~4! can be obtained without an
reference to a renormalization group approach: as soon a
system exhibits a discrete-scale invariance, the natural to
provided byq derivatives@11# from which it is seen that
expression~4! is nothing but a Jacksonq integral @9# of the
functiong(x), which constitutes the natural generalization
regular integrals for discretely self-similar systems@11#. The
way the Jacksonq integral is related to the free energy of
spin system on a hierarchical lattice was explained in@18#.

In the mathematical literature, the function~4! is called a
Weierstrass-type function, to refer to the introduction by
Weierstrass of the function@19#

f W5 (
n50

`

bn cos@anpx#, ~5!

corresponding to the special casem51/b, g5a, and g(x)
5cos@px#. To the surprise of mathematicians of the 19
century, Weierstrass showed that the function~5! is continu-
ous but differentiable nowhere, provided 0,b,1,a.1, and
ab.11 2

3 p. Note that, in the context of the renormalizatio
group of critical phenomena, the conditiona5g.1 implies
that the fixed pointKc is unstable. Hardy was able to im
prove later on the last bound and obtain that the Weierst
function ~5! is nondifferentiable everywhere as soon asab
.1 @20#. In addition, Hardy showed that it satisfies the fo
lowing Lipschitz condition~corresponding to self-affine sca
ing! for ab.1, which is much more than just the stateme
of nondifferentiability,

f W~x1h!2 f W~x!;uhum, for all x where

m5 ln@1/b#/ ln a. ~6!

Note that forab.1, m,1, expression~6! shows thatf W(x
1h)2 f W(x)@uhu for h→0. As a consequence, the rat
@ f W(x1h)2 f W(x)#/h has no limit that recovers the proper
of nondifferentiability. Continuity is obvious from the fac
that f W(x1h)2 f W(x)→0 ash→0 sincem.0. For the bor-
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der casea5b discovered by Cellerier before 1850,f W is not
nondifferentiable in a strict sense since it possesses infi
differential coefficients at an everywhere dense set of po
@21#. Richardson is credited with the first mention of th
potential usefulness for the description of the nature of
continuous-everywhere nondifferentiable Weierstrass fu
tion @22#. Shlesinger and co-workers@23# have previously
noticed and studied the correspondence between Eq.~4! and
the Weierstrass function.

If one is interested in the nonregular~or nonanalytic! be-
havior only close to the critical pointx50, the regular part
can be dropped and the analysis of Eq.~1! is sufficient. It is
then easy to show that the most general solution of Eq.~1! is
~see@1# and references therein!

f ~x!5xm PS ln x

ln g D , ~7!

where

m5
ln m

ln g
, ~8!

and P(y) is an arbitrary periodic function of its argumenty
of period 1. Its specification is actually determined by t
regular partg(x) of the renormalization group equation, a
shown for instance in the explicit solution~4!. The scaling
law f (x);xm implied by Eq.~7! is a special case of Eq.~6!
obtained by puttingx50 and replacingh by x in Eq. ~6!.

The Laplace transformf L(b) of f (x) defined by Eq.~4!
also obeys a renormalization equation of the type~2!. Denot-
ing gL(b), the Laplace transform of the regular partg(x),
we have

f L~b!5 (
n50

`
1

~mg!n gL@b/gn# ~9!

and

f L~b!5gL~b!1
1

mg
f LS b

g D . ~10!

The general solution of Eq.~10! takes the same form as Eq
~7!,

f L~b!5
1

b11m
PLS ln b

ln g D , ~11!

wherePL(y) is an arbitrary periodic function of its argumen
y of period 1.

III. RECONSTRUCTION OF ‘‘WEIERSTRASS-TYPE
FUNCTIONS’’ FROM POWER SERIES EXPANSIONS

Following @2,24#, we use the Mellin transform to obtain
power-law series representation of the Weierstrass-type fu
tion ~4!. The Mellin transform is defined as
2-3
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S. GLUZMAN AND D. SORNETTE PHYSICAL REVIEW E65 036142
f̂ ~s![E
0

`

xs21f ~x!dx. ~12!

The Mellin transform~12! provides a reconstruction of th
infinite sum of the Weierstrass-type function~4! as a sum of
power-law contributionsAnx2sn with ‘‘universal’’ complex
exponentssn determined only by properties of the hierarch
cal construction and not by the functiong(x), with ampli-
tudesAn controlled by the form of the regular partg(x).
These ‘‘nonuniversal’’ amplitudes in turn control the sha
of the functionf (x), its differentiability or nondifferentiabil-
ity as well as its self-affine~fractal! properties, as we sha
describe in the sequel.

The Mellin transform of Eq.~4! reads

f̂ ~s!5
mgs

mgs21
ĝ~s!, ~13!

where ĝ(s) is the Mellin transform ofg(x). The inverse
Mellin transformation off̂ (s),

f ~x!5
1

2p i Ec2 i`

c1 i`

f̂ ~s!x2sds, ~14!

allows us to reconstructf (x) as an expansion in singular a
well as regular powers ofx in order to unravel its self-simila
properties. Indeed, the usefulness of the Mellin transform
that power-law behaviors spring out immediately from t
poles of f̂ (s), using Cauchy’s theorem.

In inverting the Mellin transform, we have two types
poles. The poles of the Mellin transformĝ of the analytical
functiong(x) occur in general at integer values and contr
ute only to the regular partf r(x) of f (x), as expected since
g(x) is a regular contribution. The poles of the first ter
@mgs/(mgs21)# in the right-hand side~r.h.s.! of Eq. ~13!
stem from the infinite sum over successive embeddings
scales and occur ats5sn where

sn52m1 i
2p

ln g
n, ~15!

andm is given by Eq.~8!. Their amplitudeAn is obtained by
applying Cauchy’s theorem and is given by the residues

lim
s→sn

s2sn

mgs21
ĝ~s!5

exp~22pn i !

ln g
ĝ~s!5

ĝ~s!

ln g
. ~16!

The resulting expression forf (x) is

f ~x!5 f s~x!1 f r~x!, ~17!

where the singular partf s(x) is given by

f s~x!5 (
n50

`

Anx2sn ~18!

and
03614
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-

of

An5
ĝ~sn!

ln g
. ~19!

This approach is similar to the one developed in@25# for
‘‘fractal strings’’ h ~for instance, the complementary of th
triadic Cantor set is a special fractal string!. Their fractal
properties are fully characterized by the introduction of t
‘‘geometric zeta function’’zh(s), which can be shown to be
nothing but the Mellin transform of the measure defined
the fractal string~see@25#, p. 73!. In particular, the poles of
zh(s) give the complex fractal dimensions of the fract
strings, similarly to the role played here by the complex e
ponentssn defined by Eq.~15!.

The regular partf r(x) of f (x) defined in Eq.~17! is gen-
erated by the poles ofĝ(s) if any, located ats52n, n
50,1 . . . . Theresidues of these poles give the coefficien
Bn of the expansion of the regular part as follows:

f r~x!5 (
n50

`

Bnxn. ~20!

IV. CLASSIFICATION OF WEIERSTRASS-TYPE
FUNCTIONS

A. Classification

The representation~18! offers a classification of
Weierstrass-type functions as follows. We will work in th
class ofg(x) @not covering of course all possible types
behavior of A(n)# where the coefficientsAn can be ex-
pressed as the product of an exponential decay by a po
prefactor and a phase

An5
1

ln g

1

np e2kneicn for large n, ~21!

wherep, k>0, andcn are determined by the form ofg(x)
and the values ofm and g. This class is broad enough t
include many physically interesting shapes ofg(x) as will be
illustrated at length below.

1. Justification of the classification

The parameterization~21! can be seen to result from ver
general theorems on the Mellin transform@26,27#. Let us
assume that the functiong(x) defined forx.0 is continuous
and satisfies the following conditions:

ug~xu<c1xa, 0,x<1; ug~xu<c2 xb, 1<x,`,
~22!

wherea.b. Then, its Mellin transform is a regular~differ-
entiable! function inside the strip2a,Re(s),2b. One
should also bear in mind that Re(s),0 because of the con
straints imposed by the very formulation of the problem. A
functions that we shall consider below as examples belon
the class of continuous functions satisfying slightly more
stricted conditions@26# such as Eq.~22! with a.0 andb
50. As a consequence, their Mellin transform is regular
2a,Re(s),0. For instance,g(x)5cos(x)21 corresponds
2-4
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to a51 andb50. The same conditions apply to ln(11x)
and exp(2x)21. For the stretched exponential functio
exp(2xh)21 with h.0, we havea5h and againb50.

We are interested ing(sn)̂5ĝ(2m1 inv), particularly as
n goes to infinity. The general condition that is usually im
posed on this quantity in order to ensure the existence o
inverse Mellin transform is@27#

ĝ~2m1 inv!→0 as n→1`. ~23!

Again, An must be designed in such a way that it satisfi
this condition automatically.

Let us consider some simple but vivid examples, intend
to illustrate how a power-law and exponential decay ofAn as
a function ofn emerges from simple functions satisfying th
conditions stated above. We also note that, wheng(t) pos-
sesses discontinuities of the first kind, it still yields the d
pendence Eq.~21! of An as a function ofn. Maybe the sim-
plest function leading toAn with a power-law decay is

g~x!50, 0,x,1 and g~x!521, 1,x,`, ~24!

which leads tog(s)̂51/s, which is regular within the strip
`,Re(s),0. The correspondingAn decays in amplitude a
n21 for largen. Different strip geometries lead to the sam
power-law decay ofAn , for instance

g~x!5xa, 0,x,1 and g~x!50, 1,x,`, ~25!

with Mellin transform g(s)̂5(s1a)21 with 2a,Re(s)
,0. Let us also consider

g~x!50, 0,x,1 and g~x!52xa, 1,x,`, ~26!

which leads to a similar Mellin transformg(s)̂5(s1a)21

but a different strip geometry Re(s),2a. The slightly more
complicated example of a continuous function composed
power laws

g~x!5~b2a!21xa, 0,x,1

and

g~x!5~b2a!21xb, 1,x,b, ~27!

leads to g(s)̂5(s1a)21(s1b)21 with 2a,Re(s),2b
and the amplitude ofAn decaying asn22. The analysis of
these examples and of their Mellin transforms ats5sn dem-
onstrate that particulars of the strip geometry in the varia
s are not important when one is concerned with the largn

asymptotic behavior ofĝ(sn). The asymptotic power deca
of An as a function ofn can be dominated by an exponent
decay, as we shall see in more details below. For insta
the continuous function formed by compounded power la
g(x)5(1/p)x(11x)21 leads to

g~s!̂52csc~ps!, 21,Re~s!,0,

yielding An decaying as exp(2n) asn→1`.
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Violations of the parameterization~21! regardingAn oc-
cur when the conditions of the theorem@26# are changed,
e.g., when the argumentx is replaced by, say, ln(1/x) or
when singularities are introduced into the functiong(x). This
can be seen from Eq.~19! that shows thatAn is proportional
to the Mellin transform ofg(t) expressed ats5sm52m
1 inv where

v5
2p

ln g
. ~28!

Posing u5 ln x, the Mellin transform becomes a Fourie
transform

An5
1

ln gE2`

1`

du G~u!eivnu, ~29!

where

G~u![eu(12m)g~eu!. ~30!

It is clear that, by a suitable choice ofg(x), any dependence
of An can be obtained. For instance, for

G~u!5u23/2e2a/u, ~31!

we obtainAn;e2A2an cos@A2an#, which exhibits an oscilla-
tory stretched-exponential decay intermediate between
exponential (k.0) and pure power-law decay (k50) of Eq.
~21!. However, the choice Eq.~31! corresponds to a rathe
special choice for

g~x!5
~ ln x!23/2e2a/ ln x

x12m
. ~32!

In this case,g(x)→1` for x→0, and this case is outsid
the domain of validity~22! of the theorem@26,27#. Consider
also the following example

g~x!5p21/2expS 2
ln~1/x!2

4 D , ~33!

leading tog(s)̂5exp(s2), valid for arbitrarys, which leads to
An with amplitude decaying as exp(2n2) asn→`. This ex-
ample is also characterized by a pathological behavior
x→1` of g(x) that diverges faster than any power la
Another pathological example is

g~x!51/2p21/2cos@~1/4!ln~1/x!22p/4#, ~34!

leading tog(s)̂5coss2, valid for arbitrarys, which yieldsAn
with an amplitude growing as exp(n) as n→1`. This vio-
lates the condition on the Mellin transform given in@27#.

The existence of discontinuities ofg(x), as one might
expect from the theorem@26,27#, also violates the paramete
ization ~21! of An . Considerg(x)52(1/p)x1/2(12x)21

with an integrable singularity, which givesg(s)̂5tan(ps),
21/2,Re(s),0, andAn with an amplitude bounded from
below by a constant asn→1`. This absence of decay a
lows us to reject this type of function, since a decay ofAn is
2-5
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required by@27#. In constrast, a logarithmic singularity, a
for instance ing(x)5(1p)lnu(11x)/(12t)u, is allowed. In
this case, this givesg(s)̂5s21 tanh(ps),21,Re(s),0, and
the amplitude ofg(sn)̂ exhibits periodic modulations asn

→1` as n21@sinh2(1
2pm)1cos2(1

2pvn)#21@sin(pvn)
1i sinh(pm)#. Another example with the logarithmic func
tion ~93! discussed below gives a power-law decay with
logarithmic correction as shown by Eq.~95! due to the pres-
ence of the singularity.

In conclusion, as long as the conditions of theorem@26#
on Mellin transforms hold, the dependence ofAn as n
→1` given by Eq.~21! will hold as well. Violations of the
theorem due to a change of variable or to the presenc
simple poles lead either to a faster decay or to a nondeca
An . Allowing for logarithmic singularities withing(x)
brings in logarithmic or oscillatory corrections toAn as a
function of n.

2. Beyond the linear approximation of the renormalization
group map

The asymptotic expansion~21! uses the linear approxima
tion R(n)(x)5gnx that allows us to transform the gener
solution ~3! into the Weierstrass-type function~4!. As we
said, Eq.~4! is only applicable sufficiently ‘‘close’’ to the
critical point x50, such that the higher-order terms in th
expansionR(x)5gx can be neglected. The linear approx
mation ofR(n)(x)5gnx is bound, however, to become inco
rect asn becomes very large, i.e., in the region determin
the singular behavior. As discussed in@2,24#, the crucial
property missed by the linear approximation is thatf (x) is
analytic only in a sectoruargxu,u while we treated it as
analytic in the cut planeuargxu,p. This implies that the
exponential contributione2kn of the true asymptotic deca
of the amplitudes of successive log-periodic harmonics
slower than found from the linear approximation, and go
ase2kun. The angleu depends specifically on the flow ma
R(x) of the discrete renormalization group@2# and is gener-
ally of order 1. Our classification in two setsk50 andk
Þ0 is not modified by this subtlety. Here, we shall consid
only the Weierstrass-type functions~4! and will revisit the
impact of nonlinear terms of the renormalization group m
in a future communication.

3. kÌ0: C` differentiability

The general solution~7! remains true for any choice of th
regular partg(x) with the exponentm given by Eq.~8!. This
implies that there will always be an order of differentiatio
sufficiently large such that it becomes infinite atx50 @12#.
This is the crux of the argument on the existence of
singularity atx50. Here, we investigate the differentiabilit
of f (x) for nonzero values ofx, i.e., away from the unstabl
critical pointx→0. Expression~18! with Eq. ~15! provides a
direct way for understanding the origin of the singular b
havior atx→0, asxm is in factor of an infinite sum of oscil-
latory terms with log-periodic oscillations condensing ge
metrically asx→0.
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Whenk.0, the modulus ofAn decay exponentially fas
to zero. Hence,f (x) is differentiable at all orders. This ca
be seen from the fact that

dl f s~x!

dxl
5 (

n50

`

~2sn!~2sn21!•••~2sn2l 11!Anx2sn2l

~35!

is absolutely convergent for any orderl of differentiation.
Taking into account thatux2sn2l u5xm2l is independent ofn
and can be factorized, thenth term in the sum has an ampl
tude bounded by a constant timesnl exp@2qn# since (2sn)
3(2sn21)•••(2sn2l 11) is bounded from above by a
constant timesnl . The sum is thus controlled by the expo
nentially fast decaying coefficientsAn and converges to well-
defined values for anyl . As a consequence of the expone
tial decay of the coefficientsAn , the log-periodic oscillations
are extremely small.

Another obvious way to ensure differentiability eve
when k50 ~see the following section! is to truncate the
numbern of powersx2sn in the sum~18! to a finite value

f s
(N)~x!5 (

n50

N

Anx2sn. ~36!

An example withN51,2,3 is shown in Fig. 1 for the Weier
strass function (a5p/2 andp5m1 1

2 ). For N51, the real
part f s

(1)(x) is given by

f s
(1)~x!5a0F11

An50

a0
xm1

uAn51u
a0

xm cos@v ln~x!1w!G ,
a05

m

m21
, ~37!

wherev is given by Eq.~28! and

FIG. 1. Power-law expansion partf s given by Eq.~18! for the
Weierstrass function~5!, with N51 ~solid!, N52 ~dash!, N53
~dot! oscillatory terms, respectively. Here,m50.25,v56.3 corre-
sponding tog52.7 andm51.28. As the number of complex expo
nents increases, the number of the oscillations increase.
2-6
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w5arctanS Im~An51!

Re~An51! D1kp, k50,61, . . . . ~38!

This expression~37! is based on the singular part~18! of
the Mellin decomposition of the discrete-scale invarian
~DSI! Eq. ~4!. It applies not only to the Weierstrass functio
but also to any function of the form~4!. Keeping only the
first two terms recovers exactly the log-periodic formula
troduced in the study of precursors of material failu
@5,28,29#, earthquakes precursors@6,30,31#, and of precur-
sors of financial crashes@7,32#.

4. Critical behavior and nondifferentiability

Expression~18! with Eqs.~15! and~21! shows thatf s(x)
has the same differentiability properties as

(
n51

1`
1

np eicnxm2 i2pn/ ln g. ~39!

Changing variablex→y5 ln x/ln g, this reads

ey ln m (
n51

1`
1

np exp@ i ~22pny1cn!#. ~40!

With respect to the differentiability property, it is sufficient
study the real part of the infinite sum that reads

Kp,$cn%~y!5 (
n51

1`
cos@2pny1cn#

np . ~41!

This expression allows us to recover some important res
in the case where the phasescn are sufficiently random so
that the numerators cos@2pny1cn# take random uncorrelate
signs with zero mean. Then, the sumKp,$cn%(y) truncated at

n5T has the same convergence properties forT→` as

X~T!5E
1

TdWt

tp , ~42!

wheredWt is the increment of the continuous white noi
Brownian motion of zero mean and correlation functi
^dWtdWt8&5d(t2t)dt where d is the Dirac function. We
get ^X(T)&50 and its variance is

^@X~T!#2&5E
1

TE
1

T

^dWtdWt8&t
2pt82p5E

1

T dt

t2p
, ~43!

which is finite for T→1` if p.1/2. This entails the con
vergence forp.1/2 of the infinite series~41! for most
phasescn that are sufficiently ergodic and mixing. We thu
expect thatKp,$cn%(y) and as a consequencef s(x) are con-

tinuous functions forp.1/2. We can proceed similarly fo
studying their l ’s derivative. With respect to the conve
gence property, taking thel ’s derivative has the effect o
changingp into p2l in Eq. ~42!. We thus expectKp,$cn%(y)

and as a consequencef s(x) to be differentiable of orderl
for p.l 11/2.
03614
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We conjecture the following conditions for nondifferen
tiability from the singular power-law expansion o
Weierstrass-type functions. Provided that~1! k50 and ~2!
the phasescn are ergodic and, using a generalization of H
dy’s conditionab.1 for the Weierstrass function, the sma
est orderl min of differentiation off s(x) @defined by Eq.~18!
with exponentssn given by Eq.~15! with Eq. ~8!# that does
not exist is such that

1

2
,p2l min,

3

2
, ~44!

i.e.,

l min5IntFp2
3

2G , ~45!

is the integer part ofp2 3
2 . In particular, with ergodic phase

cn of zero mean, the functionf s(x) is nondifferentiable for
p,3/2.

It follows from Lebesgue’s theorem on continuous fun
tions of bounded variations that a nondifferentiable funct
is not a function of bounded variation. Therefore, a nond
ferentiable function is everywhere oscillating and the len
of arc between any two points on the curve is infinite@21#.
This explains the observation below that the regular p
g(x) must contain oscillations or must exhibit a compa
support~so that it has a discrete Fourier series! in order for
f (x) to be nondifferentiable or for some of its derivatives
be nondifferentiable. Actually, Weierstrass-type functions~4!
are believed to have the same Hausdorff dimension 22m as
the Weierstrass function~5! for arbitrary regular partg(x), as
long as it is a bounded almost periodic Lipschitz function
order b.m @34#. The examples organized below in tw
classes illustrate and make precise this condition ong(x).
We indeed find that nondifferentiability occurs at a fini
order of differentiation only for functionsg(x) that are peri-
odic or with compact support.

It appears, however, that there is not yet a general un
standing of whether there exists a necessary and suffic
condition for the differentiability of a function on an interva
It is well known that continuity is necessary for differenti
bility but is not sufficient as shown by the Weierstrass fun
tion and other examples above. The restriction of boun
variations has also proved insufficient: although a continu
function must possess a differential coefficient almost eve
where, yet there are examples of such functions that do
possess differential coefficients at unenumerable sets
points that are everywhere dense@21#.

B. General condition for kÄ0

Let us consider a regular functiong(x) that is either pe-
riodic with periodX or with compact support over the inte
val @0,X# and zero outside. It can then be expanded a
Fourier series
2-7
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g~x!5
a0

2
1 (

k51

1`

@ak cos~2pkx/X!1bk sin~2pkx/X!#,

~46!

wherea0 ,a1 ,b1 , . . . ,ak ,bk , . . . are arbitrary real numbers
The behavior of the coefficientsAn is controlled by the

Mellin transform ĝ(sn) of g(x) as shown by Eq.~19!. For
g(x) periodic with zero mean,a050 and

ĝ~sn!5S X

2p D snFcoŝ~sn!(
k51

1`
ak

ksn
1sin̂~sn!(

k51

1`
bk

ksn
G ,

~47!

where cosˆ(s) and sin̂(s) are the Mellin transform of cosx and
sinx. Now, a general theorem on the Fourier series of p
odic functions tells us that, ifg(x) has continuous deriva
tives up to orderr included and if the derivative of orderk
obeys the Dirichlet conditions, then the coefficientsak and
bk decay for largek as 1/kr 11, i.e., there is finiteM 8.M
.0 such thatM 8/kr 11.uaku.M /kr 11 and M 8/kr 11.ubku
.M /kr 11. If g(x) is discontinuous at a discrete set
points, this corresponds to takingr 50 in the previous for-
mula. The Dirichlet conditions are:~i! g(x) is continuous or
possess only a finite number of discontinuities;~ii ! each
point of discontinuityxd is a discontinuity of the first kind,
i.e., it is such that the limits to the leftg(x→xd

2) and to the
right g(x→xd

1) are finite;~iii ! the interval@0,X# can be di-
vided into a finite set of subintervals on each of whichg(x)
is monotonic.

We can thus write

2M S X

2p D sn

sin̂~sn!(
k51

1`
k2 inv

kr 112m

,ĝ~sn!,2M 8S X

2p D sn

sin̂~sn!(
k51

1`
k2 inv

kr 112m
. ~48!

The sum

(
k51

1`

k2(r 112m1 inv), ~49!

is nothing else but the celebrated zeta functionz(y) of Rie-
mann @35,36#, with the correspondencey5s1 i t , s5r 11
2m, t5nv. It is known @35,36# that uz(s1 i t )u<Cs (ut
u11)1/22s for s,0, where Cs decreases such a
(2pe)s21/2 for s→2`, and it does not satisfy a better e
timate in this half plane. For 0<s<1 corresponding to 0
<m<1 and p50, z(s1 i t )u<Kt (12s)/2 ln(t) uniformly for
some constantK. However, we need the behavior ofz(s
1 i t ) for s5r 112m.0. It is obtained by using the rela
tion z(s)52sps21sin(ps/2)G(12s)z(12s), which can be
separated into two parts that can be evaluated. Nam
sin(@p/2s#G(12s), recast in the variablez512s, takes the
familiar form cos(@p/2#z)G(z), which behaves for largen as
n2r 1m21/2. The other termz(12s)5z(z) can be evaluated
using the expression presented above for thez function of an
03614
i-

ly,

argument with negative real part~in our case for negative
12s and large n), z(z)<C(unu11)1/22(12s)

5C(unu11)1/21r 2m. Therefore, the product of these tw
terms is of the order ofC and the whole sum decay is slowe
than exponential.

This shows that the sum~49! is of orderO(1/nr 1(1/2)2m)
and thusĝ(sn) is asymptotically a negative power ofn for
largen. This demonstrates that any periodic continuous fu
tion g(x) leads to a power-law decay forAn as a function of
n.

The same approach can be used forg(x) not periodic but
defined on a compact support@0,X#. The discrete Fourier
series expansion~46! still holds for xP@0,X# while g(x)
50 for x outside. A similar expression to Eq.~47! then holds
in which a0Þ0 in general and in which the Mellin trans
forms coŝ(s) and sin̂(s) are defined over the interval@0,X#.

C. Bifurcation from wild to smooth Weierstrass-type
functions: An example using damped oscillators for the regular

part of the renormalization group equation

As a first example, let us consider the regular partg(x) of
the renormalization group equation defined as

g~x!5e2cos(a)x cos@x sin~a!#, with aPF0,
p

2 G . ~50!

The parametera quantifies the relative strength of the osc
latory structure ofg(x) versus its ‘‘damping.’’ Fora5p/2,
Eq. ~4! with Eq. ~50! recovers the initial function~5! intro-
duced by Weierstrass withb51/m, a5g, and cos(px) re-
placed by cos(x); for a50, g(x)5exp@2x# has no oscilla-
tion anymore and corresponds to a pure exponen
relaxation considered in@33#.

Plugging Eq.~50! in Eq. ~4! gives

f ~x!5 (
n50

`
1

g (22D)n
exp@2cos~a!gnx#cos@gnx sin~a!#,

~51!

where

D522m522
ln m

ln g
. ~52!

The exponentD turns out to be equal to the fractal dimensio
of the graph of the Weierstrass function obtained fora
5p/2. Recall that the fractal dimension quantifies the se
similarity properties of scale-invariant geometrical objec
Note that 1,D,2 as 1,m,g, which is the condition of
nondifferentiability found by Hardy@20# for the Weierstrass
function. The graph of the Weierstrass function is thus m
than a line but less than a plane. Fora,p/2, f (x) is smooth,
nonfractal (D51), and its graph has the complexity of th
line. Actually, there are several fractal dimensions. It
known that the box counting~capacity, entropic, fractal
Minkowski! dimension and the packing dimensions of t
Weierstrass function are all equal toD @37# given by Eq.~52!
2-8
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FIG. 2. Quasi-Weierstrass function for~a! a5p/2, ~b! a50.993p/251.56, ~c! a50.9p/251.414, and~d! a50, for m50.25,v57.7,
usingN532 terms to estimate the sums~51!. IncreasingN does not change the results.
s
nc

ph
-

s

d
-

the
-

t-
o-
y do

e

for a5p/2. It is conjectured but not proved that the Hau
dorff fractal dimension of the graph of the Weierstrass fu
tion obtained fora5p/2 is also equal toD given by Eq.
~52!. It is known that the Hausdorff dimension of the gra
of f (x) does not exceedD but there is no satisfactory con
dition to estimate its lower bound@34#.

Figure 2 shows the function~51! for a5p/251.5708
~pure Weierstrass function: panela), a50.993p/251.56
~panelb), a50.9p/251.414~panelc), anda50 ~paneld).

The Mellin transform ofg(x) defined by Eq.~50! for
21,Re@s#52m,0 @which is the interval of interest, a
seen from Eq.~15!# is @38#

ĝ~s!5G~s!cos~as!2
1

s
, ~53!

where G(s) is the gamma function reducing toG(s)5(s
21)! for integer argumentss. The additional term21/s dis-
appears for 0,Re@s#. For values of the exponentm larger
than 1, i.e., Re@s#,21, additional correction terms shoul
be added to Eq.~53! @38#. These additional terms only con
tribute to the power-law dependence of the amplitudesAn
03614
-
-
and not to the exponential. This problem is absent when
cosine in the definition ofg(x) is replaced by the sine func
tion.

As we shall discuss below, the modification ofg(x) into
the modified function

gM~x!5e2cos(a)x cos@x sin~a!#21 ~54!

gives ĝ(s)5G(s)cos(as) without the correction21/s for
21,Re@s#52m,0 and leads to the so-called Mandelbro
Weierstrass function. Similar ‘‘counterterm’’ should be intr
duced for stretched exponential and in similar cases. The
not bring any extra contributions to the Mellin transform.

The regular partf r(x) defined by Eq.~20! of f (x) defined
in Eq. ~17! corresponding tog(x) defined by Eq.~50! is
generated by the poles ofG(s), located at s52n, n
50,1 . . . ,sinceG(s) is analytic on the whole complex plan
excluding these simple poles@39#. Using the expression
Ress52nG(s)5(21)n/n!, we obtain its explicit form~20!
with

B~n!5
~21!n

n!

m

m2gn
cos~an!. ~55!
2-9
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Note the particularly simple expression of the first termB0
5m/(m21). For uxu!1, this constant term provides th
only non-negligible contribution of the regular partf r(x) to
f (x), whose behavior is completely controlled by the su
f s(x) of singular power laws.

The amplitudesAn defined by Eq.~19! corresponding to
g(x) defined by Eq.~50! are

An~a!5
G~sn!cos~asn!

ln g
. ~56!

The singular partf s(x), which is defined by Eq.~18! where
the exponentssn are given by Eq.~15!, satisfies the exac
scale-invariance equation~1!.

The asymptotic behavior of the amplitudesAn given by
Eq. ~56! is

An~a!;
eam

nm11/2
expF2vnS p

2
2a D Geivn ln(vn), n→`,

~57!

with m5(ln m)/(ln g). The angular log frequencyv is de-
fined by Eq.~28!. In order to obtain Eq.~57!, we have used
the asymptotic dependence of theG-function asymptote for
complexz @39#

G~z!.e(z21/2)ln z2z, uzu@1. ~58!

Expression ~57! is of the form ~21! with p5m1 1
2 , k

5v(@p/2#2a), andcn5vn ln(vn).
For a50,

An~0!;
1

nm1(1/2)
e2(p/2)vneivn ln(vn), n→`. ~59!

As we have shown above, the fast exponential decay
An(0) ensures the differentiability off (x) at all orders. Ac-
tually, the fast decay ofAn(0) washes out any observab
oscillatory structure from the function as seen in Fig. 2~d!.
However, there are very tiny log-periodic oscillations of a
plitude less than 531027 ~see Table I! that are, however
unobservable at the scale of the plot of Fig. 2~d!.

For a5p/2 ~Weierstrass function!, the exponential par
disappears and

An~p/2!;
1

nm11/2
eivn ln(vn), n→`. ~60!

This situation corresponds to the casep5m1 1
2 , k50, and

cn5vn ln(vn) in expression~21! of the classification of
Sec. IV A. The cancellation of the exponential term inAn is
due to the very peculiar compensation of the exponen
decay ofG(sn) by the exponential growth of cos(asn) in Eq.
~53!, which occurs only fora5p/2.

The original Weierstrass function~5! is thus seen as a ver
special ‘‘critical’’ or bifurcation point of the class o
Weierstrass-type functions~4! with Eq. ~50!. The analogy
goes further as the expression~21! for the amplitudesAn has
the same structure as the correlation function of a system
03614
of
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spins where the ordern in the sum~18! plays the role of the
distancer between two spins. In this analogy, the ‘‘correl
tion length’’ is proportional to 1/k;(@p/2#2a)21 and di-
verges at the critical pointa5p/2.

D. Role of the phase: Localization and delocalization of
singularities

The phasescn defined in Eq.~21! play an essential role in
the construction of the self-affine nondifferentiable structu
of the Weierstrass-type functions. To stress this fact, let
consider several cases using different phasescn with the
same absolute valuesuAnu of the amplitudes. This study par
allels in a sense that of Berry and Lewis@41# and of Hunt
@42# but is distinct from it in an essential way as the phas
considered here decorate the amplitudesAn in Eq. ~18! of the
power series expansion, rather than the phases of the co
in Eq. ~5!. Actually, Berry and Lewis study a slight modifi
cation of the Weierstrass function~5! defined as

f WM5 (
n50

`

bn~12cos@anpx# !, ~61!

proposed by Mandelbrot@43#, which has the property of di-
rectly satisfying the ‘‘self-affine’’ property~1! with m51/b
andg51. As discussed above, the choice Eq.~54! for g(x),
which gives Eq.~61! up to a sign, has the advantage
getting rid of the21/s correction in its Mellin transform~53!
that makes thus more apparent and direct its self-sim
properties.

Hunt @42# is able to show that, by replacing the argume
anpx of the cosine byanpx1un, whereun , are uncorre-
lated random phases, the Hausdorff dimension of the ph
randomized Weierstrass function isD522m.

1. Localization of singularities

Let us first study the case wherecn is put equal to 0, i.e.,
we construct a phase-locked Weierstrass function as

f s~x!5 (
n50

`

uAn~p/2!ux2sn, ~62!

i.e., by constructing the singular part as the sum over po
laws with amplitudes equal to the modulus of the amplitud
~56! obtained for the Weierstrass function witha5p/2, i.e.,
uAn(p/2)u5u$G(sn)cos@(p/2)sn#%/ ln gu, but without the
phase. As a consequence, Eq.~60! is changed to

uAn~p/2!u5C
1

nm1(1/2)
, for n→`, ~63!

whereC is a constant.
Figure 3 shows the functionf s(x) defined by Eq.~62! for

m50.2 ~panel a) and m50.65 ~panel b). Rather than the
familiar nondifferentiable self-affine corrugated structure
the Weierstrass function,f s(x) seems to be differentiable ev
erywhere except for a discrete infinity of spikes at positio
xu , whereu is an integer running from2` to 1`, orga-
2-10
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nized according to a geometric log-periodic structure. T
discrete set of spikes decorates the leading singular beha
f (x);xm for x→0 of the general solution~7!. Note that, in
this case, the periodic functionP(@ ln x#/@ln g#) of the general
solution ~7! is formed by the set of spikes geometrica
converging to the origin.

The spikes seem to diverge form50.2 while they con-
verge to a finite value form50.65, as far as the numerica
construction suggests. Appendix A examines some differ
tiability properties of Eq.~62!. Appendix B shows that the
functional shapes of the spikes forx→xu51/gu with u inte-
ger are given by

Gs~x!;
1

ux2xuu(1/2)2m
. ~64!

Thus, for 0,m,1/2 ~panela of Fig. 3!, the spikes corre-
spond to a divergence ofGs(x) as x→xu . For 1/2,m

FIG. 3. Panelsa andb show f s(x) defined by Eq.~62! with zero
phasecn50 for m50.2 andm50.65, respectively, with the sam
v57.7, constructed by truncating the sum at theN529 term. The
tiny regular oscillations result from the truncation to a finiteN and
slowly vanish whenN→`. They are thus spurious finite-size e
fects.
03614
s
ior

n-

,3/2, Gs(x) goes to a finite value asx→xu but with an
infinite slope ~since 0,m2 1

2 ,1) according to Gs(x)
;constant2ux2xuum2(1/2).

Another example of ‘‘localization of singularities’’ is pro
vided by the function

f s~x!5 (
n51

`

n2m2(1/2)eiv ln(vn)x2sn. ~65!

Figure 4 shows this functionf s(x) defined by Eq.~65! with
m50.2,v57.7. One can observe a log-periodic set of stru
tures, each structure composed of log-periodic oscillati
converging to singular points beyond which damped osci
tion can be observed. Here, the phasecn5v ln(vn) is not
varying fast enough withn to scramble the complex powe
laws x2sn, except at isolated points.

Figure 5 shows the graph of

FIG. 4. Graph of f s(x) defined by Eq. ~65! with cn

5v ln(vn), m50.2, v57.7, and usingN51000 terms in the sum.

FIG. 5. Graph off s(x) defined by Eq.~66! with cn5vn, m
50.2, v57.7, and withN51000 terms in the sum.
2-11
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f s~x!5 (
n51

`

n2m2(1/2)eivnx2sn, ~66!

with m50.2,v57.7, and phasescn5vn. Again, the phases
are not sufficiently random to make the function irregul
except at isolated points where the constructive interfere
of the phases lead to the isolated singularities.

Note that both functions~65! and ~66! can be analyzed
with the method of Appendix B to obtain the functional for
of the singularities.

2. Mixing phases

In contrast to the previous examples where the phasecn
are too regular, let us now take

cn
(0)5vn ln~vn! ~67!

corresponding to the asymptotic dependence~60! of the am-
plitudesAn of the Weierstrass function. The phases~67! are
ergodic and mixing on the unit circle. The correspondi
function is

S~x!5 (
n51

`

n2m2(1/2)eivn ln(vn)x2sn, ~68!

which we call the ‘‘log-periodic Weierstrass’’ function t
stress the fact that it is constructed by summing log-perio
power lawsx2sn @see for instance expression~37!# with am-
plitudes determined by the asymptotic behavior of the am
tudes of the power expansion of the Weierstrass func
itself. The exponentssn are again determined by Eq.~15!
with m given by Eq.~8!. By constructing Eq.~68!, we are
stripping off the Weierstrass function of its regular part a
of all features that are unrelated to its fundamental non
ferentiability and self-affine properties. The definition of th
‘‘log-periodic Weierstrass’’ function~68! and its many gen-
eralizations studied below exemplifies the construction
veloped here.S(x) exhibits the same nondifferentiability a
does the Weierstrass function. In all these cases,S(x) is non-
differentiable sincep5m1 1

2 , 3
2 , in agreement with the con

jecture of Sec. IV A.
Consider the general case

Si~x!5 (
n51

`

n2m2(1/2) exp~ icn
( i )!x2sn. ~69!

As other examples, let us now take

cn
(1)5vn2 ~70!

and

cn
(2)5ven/v, ~71!

and form the corresponding sums fori 51 and 2.cn
(0) , cn

(1) ,
and cn

(2) cause similar irregular oscillations of cos@cn
(i)# be-

tween21 and11 as a function ofn, allowing for a non-
trivial and complex interactions of singularities whose a
plitudes ~most important as we have seen! exhibit a slow
03614
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power-law decay. As a resultS1(x) and S2(x) exhibit very
clear nondifferentiable features shown in Figs. 6 and 7.

Another very simple example of an ergodic phase is
quadratic rotator with irrational rotation number 0,R,1,

cn11
(3) 5cn

(3)12pRn. ~72!

The most irregular phase is obtained forR5g5(A521)/2
50.618 033 988 75 . . . , which is the Golden mean whos
main property is that it is the least-well approximated by
rational number. The corresponding ‘‘Golden-mean lo
periodic Weierstrass function’’S3

(g)(x) defined by Eq.~69!
with Eq. ~72! is shown in Fig. 8. Other examples withR
5p/450.785 398 163 . . . and R51/e50.367 879 441 . . .
lead toS3

(p/4)(x) and S3
(1/e)(x) shown in Figs. 9 and 10. To

each irrational numberR corresponds an interestin
Weierstrass-type functions whose delicately corrugated s
affine structure is encoded in the number-theoretical prop
ties of its corresponding irrational numberR.

Note that if Eq.~72! is changed tocn11
(3) 5cn

(3)12pR, the
corresponding observablef (x) becomes smooth almos

FIG. 6. Graph ofS1(x) defined by Eq.~69! for the phasescn
(1)

defined by Eq.~70! with m50.25,v57.7,N51000.

FIG. 7. Graph ofS2(x) defined by Eq.~69! for the phasescn
(2)

defined by Eq.~71! with m50.5,v58,N5200.
2-12
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everywhere except at isolated points~also organized accord
ing to a geometrical series as described in Appendix B!. The
ergodic but nonmixing properties of the linear rotation m
does not scramble the phases sufficiently to create nondi
entiability.

V. ILLUSTRATION OF THE CLASSIFICATION

Different physical problems will be encoded by differe
regular partsg(x) quantifying the impact on the observab
f (x) of the degrees of freedom summed over two succes
magnifications with the ratiol. For a given physical prob
lem, we perform the Mellin transform ofg(x). Then, to-
gether with the renormalization group structure~2!, its for-
mal solution~3!, and its expansion~4! close to the leading
critical point x50 leading to Weierstrass-type functions, t
classification~21! of the preceding section allows us to cha
acterize the possible nondifferentiability and scaling prop
ties of the observablef (x).

FIG. 8. ‘‘Golden-mean log-periodic Weierstrass functio
S3

(g)(x) defined by Eq.~69! with Eq. ~72! for m50.5,v57.7,N
5500.

FIG. 9. ‘‘p/4-log-periodic Weierstrass function’’S3
(p/4) defined

by Eq. ~69! with Eq. ~72! andR5p/4 for m50.5,v57.7,N5500.
03614
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A. Other examples of theC` differentiable family kÌ0

For a general statistical mechanics model, the regular
g(x) of the free energy has generally the form of the log
rithm of a polynomial inx. Factorizing the polynomial, we
do not lose generality by consideringg(x) given by

g~x!5 ln~11x!, ~73!

for which

ĝ~s!5
p

s sinsp
. ~74!

The poles ofĝ occur for s52n, n.0, and contribute as
already described only to the regular part off (x). Therefore,
the Mellin transform off (x) is

f̂ ~s!5
mgs

mgs21

p

s sin~sp!
. ~75!

The regular part, determined by the poles ats52n, n.0,
reads

f r~x!5 (
m51

`

B~m!xm, B~m!5
~21!m11

m

m

m2gm
.

~76!

Note that constant term is absent. The singular part is

f s~x!5 (
n50

`

Anx2sn, An5
p

ln g

1

sin~psn!sn
. ~77!

The coefficientsAn converge to zero extremely fast for larg
n

An;
1

n
e2pvne2 ipm, n→`, ~78!

FIG. 10. ‘‘e-log-periodic Weierstrass function’’S3
(e) defined by

Eq. ~69! with Eq. ~72! andR5e52.718 . . . for m50.5,v57.7,N
5500.
2-13
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wherev is given by Eq.~28!. This corresponds top51, k
5pv, andcn52pm in the general classification~21!.

For the ‘‘Lorentzian,’’

g~x!5~11x2!21, ~79!

the coefficientsAn of the power-law expansion~76! of the
singular partf s(x) are

An5
p

2 lng

1

sin~p/2sn!
, ~80!

with an asymptotic behavior given by

An;e2(p/2)vnei (p/2)m, n→`. ~81!

This corresponds top50, k5(p/2)v, andcn5p/2m in the
general classification~21!. The exponential decay rat
(p/2)v in this Lorentzian case is half that for the logarith
function ~73!. Both lead toC` differentiable functions with
extremely small amplitudes of log-periodic oscillations~see
Table I!.

For so-called stretched-exponential functions

g~x!5e2xh
, h.0, ~82!

we obtain

An~h!5
G~sn /h!

ln~g!h
, ~83!

and

An~h!;
1

nm/h11/2
expF2

pv

2h
nGexpF i

vn

h
ln~vn!G , n→`.

~84!

Log-periodic stretched-exponential functionf s(x,h) and all
its derivatives ~on x) converge. This corresponds top
5(m/h)1(1/2), k5(p/2)(v/h), andcn5(vn/h)ln(vn) in
the general classification~21!. Sincek.0, the corresponding
singular functionf s(x) is differentiable at all orders. How
ever, a limit of nondifferentiability at isolated points can b
reached formally by taking the limith→` for which p
→1/2, k→01, andcn→0. Then,f s(x) exhibits the nondif-
ferentiability at pointsxu verifying xu51/gu defined in Eq.
~B1! studied in Sec. IV D 1. This is shown in Figs. 11 wi
the dependence off s(x,h) on the parameterh. As h in-
creases,g(x) becomes more-and-more localized close to
origin and f s(x) exhibits more-and-more pronounced ste
Formally, the limit h→` allows us to crossover from th
classk.0 to the classk50.

B. Other examples of the Weierstrass-type function classkÄ0

We have noted above that a nondifferentiable function
everywhere oscillating and the length of arc between any
points on the curve is infinite@21#. Its regular generatorg(x)
must thus contain oscillations or must exhibit at least co
pact support~so that it has a discrete Fourier series! in order
03614
e
.

s
o

-

for f (x) to be nondifferentiable or for some of its derivative
to be nondifferentiable. We illustrate this remark by seve
examples.

1. Generalized periodic processes

Let us consider the function generalizing the sine funct
by taking an arbitrary real exponentd,

g~x!5
sin~x!

xd
. ~85!

The Weierstrass function is recovered ford50. The coeffi-
cients An of the expansion in power series of the singu
part can be obtained by a simple shift ofs in the expression
obtained for the Weierstrass function

An~d!5

G~sn2d!sinF1

2
p~sn2d!G

ln g
. ~86!

For m1d<1, the log-periodic generalized sine functio
f s(x,d) as well as its associated Weierstrass-type funct
are continuous but nondifferentiable.

The asymptotic behavior of the coefficientAn is

An~d!;n2m2d21/2exp@2 ivn ln~vn!#, n→`. ~87!

This corresponds to p5m1d11/2, k50, and cn
5vn ln(vn) in the general classification~21!. Figure 12
shows the generalized sine functionf s(x,d) for different val-
ues ofd for d520.1 ~solid line!, d50 ~dashed line!, and
d50.1 ~dotted line! for m50.4 andv57.7.

Another interesting case is the sine integral,g(x)
5Si(x)[*0

xdv@(sinv)/v#. The coefficientsAn of the power-
law series of the singular part are given by

FIG. 11. Singular partf s(x) of the Weierstrass-like function fo
the regular functiong(x) equal to the stretched exponential~82! for
h55 ~solid line!, h510 ~dashed line!, h520 ~dotted line!, h550
~dashed-dotted line!, and h5100 ~dashed-dot-dotted line!, for m
50.4,v57.7,N522.
2-14
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An52

G~sn!sinS 1

2
psnD

snln g
, ~88!

with asymptotics

An;n2m23/2expF2 ivn ln~vn!1
p

2
mG , n→`, ~89!

corresponding top5m13/2, k50, and cn5vn ln(vn)
1(p/2)m in the general classification~21!. All three func-
tions f (x), f s(x), andS(x) defined by Eq.~68! have a con-
tinuous but nondifferentiable first derivative form,1. How-
ever, the delicate log-periodic corrugations are enhance
the graph ofS(x).

2. Localized processes

Let us now study functionsg(x) with compact support
such as

g~x!5~12xh!n21, 0<x<1, g~x!50

for x.1 with h>1 and n>2. ~90!

The coefficientsAn of the power series expansion of th
singular partFs(x) are

An~n,h!5
B~n,sn /h!

ln~g!h
, ~91!

where B(x,y)5@G(x)G(y)#/@G(x1y)# is the b function.
Figure 13 shows the functionf (x) obtained from the direc
sum~4!. Figure 14 shows how the shape of the log-periodi
structures steepen with increasingh, as the functiong(x)
evolves from a half-ù shape to the plateaug(0,x,1)51
and 0 otherwise. The log-periodic geometrical series of p

FIG. 12. Singular partf s(x,d) of the Weierstrass-like function
for the regular functiong(x) given by Eq.~85! for d520.1 ~solid
line!, d50 ~dashed line!, and d50.1 ~dotted line! for m50.4,v
57.7,N527).
03614
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teaux and steps shown in Fig. 14 is reminiscent of the str
tures found for rupture@5,28,29# and earthquakes@6,30# pre-
cursors.

The asymptotic behavior ofAn(n) is

An~n,h!;
eip

nn
, with n>2, n→`, ~92!

corresponding top5n, k50, and cn5p in the general
classification~21!.

As the phasescn5p are constant and their contributio
can be factorized, the functionf s(x,n) has a behavior similar
to the function~62! analyzed in Sec. IV D 1. In particular, w
recover the fact that the pointsxu51/gu given by Eq.~B1!
make the imaginary contribution ofx2sn vanish. As a conse-
quence, they are the most singular points. An analysis sim
to that presented in Sec. IV D 1 can be performed.

FIG. 13. Weierstrass-type functionf (x) for compactg(x) given
by Eq. ~90! with n52,h52 for m50.5,v57.7,N547.

FIG. 14. Evolution of the ‘‘singular part’’f s(x) corresponding to
the compact regular partg(x), Eq. ~90! for n52 with increasing
abruptness ofg(x) quantified by the exponenth: h52 ~solid!, h
55 ~dash!, h510 ~dot!, h520 ~dash dot!, h550 ~dash-dot-dot!,
h5100 ~short dash!, for m50.5,v57.7,N547.
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Another example corresponds to the logarithmic funct

g~x!5 ln~12x!, 0,x,1 and g~x!50 for x.1,
~93!

with compact support. Figure 15 shows the correspond
Weierstrass function (m50.5,v57.7,N547). The coeffi-
cients in the power expansion are given by

An52
1

sn
@C~11sn!2C~1!#, ~94!

whereC is the logarithmic derivative of theG function.
The asymptotic behavior of the coefficientsAn is

An;
ln~n!

n
expF i H 2arctanS 2 ln~vn!

p D1pJ G , ~n→`!,

~95!

corresponding top51, k50, andcn5arctan$@2 ln(vn)#/p%
in the general classification~21!. The logarithmic ‘‘correc-
tion’’ to the power law 1/n comes from the singularity atx
51. This example illustrates a possible cause for a devia
from the classification~21!. Such modification, however
does not change the qualitative picture as they correspon
the next subdominant correction to the power-law contri
tion to An .

The relative amplitudes of the two first power-law term
are given by uAn51 /An50u50.143,uAn52 /An50u
50.086, (m50.5,v57.7).

For the nonsingular compact logarithmic regular part

g~x!5 ln~11x!, 0,x,1 and g~x!50 for x.1,
~96!

Fig. 16 shows the corresponding Weierstrass-type func
f (x). The coefficients in the power series expansion are

An5
1

sn
F ln 22

1

2
CS 11

sn

2 D1
1

2
CS 1

2
1

sn

2 D G , ~97!

FIG. 15. Weierstrass-type functionf (x) corresponding to the
regular partg(x) defined by Eq.~93! with compact support, with
m50.5,v57.7,N547.
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whereC is again the logarithmic derivative of theG func-
tion. The asymptotic behavior of the coefficientsAn is

An;
1

n
expF i S arctanS vn

m D1p D G , ~n→`!, ~98!

corresponding top51, k50, andcn5arctan(@vn/m#)1p in
the general classification~21!. The relative amplitudes of the
two first power-law terms are given byuAn51 /An50u
50.016,uAn52 /An50u57.73831023 for m50.5,v57.7.
Thus, even if the asymptotic decay is almost the same as
Eq. ~93! up to the logarithmic correction, the log-period
amplitudes of the leading terms are a factor of 10 smalle

VI. DISCUSSION

This paper has studied the solutions of Eq.~4!, which can
be understood as a renormalization group equation wit
single control parameter or more generally as the Jacksoq
integral describing discrete-scale-invariant systems. We h
emphases on the factors controlling the presence and am
tude of log-periodic corrections to the leading power-law s
lution. We have used the Mellin transform to resum the f
mal series solution of the DSI equation into a power-la
series and have presented a general classification within
classes

~1! Systems with quasiperiodic ‘‘regular part’’ and/or wit
compact support present strong log-periodic oscillatory a
plitudes.

~2! Systems with nonperiodic ‘‘regular part’’ with un
bound support have exceedingly small log-periodic osci
tory amplitudes and regular smooth observables.

In systems for which the renormalization group equat
has been explicited, systems of the first class are assoc
with ‘‘antiferromagnetic’’ interactions. Systems of the seco
class occur when the microscopic interactions are do
nantly ‘‘ferromagnetic.’’

We hope to quantify in future works how these facts m
help interpret the observation of strong log-periodic oscil

FIG. 16. Weierstrass-type functionf (x) corresponding to the
regular partg(x) defined by Eq.~96! with compact support, with
m50.5,v57.7,N547.
2-16
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tions in out-of-equilibrium growth processes, rupture, ear
quakes, and in finance. Our analysis of its impact on
‘‘regular part’’ g(x) of the DSI equation shows thatg(x)
plays a key role and may record the nature of interacti
that lead to its different classes of behavior. However, de
mining the observables that take the place of the equilibr
free energy for growth models that could be obtained rec
sively ~via a renormalization group transformation!, or
equivalently, the identification of the meaning of the functi
g(x), remains an unsolved problem in general~see, however,
the iterative conformal mapping used in the theory
diffusion-limited aggregation, which provides a scaling fun
tion for DLA @45#!.
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APPENDIX A: DIFFERENTIABILITY PROPERTIES OF
THE ‘‘LOCALIZATION OF SINGULARITIES’’

Using the asymptotic expression~63!, we can write

Re@ f s~x!#5G~x!1xm (
n5nr

`
1

nm11/2
cosS 2pn

ln x

ln g D ,

~A1!

where G(x)5(n50
nr uAn(p/2)ux2sn is a regular function.

Re@ f s(x)# denotes the real part off s(x) and we have used
Eq. ~15!. The second term of the r.h.s. of Eq.~A1!, which can
be called the singular part of Re@ f s(x)# and is denoted
Gs(x), is a sum starting at an indexnr that is taken suffi-
ciently large such that the asymptotic expression~63! holds
to within any desired degree of accuracy.

The singular partGs(x) has the same analytical behavi
as the function

Kp~y![ (
n51

`
1

np
cos~ny!, p5m1

1

2
, ~A2!

where y52p ln x/ln g. This function is a special case o
Kp,$cn%(y) defined by Eq.~41! for cn50.

This functionKp(y) has been studied in the literature f
special cases. When the real part ofp is larger than 1, the
sum is absolutely convergent for allx. Restricting our atten-
tion to real exponents p, the series Kp(y5p)
52(n51

` @(21)n11/np#, which corresponds toy5(2l

11)p wherel is an arbitrary integer, is convergent for a
positivep to Kp(y5p)5(12212p)z(p) @40#, wherez(p) is
the Riemannz function. Obviously,Kp(y52p) is infinite
for p,1 and we show below thatKp(y→2p) has a power-
law singularity. Forp.1, Kp(y) can be expressed as
03614
-
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Kp~y!5
~2p!p

4G~p!
secS pp

2 D FzS 12p,
y

2p D2zS 12p,1

2
y

2p D G , ~A3!

wherez(s,n)5(k50
1` @n1k#2s is the generalized Riemannz

function @44#.
For p.0 and except for the special valuey50 modulus

2p, Kp(y) is finite and differentiable. To see this, let u
consider rational values ofy/2p5r /q with q>2, wherer /q
is the irreducible representation of the rationaly/2p. We can
rearrange the series in Eq.~A2! into q subseries as follows:

Kp~y!5ReS (
k51

`
1

~kq!p
1 (

k51

`
ei2p(q21)(r /q)

~kq21!p

1 (
k51

`
ei2p(q22)(r /q)

~kq22!p
1•••1 (

k51

`
ei2p2(r /q)

~kq2q12!p

1 (
k51

`
ei2p(r /q)

~kq2q11!pD 5Re(
j 51

q S (
k50

`
ei2p j (r /q)

~kq1 j !pD
5Re(

k50

` S (
j 51

q
ei2p j (r /q)

~kq1 j !pD . ~A4!

We expand

1/~kq1 j !p5~kq!2pF12
p

kq
j 1

p~p11!

2

j 2

~kq!2 1•••G
and get

Kp~y/2p5r /q!5Re(
k50

`
1

~kq!pS (
j 51

q

ei2p j (r /q)

2
p

kq(j 51

q

jei2p j (r /q)1
p~p11!

2~kq!2

3(
j 51

q

j 2ei2p j (r /q)1••• D . ~A5!

Calling wq the qth root of 1, i.e.,wq5ei2p/q, we have then
wq1wq

21•••1wq
q211wq

q5(12wq
q)/(12w)50. Hence,

the first sum( j 51
q ei2p j (r /q) in Eq. ~A5! is identically zero.

The other sums are nonzero and finite. We thus get

Kp~y/2p5r /q!5 (
k50

`
Ck~r ,q!

kp11
, ~A6!

where

Ck~r ,q!5
1

qp11
ReF (

j 51

q

ei2p j (r /q)S 2p j1
p~p11!

2~kq!
j 2

2
p~p11!~p12!

6~kq!2 j 31••• D G ~A7!

is bounded from above ask→1`. The expression~A6!
shows thatKp(y/2p5r /q) is finite for anyp.0. Now, since
2-17



a
y

q.
an

l

t

an

io

r-

n

rm

S. GLUZMAN AND D. SORNETTE PHYSICAL REVIEW E65 036142
rational numbers are dense among real numbers, i.e.,
irrational number can be approached arbitrarily close b
rational number, by the condition of continuity,Kp(y) is fi-
nite everywhere, except fory/2p5r /q with q51. Differen-
tiating the expression ~A2! gives the series
(n51

` (1/np21)sin(ny). By the same reasoning leading to E
~A6!, this derivative is bounded from above by a const
times (n51

` (1/np) that is convergent forp.1. This shows
that Kp(y) is differentiable forp.1, and thus Re@ f s(x)# is
differentiable for m.1/2. This approach is not powerfu
enough, however, to treat the casem,1/2.

APPENDIX B: FUNCTIONAL SHAPE OF THE
DENUMERABLE SET OF DISCRETE SINGULARITIES

RESULTING FROM THE ‘‘LOCALIZATION OF
SINGULARITIES’’

We now examine the special casey/2p5r /q with q51.
From the expression~A1!, the valuesxu , which are such tha
ln xu /ln g is an integer2u, i.e.,

xu51/gu, ~B1!

make all the cosine terms in the infinite sum in phase
equal to 1. Thus,

Gs~xu!5xm (
n5nr

`
1

nm1(1/2)
, ~B2!

which diverges form<1/2. At the border casem51/2, the
divergence is logarithmic. Similarly,dGs /dxux5xu

diverges

for m,3/2 as an additional power ofn is brought to each
term in the sum by taking the derivative. This and express
~B1! explain the graphs of Fig. 3.

The functional shapes of the spikes forx→xu can be de-
termined as follows. Forx→xu ,

cosS 2pn
ln x

ln g D5cosS 2pne

ln g D1O~e2!,

where e[(x2xu)/xu and O(e2) represents a term propo
tional to e2. Let us now construct and compareGs(e) and
Gs(le), wherel is an arbitrary number. Up to first order i
e, we have
h.

.

03614
ny
a

t

d

n

Gs~le!'xu
m (

n5nr

` cosS 2pnle

ln g D
nm11/2

. ~B3!

Posingn85Int(nl), Gs(le) can be rewritten

Gs~le!'xu
m (

n85Int[nrl]

`
lm1(1/2)

l

cosS 2pn8e

ln g D
n8m1(1/2)

5xu
mlm2(1/2) (

n85Int[nrl]

` cosS 2pn8e

ln g D
n8m1(1/2)

. ~B4!

Note the presence of the additional multiplicative te
lm1(1/2)/l in the sum of~B4!. The numeratorlm1(1/2) stems
from replacingn by n85Int(nl) in 1/nm1(1/2). The other
factor 1/l is the ‘‘Jacobian’’ of the change fromn to n8
5Int(nl). Expression~B4! can then be rewritten as

Gs~le!'lm2(1/2)Gs~e!1Hr~e!, ~B5!

where

H~e!5lm2(1/2) (
n5nr

Int[nrl] 21 cosS 2pn8e

ln g D
n8m1(1/2)

~B6!

is a regular function ofe. The singular part ofGs(e) is
solution ofGs(le)'lm2(1/2)Gs(e), i.e.,

Gs~e!;em2(1/2). ~B7!

This confirms that, for 0,m,1/2 ~panel a of Fig. 3!, the
spikes correspond to a divergence ofGs(x) asx→xu accord-
ing to Gs(x);1/ux2xuu(1/2)2m. For 1/2,m,3/2, Gs(x)
goes to a finite value asx→xu but with an infinite slope
~since 0,m2 1

2 ,1) according to Gs(x);constant2ux
2xuum2(1/2). The borderline casem51/2 can actually be
summed exactly asKp51(y)52 1

2 ln(2@12cosy#) @40#. When
y→0 modulo 2p, Kp51(y) diverges as ln(1/y) and thus
Gs(e) diverges asGs(e); lnuxu /(x2xu)u.
v.
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