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Numerical confirmation of late-time t¥2 growth in three-dimensional phase ordering
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Results for the late-time regime of phase ordering in three dimensions are reported, based on numerical
integration of the time-dependent Ginzburg-Landau equation with nonconserved order parameter at zero tem-
perature. For very large systems (7@t late timest=150, the characteristic length grows as a power law,
R(t)~t", with the measured in agreement with the theoretically expected resg#t1/2 to within statistical
errors. In this time regimB(t) is found to be in excellent agreement with the analytical result of Ohta, Jasnow,
and KawasakiPhys. Rev. Lett49, 1223 (1982]. At early times, good agreement is found between the
simulations and the linearized theory with corrections due to the lattice anisotropy.
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I. INTRODUCTION +1/R,(r,t)]/2, where 1R, and 1R, are the two principal
curvatures. The global characteristic lengit) can be iden-

Phase ordering and phase separation of materials, follovtified as proportional to the inverse of the averagiHfr,t)|
ing a rapid change in an intensive variable from a region obver the whole interface. It thus obeys the asymptotic equa-
the phase diagram where the system is uniform to one ition of motion,
which two or more phases coexist, are among the oldest and
most common methods of materials processing. A typical R(t)~1/R(t), 2
example is the temperature quenching performed by black-
smiths since antiquity, in which hot metal is suddenly cooledwhich yieldsn=1/2, independent of the spatial dimension.
by immersion in water. In fact, the metallurgical term This result was shown early on by Lifshitg], Chan[6], and
“gquenching” has become common in the literature on theAllen and Cahr{7], and it is often referred to as Lifschitz-
dynamics of phase transformations. Modern examples of thallen-Cahn dynamics. Physical realizations of this universal-
use of phase ordering as a processing technique include prigy class include phase ordering in anisotropic magpéts
cipitation strengthening in metalgl] and fabrication of alloys such as GyAu [8] and FgAl [9], liquid crystals
glasseg?2]. [10,11], and adsorbate systerfiE2].

As the domains of different phases evolve and grow after Since experimental complications due to other effects,
the quench, the dynamic scaling hypothesis states that theduch as strain fields and hydrodynamics, usually cannot be
behavior over a large range of length scales can be describedmpletely excluded, it is desirable to obtain numerical veri-
in terms of a single, time-dependent characteristic lengtHication in a cleanly defined three-dimensional model system.
R(t). For many phase-ordering processes, this characteristigven in two dimensions, direct numerical verification of the
length behaves as a power law for asymptotically late timesasymptotict*? growth through a direct estimate &(t) is

uncommon; examples are Refd2-15. A more common
R(t)~t", (1)  practice is to show consistency of numerical results with the
asymptotic growth, e.g., through Monte-Carlo renormaliza-
where the growth exponemt depends on thelynamic uni-  tion group technique§l6,17 or scaling of the correlation
versality class[3,4]. The simplest of these universality function [18] or structure factor[19]. However, to our
classes is comprised of systems with only local relaxationaknowledge only experimental verifications have so far been
dynamics and a nonconserved scalar order parameter, knowsported in three dimensiori$,11]. Until now, numerical
as “Model A” in the classification scheme of Hohenberg and verification has been prevented by the very large systems and
Halperin[3]. At late times the order parameter takes distinctiong simulation times needed to observe the asymptotic scal-
values in the two phases, which without loss of generalitying over a sufficient time interval to provide accurate mea-
can be taken as 1. The two phases are separated by a shargurements of. In this paper we present such unequivocal
interface, where the order parameter is near zero, and thenfirmation oft'? growth at late times in three-dimensional
local interface velocity is proportional to the local mean cur-numerical simulations of very large systems.
vatureH(r,t). In two dimensions this is simply the inverse ~ The remainder of this paper is organized as follows. In
of the local radius of curvatur®(r,t), while in three dimen-  Sec. Il we introduce the numerical model and discuss the
sions it is the arithmetic meanH(r,t)=[1/R.(r,t) numerical method used to integrate its time evolution. In
Sec. Il we discuss the time evolution at early times. In Sec.
IV we present the main numerical results of this paper: the
*Electronic address: browngrg@csit.fsu.edu growth of the characteristic length at late and intermediate
"Electronic address: rikvold@csit.fsu.edu times. A summary and conclusions are presented in Sec. V.
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I. MODEL AND NUMERICAL METHOD

A generic model for the nonconserved dynamics of Model
Ais given by the time-dependent Ginzburg-LandaDGL)
equation,

aprt)  SFLY(rY]

St +(ry), ®)

where the functional derivative corresponds to the determin-
istic relaxation associated with the free-energy functional
F (r,t)], and{(r,t) is a stochastic process that represents
thermal fluctuations. For the local part of the free-energy
functional we choose the Ginzburg-Landau-Wilson free en-

ergy [4]

Wo=1

10
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_ Y, <4 e 2 FIG. 1. Average magnitude of the local order parameter at early
FLp(r,0)] Jdr[ PR+ 2D+ 5V n)?,

2 times, (42(r,t)), averaged over space and trials, shown vs time on
(4)  alog-linear scale. The intial decrease at the earliest times is due to
diffusional relaxation on short length scales. The near-exponential

. L. N . increase that follows is due to the local relaxation towards one or
which has minima afy=*1, corresponding to the two de- e other of the degenerate valuggr,t)~=1. The solid curves

generate uniform phases. The problem can be cast into thige numerical solutions of the linear theory for the slightly aniso-
dimensionless form without loss of general[§9,20. The tropic Laplacian used here, while the dashed curves correspond to

nonequilibrium process associated with a system that ige fully isotropic analytical result, Eq8). The solid squares rep-
quenched to a temperature far below the critical temperaturgsent a 309 simulation with a very wide distribution of initial

is controlled by a zero-temperature fixed pdiit Thus, the  values,y,=1.
stochastic part of Eq3) can be ignored, and the equation of

motion becomes IIl. EARLY-TIME BEHAVIOR
JU(r 1) Immediately after the quench, the local order parameter
= (14 V) (r,t) — 3(r ). (5)  (r.t) is randomly distributed with values centered around
at 0. The initial response of the system is to form small regions

in local equilibrium, dominated by values nearl or —1.

The numerical integration of Eq5) with c=3/2 [21] was  This process is essentially completedtby10, as illustrated
performed using a finite-difference approach on cubic latin Fig. 1, which shows the time evolution qf y(r.t)) for
tices with periodic boundary conditions and $0BOF,  early times. For the initial condition used he¢g?*(r,0))
500%, and 708 points. Results for each system size were= ¥4/3 immediately after the quench, and it approaches unity
averaged over five integrations from different initial condi- at late times as the regions in local equilibrium come to
tions, except for the 3G0lattice, for which results were av- dominate the system.
eraged over 10 runs. The initial condition consisted of a ran- The initial relaxation away from the uncorrelated random
dom value ofy at each lattice point, with values chosen from state, towards a state dominated by regions in which the
a uniform distribution on[ —¢q,%,]. Unless otherwise order parameter everywhere has the same sign, is well de-
noted, ,=0.1 for results presented here. From this initial Scribed by the linearized version of E§) (corresponding to
configuration, the system was integrated using a first-orde? Cahn-Hilliard equation for nonconserved order parameter
Euler scheme witiAt=0.01. For early times,<10, we also  [24,25). The Fourier representation of the solution of this
tried At reduced by a factor of 5, which chang&gt) by  linear dynamical equation is
only about 2%. Approximate isotropy was ensured by using
a 19-point discretization of the Laplacian, analogous to the - N
nine-point discretization commonly used in two dimensions g(k,t)=(k,0)exef (1—ck?)t], (6)
[22,23.

The computational resources required for this numerical .
integration are large. The storage required for one array othere g(k,t) is the spatial Fourier transform of the order-
700% lattice sites is more than 2.5 Gbytes, and two suctParameter field. The progress of the phase ordering at early
arrays are required by the integration algorithm. Integratiorfimes can be quantified by*(r,t)), where( ) represents
of the 700 lattice over 1500 time units took 84 h on 15 averaging over space. By integratingk,t) /(—k,t) over
four-processor node040 CPU h on an IBM SP3 super- thek-space region associated with the finite system, the spa-
computer. tial average can be evaluated as
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(YA(r,0))
2 _ WY —ck?
W) =5 | expa-ckaon, @

100

whered is the spatial dimension, and the integration limits
are[ —,m] in each Cartesian coordinate. In deriving this
result, we used the fact that the uncorrelated initial condition
used here gives(k,0)i(—k,0)=(#?(r,0)), independent of

k. In Eq. (7) the expressiork?(k) takes into account the
anisotropy ofk? that results from the numerical implemen-
tation of the Laplacian. When no anisotropy exists, the inte-
gral in Eqg.(7) can be evaluated analytically to yield

erf(m+2ct)
2\2mct

This result is shown as dashed curves in Fig. 1. For the
Laplacian used in the simulations presented here, the anisot-
ropy in the squared magnitude of the wave vector is

10

d

(P(r,0))=(y*(r,0)e* : (8)

100 1000
FIG. 2. The characteristic lengkfrom Eq.(10), shown vs time

t, on a log-log scale. The dependenceR{t) on the system size
indicates that finite-size effects influence the late-time growth ex-

kz(k)=4— —| cosk, co &4_ COSky C0§ﬁ por_1ent. A Ieas_t-square:s_ f(the_ splid_ ling for the 708 _system,
3 2 2 which should display minimal finite-size effects for the times shown
K here, yields an exponent estimate rof0.511+0.01 for t=150.
+cosk, cosz?x _ (9) The dashed line is the predicté&qt) from Ref.[31], Eq. (11).

For the large simulations presented here, it was necessary
Using this expression fok?(k), Eq. (7) was evaluated nu- to use a computationally efficient estimate of the character-
merically using midpoint integration at $@Qniformly dis- istic lengthR(t). This was done by identifyin&(t) as pro-
tributed points. The results are presented as the solid curvemrtional to the inverse of the interfacial area per unit vol-
in Fig. 1, where good agreement is seen between the simume[29,30. The interface area was measured by counting
lations and the linear theory fas5. The initial decrease is the number of the nearest-neighbor lattice-site pairs having
due to the diffusional decay of high-wave-vector modes withvalues of the local order parameter with opposite signs. As a
k?(k)>c~L. During this brief period one can define a micro- result,
scopic diffusion length that increases with timet&$ [14].
The subsequent rapid increase is caused by the exponential
growth of the modes at smaller wave vectors. Similar time
dependence fofy?(r,t)) has been observed previously in
two-dimensional Simu|ation$l4]_ As w(r,t) approaches Here N is the number of lattice sites, the sum is over all
unity, the neglected cubic term in the TDGL equation be-nearest-neighbor pairs, and the Heaviside functojx]
comes important, and the linear approximation breaks dowrr 0 for x<0 and 1 otherwise. This definition ¢¥(t) ap-
as the order parameter saturates to its degenerate equilibriuphoximates the inverse derivative of the normalized two-
values inside the domains. point correlation functionC(r,t) =C(r/R(t)), in the small

To quantify the effects of the initial conditions on the limit. Details on the derivation of Eq10) are given in the

early-time behavior, results for one simulation wigg=1  Appendix. Direct comparison with the much more computa-
on a 308 system are also shown in Fig. 1. Even for this largetionally intensiveC(r,t) for a 315 system confirms this

value of ¢, the linear theory works reasonably well at the equality to within 4% fort=500. Corrections t&, related to
earliest times. unequal volumes of the degenerate phd2%3(, which

become important at very late times, do not affect the results
presented here and have been neglected. The measured val-
ues ofR are shown in Fig. 2 vs time on a log-log scale. The
The scaling ansatz associated with Ef) is not valid characteristic length clearly does not obey a single power
until a clear separation has been achieved between largéaw for all times. Itis only at the latest timelsz 150, that the
scale fluctuations representing domains in which the ordeasymptotic power-law regime is reached. Least-squares fit-
parameter takes values near its two degenerate equilibriuting of a power law to the 7G0data gives an exponent
values, and microscopic fluctuations of the local order pa9.511+0.01 for 156<t=<1500. This result is consistent with

-1

R= 2/<3N>“2j>®[—w<ri>w<r,->] ~-1. (10

IV. LATE AND INTERMEDIATE TIMES

rameter about these values within the domdi®®6-29.
While the early-time growth is completed byt 10, the sepa-

the expected valua=1/2.
A more sensitive test for true power-law behavior can be

ration of length scales is not complete until a significantlymade by measuring the instantaneous, effective growth ex-

later time, as is now shown.

ponent as a function of time. Here this is accomplished by
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FIG. 3. Estimate of the instantaneous effective growth exponent : "2 . , ,
vs the central time of the data used for the estimate. See text for FIG. 4. A Qr?ph"?a' test fot™* growth in the Iat_e-tlme regime.
details. Simple power-law growth with a constant exponent is seeﬂ-he onset of finite-size effects occurs at progressively later times as

only for t>150 for 708, the largest system considered here. Earlier"€ Systém size grows. For the 'if‘(lattice the finite-size effects are
times are clearly not associated with a constant exponent. unimportant for the times considered here. The straight line is a
least-squares fit to the 7®@ata fort=150, to the right of the large

. . N . . tick mark.
estimating the derivativel In R/dInt using three-point cen-

tral differencing. The results are presented in Fig. 3. DuringThe OJK theory is similarly successful for the two-

the early-time regime of near-exponential growth of di :
TV TTRrEe . imensional analog of the model presented here, where both
(#7(r.1)), the effective exponent foR(t) falls steeply the agreement between Eq$0) and (11) and the resulting

fiolrg nlf ar inz'tg %t vefrfy garly times to near 0'40, arfonmtrjl scaled form of the structure fact@he Fourier transform of
~10. Fort=20 the eftective exponent rises again for the o _noint correlation functiorare excellenf19].

systems larger than 180This steady increase of the effec- A aiterative method to obtain the specific interface area
tive exponent in the intermediate-time regime indicates th this system, is to consider the quantitA(t)

here, 100, the dynamics are not properly described by - (~(r 1)), which corresponds to the interface area
Eower law. T?e tqn|¥hsy%ar3. forfw?friStgeFexpt)ﬁnentl Otloe%ultiplied with an average interface thickness. Once the in-
ecome constant 1s the ice Tort= - rorinese faté o face thickness has converged to a time-independent value,

tlm_es the mean exponent is 0.510.01. The error on all A~ 1(t)=R(t) [23]. For times later than approximately 20,

estimates of the exponent reported here is the standard dg\:l increases as a power law withas shown in Fig. 5

viation of these data. Given the trends with system size ObLeast—squares fits to the simulation data for 486 1500

served in Figs. 2 and 3, finite-size effects are most Iikerresult in estimated exponents of 0.487.01. 0.48@ 0.01

affecting the late-time behavior in the other system sizesand 0.512-0.01 for thep30@) 500 énd 7.061 re.specti\./el)’/

consgjered here. _ . . - An average over the same interval of effective exponents for
Afinal test forn=1/2 at late times is presented in Fig. 4

. . . S " A~L(t), obtained by three-point differencing in a way analo-
whereR is plotted against/t. The straight line is the least- gous to those discussed above Rft), give an estimate of

squares fit of the 7G0data fort=150; it has a correlation 0.511+0.01 for the 708 system. These 780esults, in par-
coefficient of 0.999976. The effect of system size on thetié:ular a.re thus consistent wiﬂn.: 1/2 '

growth shows a clear trend, with progressively smaller sys-

tems departing from the common behavior at progressively

earlier times. V. SUMMARY AND CONCLUSIONS
It is informative to compare the present resultsRgt) to

the theoretical prediction of Ohta, Jasnow, and Kawasak'!h

(OJK) [31]. Defined such that the slope of the normalized

two-point correlation functionC(r,t) is —1/R(t) in the

small+ limit, the OJK result is

From the numerical data obtained in this study, we find
at the time evolution of the three-dimensional Model
system defined by Ed5) can be divided into four time re-
gimes. The time regimes and the evolution behavior in each
are summarized as follows.

(1) For very early times, before the order parameter has
(11) saturated to near its two degenerate equilibrium values inside
distinct domains, the time evolution is well described by the
linearized version of Eq(5), as seen in Fig. 1. During this

In Fig. 2, the OJK result appears as the dashed line, and ttetage, and untit~ 10, the effective exponent d®(t) falls

agreement with the simulation data at late times is excellensteeply from near unity to near 0.45, as seen in Fig. 3.

T 1
ROJK(t):E 4CTt
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100 . . . erly described by simple power laws. We also observe from
our data that, in disagreement with what is claimed in Ref.
[15], thet¥? growth in general is observed at timesforethe

final deviation of the average order parameter from zero.
This final loss of symmetry is a finite-size effect, and it oc-

Z._. curs only in the very-late-time regime.
:/\ In conclusion, we have presented the first unequivocal
= 10l Dmﬂd@ s i results confirmingt*? domain growth for integration of a
=t nl © 100 three-dimensional numerical instance of Modebescribing
v @ﬁ 5 300° phase ord_ering in a system with nonconserved order param-
[ eter. In this late-time regime af’> growth we found excel-
= a - 500° lent agreement between the observed characteristic length
a 3 and the analytic result of Ohta, Jasnow, and Kawapaikj.
a 700 In order to obtain these solid numerical results, very long
1h_mon® . . . simulations of very large systems were necessary.
1 10 100 1000
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constant in this regime: for the systems larger than®100

increases steadily back towards the vicinity of 0.5. Thus, the APPENDIX

groyvth pf the characteristic length in this intermediate—time In this Appendix we sketch the derivation of EG.0) for

regime is also clearly not well described by a simple powety,o characteristic lengtR(t) in terms of the total number of

law. . bonds between positive and negative nearest-neighfoy.
(3) For late times{ =150, and for the largest system stud- | 3 4.dimensional system with infinitely thin, randomly

led, 700, the effective exponent foR(t) [and also for  iented interfaces, the inverseerivative of the normalized
A~ *(t)] levels off to fluctuate near 0.5. A least-squares fit toorder—parameter correlation functi@(r,t) is [29,30
R(t) (Fig. 2 over a full decade, 158t=<1500, yields an

estimate of 0.51%0.01, while an average over the effective R(t)=(1— () VI/(Syy), (A1)
exponentgFig. 3 in the same interval yields 0.539.01.
The corresponding estimates #ar 1(t) are 0.512-0.01 and WhereV is the total system volume is the total interface
0.511+0.01, respectively. These estimates are all consister@irea, and the geometric factpy equals four times the ratio
with the theoretical expectation of=1/2. of the volume of a § —1)-dimensional sphere to the surface
(4) For somet> 1500 for the 708 system, and indeed for area of ad-dimensional sphere of the same radius. On a
much smaller times for the smaller systems, finite-size efd-dimensional hypercubic lattice of unit lattice constant, the
fects made observation df’? growth impossible. In this number of bonds broken by the surface ofi-dimensional
very-late-time regime, which is pushed out to later times forsphere of radiuRR equals 2i times the corresponding dis-
larger systemsR(t) becomes on the order of the system size crete approximation to the volume of d- 1)-dimensional
and the order parameter selects one or the other of its twephere of the same radius. The interface area per unit volume
degenerate values. In Fig. 2, and even more clearly in Fig. 4/V is, therefore, related to the total number of broken
it can be seen hovR(t) for progressively smaller systems bonds, which is given by the sum in EG.0) and here called
deviates from the asymptotic behavior at progressively earX, asS/V=2%/(Ndyy). The relative error in this estimate

lier times. comes from the discrete approximation to the
We emphasize that, although we see four different timgd— 1)-dimensional volume and 8 1/R.
regimes in the domain growth, it isnly in the late-stage The order-parameter dependent factor in Efl) is in-

Lifshitz-Allen-Cahn regime (158t=< 1500 for the 708 sys-  significantly different from unity for the times studied here,
tem) that true power-law growth is observed. While'veal and it is, therefore, ignored. Inserting the expressiorSief
least-squares fits to Fig. 2 indeed yield apparent exponents &t terms of%/N in Eq. (A1) and choosingi=3 yields the
early and intermediate times, similar to those recently pubfirst term in Eq.(10). The subtraction of unity is included to
lished by Fialkowskiet al.[15], those regimes angot prop-  makeR(t) vanish for the random initial condition.
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