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Global exponential stability of continuous-time interval neural networks
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This paper addresses global robust stability of a class of continuous-time interval neural networks that
contain time-invariant uncertain parameters with their values being unknown but bounded in given compact
sets. We first introduce the concept of diagonally constrained interval neural networks and present a necessary
and sufficient condition for global exponential stability of these interval neural networks irregardless of any
bounds of nondiagonal uncertain parameters in connection weight matrices. Then we extend the robust stability
result to general interval neural networks by giving a sufficient condition. Simulation results illustrate the
characteristics of the main results.
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[. INTRODUCTION nal) matrix of the network may be arbitrary negative definite
when the connection weight matrix belongs to the particular
In recent years, many neural networks have been devebetZ, or M,.

oped to solve various problems. In the design and hardware This paper first addresses the second case and derives a
implementation of neural networks, a common problem ishecessary and sufficient condition for global robust exponen-
that parameters acquired in neural networks are inaccuratéial stability of a class of continuous-time interval neural
To design neural networks, vital data such as the neurofetworks after introducing the concept of diagonally con-
ﬁring rate and Synaptic interconnection We|ghts usua”y neeétrained interval networks. Then we extend the result to more
to be measured, acquired, and processed by means of staineral cases. The remainder of this paper is organized as
tical estimation, which definitely leads to estimation errors.follows. Section Il describes some preliminaries. The main
Moreover, parameter fluctuation in neural network circuits isresults are stated in Sec. Ill and IV. lllustrative results can be
also unavoidable. In practice, we can actually obtain thdound in Sec. V. Finally, concluding remarks are made in
range of the vital data and the bounds of circuit parameter§ec. VI.
by engineering experience or from incomplete information.
This fact implies that a good neural network should have II. PRELIMINARIES
certain robustness. Otherwise, the neural network may not be ) . ) )
reliable in the practical applications. For example, when we Consider a typical continuous-time neural network model
apply an interval neural network having certain robustnes&s follows:
property to solve optimization problems, we do not need to

consider spurious suboptimal responses for each parameter x=—Dx+Wg(x)+u, x(0)=X,, (1)

value of the network, which is of great importance. There-

fore, besides asymptotic stability of neural networks, whichwhere x=(x;,x,,...X,)"eR" is the state vector,

has been studied by many researchésse, e.g., Refs. D=diagd;.,d,, ...,d,) e R"™" is a diagonal matrix with

[1-12]), robust stability of neural networks has also receiveddi>o,W:[wij] eR™" is a connection weight matrix,

wide attention(e.g., Refs[13-19). u=(u;,u,, ...u,) eR" is an input  vector,
Generally speaking, there are two cases of concern og(x)=[g;(x),g,(x), . . .,9,(x)]" is a vector-valued nonlin-

uncertain parameters. One case is that the bounds of uncefar activation function fronR" to R". In the following, let

tain parameters are constrained. For instance, Forti and Tegl. denote the class ofilobally Lipschitz continuous and

[2] and Yeet al. [13] viewed the uncertain parameters asmonotone nondecreasing activation functions; that is, there
perturbations and gave some testable criteria for robust Stayist /.= /. =0 such thatv 0 peR and 6+p
=l = y H

bility of continuous-time Hopfield neural networks. The con-

ditions show that the matrix norm of the perturbations should

be sufficiently small. Feng and Michgl5] established ro- o</
bust stability results for a class of discrete-time neural net- B
work model under small perturbations. In all these results,

robustness means that the neural network is not overly sen- Definiton 1 (Ref. [16]). An equilibrium x*
sitive to small perturbations. Recently, &frmatrix condi- = (X} x5, ... x})T of the neural networkl), which satis-
tion to guarantee robust stability for interval Hopfield neuralfies —Dx* + Wg(x*) +u=0, is said to be globally asymp-
networks was derived by Liao and Yi4]. The other case of totically stable if it is locally stable in the sense of Lyapunov
concern is that the bounds of uncertain parameters may b&nd globally attractive. The equilibriux’ is said to be glo-
arbitrarily large. In Refs[16—-19, the absolute stability re- bally exponentially stable if there exigt=1 and8>0 such
sults, are related to robust stability results to some degred¢hatV xoe R", the positive half trajectory(t) of the neural
indicate that the linear state self-feedback coefficidi@go-  network (1) satisfies

<9i(0)—9i(P)

</;, i=12,...n.
a_p /|1| 1121 n
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[[x(t) = x*||< u|[xo— x*||exp( — Bt), t=0. Obviously, to check if a diagonally constrained interval
network O,W,u)e2., we only need to check ifm;=0
Definition 2.Model (1) is a continuous-time interval neu- Whenc;;=0. According to Definition 5, the sé is divided
ral network (CTINN) if D and W are time invariant and into some subsets . by binary matrice<C. For fixed order
unknown but bounded in given compact sets; i.essd)  networks, since there are only a finite number of possible
— N binary matricesC the number of subsets, is also finite.
D andW in Definition 2 are also called interval matrices. Note that some subses, may not be disjoint. For example,

Let D, and W, be two prescribed compact sets to whigh i

andW are confined, respectively. It should be noted that an 1 0 1 0 1 1

interval network is actually a set of certain networks. cl:{ } czz[ } CSZ{ }
Definition 3.A CTINN (1) is called to be globally expo- 01 11 11

nentially stable if it has a unique equilibriurt and x* is

globally exponentially stable for any giveme R" and for thene, C2c,C 2o,

any given parameters belonging to the prescribed given com- !N the following, it will be shown that there are special
binary matricesC having the following property: every in-

$di$di 7Wij$Wij$Wij .

pact sets. ) .
Definition 4.Let ge GL. The CTINN (1) is called a di- ter\galll network D,W,u)eX. is globally exponentially
. I — . stable.
agonally constrained CTINN ILW,u) if wi<di//;.i Definition 6. Given an nxn binary matrix C=[c;;]

=1,2,...Nn.

It is noted that for a diagonally constrained interval neural
network (D,W,u) there is no restriction for nondiagonal en-
tries of W. In other words, only the bounds of self-feedback
terms inW are subject to constraints. Furthermore, the inputtio
vectoru is arbitrary.

For a certain neural network, to study the global
asymptotic stability of mode(l) by applying the Lyapunov
function method, we need to transform modBlinto a form

(wherec;;=1,j=1,...n). If detC=cq1Cy - - Cyn=1, then
the binary matrixC is said to satisfy diagonal determinant
condition.

Similarly, we also define the diagonal determinant condi-
n for any matrix M=[m;],x, satisfying deM
=my My, - - My, # 0. For example, all possible>33 binary
matrices satisfying diagonal determinant condition are
shown below,

where the origin is an equilibrium. Let* be an equilibrium 1 * *771 * *171 o0 oll1 O *
of model(1) andz=(z;,2,, . . . ,Z,) ' =X—X* be a new state . . . .
vector. Then, mode(l) can be expressed in terms nés 01 |0 1 0f, 1 04, 1 ,
0 0 1[0 * 21]|* * 1][0 0 1
z Dz+Wf(z), z(0)=z,, (2) ‘1.0 0171 * 0]
where f(2)=[f1(zy), ... .fn(z,)]1"=0(z+x*)—g(x*) *1 *],10 1 0f.
e gL andf(0)=0. Hence, If a CTINN(1) has at least one x 0 101* * 1
equilibrium for eachD e D, and We W,, then the robust ) T .
stability of CTINN (1) is equivalent to that of the interval However, the following matrix
neural network(2).
In the sequel, forxe R", let ||x| denote the Euclidean 110
vector norm; i.e.|x||=(x"x)*2 For a matrixAe R™", let 11 0
Mmin(A) [or X max{A)] denote the smallesbr largest eigen- 0 0 1
value of all the eigenvalues &f and let|A| denote the norm
of A induced by the Euclidean vector norm; iLe. yses not satisfy diagonal determinant condition.
IAll= VX maxATA). 1, is the nXn identity matrix. [PA]® Lemma 1.Given any binary matrixC=[c;;],x, Where
=(ATP+PA)/2. LetL=diag(/1,/>, ... /) and ci=1 foralli=1,...n. If there existc,;=1 (i#k) and
- cik=1 (j#k) for all 1<k=n, then deC#cCy;- - -Cpp.
MAW-DL ™1, ©) Proof. Consider the worst case: there only exists a non-
zero entry in theth row and thath column except foc;; for
whereL=diag(71,/ 5, - .. /). alli=1,... n. For convenience, these_ no_nzero entries may
Definition 5.An nxn matrix C=[c;;] is called to be a _be gxpressed b9, - - - Coi, whergj;ﬁj(] =1,...n)and
binary matrix if every entric;; of the matrix is either 0 or 1. 1k7is(k,s=1,....n, andk=s). Itis easy to see that there
Let S denote the set of all diagonally constrained interval€Xistscyi, - - -Cqj =1 in detC. Hence, de€+#cCyy- - - Cyp.
neural networks ,W,u) defined in Definition 4. Lets When there are other nonzero entriesOrbesides those

denote a subset of determined by the following rule: nonzero entries under the worst case above, it is trivial that
(D,W,u) €3 if M=C*M where * represents the Hadamard detC#cCy;- - - Cpp.

product operation ant/l =[ ;] is defined in Eq(3); i.e., Lemma 2 For any given binary matrix C
C*M=[c;;m;;]. A binary matrix is also called a pattern ma- =[cij]ané[cI e CI]T where n=2, if detC
trix in Refs.[20,21]. =Cq1- - - Chn=1, then there exists (1=<|=n) such that
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C|:(0,...,0,C||, 0,...,(». (4)

Proof. We prove Lemma 2 by mathematical induction.

Consider a X2 matrix C. Since de€C=c,C,,=1, we im-
mediately have eithec,,=0 or c,;=0 and consequently,
c1=(C11, 0) orc,=(0, cy9).

Assume that for anynXn binary matrix C satisfying
detC=cq;- - -¢c,,=1, there exists somé(l<I=<n) such
that Eq.(4) holds. Then we will show that for anyn(+1)
X(n+1) binary matrix C* satisfying deC™
=CyC11- - - Chn=1, there exists some" (0=<I"<n) such
thatc,,=(0, . ..,0¢;++,0, ...,0)whereC" is written by

+

Coo Co1 - Con Co
o I N Y I EY S e )
"

Cho Ch

First consider the first row and column &*. If ¢
=(Co0,0, . . .,0), then it is trivial that I"=0. If cg
=(Coo0, ...,0Y, then deC*=cyydetC=CyC11- - Cnpn-
By assumption forC, there exists somé (1<I=<n) such
that Eq. (4) holds. Hence, whenl™=I, ¢ =(0, ¢
=(0,...,0g,0,...,0).

PHYSICAL REVIEW E 65036133

de(—D+WL)E(—d1+W11/1)
X(—d2+W22/2)' . ‘(_dn+Wnn/n)-
)

Hence —D+ WL is nonsingular for anyD e D,,We W,,
and any/;e[/;,/;]. Hence, from Lemma 3 it follows that
any certain network @,W,u) has an unique equilibrium
whereD e D, andWe W, . Thus, we only need to discuss
global exponential stability of the transformed interval net-
work (2).

Next we first prove the following statement: there exists a
positive diagonal matriP =diag(p4,p2, - - - ,p,) such that

(-DL '+W)TP+P(-DL '+W)<0, (8)

VDeD, and YV We W, if the interval network D,W,u)
€ 3. and the binary matrixC satisfies diagonal determinant
condition. Considen=1. Since D,W,u) e 2. and the bi-
nary matrix C satisfies diagonal determinant condition, we
haveC=[1], D=[d], W=[w], andd>/w. In this case,
selectP=[1] that is positive definite, we can trivially guar-
antee that W—D//)P+P(W—-D//)<0 for any D e D,
andWe W, . Assume that the statement holds in the case of

Now we only need to consider the following case: theren. Then, we will show that the statement also holds in the

existcy=1 (i#0) andc;,=1 (j#0).
Similarly, in turn for allk=1,... n we only need to
consider the following cases: there exigt=1 (i #k) and

cﬁ(zl (j #k). Therefore, it follows from Lemma 1 that

detC*#cyC11---Chn,  Which  contradicts — deE™

=CooC11" " Cnn-

By mathematical induction, we have proved Lemma 2.

Ill. GLOBAL EXPONENTIAL STABILITY OF
DIAGONALLY CONSTRAINED CTINNS

case ofn+1. Let the interval network *,W*,u*) e,

and the binary matrixC* satisfy diagonal determinant con-
dition. Let

c1

Cr=[c;]=

N
Cht1

Since C* satisfies diagonal determinant condition, by
Lemma 2 there exists somé(1<I|*<n+1) such tha’cf+

In this section, we state a global exponential stability con-=(0, . .. ,Oc,iﬁ,o, - ,O)WherecliH: 1.

dition for diagonally constrained CTINNL). Whenge GL

Without a loss of generality, we assurhe=n+1; i.e.,

andg(0)=0, a necessary and sufficient condition for exis—cgﬂz(o, ... 0,1). From O, W*,ut) Ez;v we may de-

tence and uniqueness of equilibrium of Ef) was given in
Theorem 1 in Ref[5]. In fact, g(0)=0 is not necessarily

required. So,Theorem 1 in Ref5] can be restated as fol-

lows.

Lemma 3.Let L=diag(/1,/ 5, ...+« n) andgegL. A

certain neural networkl) has a unique equilibrium for any

given ue R" if and only if —D+WL is nonsingulary /;
el /il

Theorem 1.Let geGL. Every diagonally constrained

CTINN (D,W,u) in X is globally exponentially stable if

and only if the matrixC satisfies diagonal determinant con-

dition.

Proof (Sufficiency)Given any diagonally constrained in-
terval network D,W,u) e 3. whereC is assumed to satisfy

diagonal determinant condition. Then
d>/wy, =120, (6)

and

note

*

W w : ©
*
0---0 Wpignes

and D" =diag(D,d,.,;) where each * denotes an uncer-
tainty. We may also denote

*

C*= E

*

(10
0---0 1

where * is 0 or 1. Then in view thatD(*,W",u™) e3 [,
andC™ satisfies diagonal determinant condition we can see
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that (D,W,u)e>. and C above also satisfies diagonal-
determinanted condition. By assumption, there exists a posi-

tive diagonal matrix P such that 6Df‘1+W)TP
+P(—DL '+W)<0 for any De D, and WeW,. Let
L =diag(L,/n+1) and

P 0

Pt=
OT Pn+1

where 0 is a zero vector. Then

[—D*(f+)7l+W+]TP++P+[—D+(f+)7l+W+]
w(D,W,P) m(W*,P) 1
mW*,P)T 2p,4(=dny 1/ 0+ Wit net) )
(11

where  7(D,W,P)=(—DL *+W)TP+P(-DL " 1+W)
andm(W*,P)=P(*-..*)T. To guarantee that Eq11) is
negative definite for alD* e D, andW* e W, , we only
need to choose

dV(z)
dt

=[D 'z+(k/e)Pf(2)]'[-Dz+Wf(2)]

PHYSICAL REVIEW E65 036133

_ Im(w*,P)]|? _
max: — :
(_dn+l/n+l+wn+1 n+1)Amal 7(D,W,P)]

DYeD.,, W*eW}]. (12
This shows that the statement is true in the aasel.

By the above mathematical induction, we have proved the
statement.

Let D=diag(d;,d>, ...
Lyapunov function

d,). Consider the following

1 kO z;
V(Z):EZTQ712+;§1 pi fo fi(p)dp (13

with P as defined in Eq(8), any fixed numbee  (0,1), and
the constank defined by

max (D W)
We Wu

— =0.
4 min (\p{((P(DL"1=W)I})
DeD, ,WeW,

A

Computing the time derivative o¥(z) along the positive
half trajectory of Eq.(2) yields

=—-7'D 'Dz+2z'D Wf(z2)(k/le)f(z)TPDz+ (k/e)f(z) [PW]5(2)
<-7"2+2'D " 'Wf(z)(k/e)f(z2)TPDL " *(z)+ (ki) f(z) [ PW]Sf(z)
=—2"2+7'D"'WH(2)— (k/e)f(2) [P(DL~ 1= W)]%(2)

<-la+

o1l + 4o 1D WHIE| - (/o) () (PO - w) (2

<-l7*+

ell*+ %llg_lwllzllf(z)llz)(k/S)f(Z)T[P(Df_l—W)]sf(Z)

L max(ID WD)~ (e)
48WEWU -

<—(1-¢)|z*+

min  A\md[P(DL~2=W) 1) || f(2)]2

DeD, ,WeW,

=—(1-e)l22 a9

From Eq. (13) and Ospfi(p)</ip? (peR) for i

6;= max(d;) and
=1,2,...n it follows thatV ze R", i

1<i=n

1 1 k — (z
~Z'D z<V(z)<=Z2'D 1z+ -, pi/’if pdp
27— 2 — gi=1 0

S—s B 1 k
= 2(8)— max d—l+g

1<isn =

2;<m7b? (16)

(159  Then

=EZTD_12+£i P /iZ
2° = 2e &y oA
Let IZlI2/(28,)<V(z)=< 5,||z|*/2, ¥ zeR".
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Thus, from Eq.(14) we have and entriesv,, andw,, are interval entries. We easily check
that the above interval networlo(W,u) e X .
2(1-¢) In the following, by contradiction we will prove that the
dV(z)/dt=— 5—2V(z), VzeR" network @, W,u) is not globally asymptotically stable when
w1, andw,, are sufficiently large anev,, and w,, are se-
So, lected to be large enough.

Assume that the networkD(W,u) is globally asymptoti-

2(1—¢) cally stable no matter how large/;, and w,; are. From
V(z(t))sV(zo)ex;{ - Tt) , Vz5eR", V=0, Lemma 3 it follows that- D +WL= — D +W is nonsingular.
On the other hand, rewrite
which yields
-3 wp 0
1-¢
||z(t)||$\/5152|zo||ex;{—5—2t , Vz5eR", Vt=0. _D4+W= Wy —3 -+ 0
Hence, mode(2) is globally exponentially stable at the equi- 0 0 —1

librium z=0; that is, the diagonally constrained interval net-

work (D,W,u) in X, is globally exponentially stable at an _

exponential rate of at least (e)/5, with §,=6,(e) de- Whenw,=w,;=1/2, we may selectv;,=w,;=1/2. Then

fined in Eq.(16) wheree € (0,1) is any fixed number. det(—D+W) =0, which contradicts- D+ W being nonsin-
(Necessity)In order to prove the necessity of Theorem 1, gular.

we only need to equivalently prove the following. If a binary  For a diagonally constrained CTINND(W,u), if

matrix C=[c;;] does not satisfy diagonal determinant con-—DL 1+ W satisfies diagonal determinant condition, then

dition, then, not every interval networlo(W,u) e X is glo-  based on Theorem 1 the CTINND(W,u) is globally expo-

bally exponentially stable, or there must be an intervalhentially stable, regardless of the bounds of nondiagonal en-

network (D,W,u) e that is not globally exponentially tries of W for any given input vectou. Furthermore, since it

stable. is very easy to check if a matrix satisfies diagonal determi-
According to the definition of diagonal determin- nant condition, Theorem 1 gives a convenient way to ensure

ant condition, wherC does not satisfy diagonal determin- global exponential stability of an interval network. Theorem

ant  condition; ie., def#cy;---chp=1, then 1 is applicable for the diagonally constrained interval net-

there  must exist Cy;,,Cpi,, ... Cniy =1 Where ij(j  works. However, it is invalid for general interval networks.

=1,...n)e{l2,...n} and {c1i\Caiy - - - i}

U{C11,C22, - - - Cnn} #{C11,C22, - - - Crn}- IV. GLOBAL EXPONENTIAL STABILITY OF GENERAL
Without a loss of generality, assuntg,C»1C33Cas4° * - Cnn CTINNS

=1. Letge GL andL=1,. Now consider a diagonally con-

strained interval networkl,W,u) where For general CTINNg1), in this section we supply a result

of global exponential stability. For a matrix satisfying
diagonal-determinanted condition, there must exist some

;2 Wp 0 nondiagonal zero entries. Replace these zero entries by small
W 1.0 perturbations. Now we consider the following general inter-
D=I,,W= ‘21 2 . . (17)  val networks described by
o o0 .- 1 x=—Dx+(W+AW)g(x)+u, (18)

FIG. 1. Globally exponentially convergent
transient states; and x, in Example 1 with
Wy, =6 andu=(—3,3)".

x1
o

-2

-4

-6

15 20
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6

4

FIG. 2. Globally exponentially convergent

% 0
transient statex; and x, in Example 1 with

) w,=—6 andu=(—3,3)".

4

-6

0 5 10 15 20 15 20
t

whereAW=[Aw;;], the interval network,W,u) € % and [P(— DL 1+W+ AW)]S
C satisfies diagonal determinant condition. Since the bounds
of nondiagonal entries ofV may be arbitrarily large in this =[PAW]S+[P(-DL 1+W)]S
case, for simplicity, we make the following assumption: for _ <
i#], perturbationAw;; will be possibly encountered only <[PmallAW[G = min  (\ui((PMIP)]1,.
whenw;;=0. Similar to the definitions oD, and W, let DeDy WeW,
AW, be a prescribed compact set to whithV is confined. ——¢l,<0. (21)

In the remaining part of this section, we will focus on the
interval networkg(18) with another uncertainties; i.e., small ) . —
perturbations. Since the interval networ®,(V,u) e S, and  1hen () given any G<L<L, we have [P(W+AW

C satisfies diagonal determinant condition, it follows from —DL ™) ]S<[P(W+AW-DL"*)]5<0, which shows that
the proof of Theorem 1 that there exists a positive diagonaWV+AW-DL ™! is stable or nonsingular, and consequently

matrix P=diag(p1,p2, - - - ,pn)>0 such that ~D+(W+AW)L=(-DL™*+W+AW)L is nonsingular;
_ (i) given any O<L<L where there exists at least some
[P(—-DL *+W)]5<0, VDeD, and VWeW,. /i+»=0 (1<i*=n). Without a loss of generality, assume
(19) 0</;=/;,i=12,--,n—1, and /,=0. Partition
Next, we introduce the following result for general inter- D,L,W,AW as
val networks.
Theorem 2.The CTINN (18) is globally exponentially . D; O (L O Wi Wi
stable if 0 d,/ 0 7, Wo Wonl
8- min (\pin([PM]%)— pral AW >0,
DeD, WeW, m " ! B AW, AW,
(20 AW=1 AWy, Ay,

whereM andP are defined in Eq(3) and(19), respectively, o )
PrmaemMaxpy,pz, - . . Pa}, and Similar to case (i), we can deduce that-Dj+(Wy,

+AW, )L, is nonsingular. So,
IAWIF = max [[AW].
AWe AW,

—D+(W+AW)L=
( (Wnl+AWnl)Ll _dn

_D1+(W11+AW11)L1 0 :|
Proof. From Eq.(20) we have

6 8

FIG. 3. Globally exponentially convergent
0 transient stateg, andx, in Example 2 with an
input vectoru=(—3,3)" andx,=(6,—6)".

x1
x2

2

E -4

-4 -6
0 10 20 30 40 0 10 20 30 40
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is nonsingular. In view ofi) and (i), —D+(W+AW)L is
nonsingular for any DeD,,WeW,,AWeAW,, and
Y /,e[/;,/i]. Hence, given anyueR", according to
Lemma 3, any certain netwoi 8) has a unique equilibrium
x*. So the robust stability of the interval netwo(k8) is
equivalent to that of the transformed interval network

7=

—Dz+(W+AW)f(2), (22)

where f(2)=[f1(z1).f2(22). - - . Fn(zn) 1" =0(z+Xx*)
—g(x*) eGL,f(0)=0, and the equilibrium is the origin.

dVv(z)

dt

PHYSICAL REVIEW E 65 036133

Consider the Lyapunov functio¥(z) in Eq. (13) where
the constank is defined by

max  ([D"H(W+AW)|[?)

WeW, ,AWe AW,

4¢

k&

=0.

Computing the time derivative 0¥ (z) along the positive
half trajectory of Eq.(22) yields

[D~1z+ (kle)Pf(2)][—Dz+ (W+AW)f(2)]

=-2'D Dz+2'D Y W+AW)f(2)— (kle)f(z)TPDz+ (kle)f(2) [P(W+AW)]5(2)
<—7"z+72'D Y W+AW)f(2)— (k/e)f(2) TPDL ™ f(2)+ (k/e)f(2) [P(W+AW)]%(2)
=—2"2+2'D Y W+AW)f(2)+ (kle)f(2) [P(—DL~*+W+AW)]%(2)

<-2"z+2'D YW+ AW)f(2)— (kéle)|f(2)]|?  [from Eg. (21)]

<-llz*+

1
olaf?+ 1o ID W+ AW )| ket 22
1
<+ el gD W AWIFIH I - ket~ (1- )l

—+

max
4

Ewew, AWe AW,

k
(D~ W+ AW)|)- —f) It

—(1-#)llz%

Similar to the last part of the prog$ufficiency of Theorem
1, we can see that the interval netwad®) is globally ex-
ponentially stable.

For any given diagonally constrained CTINLN whereW
is replaced by\7vé[\7vij], properly decompose CTINNL) For a certain neural netwoid), there exist many criteria
into the interval network(18). If the interval network for connection weight matrices to ascertain global
(D,W,u) e 2. whereC satisfies diagonal determinant condi- asymptotic or exponential stability and absolue absolute

tion, then we can obtain a positive diagonal matFixas
defined in Eq(8) by Theorem 1. In this case, if the condition
(20) further holds, then CTINNZ1) is globally exponentially
stable.

12 13

x10 x10
15 25
2
10
18 FIG. 4. Divergent transient statgg andx, in
— o .
< x Example 2 with w,;=0.9Aw,,=0.41, andu
1 =(-3,3)".
] (-33)
0.5
0 0
0 100 200 300 0 100 200 300
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exponential stability (see, e.g., Refg17,18 for details. ponentially stable. Moreover there exists a positive diagonal
However, a characterization of any criteta@gebraic or oth- matrix P=diag(2,1) (consequentlypn.=2) such that[ P
erwisg would be a hard problem for a general neural net-(— p|. =1+ \W)]5<0, V |w,,|<0.9. A straightforward com-
work (see Ref[17]). In terms of computational complexity, putation can obtain

the characterization may well be not polynomial hard. For an

interval neural networkl) [including a set of certain neural min ()\min{[P(Df_l_W)]s}):0-2352-
networks(1)], Theorem 1 or Theorem 2 provides a simple |w,q<0.9

and effective method to ascertain global exponential stability. )
In view of Eqg. (20), we easily gefAw;,/<0.1176. Hence,

V. ILLUSTRATIVE EXAMPLES when|Aw;,/<0.117, Theorem 2 guarantees the interval net-
work is globally exponentially stable. To simulate, we select
Example 1Consider a two-neuron diagonally constrainedw,, (varying from —0.9 and 0.9 by step length of 0.3) and
CTINN (1) whereg;(8)=max(,0), i=1,2,D=I,, ueR?, Aw;, (varying from —0.117 and 0.117 by step length of
0.117). Figure 3 describes the transient stajeandx, with
LCERY a given common input vectar=(—3, 3)" and the initial
Wy Wop|' condition x,=(6, —6)". Figure 3 shows the global expo-
nential convergence of the states and x, of the interval
andw;;=W»,=0.5 are certain. We assume the uncertain panetwork. When the bound of perturbatianv,, is over large,
rameter|w,;|<w,,. Obviously,L=1, and the matrixM = Theorem 1 points out that the interval network is no longer

~DL *+W satisfies diagonal determinant condition. Ac- globally exponentially stable. For example, wha,
cording to Theorem 1, the interval network is globally expo-=0.9, AV\@E 0.41,u=(-3, 3)’, and the initial condition
nentially stable for any given input vectarno matter how Xo=(6,5)', Fig. 4 shows the divergent transient statesnd

large the boundv,,. To verify this point by simulation, we X2 Of the network.
use special selections aofandw,, (see Figs. 1 and)2We
choose 40 uniformly distributed random points in the set VI. CONCLUSIONS
[ —6,6] X[ —6,6] as the initial states of the positive half tra-
jectories of the neural network. It can be seen from Fig. 1 o
Fig. 2 that all the trajectories from these initial points expo-
nentially converge to a unique equilibrium. Figures 1 and
imply that this interval network is globally exponentially
stable.

Example 2. Consider the CTINN(18) where g;(6)
=max(,0),i=1,2,D=1I,, ueR?

05 0 \
W= Wy, 0.5’ w=

As Example 1, we can see that the matkik= -pL!
+ W satisfies the diagonal determinant condition. According This study was supported by the Hong Kong Research
to Theorem 1, the interval networlo(W,u) is globally ex-  Grants Council under Grant No. CUHK4150/97E.

In this paper, we study the global exponential stability of
'a class of continuous-time interval neural networks. Based
on diagonally constrained interval neural network, we estab-
ish a necessary and sufficient condition for global exponen-
tial stability of these interval networks. The condition is easy
to check. The bounds of nondiagonal uncertain parameters of
the connection weight matrix may be arbitrarily large. We
also extend the result to general interval networks. To dem-
onstrate the characteristics of the derived results, two specific

0 Aw . : .
12 ,and  |wy|<0.9. examples are discussed in detail.

0 0
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