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Influence of boundary conditions on statistical properties of ideal Bose-Einstein condensates
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We investigate the probability distribution that governs the number of ground-state particles in a partially
condensed ideal Bose gas confined to a cubic volume within the canonical ensemble. Imposing either periodic
or Dirichlet boundary conditions, we derive asymptotic expressions for all its cumulants. Whereas the conden-
sation temperature becomes independent of the boundary conditions in the large-system limit, as implied by
Weyl's theorem, the fluctuation of the number of condensate particles and all higher cumulants remain sensi-
tive to the boundary conditions even in that limit. The implications of these findings for weakly interacting
Bose gases are briefly discussed.
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When London, in 1938, wrote his now-famous papers orwith 8=1/(kgT), wherekg denotes Boltzmann’s constant.
Bose-Einstein condensation of an ideal §a2], he simply  Note that the product runs over the excited states only, ex-
considered a free system bf noninteracting Bose particles cjuding the ground state=0; the frequencies of the indi-
without an external trapping potential, imposing periodicy;qal oscillators being given by the excited-states energies
boundary conditions on a cubic volunve The rationale for . e ative to the ground-state leve}. Note further that the
so doing lies in Weyl's theorerfB]. In the thermodynamic o jivalence of a partially condensed ideal Bose gas and a
Sharmonic-oscillator system holds regardless of the precise

play any role. Yet, for any box size the half-sine single- ; . . i}
particle ground state in a box with hard walls is quite differ- form of the single-particle spectrum, SO that I does not mat
ter whether or not the trapping potential itself is harmonic.

ent from the plane-wave ground state in a box with periodic o o oo
P g b The only approximation entering into the derivation of the

boundary conditions, so that, intuitively, one expects some

influence of the boundary conditions on the physics of BoseS@nonical partition functioril) is a replacement of the ac-

Einstein condensation even in the large-system lithiat is, ~ tu@l, finite number of condensed particles by a condensate
for N—o and V—c, such that the densit)/V remains containing infinitely many particle$6]. For temperatures
constankt In this paper we will explain that, indeed, all su_ch that a sizeable fraction of the particles is Conden_sed,
“higher” statistical properties of an ideal, free Bose-Einsteinthis enlargement of the condensate does not appreciably
condensate, such as the fluctuat{@n5] of the number of change the thermal properties of the system. On the other
condensed particles, remain sensitive to the boundary condiand, assuming an inifinite supply of condensed particles
tions even in the large-system limit, even though the condenmeans excluding the onset of condensation from the analy-
sation temperature does not. We speculate, however, that théss; this onset can be treated by a different approach based on
unusual behavior constitutes a pathology of the ideal gas that master equatiof4,5]. In short, the validity of Eq(1) is

will be cured by interparticle interactions, although so far norestricted to the condensate regime. The same approximation

detailed proof for this surmise exists. ~had already been used by Fierz in 1936for computing the
Let us consider an ideal-particle Bose gas stored in fluctuation of an ideal Bose-Einstein condensate; it also un-
some trap with single-particle energies (v=0,1,2...;in  derlies the “Maxwell's demon ensemble” suggested by

general,v abbreviates a multi-indgxWe assume further that Navezet al. [8]. In a different guise, it has been utilized in
the setup conforms to the canonical ensemble, which meange canonical quasiparticle approach formulated by Ko-
that the trapped gas is kept in thermal contact with an extercharovsky, Kocharovsky, and Scull9,10].

nal heat bath of temperature The starting point of our Having stepped from the original trapped Bose gas to a
analysis is the recognition that for temperatures below théxarmonic-oscillator system, we now exploit the fact that
onset of Bose-Einstein condensation the canonical partitiothere exist powerful mathematical tools for evaluating
function 2(B) reduces, to excellent approximatify, to the  harmonic-oscillator sumgl1] in order to quantify the statis-
partition function of a system of infinitely marigdependent  tics of the ground-state occupation number of the partially

(i.e., Boltzmanniapharmonic oscillators, condensed Bose gas described by Hq. Specifically, we
o study the canonical probability distributigoy(Ney;B) for
Z(8)= H 1 1 finding N, of the N particles in an excited state at a given
(B) — o — : (NI
=1 1—exgd —B(e,—&g)] inverse temperaturg, so that the number of condensate par-

ticles isng=N—N,. This distribution is characterized by its
cumulantsk(8) [9,10. The first cumulantx,(B) is the
*Electronic address: holthaus@marvin.physik.uni-oldenburg.de canonical-ensemble expectation valé,,) of the number
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of excited particles, the second cumulan{8) corresponds Analytically continuing this functior§(t) [13,14], one finds

to the mean-square fluctuation of,, (thus equalling the that it possesses merely one simple pole, located at

fluctuation of the number of ground-state partigles;(3)

equals the third central moments(8); similarly, x4(8) t=3/2 with residue 7. (7)

= u4(B)—3k,(B)? [12]. The reason for focusing on the cu-

mulantsk,(3), rather than on the more familiar central mo- For k=1 this pole ofZ(,t) lies to the right of the pole of

mentsu(B), lies in the independence of the Boltzmannian{(t) att=1 [16], and, thus, dominates the temperature de-

oscillators: Thekth order cumulant of a sum of independent Pendence of the number of excited particles. Defining the

stochastic variables is given by the sum of the individualscaled temperature=kgT/(%(}), the canonical-ensemble

cumulants. expectation valug Ny = k1(B) of the number of excited
Without any further approximation, one can then derive aparticles then takes, for>1, the form

compact integral representation fag(3). Introducing the

generalized zeta function (Neo~m2(3/2) 7%+ S(1) 7, 8
* 1 with S(1)~ —8.914. This asymptotic expression, valid as
Z(BH=2, P (2)  long as(Ng)=<N (that is, in the condensate regimgields
=1 (Ble,~&ol) excellent agreement with exact numerical data even for
we find[6] merely moderately large particle numb¢6s.
In contrast, for all higher cumulantk=2, it is no longer
1 [totie the pole (7) of Z(B,t) that dominatesk,(B) in the

kdB)=5—| diD(OZ(BD(t+1-k). (3  asymptotic regime> 1, but rather the pole af(t+1—k) at
fo~ie t=Kk. Hence, to leading ordes, () becomes proportional to

Here,I'(t) and{(t) denote the gamma function and the Rie- 7
mann zeta function, respectively; the real numbghas to
be chosen such that the path of integration parallel to the
imaginary axis of the compleplane lies to the right of all
poles of the integrand. Note that the properties of the particu
lar trap (that is, the single-particle spectriynenter into
x(B) only throughZ(B,t), whereas the cumulant ordkiis
determined only by the argument of the Riemann zeta func
tion. The usefulness of this cumulant form@& stems from
the fact that there exist well-established techniqjuie® for
continuing the “spectral” zeta function&) analytically to e
the complex plane, so that simply collecting the residues at Z(B,t)=(BrQI4)S(1), (10)
the poles of the produdt(t)Z(B,t) {(t+1—k), taken from
right to left, results in a systematic asymptotic expansion o
the desired canonical cumulanig(B). The large-system o
limit is governed by the rightmost pole alof@]. 1) ' 1 (11)
We now apply these general findings to an ideal Bose gas ny.Ngng=1 (n§+ n§+ n§—3)"
of N particles with massnin a cubic volumeV=L3. Impos-
ing periodic boundary conditions on the wave functions, a
London did[1,2], and defining the frequency

ki B) ~ (k— 1)1 S(k) 7%+ 732 (5/2— k) 752, )

_In the next step we repeat this analysis for the case of
Dirichlet boundary conditions, that is, for an idédparticle
Bose gas stored in a cubic volurie= L3 with hard, impen-
etrable walls. This implies a nonzero ground-state energy
eg9=3n1/4, so that the corresponding generalized zeta func-
tion (2) becomes

ith a modified, inhomogeneous Epstein funct/dd,15

Sn contrast to the previous suff), S(t) comprises only the
first octant of triples i6;,n3,n3), excluding the ground state
(1,1,1). This function exhibits simple poles &

f(2m)?
0=—""10, 4
2mL? _ w7 37 3+3w
t=3/2,1, 1/2 with resuduesz,— B 8 (12
the spectral zeta functiof2) then acquires the form
Z(B.)=(BHEO)'S(1). 5 F_urther poles are Ipcated at n.egative half-integetth_e_
(B.)=(BrL) S ©) higher-order corrections stemming from these additional
Here, poles will be neglected here.
When evaluating the cumulant formuld) for k=1, one
+°°, 1 now encounters a double pole &t 1. This forces us to
S(t):nl,nz,n3:—oc (n2+n2+nd)t ®)  retain also the finite paid of S(t) att=1,
i i i ~ 3m/8
is a zeta function of the Epstein typ#4,15. The sum runs ()~ — L5 for t~1. (13)

over all eight octants of quantum numbers, (n,,n3); the t—1
prime indicating that the ground state with eneggy=0 has

to be excluded, in obeyance of the general prescript®hn  One then finds for the number of excited particles
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(N~ 72(312) 7~ [ (37/2)In(47) — 48] 7
+ (314 (1+ 7))\ L(12) 72
the higher k=2) cumulants become

ki B)~44(k—1)1'S(k) 7™+ 7327 (52— k) 732
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TABLE I. Numerical values of the Epstein sun®) and (11),
together with the ratidr(k).

(14

- ggg(z—k)ﬁu 2(14-77)\/;((3/2— k)72,

These results allow us to compare the canonical statistics

of an ideal condensate in a “periodic box” in detai

its Dirichlet counterpart. First we note th@le,) tends to be

lower in the case of hard walls than in the case of periodic _ _
amounts to only 86.5% of the corresponding fluctuation for

the case of periodic boundary conditions; fke3, the

boundary conditions, although both expressi8)sa
coincide to leading order in. The (logarithmig redu

(19

| to that of

k S(K) 455(k) 455(k)/S(K)
2 16.532 14.297 0.865
3 8.402 9.312 1.108
4 6.946 10.506 1.513
5 6.426 13.208 2.055
6 6.202 17.193 2.772
7 6.098 22.683 3.720
8 6.048 30.099 4.976
9 6.024 40.040 6.647
10 6.012 53.329 8.871

nd(14)
ction of

(Ngy reflects the fact that there are effectively fewer stateshard” cumulant exceeds the “periodic” one.

available in the hard box—when going from the hard to the The excited-particles distributiopy(Ney; 8) can be char-
periodic box by taking eight times the states falling into theacterized further by its skewnefk2],
first octant of quantum numbers{,n,,n3), the states with
one or two of then; equal to zero are still missing—while the

equality of the leading-order terms is in accordance with
Weyl's theorem on the spectrum of the Laplac[&). That

theorem states that the density of stgiég) becom

pendent of the particular boundary conditions when taking

terms of p(E) only if the rightmost pole in Eq(3)

es inde-

is pro-

S(B)=Ks(B) ka(B)*?

and the flatnesgl2]

F(B)=3+ ka(B) k2(B)?.

the large-system limit, so that also those quantities that argigure 2 shows exact, numerically compuf{d®] values of
determined byp(E) inherit this independence. In our case, —S(B) for a gas consisting oN=1000 ideal bosons, for
approaching the large-system limit means considering smalioth periodic and Dirichlet boundary conditioffsill lines),

), and hence large. A little reflection reveals that in the and compares these exact data to the approximations pro-
large-system limit a cumulank,(B8) can be expressed in vided by the asymptotic expressiof® and (15), respec-

17

(18)

tively (dashed lines [We choose to plot the negative of the

vided by Z(3,t), rather than by the Riemann zeta function. skewnesg17), as corresponding to the third central moment

As we have shown, this applies ka=1 only. Only

the first

{(Nng—(Ne))®y=—«k3(B) of the numbern, of condensate

cumulantxy() falls into the realm of Weyl's theorem; all particles] The crossover af/To~1 from the condensate
higher cumulants remain sensitive to the boundary condiregime to the high-temperature regime, where there is no
condensate, lies outside the scope of these asymptotic re-

tions even in the large-system limit.

The asymptotic(large 7) equality of k1(8)=(Ne,) for

sults, as a consequence of the fiction of an infinite supply of

periodic and Dirichlet boundary conditions results in an un-condensate particles that underlies the cumulant forig8)ja
ambiguous definition of the condensation temperaflige
obtained by settingN.,) =N. Keeping only the respective fect. It is interesting to note that in both cases the negative
skewness stays well below the Gaussian vatug(3)=0,

leading-order term, both Eqé3) and (14) give

_hQ( N )2/3_(2’7Th)2( N 2/3
0" mkg | (3/2)) T 2mwmkg vg(s/z)) '

(16)

This expression agrees with the familiar textbook refLiff

that is usually derived within the grand canonical ensemble,

instead of the canonical ensemble employed here.

In contrast, folk=2 the cumulants,(,8), compu

ted with

the convenient periodic boundary conditions, differ from
their hard-wall counterparts even in the large-system limit.
Comparison of Eq99) and(15) shows that the difference is

quantified by the temperature-independent
=4%5(k)/S(k). Some numerical values of the Ep

rafRgk)

stein sums

are listed in Table I; the rati®k(k) is depicted in Fig. 1.

Thus, the canonical mean-square fluctuatiosfg)

of the

10

but in the condensate regime the agreement is close to per-

ratio R(k)
[8)]

5
cumulant order k

FIG. 1. RatioR(k) of the canonical cumulang,(3) for an ideal

number of condensate particles in a box with hard wallsefer to the large-system limit.
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Bose gas enclosed in a cubic container with hard walls to the same
cumulant as obtained with periodic boundary conditions. These data
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2.0 been shown that in this case the condensate fluctuations are
reduced by a factor of 2 as compared with the ideal gas, as a
consequence of the pairwise Bogoliubov coupling between

w
(2] N i
2 00 single-particle states with wave vectoksand —k. When
E, [ Dirichlet boundary conditions are imposed, the gas becomes
@ inhomogeneous, and the particle field operagér) should
be decomposed according to
%0 05 1.0 15

T/T,
N=¢((r)+> (U(Naej+ov¥(Nal), 19
FIG. 2. Exact, numerically computed skewnes$ of the dis- Y(r)=a(r) 2 Ui e +of(ne;) (19
tribution py(Ne,B) for a gas withN= 1000 ideal bosons in a cubic

volume with periodic or Dirichlet boundary conditioffsill lines, in Whereng(F) :<¢(F)> is the order parameter, and the opera-

the Dirichlet case the crossover to the condensate regime occurs af t i Mot .
rs «; (a;) create(annihilate the elementary excitations;
slightly higher temperaturgscompared to the asymptotic approxi- ! ( J) ( 0 y

mations (9) and (15) (dashed linés Note that in both cases the the functionsu;(r) andv;(r) are subject to the normalization
skewness differs sizeably from the Gaussian vat@=0. (Peri-  condition
odic, —S— —0.2500; Dirichlet,— S— —0.3445.) This is no finite-
size effect.

) _ _ [ #rquor-lp-1. @
and that the skewness for the Dirichlet box is substantially
different from that for the periodic one. This is no finite-size The number of particles “out of the condensate” then is de-
effect. As can be inferred from Table I, in the Iarge—sy:stemtermined by[19]p
limit —S(B) approaches the constant value0.2500 in
the periodic case, but-0.3445 under Dirichlet boundary
conditions.

Figure 3 displays the corresponding data for the flatness. Nex:j Rr @ (N —d* ()W) —p(r), (21
Again, in the condensate regime there is a sizeable difference
between the two cases: Periodic bounday conditions lead to o ) N
F(B)~3.1525 in the large-system limit, Dirichlet ones to @1d, thus, is linked directly to the order paramefr).
F(8)~3.3084. Thus, in either case the fluctuations of theWhe” the mterpart!cle interaction is characterlze_d by a posi-
number of condensate particles for an ideal Bose gas in a bd¥/€ Swave scattering lengthsc and the volumev is suffi-
are essentially non-Gaussian, even in the large-system limf€ntly large, the order parameter tends to a constant function
[9,10]. This is different from the behavior of an ideal Bose N the interior of V, thus resembling the constant density

gas in a harmonic-oscillator trap, where skewness and fla@Ssociated with the “periodic” single-particle ground state,
ness approach the Gaussian valBesd andF=3. except within distances of the order of the healing length

The question then arises to which extent this remarkable
sensitivity to the boundary conditions exhibited by the ideal
Bose gas is shared by a gas with weak interaction among the
particles. For an interacting, homogeneous gas with periodic ) -
boundary conditions, the condensate fluctuati@s2Q and ~ Tom the boundaries, wheré(r) smoothly approaches zero

all higher cumulant§9,10] have already been evaluated with [21]- Therefore, it is to be expected that the condensate fluc-
the help of standard Bogoliubov theory. In particular, it hastuations and the higher cumulants for an interacting gas in a
box with Dirichlet boundary conditions and linear extension

L do approach the “periodic” result whelh>/", or

/= (8maN/V) 1?2 (22)

10.0
w0 aSC
2 87N—>1, 23
qc) 6.0 ™ L ( )
8
so that the above findings for the ideal gas would have to be
DV regarded as a pathology of the noninteracting system. How-
2.0 ever, at the moment this surmise should be taken as an edu-
0.0 05 1.0 15 o e
T/T cated guess only; in view of the principal importance of the
0

condensate fluctuations—after all, these fluctuations deter-
FIG. 3. As Fig. 2, now for the flatness. In both cases, the Mine the “line width of an atom laser[22], or, more gen-
flatness stays well above the Gaussian v&lee3 in the condensate  erally, the coherence properties of Bose-Einstein condensates
regime(periodic, F— 3.1525; Dirichlet,F —3.3084). Again, thisis  at finite temperature$23,24—an analytical proof is re-
no finite-size effect. quired.
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It should also be noted that it might be possible to violateSuch very weaklyinteracting Bose condensates, which fall
the condition(23) experimentally, either by working with into the regime between the ideal gas and the Bogoliubov
spin-polarized hydrogen that features an unusually smalyjas, should exhibit particularly interesting statistical proper-
triplet scattering lengt25], or by tuning the scattering ties, and remain at least partly susceptible to boundary
length close to zero by means of a Feshbach resorf@6fe effects.
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