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Influence of boundary conditions on statistical properties of ideal Bose-Einstein condensates
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We investigate the probability distribution that governs the number of ground-state particles in a partially
condensed ideal Bose gas confined to a cubic volume within the canonical ensemble. Imposing either periodic
or Dirichlet boundary conditions, we derive asymptotic expressions for all its cumulants. Whereas the conden-
sation temperature becomes independent of the boundary conditions in the large-system limit, as implied by
Weyl’s theorem, the fluctuation of the number of condensate particles and all higher cumulants remain sensi-
tive to the boundary conditions even in that limit. The implications of these findings for weakly interacting
Bose gases are briefly discussed.
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When London, in 1938, wrote his now-famous papers
Bose-Einstein condensation of an ideal gas@1,2#, he simply
considered a free system ofN noninteracting Bose particle
without an external trapping potential, imposing period
boundary conditions on a cubic volumeV. The rationale for
so doing lies in Weyl’s theorem@3#. In the thermodynamic
limit the particular boundary conditions are not supposed
play any role. Yet, for any box size the half-sine sing
particle ground state in a box with hard walls is quite diffe
ent from the plane-wave ground state in a box with perio
boundary conditions, so that, intuitively, one expects so
influence of the boundary conditions on the physics of Bo
Einstein condensation even in the large-system limit~that is,
for N→` and V→`, such that the densityN/V remains
constant!. In this paper we will explain that, indeed, a
‘‘higher’’ statistical properties of an ideal, free Bose-Einste
condensate, such as the fluctuation@4,5# of the number of
condensed particles, remain sensitive to the boundary co
tions even in the large-system limit, even though the cond
sation temperature does not. We speculate, however, tha
unusual behavior constitutes a pathology of the ideal gas
will be cured by interparticle interactions, although so far
detailed proof for this surmise exists.

Let us consider an ideal,N-particle Bose gas stored i
some trap with single-particle energies«n (n50,1,2, . . . ; in
general,n abbreviates a multi-index!. We assume further tha
the setup conforms to the canonical ensemble, which me
that the trapped gas is kept in thermal contact with an ex
nal heat bath of temperatureT. The starting point of our
analysis is the recognition that for temperatures below
onset of Bose-Einstein condensation the canonical parti
functionZ(b) reduces, to excellent approximation@6#, to the
partition function of a system of infinitely manyindependent
~i.e., Boltzmannian! harmonic oscillators,

Z~b!5 )
n51

`
1

12exp@2b~«n2«0!#
, ~1!
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with b51/(kBT), wherekB denotes Boltzmann’s constan
Note that the product runs over the excited states only,
cluding the ground staten50; the frequencies of the indi
vidual oscillators being given by the excited-states energ
«n relative to the ground-state level«0. Note further that the
equivalence of a partially condensed ideal Bose gas an
harmonic-oscillator system holds regardless of the pre
form of the single-particle spectrum, so that it does not m
ter whether or not the trapping potential itself is harmoni

The only approximation entering into the derivation of t
canonical partition function~1! is a replacement of the ac
tual, finite number of condensed particles by a condens
containing infinitely many particles@6#. For temperatures
such that a sizeable fraction of the particles is condens
this enlargement of the condensate does not appreci
change the thermal properties of the system. On the o
hand, assuming an inifinite supply of condensed partic
means excluding the onset of condensation from the an
sis; this onset can be treated by a different approach base
a master equation@4,5#. In short, the validity of Eq.~1! is
restricted to the condensate regime. The same approxima
had already been used by Fierz in 1956@7# for computing the
fluctuation of an ideal Bose-Einstein condensate; it also
derlies the ‘‘Maxwell’s demon ensemble’’ suggested
Navezet al. @8#. In a different guise, it has been utilized i
the canonical quasiparticle approach formulated by K
charovsky, Kocharovsky, and Scully@9,10#.

Having stepped from the original trapped Bose gas t
harmonic-oscillator system, we now exploit the fact th
there exist powerful mathematical tools for evaluati
harmonic-oscillator sums@11# in order to quantify the statis
tics of the ground-state occupation number of the partia
condensed Bose gas described by Eq.~1!. Specifically, we
study the canonical probability distributionpN(Nex;b) for
finding Nex of the N particles in an excited state at a give
inverse temperatureb, so that the number of condensate p
ticles isn05N2Nex. This distribution is characterized by it
cumulantskk(b) @9,10#. The first cumulantk1(b) is the
canonical-ensemble expectation value^Nex& of the number
©2002 The American Physical Society29-1
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HOLTHAUS, KAPALE, AND SCULLY PHYSICAL REVIEW E 65 036129
of excited particles, the second cumulantk2(b) corresponds
to the mean-square fluctuation ofNex ~thus equalling the
fluctuation of the number of ground-state particles!, k3(b)
equals the third central momentm3(b); similarly, k4(b)
5m4(b)23k2(b)2 @12#. The reason for focusing on the cu
mulantskk(b), rather than on the more familiar central m
mentsmk(b), lies in the independence of the Boltzmanni
oscillators: Thekth order cumulant of a sum of independe
stochastic variables is given by the sum of the individ
cumulants.

Without any further approximation, one can then deriv
compact integral representation forkk(b). Introducing the
generalized zeta function

Z~b,t ![ (
n51

`
1

~b@«n2«0# ! t
, ~2!

we find @6#

kk~b!5
1

2p i Et02 i`

t01 i`

dtG~ t !Z~b,t !z~ t112k!. ~3!

Here,G(t) andz(t) denote the gamma function and the R
mann zeta function, respectively; the real numbert0 has to
be chosen such that the path of integration parallel to
imaginary axis of the complext plane lies to the right of all
poles of the integrand. Note that the properties of the part
lar trap ~that is, the single-particle spectrum! enter into
kk(b) only throughZ(b,t), whereas the cumulant orderk is
determined only by the argument of the Riemann zeta fu
tion. The usefulness of this cumulant formula~3! stems from
the fact that there exist well-established techniques@13# for
continuing the ‘‘spectral’’ zeta functions~2! analytically to
the complext plane, so that simply collecting the residues
the poles of the productG(t)Z(b,t)z(t112k), taken from
right to left, results in a systematic asymptotic expansion
the desired canonical cumulantskk(b). The large-system
limit is governed by the rightmost pole alone@6#.

We now apply these general findings to an ideal Bose
of N particles with massm in a cubic volumeV5L3. Impos-
ing periodic boundary conditions on the wave functions,
London did@1,2#, and defining the frequency

V[
\~2p!2

2mL2
, ~4!

the spectral zeta function~2! then acquires the form

Z~b,t !5~b\V!2tS~ t !. ~5!

Here,

S~ t ![ (
n1 ,n2 ,n352`

1`

8
1

~n1
21n2

21n3
2! t

~6!

is a zeta function of the Epstein type@14,15#. The sum runs
over all eight octants of quantum numbers (n1 ,n2 ,n3); the
prime indicating that the ground state with energy«050 has
to be excluded, in obeyance of the general prescription~2!.
03612
l

a

e

u-

c-

t

f

s

s

Analytically continuing this functionS(t) @13,14#, one finds
that it possesses merely one simple pole, located at

t53/2 with residue 2p. ~7!

For k51 this pole ofZ(b,t) lies to the right of the pole of
z(t) at t51 @16#, and, thus, dominates the temperature d
pendence of the number of excited particles. Defining
scaled temperaturet[kBT/(\V), the canonical-ensembl
expectation valuê Nex&5k1(b) of the number of excited
particles then takes, fort@1, the form

^Nex&;p3/2z~3/2!t3/21S~1!t, ~8!

with S(1)'28.914. This asymptotic expression, valid
long as^Nex&<N ~that is, in the condensate regime!, yields
excellent agreement with exact numerical data even
merely moderately large particle numbers@6#.

In contrast, for all higher cumulants,k>2, it is no longer
the pole ~7! of Z(b,t) that dominateskk(b) in the
asymptotic regimet@1, but rather the pole ofz(t112k) at
t5k. Hence, to leading orderkk(b) becomes proportional to
tk:

kk~b!;~k21!!S~k!tk1p3/2z~5/22k!t3/2. ~9!

In the next step we repeat this analysis for the case
Dirichlet boundary conditions, that is, for an idealN-particle
Bose gas stored in a cubic volumeV5L3 with hard, impen-
etrable walls. This implies a nonzero ground-state ene
«053\V/4, so that the corresponding generalized zeta fu
tion ~2! becomes

Z~b,t !5~b\V/4!2tS̃~ t !, ~10!

with a modified, inhomogeneous Epstein function@14,15#

S̃~ t ![ (
n1 ,n2 ,n351

`

8
1

~n1
21n2

21n3
223! t

. ~11!

In contrast to the previous sum~6!, S̃(t) comprises only the
first octant of triples (n1 ,n2 ,n3), excluding the ground state
(1,1,1). This function exhibits simple poles at@6#

t53/2, 1, 1/2 with residues
p

4
,2

3p

8
,
313p

8
. ~12!

Further poles are located at negative half-integert; the
higher-order corrections stemming from these additio
poles will be neglected here.

When evaluating the cumulant formula~3! for k51, one
now encounters a double pole att51. This forces us to
retain also the finite partd of S̃(t) at t51,

S̃~ t !'2
3p/8

t21
1d for t'1. ~13!

One then finds for the number of excited particles
9-2
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INFLUENCE OF BOUNDARY CONDITIONS ON . . . PHYSICAL REVIEW E65 036129
^Nex&;p3/2z~3/2!t3/22@~3p/2!ln~4t!24d#t

1~3/4!~11p!Ap z~1/2!t1/2; ~14!

the higher (k>2) cumulants become

kk~b!;4k~k21!! S̃~k!tk1p3/2z~5/22k!t3/2

2
3p

2
z~22k!t1

3

4
~11p!Ap z~3/22k!t1/2.

~15!

These results allow us to compare the canonical statis
of an ideal condensate in a ‘‘periodic box’’ in detail to that
its Dirichlet counterpart. First we note that^Nex& tends to be
lower in the case of hard walls than in the case of perio
boundary conditions, although both expressions~8! and~14!
coincide to leading order int. The~logarithmic! reduction of
^Nex& reflects the fact that there are effectively fewer sta
available in the hard box—when going from the hard to
periodic box by taking eight times the states falling into t
first octant of quantum numbers (n1 ,n2 ,n3), the states with
one or two of theni equal to zero are still missing—while th
equality of the leading-order terms is in accordance w
Weyl’s theorem on the spectrum of the Laplacian@3#. That
theorem states that the density of statesr(E) becomes inde-
pendent of the particular boundary conditions when tak
the large-system limit, so that also those quantities that
determined byr(E) inherit this independence. In our cas
approaching the large-system limit means considering sm
V, and hence larget. A little reflection reveals that in the
large-system limit a cumulantkk(b) can be expressed i
terms ofr(E) only if the rightmost pole in Eq.~3! is pro-
vided byZ(b,t), rather than by the Riemann zeta functio
As we have shown, this applies tok51 only. Only the first
cumulantk1(b) falls into the realm of Weyl’s theorem; a
higher cumulants remain sensitive to the boundary con
tions even in the large-system limit.

The asymptotic~large t) equality of k1(b)5^Nex& for
periodic and Dirichlet boundary conditions results in an u
ambiguous definition of the condensation temperatureT0,
obtained by settinĝNex&5N. Keeping only the respective
leading-order term, both Eqs.~8! and ~14! give

T05
\V

pkB
S N

z~3/2! D
2/3

5
~2p\!2

2pmkB
S N

Vz~3/2! D
2/3

. ~16!

This expression agrees with the familiar textbook result@17#
that is usually derived within the grand canonical ensem
instead of the canonical ensemble employed here.

In contrast, fork>2 the cumulantskk(b), computed with
the convenient periodic boundary conditions, differ fro
their hard-wall counterparts even in the large-system lim
Comparison of Eqs.~9! and~15! shows that the difference i
quantified by the temperature-independent ratioR(k)
[4kS̃(k)/S(k). Some numerical values of the Epstein su
are listed in Table I; the ratioR(k) is depicted in Fig. 1.
Thus, the canonical mean-square fluctuationk2(b) of the
number of condensate particles in a box with hard wa
03612
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amounts to only 86.5% of the corresponding fluctuation
the case of periodic boundary conditions; fork>3, the
‘‘hard’’ cumulant exceeds the ‘‘periodic’’ one.

The excited-particles distributionpN(Nex;b) can be char-
acterized further by its skewness@12#,

S~b!5k3~b!/k2~b!3/2 ~17!

and the flatness@12#

F~b!531k4~b!/k2~b!2. ~18!

Figure 2 shows exact, numerically computed@18# values of
2S(b) for a gas consisting ofN51000 ideal bosons, for
both periodic and Dirichlet boundary conditions~full lines!,
and compares these exact data to the approximations
vided by the asymptotic expressions~9! and ~15!, respec-
tively ~dashed lines!. @We choose to plot the negative of th
skewness~17!, as corresponding to the third central mome
Š(n02^n0&)

3
‹52k3(b) of the numbern0 of condensate

particles.# The crossover atT/T0'1 from the condensate
regime to the high-temperature regime, where there is
condensate, lies outside the scope of these asymptotic
sults, as a consequence of the fiction of an infinite supply
condensate particles that underlies the cumulant formula~3!,
but in the condensate regime the agreement is close to
fect. It is interesting to note that in both cases the nega
skewness stays well below the Gaussian value2S(b)[0,

TABLE I. Numerical values of the Epstein sums~6! and ~11!,
together with the ratioR(k).

k S(k) 4kS̃(k) 4kS̃(k)/S(k)

2 16.532 14.297 0.865
3 8.402 9.312 1.108
4 6.946 10.506 1.513
5 6.426 13.208 2.055
6 6.202 17.193 2.772
7 6.098 22.683 3.720
8 6.048 30.099 4.976
9 6.024 40.040 6.647
10 6.012 53.329 8.871

FIG. 1. RatioR(k) of the canonical cumulantkk(b) for an ideal
Bose gas enclosed in a cubic container with hard walls to the s
cumulant as obtained with periodic boundary conditions. These
refer to the large-system limit.
9-3
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HOLTHAUS, KAPALE, AND SCULLY PHYSICAL REVIEW E 65 036129
and that the skewness for the Dirichlet box is substanti
different from that for the periodic one. This is no finite-si
effect. As can be inferred from Table I, in the large-syst
limit 2S(b) approaches the constant value20.2500 in
the periodic case, but20.3445 under Dirichlet boundar
conditions.

Figure 3 displays the corresponding data for the flatne
Again, in the condensate regime there is a sizeable differe
between the two cases: Periodic bounday conditions lea
F(b)'3.1525 in the large-system limit, Dirichlet ones
F(b)'3.3084. Thus, in either case the fluctuations of
number of condensate particles for an ideal Bose gas in a
are essentially non-Gaussian, even in the large-system
@9,10#. This is different from the behavior of an ideal Bos
gas in a harmonic-oscillator trap, where skewness and
ness approach the Gaussian valuesS50 andF53.

The question then arises to which extent this remarka
sensitivity to the boundary conditions exhibited by the id
Bose gas is shared by a gas with weak interaction among
particles. For an interacting, homogeneous gas with perio
boundary conditions, the condensate fluctuations@19,20# and
all higher cumulants@9,10# have already been evaluated wi
the help of standard Bogoliubov theory. In particular, it h

FIG. 2. Exact, numerically computed skewness2S of the dis-
tribution pN(Nexb) for a gas withN51000 ideal bosons in a cubi
volume with periodic or Dirichlet boundary conditions~full lines, in
the Dirichlet case the crossover to the condensate regime occu
slightly higher temperatures!, compared to the asymptotic approx
mations ~9! and ~15! ~dashed lines!. Note that in both cases th
skewness differs sizeably from the Gaussian value2S50. ~Peri-
odic, 2S→20.2500; Dirichlet,2S→20.3445.) This is no finite-
size effect.

FIG. 3. As Fig. 2, now for the flatnessF. In both cases, the
flatness stays well above the Gaussian valueF53 in the condensate
regime~periodic,F→3.1525; Dirichlet,F→3.3084). Again, this is
no finite-size effect.
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been shown that in this case the condensate fluctuations
reduced by a factor of 2 as compared with the ideal gas,
consequence of the pairwise Bogoliubov coupling betwe
single-particle states with wave vectorskW and 2kW . When
Dirichlet boundary conditions are imposed, the gas becom
inhomogeneous, and the particle field operatorc(rW) should
be decomposed according to

c~rW !5f~rW !1(
j

„uj~rW !a j1v j* ~rW !a j
†
…, ~19!

wheref(rW)5^c(rW)& is the order parameter, and the oper
tors a j

† (a j ) create~annihilate! the elementary excitations

the functionsuj (rW) andv j (rW) are subject to the normalizatio
condition

E d3r „uuj~rW !u22uv j~rW !u2…51. ~20!

The number of particles ‘‘out of the condensate’’ then is d
termined by@19#

Nex5E d3r „c†~rW !2f* ~rW !…„c~rW !2f~rW !…, ~21!

and, thus, is linked directly to the order parameterf(rW).
When the interparticle interaction is characterized by a po
tive s-wave scattering lengthasc and the volumeV is suffi-
ciently large, the order parameter tends to a constant func
in the interior of V, thus resembling the constant dens
associated with the ‘‘periodic’’ single-particle ground sta
except within distances of the order of the healing length

l 5~8pascN/V!21/2 ~22!

from the boundaries, wheref(rW) smoothly approaches zer
@21#. Therefore, it is to be expected that the condensate fl
tuations and the higher cumulants for an interacting gas
box with Dirichlet boundary conditions and linear extensi
L do approach the ‘‘periodic’’ result whenL@l , or

8pN
asc

L
@1, ~23!

so that the above findings for the ideal gas would have to
regarded as a pathology of the noninteracting system. H
ever, at the moment this surmise should be taken as an
cated guess only; in view of the principal importance of t
condensate fluctuations—after all, these fluctuations de
mine the ‘‘line width of an atom laser’’@22#, or, more gen-
erally, the coherence properties of Bose-Einstein condens
at finite temperatures@23,24#—an analytical proof is re-
quired.

at
9-4



at

a

ll
bov
er-
ary
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It should also be noted that it might be possible to viol
the condition~23! experimentally, either by working with
spin-polarized hydrogen that features an unusually sm
triplet scattering length@25#, or by tuning the scattering
length close to zero by means of a Feshbach resonance@26#.
y,

y,

a

s.

s.
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Such very weaklyinteracting Bose condensates, which fa
into the regime between the ideal gas and the Bogoliu
gas, should exhibit particularly interesting statistical prop
ties, and remain at least partly susceptible to bound
effects.
tt.
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