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Extreme value statistics and traveling fronts: Application to computer science
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We study the statistics of height and balanced height in the binary search tree problem in computer science.
The search tree problem is first mapped to a fragmentation problem that is then further mapped to a modified
directed polymer problem on a Cayley tree. We employ the techniques of traveling fronts to solve the polymer
problem and translate back to derive exact asymptotic properties in the original search tree problem. The
second mapping allows us not only to rederive the already known results for random binary trees but to obtain
exact results for search trees where the entries arrive according to an arbitrary distribution, not necessarily
randomly. Besides it allows us to derive the asymptotic shape of the full probability distribution of height and
not just its moments. Our results are then generalized tom-ary search trees with arbitrary distribution.
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I. INTRODUCTION

The techniques developed in statistical physics, part
larly in the theory of spin glasses, have been recently app
to a variety of problems in theoretical computer science@1#.
These include various optimization problems such as
traveling salesman problem@2#, graph partitioning@3#, satis-
fiability problems@4#, the knapsack problem@5#, the vertex
covering problem@6#, error correcting codes@7#, number par-
titioning problems@8#, matching problems,@9# and many
others@10#. The purpose of this paper is to study analytica
certain problems in a different area of theoretical compu
science known as sorting and searching@11#. The standard
techniques of spin glass theory are not directly suitable
these problems. Instead, we employ the techniques de
oped to study the propagation of traveling fronts in vario
nonlinear systems@12–18#.

The ‘‘sorting and searching’’ is an important area of co
puter science that deals with the following basic questi
How to organize or sort out the incoming data so that
computer takes the minimum time to search for a given d
if required later? Amongst various search algorithms, the
nary search turns out to be one of the most efficient@11#. To
understand this algorithm, let us start with a simple exam
Suppose the incoming data string consists of the twe
months of the year appearing in the following order: Ju
September, December, May, April, February, January, O
ber, November, March, June, and August. Suppose late
need to look for the month of August in this data strin
Consider first the sequential search where the computer s
from the first element~July!, checks if it is the right month
and if not, moves to the next element of the string~Septem-
ber!, checks the element there and continues in this fash
until it finds the right month. In the example above, to fi
the month ‘‘August,’’ the computer has to make 12 compa
sons. Thus, the sequential search algorithm is rather in
cient as it typically takes a search time of orderN, whereN
is the number of entries in the data string.

In a binary search, on the other hand, the typical sea
time scales as lnN @11#. The binary search is implemented b
organizing the data string on a tree according to the follo
1063-651X/2002/65~3!/036127~15!/$20.00 65 0361
-
d

e

r

r
el-
s

-
:

e
ta
i-

e.
e
,
o-

e
.
rts

n

-
fi-

h

-

ing algorithm. An order is first chosen for the incoming da
e.g., it can be alphabetical or chronological~January, Febru-
ary, March, etc.!. Let us choose the chronological order. No
the first element of the input string~July! is put at the root of
a tree~see Fig. 1!. The next element of the string is Septem
ber. One compares with the root element~July! and sees tha
September is bigger than July~in chronological order!. So
one assigns September to a daughter node of the root in
right branch. On the other hand, if the new element were
than the root, it would have gone to the daughter node of
left branch. Then the next element is December. We comp
at the root~July! and decide that it has to go to the right, the
we compare with the existing right daughter node~Septem-
ber! and decide that December has to go to the node tha
the right daughter of September. The process continues
all the elements are assigned their nodes on the tree. Fo
particular data string in the above example, we finally get
unique tree as shown in Fig. 1. Such a tree is called a bin
search tree~BST!.

Once this tree is constructed, the subsequent search
for the month of August, takes much less number of co
parisons. We start with the root~July!. Since the sought afte
element August is bigger than July, we know that it must
on the right branch of the two daughter subtrees. This
ready eliminates searching roughly half the elements wh

FIG. 1. The binary search tree corresponding to the data st
in the order: July, September, December, May, April, Februa
January, October, November, March, June, and August.
©2002 The American Physical Society27-1
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are on the left subtree. We next encounter the key Septem
Since August is less than September, we go to the left
thus we do not need to search anymore the right branc
the subtree rooted at September. Once we go to the left
find the required key August.

Thus, the BST algorithm requires only three compariso
as opposed to 12 operations in the sequential search. S
the typical search time is proportional to the depth of
element in the tree and since the typical depthD is related to
the total sizeN via 2D'N, the search time scales as lnN,
making the BST algorithm one of the most efficient sea
algorithms.

If the incoming data string had a different order of appe
ance, one would have obtained a different BST. For exam
suppose the months appear in a different order as: May,
vember, August, April, December, February, June, Sept
ber, July, January, October, and March. For this data str
the same algorithm of constructing a binary tree as be
gives a tree of different shape~Fig. 2!. Each permutation of
the incoming data string leads to a different binary tree a
there areN! possible binary trees for any incoming da
string with N entries. Usually the incoming data string a
pears in a random fashion. This would indicate that each
the N! possible binary trees occurs with equal probabili
Such trees, each generated with equal probability, are ca
‘‘random binary search trees’’~RBST!. Of course, if the in-
coming data is not completely random, the probability m
sure over the space of trees will not be uniform. The res
derived in this paper will be applicable not only to RBST b
also to more general BST’s with arbitrary measure.

Each BST has several observables~such as the depth o
the height of a tree! associated with it that quantify the effi
ciency of the underlying search algorithm. Hence the kno
edge of the statistics of such observables are of central
portance. Here are a few observables:

DN is the depth~distance from the root! of the last in-
serted element in a given BST of sizeN. For example,DN
53 for the tree in Fig. 1~counting the depth of the roo
element as 1). Each BST has a differentDN , so DN is a
random variable. The average depth^DN& ~averaged over the

FIG. 2. The binary search tree corresponding to the data st
in the order: May, November, August, April, December, Februa
June, September, July, January, October, and March.
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probability measure of the trees! gives a measure of the av
erage time required to insert a new element in a tree@11#.

HN is the height of a given tree, defined as the depth
the farthest node from the root. For example,HN55 for the
BST in Fig. 1. ClearlyHN is also a random variable an
^HN& gives a measure of themaximumpossible time that
could be required to insert an element, i.e., a measure of
worst case scenario@19–22#.

hN is the balanced height defined as themaximumdepth
from the root up to which the tree isfully balanced, i.e., all
the nodes up to this depth are fully occupied@11#. In the tree
shown in Fig. 1,hN53, whereashN52 in the tree in Fig. 2.
HencehN is also a random variable whose statistics is i
portant.

Some of the observables mentioned above such as
heightHN and the balanced heighthN are of extremal nature
i.e., they are the maximum or the minimum of a set ofcor-
related random variables. In this paper, we limit ourselv
only to such extreme observables of the binary tree. Wh
the statistics of the extremum of a set ofuncorrelatedran-
dom variables is well understood@23–25#, little is known
about the same for correlated variables@26#. However, in the
present problem the random variables are correlated in a
cial hierarchical way that facilitates analysis. We will see th
the extreme variables in the BST problem satisfy nonlin
recursion relations that admit traveling front solutions
some suitable variables. A lot is known about the speed
the shape of such fronts appearing in various nonlinear
tems@12–18#. Below, we will use these techniques to stu
the statistics of extreme variables in the binary tree proble

Some of our results for the RBST were already kno
that we will mention as we go along. However, the approa
used here is quite different from those used by the comp
scientists. Computer scientists tend to establish upper
lower bounds to the quantity of interest~typically the aver-
age value or the variance of the observable! and then tighten
the bounds@21#. If the bounds coincide, one obtains an exa
result @21#. Our approach, on the other hand, is a typic
physicist’s approach. The methods we use may not alway
rigorous in the strict mathematical sense, but they lead
exact asymptotic results in a physically transparent w
Moreover, our approach allows us not only to reproduce
ready known asymptotics for the average height and the
erage balanced height of the RBST, but also to obtain in
mation about the variance and even the asymptotic shape
the full probability distributions. Besides, our method go
beyond the RBST and yields exact results for trees gener
with arbitrary distributions.

Our approach utilizes two exact mappings that can
summarized as follows. Following Devroye@27#, we first
map the RBST problem to a random fragmentation probl
where an object of initial lengthN breaks randomly into two
fragments, each of which further breaks randomly into t
parts, and so on. The fragmentation problem is interesting
its own right as it appears in the context of various physi
problems such as the energy cascades in turbulence@28#,
rapture processes in earthquakes@29#, financial crashes in
stock markets@30#, and the stress propagation in granu
medium@31#. Some of the extremal problems in the rando
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fragmentation problem were studied recently by Hattori a
Ochiai @32# and by us@33#. The method used in our previou
paper@33# allowed us to obtain exact asymptotic results
the average of the maximal piece of the 2n fragments aftern
iterations. The statistics of this maximal piece is closely
lated to the statistics of the height in the RBST. Howev
this method was not easy to extend to the cases beyond
random fragmentation, i.e., when the break point is cho
from an arbitrary distribution, not necessarily uniform. W
will see later that a fragmentation problem with a giv
break point distribution corresponds to a BST problem wh
the incoming entries to the tree appear according to a spe
distribution and not just randomly.

In this paper, we show that the fragmentation proble
with arbitrary break point distribution, can further be mapp
onto a modified directed polymer~MDP! problem on a Cay-
ley tree. The MDP problem differs from the convention
directed polymer~DP! problem on a Cayley tree studied b
Derrida and Spohn@34# due to the presence of a spec
constraint in the MDP. Derrida and Spohn were mostly
terested in the finite temperature spin glass transition in
DP problem. Our problem reduces to a zero tempera
problem, albeit with a special constraint. We then solve t
MDP problem using traveling front techniques and transl
back to derive exact asymptotic results for the original B
problem. We will see that the statistics of the heightHN of
the BST problem is related~via the two successive map
pings! to the statistics of the minimum or the ground sta
energy of the MDP problem. On the other hand, the statis
of the balanced heighthN will be related to that of the maxi
mum energy of the directed polymer~a quantity of little in-
terest in statistical physics framework!. This second mapping
also allows us to obtain exact results for nonrandom B
problem.

The paper is organized as follows. In Sec. I, we set
notation, review known results for the RBST problem, a
summarize the results obtained in this paper. Section II c
tains the exact mapping of the BST problem to the fragm
tation problem. In Sec. III, we map the fragmentation pro
lem to the MDP problem. In Sec. IV, we derive the exa
nonlinear recursion relations in the MDP problem and a
lyze them using the traveling front techniques. The m
results for the RBST problem are also derived in this sect
In Sec. V, we go beyond the random trees and derive e
results for the fragmentation problem with arbitrary bre
point distribution. Section VI contains the generalization
the case ofm-ary trees with arbitrary distributions. We finall
conclude in Sec. VII with a summary and outlook.

II. BINARY SEARCH TREES: OLD AND NEW RESULTS

Let us label the incoming data string ofN elements by
integers 1,. . . , N. For example, if the data string consists
the 12 months of the year, we can label, say the month
January by 1, the month of February by 2, and so on. In
example,N512. A specific data string will then be isomo
phic to a corresponding ordered sequence of these inte
For example, the particular sequence of months in Fig
reduces to the ordered sequence (7,9,12,5,4,2,1,10,11,3
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A different sequence of months will correspond to a differe
permutation of these integers. Each such sequence or pe
tation will then correspond to a separate BST, constructed
the algorithm explained in the Introduction. In RBST, a
theseN! sequences~and their corresponding trees! occur
with equal probability.

We will focus on the statistics of the extreme variabl
associated with these trees, in particular, the heightHN and
the balanced heighthN of a BST as defined in the Introduc
tion. Each BST has a unique value ofHN andhN . Since the
trees occur with a given probability distribution~which is
uniform in case of RBST!, bothHN andhN are random vari-
ables. Of interest are the statistics of these variables suc
the average, variance, or even the full probability distrib
tions of HN andhN .

The RBST problem has been studied for a long time
computer scientists and we now mention a few known
sults. Devroye@21# proved that for largeN, the average
height of a RBST^HN&'a0 ln N where the constanta0
54.311 07 . . . . Hattori and Ochiai conjectured that the tru
asymptotic behavior of̂HN& has an additional subleadin
double logarithmic correction,

^HN&'a0 ln N1a1 ln~ ln N!, ~1!

and they determined the constanta1'21.75 numerically
@32#. Using traveling front techniques we confirmed th
above asymptotics and computed the correction term ana
cally, a1523a0 /@2(a021)#521.953 03 . . . @33#. The
same result was simultaneously proved by Reed@35#. Based
on numerical data, Robson conjectured@36# that the variance
is bounded. Recently, Drmota@37# has proved that all mo-
mentsŠ(HN2^HN&)m

‹ are bounded.
For the balanced heighthN of RBST, Devroye showed

that the leading asymptotic behavior of the average balan
height is given by^hN&'a08 ln N where a0850.3733 . . .
@21,27#. Indeed,a0 in ^HN& anda08 in ^hN& turn out to be
the two solutions of the same transcendental equa
(2e/a)a5e @21,27#. This suggests some kind of duality be
tween the height and the balanced height. We will show la
that the correct asymptotic behavior of^hN& is given by

^hN&'a08 ln N1a18 ln~ ln N!, ~2!

where relationa18523a08/@2(a0821)# holds again. Drmota
has recently proved that all the moments ofhN are also
bounded@37# as in the case ofHN .

Note that all the results mentioned above are for RB
with fixed sizeN. Recently by using a rate equation approa
we studied the statistics of height and balanced height
randomly growing binary trees where the average size o
tree grows with time linearlŷN(t)&;t @38#. The expected
height and balanced height for large random binary tr
were found to have exactly the same asymptotic formulas~1!
and ~2!, provided one replacesN by ^N(t)& in these equa-
tions. This approach is thus reminiscent of the grand can
cal approach in statistical mechanics with the timet playing
the role of the chemical potential that can be chosen to
the average size. In this paper, we focus only on the can
7-3
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SATYA N. MAJUMDAR AND P. L. KRAPIVSKY PHYSICAL REVIEW E 65 036127
cal approach, i.e., trees with fixed given sizeN, since this is
more familiar in theoretical computer science.

We will exploit a two stage mapping ‘‘BST problem→
fragmentation problem→ MDP problem’’ and use the trav
eling front technique to analyze the MDP problem. Th
technique allows to rederive in a physically transparent w
all results for the RBST mentioned above and provides a
of important results. We will show that the constantsa0 and
a08 are simply related to the velocities of traveling fron
The subleading correction terms can also be derived ana
cally. The traveling front approach also predicts ‘‘concent
tion of measure’’ of the variablesHN and hN . This means
that the asymptotic probability distributions of these va
ables are highly localized around their respective avera
As a result, a typical value ofHN;^HN& and the spread in
HN is of orderO(1) in the largeN limit. Naturally the vari-
ance and higher cumulants of bothHN andhN are bounded.
We also derive an asymptotically exact nonlinear integ
equation for the full probability distributions ofHN andhN .
While we could not solve this nonlinear equation in clos
form, we could derive the behaviors at the tails of the
highly localized distribution functions. We will also see th
within this approach the variablesHN and hN map, respec-
tively, onto the minimum and maximum energy of a direct
polymer and hence the observed duality between them
rather natural.

The main advantage of the present approach is tha
allows us to go beyond the random trees and obtain e
asymptotic results for the statistics ofHN andhN for BST’s
with arbitrary distributions. This is the main result of th
present paper. Besides, we also generalize basic resu
m-ary search trees with arbitrary distributions.

III. MAPPING OF THE BST PROBLEM TO A
FRAGMENTATION PROBLEM

In order to derive the asymptotics of the statistics of
height and the balanced height in the BST problem, it
convenient to first map this problem to a fragmentation pr
lem following Devroye@21,27#. To illustrate how this map-
ping works, let us consider again the example in Fig. 1 wh
the months~or the corresponding integers from 1 to 1
appear in the particular sequence (7,9,12,5,4,
10,11,3,6,8). The first element~which in this example is 7)
is chosen randomly from the availableN512 elements in the
case of RBST. Once this element is chosen, the remai
elements will belong either to the interval (126) or (8
212), which are subsequently completely disconnected fr
each other. Thus choosing the first element is equivalen
breaking the original interval (1212) into two intervals, the
left (126) and the right (8212) at the break point 7 which
is chosen randomly. Now consider the next element. It w
either belong to the left or the right interval. In the particu
example we are discussing, the next element 9 belongs to
right interval (8212). This new element then divides th
right interval (8212) again into two parts: the left contain
ing only the single element (8) and the right (10212).
These two new intervals subsequently become comple
independent of each other. The third element (12) bre
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subsequently the interval (10212) into two parts: the left
part (10211) and the right part which is empty. Similarl
the fourth element (5) breaks the interval (126) into two
parts: the left part (124) and the right part (6) and so on

Thus, one can think of the construction of the RBST a
dynamical fragmentation process where one starts wit
stick of initial length N and breaks it randomly into two
parts: a left part of lengthrN and a right part of lengthr 8N
with the constraintr 1r 851, wherer is a random number
distributed uniformly over the interval@021#. At the next
step, one breaks each of these intervals again into two p
At any stage of breaking, the random variabler characteriz-
ing the break point of an interval is chosen independen
from interval to interval. They are also independent fro
stage to stage. Aftern steps of breaking, there are 2n inter-
vals. Note that this fragmentation process has itself a
structure and can be represented by a branching proce
depicted in Fig. 3.

A search tree of fixed sizeN is completed when in the
corresponding fragmentation process, the lengths of all in
vals are less than 1 because this means that all the elem
of the incoming data string have already been incorpora
onto the search tree. Although in the fragmentation probl
we have continuous intervals whereas in the RBST the in
vals consist of discrete integers, it does not really ma
since one can associate the integer part of a break point
particular integer element of the RBST. For example, if t
first break point in the fragmentation problem is 7.3, th
means that in the RBST problem, the first element~the root!
is integer 7.

Let us first consider the heightHN of the RBST. By defi-
nition, HN is the distance from the root~depth! of the farthest
element in the RBST. The RBST stops growing beyondHN
as all the incomingN elements have been incorporated in t
tree. Thus when the RBST attains the depthHN , in the cor-
responding fragmentation problem, the length of every in
val is less than 1. Denote byl 1 , . . . , l 2n the lengths of 2n

intervals aftern steps of breaking. Clearly, the probabilit
Prob@HN,n# in the RBST problem is the same as the pro

FIG. 3. The fragmentation process has itself a tree struc
~denoted byT* ), shown here up to level 2. In the first step a
interval of lengthN is broken into two pieces of lengthsrN andr 8N
such thatr 1r 851. Each of those pieces is further broken into tw
halves satisfying the constraintsr 11r 251 and r 181r 2851. At
level n, there will be 2n pieces.
7-4
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ability that all 2n intervals in the fragmentation problem hav
lengths less than 1,

Prob@HN,n#5Prob@ l 1,1, . . . ,l 2n,1#. ~3!

The right-hand side of Eq.~3! is also the probability that the
maximum of the lengths of the 2n pieces is less than 1 in th
fragmentation problem.

We next consider the balanced heighthN of the RBST. By
definition, hN is the depth up to which the RBST is full
saturated and balanced. Beyond this depth, some parts o
RBST stop growing~see Fig. 1 wherehN53). This means
that in the corresponding random fragmentation process
long as the step number of breaking is less thanhN , the
lengths of all the intervals must still be bigger than 1, so t
each such interval can incorporate a new element. Thus
probability Prob@hN.n# in the RBST is the same as th
probability that all 2n intervals in the fragmentation problem
have lengths bigger than 1,

Prob@hN.n#5Prob@ l 1.1, . . . ,l 2n.1#. ~4!

The right-hand side of Eq.~4! is also the probability that the
minimum of the lengths of the 2n pieces is bigger than 1 in
the fragmentation problem.

In the RBST, the new elements in the tree arrive ra
domly. The corresponding fragmentation problem is also r
dom in the sense that at each stage an intervall is broken into
two parts of lengthsrl and r 8l with r 1r 851 where the
random variabler is chosen each time independently and
distributed uniformly over@021#. One can, of course, gen
eralize this random fragmentation problem where the v
able r is chosen independently each time but with an ar
trary distribution over@021#, not necessarily uniform. This
would correspond to a BST problem where the new eleme
arrive with a specified distribution. In general, at any stage
breaking, the joint probability distribution ofr andr 8 can be
written as

Prob@r ,r 8#5f~r !f~r 8!d~r 1r 821!. ~5!

The delta function ensures that the total length is conser
at every stage of breaking. The joint distribution is written
a symmetric way to ensure that bothr andr 8 have the same
effective distribution that is given byh(r )5Prob(r )
5*0

1 Prob@r ,r 8#dr85f(r )f(12r ). The functionf(r ) must
be chosen such that the induced distributionh(r ) satisfies
the conditions,*0

1h(r )dr51 and*0
1rh(r )dr51/2. The first

condition ensures normalizability of the single point dist
bution h(r ) and the second condition comes from the str
constraint r 1r 851 that indicates^r &5^r 8&51/2. In the
case of random breaking, the functionf(r )51 and conse-
quently the induced distributionh(r )51 for 0<r<1. A
simple example of a nonrandom break point distribution
given by, f(r )5A6r with the induced distributionh(r )
56r (12r ) that satisfies the two constraints@33#.

Apart from connection to the BST problem, the rando
fragmentation problem is interesting on its own rights as
arises in various contexts such as the energy cascade
turbulence@28#, rapture processes in earthquakes@29#, finan-
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cial crashes in stock markets@30#, and in the stress propaga
tion in granular medium@31#. In our previous paper@33#, we
had studied the asymptotic laws governing the probabi
distribution of the maximal lengths of the intervals aftern
steps of breaking in the random fragmentation problem us
traveling front techniques. The same differential equat
that describes the Laplace transform of this distribution w
also studied independently by Drmota via a different meth
@37#. Both these methods work well for the random proble
@whereh(r )51# but seem difficult to extend to the gener
case when the break point in the fragmentation proces
chosen from an arbitrary induced distributionh(r ) @33#. It
turns out, however, that the fragmentation problem with g
eral h(r ) can further be mapped to a MDP problem as p
sented in the next section. This further mapping followed
the traveling front analysis then allows us to obtain ex
asymptotic results for the general case with arbitraryh(r ).

IV. MAPPING OF THE FRAGMENTATION PROBLEM TO
A MODIFIED DIRECTED POLYMER PROBLEM

In this section, we further map the fragmentation proble
onto a MDP problem on a Cayley tree. This MDP proble
turns out to be slightly different from the conventional D
problem studied in statistical mechanics due to the prese
of a special constraint. Nevertheless, asymptotic propertie
the MDP problem can be derived analytically using the tra
eling front techniques.

To understand this mapping, consider the set of 2n inter-
vals in the fragmentation problem aftern steps of breaking,
starting from the initial lengthN. Let l k denote the length of
thekth interval wherek51, . . . , 2n. From Fig. 3, it is clear
that the length of any typical piecel k can be expressed as th
product

l k5N)
i 51

n

r i , ~6!

where r i ’s are the set of independent random variables
countered in getting the final piece of lengthl k after n steps
of breaking the original interval of lengthN. Note that in the
treeT* in Fig. 3, there is a unique path connecting the ori
nal interval ~the root element ofT* ) to the kth interval at
stagen and the set of random variablesr i ’s encountered in
going from the root ofT* to thekth piece at stagen defines
this unique path. Alternately, we can associate an ene
variablee i52 ln ri>0 to the bonds connecting this path an
the set of energiese i ’s also uniquely characterize the pa
~see Fig. 4!. Taking logarithm in Eq.~6!, we see that the tota
energyEk of a path~starting at the root and ending at thek
interval at the stagen) becomes

Ek5 lnS N

l k
D52(

i 51

n

ln r i5(
i 51

n

e i . ~7!

This path then represents a typical configuration of a direc
polymer ~directed in the downward direction! with energy
given by Eq.~7! wheree i ’s are random bond energies. No
7-5
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that up to leveln, there are a total number of 2n different
paths each having different total energiesE1 , . . . , E2n.

In the conventional DP problem, the bond energiese i ’s
are completely uncorrelated. To understand why they are
related in the present problem, recall that when an interva
broken into two parts the random variablesr and r 8 charac-
terizing the lengths of the two daughter intervals satisfy
length conservation constraint,r 1r 851. Translated into the
DP problem, the corresponding bond energiese52 ln r and
e852 ln r8 associated with the two bonds emanating dow
wards from a given node must satisfy the constraint

e2e1e2e851. ~8!

This constraint holds at every branching point of the tree~see
Fig. 4!. This correlation makes the MDP problem slight
different from the conventional DP problem.

The joint distributionp(e,e8) of the energies of the two
bonds emanating from the common node and the indu
effective single bond distributionr(e) are obtained from Eq
~5! to give

p~e,e8!5f~e2e!f~e2e8!e2e2e8d~e2e1e2e821!,

r~e![E
0

`

p~e,e8!de85f~e2e!f~12e2e!e2e. ~9!

For example, for the RBST we havef(r )51, and therefore
r(e)5e2e. Note that in the conventional DP problem, th
joint distributionp(e,e8) would simply be the product of the
single point distributions,p(e,e8)5r(e)r(e8) since they
are independent. The MDP problem, however, lacks this
torization property.

Having set up the notation we turn to the variablesHN
and hN in the original BST problem. What do the distribu
tions of HN and hN correspond to in the MDP problem
First, consider the height distribution Prob@HN,n#. From
Eqs.~3! and ~7!, one finds

Prob@HN,n#5Prob@ l 1,1, . . . ,l 2n,1#

5Prob@E1. ln N, . . . ,E2n. ln N#, ~10!

FIG. 4. The MDP on a Cayley tree. This tree is isomorphic
the tree of the fragmentation process shown in Fig. 3. Each b
energye is related to the corresponding fractionr via e52 ln r. The

bond energies are correlated due to the constraintse2e1e2e851,

e2e11e2e251, e2e181e2e2851, etc.
03612
r-
is

e

-

d
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whereEk’s (k51, . . . , 2n) are respectively the total ene
gies of the all possible 2n paths going from the root to the
leaves at thenth level in the DP problem. The probability in
the last line in Eq.~10! is also the same as the probabili
Prob@min$E1, . . . ,E2n%. ln N#. Thus the height distribution
Prob@HN,n# in the BST problem is precisely related to th
distribution of the minimum~ground state! energy of the
MDP problem, a quantity of considerable interest in statis
cal physics.

Let us next consider the balanced heighthN . Using Eqs.
~4! and ~7!, it follows similarly that

Prob@hN.n#5Prob@ l 1.1, . . . ,l 2n.1#

5Prob@E1, ln N, . . . ,E2n, ln N#, ~11!

which is also the probability that the maximum ener
max$E1, . . . ,E2n% is less than lnN. Thus the balanced heigh
distribution Prob@hN.n# in the BST problem is related to
the distribution of the maximum energy in the MDP pro
lem, a quantity that is usually not of much interest in stat
tical mechanics.

A. Statistics of the height or the minimum energy

In this subsection we analyze the asymptotic statistics
the heightHN in the BST problem or equivalently that of th
minimum energy in the MDP problem. LetPn(x)
5Prob@min$E1, . . . ,E2n%.x#, whereEk’s with k51, . . . ,
2n are the energies of the 2n polymer paths from the root to
the nth level. It is then easy to write a recursion relation f
Pn(x),

Pn11~x!5E
0

`E
0

`

Pn~x2e!Pn~x2e8!p~e,e8!de de8,

~12!

wherep(e,e8) is the joint distribution of the two bond ener
gies as given by Eq.~9!. Equation~12! has been derived by
analyzing different possibilities for the energies of the bon
emanating from the root and using the fact that the two s
sequent daughter trees are statistically independent. Note
in the conventional DP problem, the corresponding recurs
relation would be simplified using the factorization prope
of the joint distributionp(e,e8) and one would get@40,41#

Pn11~x!5F E
0

`

Pn~x2e!r~e!deG2

. ~13!

We have to solve the recursion relation~12! subject to the
initial condition

P0~x!5H 1, x<0,

0, x.0,
~14!

and the boundary conditions

Pn~x!→H 1, x→2`,

0, x→`.
~15!

d

7-6
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The recursion relation~12! is nonlinear and in general diffi
cult to solve exactly. However, its asymptotic properties c
be derived analytically. Asn increases, the solutionPn(x) in
Eq. ~12! looks like a (120) front ~i.e., Pn(x);1 for smallx
but falls off rapidly to 0 for largex) advancing in the posi-
tive direction. This suggests that for largen, Eq. ~12! admits
a traveling front solution,Pn(x)5F(x2xn) where xn de-
notes the location of the front and the shape of the fron
described by the fixed point scaling functionF that becomes
independent ofn. This implies that the width of the front is
of orderO(1), i.e., it saturates in the largen limit. The trav-
eling front ansatz also indicates that the front advances w
a uniform velocity, i.e.,xn'vn, to leading order for largen
where the velocityv is yet to be determined. Substitutin
this traveling front ansatz,Pn(x)5F(x2vn) for large n in
Eq. ~12!, we find that the fixed point functionF(y) satisfies
the nonlinear integral equation,

F~y2v !5E
0

`E
0

`

F~y2e!F~y2e8!p~e,e8!de de8,

~16!

where the velocityv is still undetermined andF(y) satisfies
the boundary conditions

F~y!→H 1 as y→2`,

0 as y→`.
~17!

Let us first analyze Eq.~16! in the tail regiony→2`.
PluggingF(y)512 f (y) in Eq. ~16! and neglecting terms o
orderO( f 2) we find thatf (y) satisfies

f ~y2v !52E
0

`

f ~y2e!r~e!de, ~18!

where we have used the relationr(e)5*0
`p(e,e8)de8. This

linear equation~18! clearly admits an exponential solutio
f (y)5exp(ly) provided the inverse decay ratel is related to
the velocityv via the dispersion relation

v~l!52
1

l
lnF2E

0

`

e2ler~e!deG . ~19!

For a given induced distributionr(e), the functionv(l)→
2 ln(2)/l as l→0 and v(l)→0 as l→` with a single
maximum at a finitel* determined via

dv
dl U

l*
50. ~20!

Thus for all l such that*0
`e2ler(e)de,1/2, the corre-

sponding velocityv(l).0. While any suchl is in principle
allowed, a particular velocity is actually asymptotically s
lected by the front. This velocity selection mechanism h
been observed in a large class of nonlinear problems wi
traveling front solution@12–18,33,39–41#. It is known that
as long as the initial condition is sharp@as in the present cas
in Eq. ~14!#, the extreme value is chosen. From this gene
front selection principle, we infer that in our present pro
03612
n
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lem, the front finally selects the velocityv(l* ) wherel* is
given by the solution of Eq.~20!. Thus the asymptotic fron
position, to leading order for largen, is given by

xn'v~l* !n. ~21!

While the leading behavior of the front positionxn is
given exactly by Eq.~21!, it turns out that it has an assoc
ated slow logarithmic correction. This logarithmic correctio
to the front velocity was first derived by Bramson in th
context of a reaction-diffusion equation@14#, and was subse
quently found in many other systems with a traveling fro
@17,18,33,39,40#. In Appendix A, we present a detailed der
vation of this correction term following the approach of Br
net and Derrida@39#. The main result of this exercise is tha
the asymptotic front position for largen is given by

xn'v~l* !n1
3

2l*
ln n. ~22!

One can even calculate the next correction term by emp
ing a more sophisticated approach@18# but we omit these
results here. One important point to note is that while
velocity v(l* ) andl* are nonuniversal as they depend e
plicitly on the distributionr(e), the prefactor 3/2 of the loga
rithmic correction in Eq.~22! is actually universal and is
precisely the first excited state energy of a quantum h
monic oscillator~see Appendix A!.

Let us now translate back these results to see what
mean for the height distribution in the original BST problem
From Eq.~10!, it is clear that the cumulative height distribu
tion for largen is given by

Prob@HN,n#5Pn~ ln N!'F~ ln N2xn!, ~23!

where the front positionxn is given by Eq.~22! and the
functionF(y) is given by the solution of Eq.~16!. Since the
function F(y) has the shape of a front with center aty50
and width of orderO(1), its derivativeF8(y) is a localized
function aroundy50 with width of orderO(1). From Eq.
~23! it then follows that the height distribution Prob@HN
5n# is also localized around its average value^HN& with a
varianceV(HN);O(1). Thus HN has a concentration o
measure around its average value^HN& that is given by the
value ofn that corresponds to the zero of the argument of
function F(y), i.e., whenxn5 ln N. Using xn5 ln N in Eq.
~22! and solving for the required value ofn for largeN, we
obtain one of our main results

^HN&5
1

v~l* !
ln N2

3

2l* v~l* !
ln~ ln N!, ~24!

wherev(l) andl* are given respectively by Eqs.~19! and
~20!. This is the first result for the fragmentation proble
with arbitrary break-point distribution going beyond the un
form case or equivalently for the BST problem where t
elements in the tree arrive with an arbitrary distribution a
not just randomly.
7-7
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It is useful to exemplify the above general results. For
original RBST problem,f(r )51 or r(e)5e2e @see Eq.
~9!#. Substitutingr(e)5e2e into Eq. ~19! we get

v~l!52
1

l
lnF 2

l11G , ~25!

which has a single maximum atl* 53.311 07 . . . with
v(l* )50.231 96 . . . . Substitutingl* and v(l* ) into Eq.
~24! we arrive at Eq.~1! with a054.311 07 . . . anda15
21.953 02 . . . , in agreement with Refs.@33,35#.

Consider another example,f(r )5A6r , a problem that
couldn’t be solved by the techniques used in our previ
short paper@33#. This corresponds to the fragmentation pro
lem where the induced distribution of the break point
h(r )56r (12r ). In the MDP problem, it corresponds to th
induced bond energy distribution

r~e!56e22e~12e2e!. ~26!

Substituting this form in Eq.~19!, we get

v~l!52
1

l
lnF 12

~l12!~l13!G , ~27!

which has a unique maximum atl* 53.924 08 . . . andthis
maximum velocity is given byv(l* )50.313 22 . . . .Substi-
tuting these results into the general formula~24! we recover
Eq. ~1! with a053.192 58 . . . anda1521.220 38 . . . .

The traveling front approach also gives the full probab
ity distribution of the height variable in the BST and not ju
its exact average value as in Eq.~24!. Indeed, we have see
that cumulative height distribution is given by Eq.~23!
where the functionF(y) is the solution of the boundar
value problem~16!,~17!. While we have not been able t
solve the nonlinear integral equation~16! exactly, one can
easily deduce the extreme behavior ofF(y). We have al-
ready seen that in the tail regiony→2`, the functionF(y)
saturates to 1 exponentially fast, 12F(y);exp@l*y#, where
l* is the solution of Eq.~20!. One can also deduce th
asymptotic behavior ofF(y) wheny→` ~Appendix B! for
arbitrary distributionr(e). Thus the asymptotic behaviors o
the functionF(y) read

F~y!'H 12Ael* y, y→2`,

2E
y

`

r~y81v !dy8, y→`,
~28!

where A is a constant,l* is found from Eq.~20!, and v
5v(l* ). In particular, for the RBST wherer(e)5e2e, l*
53.311 07, andv(l* )50.231 96, one has

F~y!'H 12Ae3.311 07y, y→2`,

1.585 96e2y, y→`.
~29!

In conclusion, the height distribution is a localized fun
tion around its average valuêHN& given by Eq.~24!. For
any unbounded distributionr(e), the height distribution de-
cays at in the tail regions according to Eq.~28!. For bounded
03612
e

s
-

-

distributions, however,F(y) vanishes for sufficiently largey.
Recall that the distribution of the minimum of a set of u
correlated random variables is known to have a unive
superexponential decay for large value@23#. However, it was
shown in Ref.@41# that in the conventional DP problem th
distribution of the minimum energy of a polymer violate
this Gumbel law due to hierarchical correlations between
energies of different paths. From Eq.~28! it is clear that in
the MDP problem the forward tail is nonuniversal since
depends explicitly on the distributionr(e). Generally, the
forward tail is not superexponential thus clearly violating t
Gumbel statistics.

B. Statistics of the balanced height or the maximum energy

The analysis of the statistics of balanced height^hN& fol-
lows more or less the same approach as in the case of h
variable, except that one is now concerned with the distri
tion of maximum energy in the MDP problem. LetRn(x)
5Prob@max$E1,E2, . . . ,E2n%,x# where Ek’s with k
51,2, . . . ,2n are the energies of the 2n polymer paths from
the root to thenth level. ThenRn(x) satisfies the same re
cursion relation as thePn(x) in Eq. ~12!,

Rn11~x!5E
0

`E
0

`

Rn~x2e!Rn~x2e8!p~e,e8!de de8.

~30!

The only difference is in the initial condition,

R0~x!5H 0, x<0,

1, x.0,
~31!

and in the boundary conditions,

Rn~x!→H 0, x→2`,

1, x→`.
~32!

As in the case of Eq.~12!, the recursion relation~30! admits
a traveling front solution for largen, Rn(x)5G(x2xn* )
where xn* is the front position and the fixed point scalin
function G(x) describes the shape of the front. Unlike th
@120# front in the previous subsection, the front forRn(x)
has a@021# form advancing in the positive direction. Th
front again advances with asymptotically constant veloc
v1, i.e., the position of the front isxn* 'v1n. Substituting
Rn(x)5G(x2v1n) in Eq. ~30!, we find thatG(y) satisfies
the nonlinear integral equation

G~y2v1!5E
0

`E
0

`

G~y2e!G~y2e8!p~e,e8!de de8.

~33!

The velocity v1 is still undetermined and the front shap
G(y) satisfies the boundary conditions,G(y)→0 as y→
2` andG(y)→1 for y→`. As in the previous subsection
we will analyze the Eq.~33! in the tail whereG(y)→1; in
7-8



n,

t

h

b
A

f
S

t

se
rgy
nd

y in
xi-
is

ons

en-

n-

sta-

l-

the

t
of

bse-

l of
the

he

gh
ree

ur-
is
of

n.
e

EXTREME VALUE STATISTICS AND TRAVELING . . . PHYSICAL REVIEW E65 036127
the present case, this meansy→`. SubstitutingG(y)51
2g(y) in Eq. ~33! and neglecting terms of orderO(g2) we
get the linear equation

g~y2v1!52E
0

`

g~y2e!r~e!de. ~34!

Equation ~34! admits asymptotically exponential solutio
g(y)5exp(2my) asy→`, with

v1~m!5
1

m
lnF2E

0

`

emer~e!deG . ~35!

The dispersion relation in Eq.~35! has a single minimum a
m5m* determined from relation

dv1

dm U
m*

50. ~36!

By the general front selection mechanism, we infer that t
minimum velocity will be selected by the front

xn* 'v1~m* !n. ~37!

The associated slow logarithmic correction can also
worked out following the same calculation as in Appendix
and we finally get

xn* 'v1~m* !n2
3

2m*
ln n. ~38!

Note that the correction term in Eq.~38! has a negative sign
compared to the positive sign in Eq.~22!.

In terms of the BST problem, it is clear from Eq.~11! that
the cumulative balanced height distribution for largen is
given by

Prob@hN.n#5Rn~ ln N!'G~ ln N2xn* !, ~39!

where the front positionxn* is given by Eq.~38! and the
function G(y) is the solution of Eq.~33!. As argued in the
previous subsection, the derivativeG8(y) is a localized func-
tion aroundy50 with width of orderO(1). Thus the bal-
anced height distribution Prob@hN5n# is also localized
around its average valuêhN& with a variance V(hN)
;O(1). Theaverage value reads

^hN&5
1

v1~m* !
ln N1

3

2m* v1~m* !
ln~ ln N!. ~40!

Consider again the same examples that were studied
the height variable in the previous subsection. For the RB
problem wheref(r )51 or equivalentlyr(e)5e2e, Eq.~35!
becomes

v1~m!5
1

m
lnF 2

12mG , ~41!
03612
is
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which has a single minimum atm* 50.626 63 . . . where
v1(m* )52.678 34 . . . . Thus, Eq.~40! reduces to Eq.~2!
with a0850.373 36 . . . anda1850.893 74 . . . .

For the second example,f(r )5A6r or equivalentlyr(e)
given by Eq.~26!, Eq. ~35! becomes

v1~m!5
1

m
lnF 12

~22m!~32m!G . ~42!

The functionv1(m) in Eq. ~42! has a single minimum a
m* 51.178 64 . . . where v1(m* )51.766 53 . . . . Equation
~40! again reduces to Eq.~2! with a0850.566 07 . . . and
a1850.720 41 . . . .

Finally we explain the duality betweenHN andhN in the
BST problem. In the language of the MDP problem, the
variables correspond to the minimum and maximum ene
of a directed polymer in a random medium where the bo
energiese i ’s have nonzero support only fore i>0. Changing
the sign of the bond energies maps the minimum energ
the negative support problem into the negative of the ma
mum energy in the positive support problem. This fact
reflected in the relation between the two dispersion relati
in Eqs. ~19! and ~35!, v(2l)5v1(l). Thus l* and 2m*
are actually the two different roots of the same transcend
tal equation~20!. Consequently, the constantsa0 anda08 in
Eqs.~1!,~2! are merely two different roots of the same tra
scendental equation.

V. GENERALIZATION TO m-ARY SEARCH TREES WITH
ARBITRARY DISTRIBUTIONS

The results obtained in the previous sections for the
tistics ofHN andhN of the BST’s with arbitrary distributions
can be generalized in a straightforward manner to them-ary
search trees. Anm-ary search tree is constructed in the fo
lowing way. One first collects the first (m21) elements of
the incoming data string and arranges them together in
root of the tree in an ordered sequencex1, . . . ,xm21.
Next when themth elementxm comes, one compares firs
with x1. If xm,x1, themth element is assigned to the root
the leftmost daughter tree. Ifx1,xm,x2, then xm goes to
form the root of the second branch and so on. Each su
quent incoming element is assigned to either of them
branches according to the above rule. Note that the leve
the tree will increase beyond a given node only when
node gets filled beyond its capacity of (m21) elements.
Thus in them-ary search tree, each node will contain at t
most (m21) elements.

The mapping to the fragmentation problem goes throu
following the same line of arguments used for the binary t
in Sec. III. In this case, one starts with an interval of sizeN
and breaks it intom pieces. Subsequently each piece is f
ther broken intom pieces and so on. When an interval
broken intom pieces, each of the new pieces is a fraction
the original piece. The lengths of thesem new pieces are
characterized by a set ofm random numbers$r 1 , . . . ,r m%
such that( i 51

m r i51 thus enforcing the length conservatio
For each interval a new set ofr i ’s are chosen from the sam
joint probability distribution
7-9
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Prob@r 1 , . . . ,r m#5dS (
i 51

m

r i21D )
j 51

m

f~r j !. ~43!

As in the binary case, the distribution~43! is written in a
symmetric form. Note that each new piece has the same
fective induced distributionh(r ) given by the integral
*0

1dr2 . . . *0
1drm Prob@r ,r 2 , . . . ,r m#, or

h~r !5f~r !E
0

1

. . . E
0

1

dS (
i 52

m

r i1r 21D)
i 52

m

f~r i !dri .

The functionf(r ) must be chosen such thath(r ) satisfies
the conditions,*0

1h(r )dr51 and*0
1rh(r )dr51/m.

The randomm-ary search tree corresponds to a rand
fragmentation problem where each of the fractionsr 1 , . . . ,
r m21 is chosen from a uniform distribution between 0 and
setting r m512( i 51

m21r i , and then keeping only those se
wherer m>0. This is precisely the so-called ‘‘uniform’’ dis
tribution used by Coppersmithet al. in the context of the
q-model of force fluctuations in granular media@31#. In this
case,f(r ) is a constant chosen in such a way that the jo
distribution ~43! is normalized. One finds@31#

Prob@r 1 , . . . ,r m#5~m21!!dS (
i 51

m

r i21D . ~44!

The corresponding effective single point distributionh(r )
reads@31#

h~r !5~m21!~12r !m22. ~45!

Another interesting distribution isf(r )}r . In this case,
the normalized joint distribution is given by~see Appendix
C!

Prob@r 1 , . . . ,r m#5G~2m!dS (
i 51

m

r i21D)
i 51

m

r i . ~46!

The corresponding effective distributionh(r ) can be de-
duced by recursive method~as shown in Appendix C! and
we get

h~r !5~2m21!~2m22!r ~12r !2m23. ~47!

Note that form52, it reduces toh(r )56r (12r ) which was
studied in detail for the binary case in Sec. III.

Them-piece fragmentation problem for the special case
uniform distribution~44! was studied in Ref.@33#. However,
as in the binary case, this method is not easy to exten
handle the general distributionh(r ) including, for example,
the distribution~47!. To go beyond the uniform case, we fir
map the fragmentation problem into the MDP problem as
the binary case. One proceeds exactly as in the binary
by associating an energye i52 ln ri to each bond of a di-
rected polymer going from the root to the leaves of a Cay
tree, but now withm daughters emerging from each nod
The energies of them bonds emanating downwards from an
given node are correlated due to the relation( i 51

m r i51
which translates into the constraint
03612
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i 51

n

e2e i51. ~48!

As in the binary case, this constraint holds at every bran
ing point of the tree. The joint distributionp(e1 , . . . ,em) is
found from Eq.~43! to give

p~e1 , . . . ,em!5dS (
i 51

m

e2e i21D)
i 51

m

e2e if i~e2e i !.

~49!

Also the induced bond energy distributionr(e) is related to
the induced fraction distributionh(r ) via

r~e!5E
0

`

. . . E
0

`

p~e,e2 , . . . ,em!de2 . . . dem

5h~e2e!e2e. ~50!

On this m-branch Cayley tree, there are a total ofmn

possible paths of the directed polymer going from the roo
the leaves at thenth level. Following arguments similar to
the binary case, the cumulative height distribution in t
m-ary search tree is related exactly to the distribution of
minimum energy of themn polymer paths in the MDP prob
lem via

Prob@HN,n#5Prob@ l 1,1, . . . ,l mn,1#

5Prob@E1. ln N, . . . ,Emn. ln N#, ~51!

whereEk’s (k51,2, . . . ,mn) are respectively the total ene
gies of the all possiblemn paths. Similarly the cumulative
distribution of the balanced height is related to the distrib
tion of the maximum energy of the polymer paths via

Prob@hN.n#5Prob@ l 1.1, . . . ,l mn.1#

5Prob@E1, ln N, . . . ,Emn, ln N#. ~52!

A. Statistics of the height

Let Pn(x)5Prob@min$E1, . . . ,Emn%.x#. This distribu-
tion satisfies the recursion relation

Pn~x!5E
0

`

. . . E
0

`

p~e1 , . . . ,em!)
i 51

m

Pn21~x2e i !de i ,

~53!

where the joint distributionp(e1 , . . . ,em) is given by Eq.
~49!. The recursion starts with the same initial condition as
Eq. ~14!. The rest of the analysis is exactly the same as in
binary case. Substituting a traveling front solution,Pn(x)
5F(x2vn) in Eq. ~53! and then linearizing near the taily
→2`, we find as in the binary case,F(y);12ely where
the velocityv of the front is related tol via the dispersion
relation

v~l!52
1

l
lnFmE

0

`

e2ler~e!deG , ~54!
7-10
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where the induced distributionr(e) is given by Eq.~50!. The
front velocity is then given by the maximumv(l* ) of the
dispersion curve in Eq.~54! and is obtained by solving Eqs
~20! and ~54!. Similarly one can also work out the logarith
mic correction to the front velocity and the asymptotic fro
position is given by the same formula in Eq.~22!, only l*
andv(l* ) are different from the binary case. Similarly th
average height̂HN& for the m-ary search tree is also give
by the same formula as in Eq.~24!, only change is in the
dispersion curvev(l).

Let us now present some specific results. For the unifo
distribution,r(e)5(m21)@12e2e#m22e2e as follows from
Eqs.~45! and~50!. Substituting this into the dispersion rela
tion ~54! yields

v~l!52
1

l
ln@m~m21!B~l11,m21!#, ~55!

whereB(m,n) is the Beta function. For instance, form53
the velocity v(l) has a single maximum atl*
53.489 85 . . . with v(l* )50.404 87 . . . . Plugging these
in the general formula~24! we again arrive at Eq.~1! with
a052.4698 . . . anda1521.0616 . . . .

Consider now the largem limit. Using asymptotic proper-
ties of the Beta function, one gets

l* ' ln m, v~l* !' ln~m/l* !. ~56!

Therefore, whenm→`, the average height is given by E
~1! with

a05
1

ln~m/l* !
, a152

3

2l* ln~m/l* !
. ~57!

Similarly for the distribution~47!, Eqs.~50! and~54! lead
to the following dispersion relation:

v~l!52
1

l
ln@m~2m21!~2m22!B~l12,2m22!#.

For m53, we get the maximum atl* 54.178 86 . . . with
v(l* )50.532 35 . . . . Theaverage height is given by Eq
~1! with a051.878 45 . . . and a1520.674 27 . . . . The
large m behavior turns out to be exactly the same as in
case of uniform distribution. One can work out the largem
asymptotics for arbitrary distributionh(r ) ~see Appendix D!
and one gets the same asymptotics~56! as in the above ex
amples. Therefore, the asymptotic behavior of^HN& is uni-
versal~independent of the details of the distribution! in the
largem limit.

B. Statistics of the balanced height

As in the binary case, we again utilize the distributi
Rn(x)5Prob@max$E1,E2, . . . ,Emn%,x#. This distribution
satisfies the recursion relation

Rn~x!5E
0

`

. . . E
0

`

p~e1 , . . . ,em!)
i 51

m

Rn21~x2e i !de i ,

~58!
03612
t

m

e

and the same initial and boundary conditions~31!,~32! as in
the binary case. Plugging a traveling front solutionRn(x)
5G(x2v1n) into Eq. ~58! and linearizing in the tail region
y→` according toG(y)'12e2my, we arrive at the disper-
sion relation

v1~m!5
1

m
lnFmE

0

`

emer~e!deG , ~59!

where the induced distribution is given by Eq.~50!. The front
velocity is then selected by the minimumv1(m* ) of this
dispersion relation. Proceeding as in the binary case,
asymptotic front position is given by the same general f
mula in Eq.~38!, the only difference is thatm* andv1(m* )
are different from the binary case. Finally the average b
anced height̂hN& for them-ary search trees is also given b
the same general formula in Eq.~40!, the only difference
being the dispersion relationv1(m).

For the uniform distribution, Eq.~45!, we reduce Eq.~59!
to

v1~m!5
1

m
ln@m~m21!B~12m,m21!#. ~60!

Equation~60! can also be obtained from Eq.~55! by chang-
ing the sign ofl52m as expected. For example, form
53, the dispersion relation~60! has a unique minimum a
m* 50.681 89 . . . where v1(m* )53.902 27 . . . . Then the
general formula ~40! reduces to Eq. ~2! with a08
50.256 26 . . . anda1850.563 71 . . . .

For the distribution~47!, the dispersion relation reads

v1~m!5
1

m
ln@m~2m21!~2m22!B~22m,2m22!#.

One hasm* 51.286 65 . . . andv1(m* )52.623 34 . . . indi-
cating in the particular case ofm53, so in this situation the
averaged balanced height is given by Eq.~2! with a08
50.381 19 . . . anda1850.444 40 . . . .

One can also work out the largem behavior for arbitrary
distribution h(r ) ~Appendix D!. Unlike the case of the
height variable, the largem behavior in the case of balance
height is nonuniversal and depends explicitly on the smar
behavior of the distributionh(r ). If h(r );r a asr→0, then
~see Appendix D! m* 'a11 and v1(m* )'(a12)/(a
11)lnm. Both these quantities, and hence the average
anced height, depend on the parametera. Therefore, the bal-
anced height remains nonuniversal in the largem limit.

VI. CONCLUSIONS

In this paper we studied the statistics of height and b
anced height in the BST problem by exploiting a two sta
mapping ‘‘the BST problem→ fragmentation problem→
the MDP problem’’ and then using the traveling front tec
niques to solve the MDP problem. While the first mappi
has been used previously to obtain exact asymptotic res
for RBST problem, the second mapping allowed us to
beyond random trees and obtain exact asymptotic results
7-11
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BST’s where the new entries arrive in the tree according
any arbitrary distribution, not necessarily randomly.

An interesting extension of the present work would be
see if the traveling front techniques can be applied to ob
the asymptotic statistics of observables that are not nece
ily extreme. For example, in the context of the fragmentat
problem, it would be interesting to compute the probabil
Pn(k,N) that aftern levels of fragmentation there will bek
pieces~out of the total 2n pieces! with lengths less than 1
given that the initial length isN. This probability interpolates
between the two extreme limitsk50 andk52n. For k50,
this is the probability that all pieces have lengths bigger th
1 and hence is just the probability that the balanced he
hN is bigger thann @see Eq.~4!#, as studied in this paper. O
the other hand, fork52n, this is the probability that all
pieces have lengths less than 1 that is precisely the cum
tive distribution of the height variableHN as in Eq.~3!. It
would be interesting to see if for any intermediatek (0,k
,2n) the probabilityPn(k,N) has a traveling wave structur
as in the case ofk50 andk52n and if so, how does the
velocity vk depend onk?

The fact that the traveling wave techniques, used pre
ously in nonlinear physics, can be used successfully in c
puter science problems is not just interesting but it allows
to obtain the shape of the full distribution of height and n
just its moments. It would be interesting to apply these te
niques to more sophisticated search algorithms in comp
science.
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APPENDIX A: DERIVATION OF THE LOGARITHMIC
CORRECTION TO THE FRONT POSITION

In this appendix, we present a detailed derivation of
logarithmic correction to the asymptotic front position. W
employ the approach of Ref.@39# where such a correction
was computed for a reaction diffusion equation. In t
present context, our starting point is the recursion relation
Eq. ~53! for the m-ary search trees. We first substitu
Pn(x)512 f n(x) in Eq. ~53! and then neglect terms of orde
O( f n

2) in the regimex→2` to get a linear equation

f n11~x!5mE
0

`

f n~x2e!r~e!de, ~A1!

wherer(e) is the effective induced distributionr(e) given
by Eq. ~50!. Next we assume that for largen the front posi-
tion is given byxn5vn1c(n), where both the velocityv
and the functional form of the correction termc(n) are yet to
be determined. Following Ref.@39#, we then assume that fo
largen the solutionf n(x) of Eq. ~A1! is given by the scaling
form

f n~x!5ngHS x2xn

ng Del(x2xn), ~A2!
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where the exponentg and the scaling functionH(y) are not
yet known. We only know thatH(y)→0 asy→6` @since
0< f n(x)<1 for all x#. Also, since for largen, the prefactor
ng in Eq. ~A2! must go away, indicating thatH(y);y asy
→0.

Let us definezn5(x2xn)/ng. Then to leading order for
large n, one haszn11'zn2(g/n)zn2vn2g. Substituting
zn11 in Eq. ~A2! and keeping only leading order terms w
get for the left-hand side of Eq.~A1!,

f n11~x!'ngel(x2xn2v)FH~z!2
vH8~z!

ng 2
g

n
zH8~z!

1S g

n
2l

dc

dn
~n! DH~z!1

v2

2n2g H9~z!G . ~A3!

In the above equation, we used the shorthand notationzn
5z, H8(z)5dH/dz, andH9(z)5d2H/dz2.

Similarly, inserting Eq.~A2! into the right-hand side of
Eq. ~A1!, expandingH@(x2xn2e)n2g# in Taylor series in
ee2g, and keeping only leading order terms, we find t
right-hand side of Eq.~A1!

f n11~x!'mngel(x2xn)Fm0H~z!2
m1

ng H8~z!1
m2

2n2g H9~z!G ,
~A4!

wheremk5*0
`eke2ler(e)de. Comparing the left-hand side

given by Eq.~A3! and the right-hand side given by Eq.~A4!,
we recover, to leading order for largen, the dispersion rela-
tion

e2lv5mE
0

`

e2ler~e!de. ~A5!

As argued before, the front will choose the maximum velo
ity v(l* ) of the dispersion relation~A5!. At l5l* ,
v8(l* )50. Differentiating Eq.~A5! with respect tol we
obtain v(l* )exp@2l*v(l* )#5mm1. Using this in Eq.~A3!
shows that the term of ordern2g in Eq. ~A3! cancels the
corresponding term on the right-hand side in Eq.~A4!. To
ensure that remaining terms are of the same order, we m
have g51/2 and dc/dn5b/n. The latter equation gives
c(n)5b ln n, whereb is still undetermined. Employing thes
choices forg andc(n) and equating Eqs.~A3! and~A4!, we
obtain

~v22mel* vm2!H9~z!2zH8~z!1~122bl* !H~z!50,

wherev5v(l* ). This equation can be further simplified a
follows. Differentiating Eq.~A5! twice with respect tol and
using v8(l* )50 we get an additional relation,v2(l* )
2mm2 exp@l*v(l* )#5l*v9(l* ). By inserting this into the
above equation we finally arrive at the eigenvalue equati

2l* v9~l* !H9~z!1zH8~z!1~2bl* 21!H~z!50.
~A6!

Note that v(l) has a maximum atl5l* indicating
v9(l* ),0. Rescalingz5A2l* v9(l* )z, we find that the
7-12
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solution of Eq. ~A6! that vanishes atz→` is given by
H(z)5Be2z2/4D2bl* 22(z), where B is a constant and
Dp(z) is the parabolic cylinder function of indexp. The
condition thatH(z);z as z→0 enforces the choice of th
index p52bl* 2251 indicating b53/2l* . Note that the
above solution describes precisely the wave function of
first excited state of a quantum harmonic oscillator and
factor 3/2 is the corresponding energy eigenvalue. Fina
the leading asymptotic behavior of the front position is giv
by

xn5v~l* !n1
3

2l*
ln n. ~A7!

A similar calculation can be carried out for the balanc
height where one finds a dispersion relationv1(m) as given
by Eq. ~59! and front position is given by

xn* 5v1~m* !2
3

2m*
ln n, ~A8!

where m* denotes the point wherev1(m) has its unique
minimum.

APPENDIX B: ASYMPTOTIC BEHAVIOR OF THE
CUMULATIVE HEIGHT DISTRIBUTION

In this appendix, we derive the largey behavior of the
cumulative height distributionF(y). The functionF(y) is
the solution of the boundary value problem~16! and~17!. We
already know that 12F(y);el* y asy→2`, wherel* de-
notes the value ofl where the dispersion curvev(l) in Eq.
~19! has its maximum. In order to derive the asymptotic b
havior of F(y) in the other limity→`, we first recast the
integral equation~16! in a slightly different form. Let us first
define the cumulative distribution function

Y~e,e8!5E
0

eE
0

e8
p~x1 ,x2! dx1 dx2 , ~B1!

where the joint distributionp(x1 ,x2) is given by Eq.~9!.
Writing p(e,e8)5]2Y/]e ]e8 on the right-hand side of Eq
~16! and performing the integrations by part~first overe and
then overe8), we finally arrive at the following equation:

F~y2v !5E
0

`E
0

`

F8~y2e! F8~y2e8!Y~e,e8!de de8

12E
0

`

F~y2e!r~e!de21, ~B2!

whereF8(y)5dF/dy and we have used the boundary co
ditions of F(y). Note that due to the concentration of me
sure,F(y) has roughly the shape of the step function,F(y)
'u(2y) with the front located aty50. Thus the derivative
roughly behaves as a negative delta function,F8(y)'
2d(y). First reconsider the limity→2`. In this limit, the
arguments of the functionsF8(y) inside the integrands in th
first term on the right-hand side in Eq.~B2! are always very
03612
e
e
y,

-

-
-

large and negative, indicating that the contribution from t
term is negligible asy→2`. Neglecting the first term, one
finds that the resulting linear equation admits the exponen
solution 12F(y);ely wherev depends onl through the
dispersion relation in Eq.~19!. Thus one recovers the corre
result in they→2` limit.

Turn now to the complementary limity→`. Then the
arguments ofF8(y) inside the integrands of the first term o
the right-hand side of Eq.~B2! can be close to zero to pic
up a substantial contribution. For largey, one can approxi-
mateF8(y)'2d(y) inside the integrands on the right-han
side of Eq.~B2! and one then gets

F~y2v !'211Y~y,y!12E
0

`

F~y2e!r~e!de. ~B3!

Y(y,y)→1 andF(y)→0 asy→`. To find the asymptotics
of F(y) we differentiate Eq.~B3! with respect toy and use
F8(y)'2d(y) in the second term. This gives

F8~y2v !'22r~y!12
]Y~y,y2!

]y2
U

y25y

. ~B4!

Using the definitions in Eqs.~B1! and ~9! we find

]Y

]y2
52e2y2f~e2y2!f~12e2y2!u~e2y11e2y221!.

When y15y2 is large, the argument of the step function
the above equation is always negative, indicating that
can neglect the second term on the right-hand side of
~B4!. This gives F8(y)'22r(y1v). Hence the desired
largey behavior ofF(y) is given by

F~y!'2E
y

`

r~y81v !dy8, ~B5!

where v5v(l* ) is the maximum velocity associated wit
the dispersion relation~19!.

Note that the constrainte2e1e2e851 does not modify
the form of the dispersion curve when compared to the
constrained conventional DP problem@the only difference is
that one has to first find the effective single point ener
distributionr(e) in the constrained case from Eq.~9!#. How-
ever, the above constraint does modify the largey behavior
of the cumulative distributionF(y). For example, Eq.~B4! is
valid for the unconstrained problem as well. However, in t
unconstrained case,Y(y,y)5@*0

yr(e)de#2. In that case one
finds after taking the derivative, F8(y)'22r(y
1v)*y

`r(e)de indicating that for largey

F~y!uunconstrained'2E
y

`

dy8r~y81v !E
y8

`

r~e!de. ~B6!

For example, for the RBST wherer(e)5e2e, the largey
asymptotics areF(y);e2y ~constrained case! and F(y)
;e22y ~unconstrained case!.
7-13
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APPENDIX C: DERIVATION OF THE
INDUCED DISTRIBUTION

In this Appendix we derive the induced distributionh(r )
@see Eq.~47!# starting from the joint distribution

Prob@r 1 , . . . ,r m#5AmdS (
i 51

m

r i21D)
i 51

m

r i . ~C1!

The constantAm in the above equation has to be chosen s
that the joint distribution is normalized. The induced dist
butionh(r ) is obtained by fixing one of the fractions, say th
first one, to the valuer and then integrating over all othe
fractions. Thus by definition

h~r !5Amr E
0

1

. . . E
0

1

dS (
i 52

m

r i1r 21D)
i 52

m

r i dri .

~C2!

Note thatr i ’s denote the lengths ofm intervals with the
total length equal to unity. Let us define a set of new va
ables, x25r 1r 2 , x35x21r 3 , . . . , xm215xm221r m21.
Here xi ’s denote the points separating adjacent interv
Clearly thenxm21512r m since the total length is unity
With these change of variables the integral in Eq.~C2! be-
comes

h~r !5Amr zm~r !, ~C3!

wherezm(r ) is given by

zm~r !5E
r

1

~x22r !dx2E
x2

1

~x32x2!dx3 . . . . . .E
xm22

1

~xm21

2xm22!~12xm21!dxm21 . ~C4!

Thuszm(r ) satisfies the recursion relation

zm~r !5E
r

1

~x22r !zm21~x2!dx2 . ~C5!

One directly computesz2(r )512r and z3(r )5(12r )3/6
which suggests to seek a solution in the formzm(r )5Bm(1
2r )2m23. Plugging the above expression in recursion~C5!
yields

Bm5
Bm21

~2m23!~2m24!
, ~C6!

which is iterated to giveBm51/(2m23)!. Thus we obtain
h(r )5Amr (12r )2m23/(2m23)!. Thenormalization condi-
tion *0

1h(r )dr51 then givesAm5G(2m) whereG(x) is the
gamma function. Therefore

h~r !5~2m21!~2m22!r ~12r !2m23, ~C7!

which is valid for allm>2.
03612
h

-

s.

APPENDIX D: LARGE m RESULTS FOR
ARBITRARY DISTRIBUTION

In this appendix we derive the largem behavior of^HN&
and ^hN& for m-ary search trees with arbitrary distributio
h(r ). We start with the height variable and write the disp
sion relation

e2lv5mE
0

`

e2ler~e!de5mE
0

1

r lh~r !dr. ~D1!

The constraint(r i51 leads to*0
1rh(r )dr51/m. Thus for

largem, a generic distributionh(r ) will be concentrated nea
r 50. Consider a class of distributions that behave ash(r )
'Cmr ae2bmr near the origin. For example,Cm5m21, a
50, andbm5m22 for the uniform distribution~45!. Simi-
larly, Cm5(2m21)(2m22), a51 andbm52m23 for the
distribution ~47!. These two examples suggest thatCm
;ma11 and bm;m. Making use of the constraint
*0

1h(r )dr51 and*0
1rh(r )dr51/m one indeed confirms the

above asymptotics:bm'(a11)m andCm'bm
a11/G(a11).

We now consider the integral in Eq.~D1!. Substituting the
small r behavior ofh(r ), performing the integral, and usin
the Stirling formula one gets

~bme2v!l'
m

G~a11!
A2p~l1a!S l1a

e D l1a

. ~D2!

Taking the logarithm, differentiating with respect tol, and
settingv8(l* )50 we determinel* andv(l* ). The leading
contributions are given by Eq.~56!. Therefore, the largem
behavior of^Hn& is indeed universal.

We now turn to the largem behavior of the average ba
anced height̂ hN&. In this case, the appropriate dispersi
relation is given by Eq.~59!,

emv15mE
0

`

emer~e!de5mE
0

1

r 2mh~r !dr. ~D3!

Substituting the smallr behavior, h(r )'Cmr ae2bmr , and
performing the integral we obtain

~bm
21ev1!m'

m

G~a11!
G~a112m!. ~D4!

We will see that in the largem limit, m* →a11. Hence we
write m→a112d, assume thatd!1, plug these in Eq.~D4!
and take the logarithm to obtain

~a112d!~v12 ln bm!' ln
m

G~a11!
2 ln d. ~D5!

Differentiating Eq. ~D5! with respect to d and setting
v8(d* )50 yields

m* 5a112
a11

ln m
1•••,

v~l* !5
a12

a11
ln m1•••.

The parametera appears in the leading order even in t
large m limit. Consequently,̂ hN& also depends ona and
thence the balanced height is not universal in the largem
limit.
7-14
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@10# M. Mézard, G. Parisi, and M.A. Virasoro,Spin Glass Theory
and Beyond~World Scientific, Singapore, 1987!.

@11# D.E. Knuth,The Art of Computer Programming, Sorting an
Searching, 2nd ed. ~Addison-Wesley, Reading, MA, 1998!,
Vol. 3.

@12# R.A. Fisher, Ann. of Eugenics7, 355 ~1937!.
@13# A. Kolmogorov, I. Petrovsky, and N. Piscounov, Mosco

Univ. Math. Bull. ~Engl. Transl.! 1, 1 ~1937!; translated and
reprinted in P. Pelce,Dynamics of Curved Fronts~Academic
Press, San Diego, 1988!.

@14# M. Bramson, Commun. Pure Appl. Math.21, 531 ~1978!.
@15# Ya.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, and G.M

Makhviladze,The Mathematical Theory of Combustion an
Explosions~Consultants Bureau, New York, 1985!.

@16# J.D. Murray, Mathematical Biology~Springer-Verlag, New
York, 1989!.
03612
.@17# W. van Saarloos, Phys. Rev. A39, 6367~1989!.
@18# U. Ebert and W. van Saarloos, Phys. Rev. Lett.80, 1650

~1998!; Physica D146, 1 ~2000!.
@19# J.M. Robson, Austr. Comput. J.11, 151 ~1979!.
@20# P. Flajolet and A. Odlyzko, J. Comput. Syst. Sci.25, 171

~1982!.
@21# L. Devroye, J. Assoc. Comput. Mach.33, 489 ~1986!.
@22# H.M. Mahmoud,Evolution of Random Search Trees~Wiley,

New York, 1992!.
@23# E.J. Gumbel,Statistics of Extremes~Columbia University

Press, New York, 1958!.
@24# J. Galambos,The Asymptotic Theory of Extreme Order Stat

tics, 2nd ed.~R.E. Krieger Publishing Co., Malabar, 1987!.
@25# S.M. Berman,Sojourns and Extremes of Stochastic Proces

~Wadsworth and Brooks/Cole, Stamford, CT, 1992!.
@26# J.-P. Bouchaud and M. Mezard, J. Phys. A30, 7997~1997!.
@27# L. Devroye, Acta Inform.24, 277 ~1987!.
@28# M. Greiner, H.C. Eggers, and P. Lipa, Phys. Rev. Lett.80,

5333 ~1998!.
@29# W.I. Newman and A.M. Gabrielov, Int. J. Fract.50, 1 ~1991!.
@30# D. Sornette and A. Johansen, Physica A261, 581 ~1998!.
@31# S.N. Coppersmith, C.-h. Liu, S.N. Majumdar, O. Narayan, a

T. Witten, Phys. Rev. E53, 4673~1996!.
@32# T. Hattori and H. Ochiai~unpublished!.
@33# P.L. Krapivsky and S.N. Majumdar, Phys. Rev. Lett.85, 5492

~2000!.
@34# B. Derrida and H. Spohn, J. Stat. Phys.51, 817 ~1988!.
@35# B. Reed, J. Assoc. Comput. Mach.~to be published!.
@36# J. M. Robson, Theor. Comput. Sci.~to be published!.
@37# M. Drmota, J. Assoc. Comput. Mach.~to be published!.
@38# E. Ben-Naim, P.L. Krapivsky, and S.N. Majumdar, Phys. R

E 64, 035101~2001!.
@39# E. Brunet and B. Derrida, Phys. Rev. E56, 2597~1997!.
@40# S.N. Majumdar and P.L. Krapivsky, Phys. Rev. E62, 7735

~2000!.
@41# D.S. Dean and S.N. Majumdar, Phys. Rev. E64, 046126

~2001!.
7-15


