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Extreme value statistics and traveling fronts: Application to computer science
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We study the statistics of height and balanced height in the binary search tree problem in computer science.
The search tree problem is first mapped to a fragmentation problem that is then further mapped to a modified
directed polymer problem on a Cayley tree. We employ the techniques of traveling fronts to solve the polymer
problem and translate back to derive exact asymptotic properties in the original search tree problem. The
second mapping allows us not only to rederive the already known results for random binary trees but to obtain
exact results for search trees where the entries arrive according to an arbitrary distribution, not necessarily
randomly. Besides it allows us to derive the asymptotic shape of the full probability distribution of height and
not just its moments. Our results are then generalizet-toy search trees with arbitrary distribution.
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[. INTRODUCTION ing algorithm. An order is first chosen for the incoming data,
e.g., it can be alphabetical or chronologi¢dnuary, Febru-
The techniques developed in statistical physics, particuary, March, etg. Let us choose the chronological order. Now
larly in the theory of spin glasses, have been recently appliethe first element of the input strirduly) is put at the root of
to a variety of problems in theoretical computer sciefide @ tree(see Fig. 1 The next element of the string is Septem-
These include various optimization problems such as th&er. One compares with the root elemeduly) and sees that
traveling salesman problefg], graph partitionind3], satis-  September is bigger than Jufin chronological order So
fiability problems[4], the knapsack problef5], the vertex —One assigns September to a daughter node of the root in the
Covering prob|enﬁ6], error Correcting COdd:g], number par- rlght branch. On the other hand, if the new element were less
titioning problems[8], matching problems[9] and many than the root, it would have gone to the daughter node of the
others[10]. The purpose of this paper is to study analytically left branch. Then the next element is December. We compare
certain problems in a different area of theoretical compute@t the rootJuly) and decide that it has to go to the right, then
science known as sorting and searchid]. The standard We compare with the existing right daughter nag&eptem-
techniques of spin glass theory are not directly suitable foP€n and decide that December has to go to the node that is
these problems. Instead, we employ the techniques develhe right daughter of September. The process continues till
oped to study the propagation of trave”ng fronts in Variousa” the elements are assigned their nodes on the tree. For the
nonlinear systemgl2—18§. particular data string in the above example, we finally get the
The “sorting and searching” is an important area of Com_unique tree as shown in Flg 1. Such a tree is called a binary
puter science that deals with the following basic questionsearch tre¢BST).
How to organize or sort out the incoming data so that the ©Once this tree is constructed, the subsequent search, say
computer takes the minimum time to search for a given datfr the month of August, takes much less number of com-
if required later? Amongst various search algorithms, the biparisons. We start with the ro@uly). Since the sought after
nary search turns out to be one of the most efficiéa}. To ~ element August is bigger than July, we know that it must be
understand this algorithm, let us start with a simple exampleon the right branch of the two daughter subtrees. This al-
Suppose the incoming data string consists of the twelvéeady eliminates searching roughly half the elements which
months of the year appearing in the following order: July,
September, December, May, April, February, January, Octo-
ber, November, March, June, and August. Suppose later we
need to look for the month of August in this data string. @ @
Consider first the sequential search where the computer starts
from the first elementJuly), checks if it is the right month @ @ @ @
and if not, moves to the next element of the striSgptem- 5
ben, checks the element there and continues in this fashion
until it finds the right month. In the example above, to find @ @
the month “August,” the computer has to make 12 compari-
sons. Thus, the sequential search algorithm is rather ineffi-
cient as it typically takes a search time of orderwhereN @ @ @
is the number of entries in the data string.
In a binary search, on the other hand, the typical search F|G. 1. The binary search tree corresponding to the data string
time scales as IN [11]. The binary search is implemented by in the order: July, September, December, May, April, February,
organizing the data string on a tree according to the follow-January, October, November, March, June, and August.
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probability measure of the treegives a measure of the av-
@ erage time required to insert a new element in a ftidg
Hy is the height of a given tree, defined as the depth of
@ @ the farthest node from the root. For examptg,=5 for the
BST in Fig. 1. ClearlyHy is also a random variable and
(Hy) gives a measure of thmaximumpossible time that
@ @ @ could be required to insert an element, i.e., a measure of the
worst case scenaripl9-22.
hy is the balanced height defined as theximumdepth
@ @ @ from the root up to which the tree fsilly balanced, i.e., all
the nodes up to this depth are fully occupjéd]. In the tree
shown in Fig. Lhy=3, whereasy=2 in the tree in Fig. 2.

@ @ @ Hencehy is also a random variable whose statistics is im-

portant.

Some of the observables mentioned above such as the
%eightHN and the balanced height, are of extremal nature,
i.e., they are the maximum or the minimum of a setof-
related random variables. In this paper, we limit ourselves
only to such extreme observables of the binary tree. While
are on the left subtree. We next encounter the key Septembghe statistics of the extremum of a setwicorrelatedran-
Since August is less than September, we go to the left andom variables is well understod@3—-23, little is known
thus we do not need to search anymore the right branch afbout the same for correlated variabl2s]. However, in the
the subtree rooted at September. Once we go to the left, weresent problem the random variables are correlated in a spe-
find the required key August. cial hierarchical way that facilitates analysis. We will see that

Thus, the BST algorithm requires only three comparisonghe extreme variables in the BST problem satisfy nonlinear
as opposed to 12 operations in the sequential search. Singgcursion relations that admit traveling front solutions in
the typical search time is proportional to the depth of ansome suitable variables. A lot is known about the speed and
element in the tree and since the typical detis related to  the shape of such fronts appearing in various nonlinear sys-
the total sizeN via 2°~N, the search time scales asNn  tems[12-18. Below, we will use these techniques to study
making the BST algorithm one of the most efficient searchthe statistics of extreme variables in the binary tree problem.
algorithms. Some of our results for the RBST were already known

If the incoming data string had a different order of appearthat we will mention as we go along. However, the approach
ance, one would have obtained a different BST. For exampleysed here is quite different from those used by the computer
suppose the months appear in a different order as: May, Nascientists. Computer scientists tend to establish upper and
vember, August, April, December, February, June, Septemower bounds to the quantity of intere@ypically the aver-
ber, July, January, October, and March. For this data stringage value or the variance of the observakled then tighten
the same algorithm of constructing a binary tree as beforgne bound$21]. If the bounds coincide, one obtains an exact
gives a tree of different shag€ig. 2). Each permutation of result[21]. Our approach, on the other hand, is a typical
the incoming data string leads to a different binary tree anghysicist’s approach. The methods we use may not always be
there areN! possible binary trees for any incoming data rigorous in the strict mathematical sense, but they lead to
string with N entries. Usually the incoming data string ap- exact asymptotic results in a physically transparent way.
pears in a random fashion. This would indicate that each oloreover, our approach allows us not only to reproduce al-
the N! possible binary trees occurs with equal probability. ready known asymptotics for the average height and the av-
Such trees, each generated with equal probability, are callegrage balanced height of the RBST, but also to obtain infor-
“random binary search treeSRBST). Of course, if the in-  mation about the variance and even the asymptotic shapes of
coming data is not completely random, the probability meathe full probability distributions. Besides, our method goes
sure over the space of trees will not be uniform. The result®eyond the RBST and yields exact results for trees generated
derived in this paper will be applicable not only to RBST butwith arbitrary distributions.
also to more general BST's with arbitrary measure. Our approach utilizes two exact mappings that can be

Each BST has several observableach as the depth or summarized as follows. Following Devroy@7], we first
the height of a treeassociated with it that quantify the effi- map the RBST problem to a random fragmentation problem
ciency of the underlying search algorithm. Hence the knowlwhere an object of initial lengtN breaks randomly into two
edge of the statistics of such observables are of central infragments, each of which further breaks randomly into two
portance. Here are a few observables: parts, and so on. The fragmentation problem is interesting on

Dy is the depth(distance from the rodptof the last in-  its own right as it appears in the context of various physical
serted element in a given BST of siké For exampleDy problems such as the energy cascades in turbulE28k
=3 for the tree in Fig. 1(counting the depth of the root rapture processes in earthquake$], financial crashes in
element as 1). Each BST has a differéh, soDy is a  stock marketd30], and the stress propagation in granular
random variable. The average dephy) (averaged over the medium[31]. Some of the extremal problems in the random

FIG. 2. The binary search tree corresponding to the data strin
in the order: May, November, August, April, December, February,
June, September, July, January, October, and March.
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fragmentation problem were studied recently by Hattori andA different sequence of months will correspond to a different
Ochiai[32] and by ug33]. The method used in our previous permutation of these integers. Each such sequence or permu-
paper[33] allowed us to obtain exact asymptotic results fortation will then correspond to a separate BST, constructed by
the average of the maximal piece of thefeagments aften  the algorithm explained in the Introduction. In RBST, all
iterations. The statistics of this maximal piece is closely retheseN! sequencegand their corresponding treesccur
lated to the statistics of the height in the RBST. Howeverwith equal probability.
this method was not easy to extend to the cases beyond the We will focus on the statistics of the extreme variables
random fragmentation, i.e., when the break point is choseassociated with these trees, in particular, the hettjptand
from an arbitrary distribution, not necessarily uniform. We the balanced heighty of a BST as defined in the Introduc-
will see later that a fragmentation problem with a givention. Each BST has a unique valueldf, andhy. Since the
break point distribution corresponds to a BST problem whererees occur with a given probability distributiq@vhich is
the incoming entries to the tree appear according to a specifigniform in case of RBS)| bothHy andhy are random vari-
distribution and not just randomly. ables. Of interest are the statistics of these variables such as
In this paper, we show that the fragmentation problemthe average, variance, or even the full probability distribu-
with arbitrary break point distribution, can further be mappedtions of Hy andhy.
onto a modified directed polymé&MDP) problem on a Cay- The RBST problem has been studied for a long time by
ley tree. The MDP problem differs from the conventional computer scientists and we now mention a few known re-
directed polyme(DP) problem on a Cayley tree studied by sults. Devroye[21] proved that for largeN, the average
Derrida and Spohr34] due to the presence of a special height of a RBST(Hy)~aInN where the constanty,
constraint in the MDP. Derrida and Spohn were mostly in-=4.311 @ . .. . Hattori and Ochiai conjectured that the true
terested in the finite temperature spin glass transition in thasymptotic behavior ofH,) has an additional subleading
DP problem. Our problem reduces to a zero temperaturgiouble logarithmic correction,
problem, albeit with a special constraint. We then solve this
MDP problem using traveling front techniques and translate (Hn)=~agInN+aqIn(InN), (1)
back to derive exact asymptotic results for the original BST
problem. We will see that the statistics of the height of  and they determined the constamt~—1.75 numerically
the BST problem is relatedvia the two successive map- [32]. Using traveling front techniques we confirmed the
pings to the statistics of the minimum or the ground stateabove asymptotics and computed the correction term analyti-
energy of the MDP problem. On the other hand, the statisticgally, «,=—3ag/[2(ag—1)]=—1.953@ ... [33]. The
of the balanced heighty will be related to that of the maxi- same result was simultaneously proved by Rig). Based
mum energy of the directed polyméa quantity of little in-  on numerical data, Robson conjectuf&8] that the variance
terest in statistical physics framewgrihis second mapping is bounded. Recently, Drmo{&87] has proved that all mo-
also allows us to obtain exact results for nonrandom BSTments((Hy—(Hy))™) are bounded.
problem. For the balanced heiglity of RBST, Devroye showed
The paper is organized as follows. In Sec. |, we set ughat the leading asymptotic behavior of the average balanced
notation, review known results for the RBST problem, andheight is given by(hy)~a;’ InN where ay’=0.373. . .
summarize the results obtained in this paper. Section Il conf21,27]. Indeed,aq in (Hy) and ey’ in (hy) turn out to be
tains the exact mapping of the BST problem to the fragmenthe two solutions of the same transcendental equation
tation problem. In Sec. Ill, we map the fragmentation prob-(2e/«)*=e [21,27. This suggests some kind of duality be-
lem to the MDP problem. In Sec. IV, we derive the exacttween the height and the balanced height. We will show later

nonlinear recursion relations in the MDP problem and anathat the correct asymptotic behavior (dfy) is given by
lyze them using the traveling front techniques. The main

results for the RBST problem are also derived in this section. (hy)=ap’ INN+ ;" In(InN), (2)
In Sec. V, we go beyond the random trees and derive exact
results for the fragmentation problem with arbitrary breakyhere relationa ] = —3a§/[2(a,—1)] holds again. Drmota

point distribution. Section VI contains the generalization tohas recently proved that all the moments hgf are also
the case ofrrary trees with arbitrary distributions. We finally pounded37] as in the case ofly .

conclude in Sec. VII with a summary and outlook. Note that all the results mentioned above are for RBST
with fixed sizeN. Recently by using a rate equation approach
Il BINARY SEARCH TREES: OLD AND NEW RESULTS we studied the statistics of height and balanced height for

randomly growing binary trees where the average size of a
Let us label the incoming data string bf elements by tree grows with time linearl{N(t))~t [38]. The expected
integers 1, .., N. For example, if the data string consists of height and balanced height for large random binary trees
the 12 months of the year, we can label, say the month ofvere found to have exactly the same asymptotic form(ilas
January by 1, the month of February by 2, and so on. In thaand (2), provided one replaceN by (N(t)) in these equa-
example,N=12. A specific data string will then be isomor- tions. This approach is thus reminiscent of the grand canoni-
phic to a corresponding ordered sequence of these integeisal approach in statistical mechanics with the tinpaying
For example, the particular sequence of months in Fig. the role of the chemical potential that can be chosen to fix
reduces to the ordered sequence (7,9,12,5,4,2,1,10,11,3,6,8)e average size. In this paper, we focus only on the canoni-
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cal approach, i.e., trees with fixed given sMgsince this is N
more familiar in theoretical computer science.
We will exploit a two stage mapping “BST problem-
fragmentation probler» MDP problem” and use the trav-
eling front technique to analyze the MDP problem. This N N
technique allows to rederive in a physically transparent way
all results for the RBST mentioned above and provides a lot
of important results. We will show that the constaatsand
ay’ are simply related to the velocities of traveling fronts.
The subleading correction terms can also be derived analyti- N N r'’N LN
cally. The traveling front approach also predicts “concentra-
tion of measure” of the variablebly and hy. This means T
that the asymptotic p_robability distrib_utions of_these vari- FIG. 3. The fragmentation process has itself a tree structure
ables are highly I_ocallzed around their respective averageggenoted byT*), shown here up to level 2. In the first step an
As a result, a typical value dfiy~(Hy) and the spread in  interval of lengthN is broken into two pieces of lengtisl andr’N
Hy is of orderO(1) in the largeN limit. Naturally the vari-  sych thar +r’=1. Each of those pieces is further broken into two
ance and higher cumulants of bdth, andhy are bounded. halves satisfying the constraints+r,=1 andr,’+r,’=1. At
We also derive an asymptotically exact nonlinear integralevel n, there will be 2 pieces.
equation for the full probability distributions ¢, andhy .
While we could not solve this nonlinear equation in closed . . )
form, we could derive the behaviors at the tails of thesesubsequently the mterv_al (0.2) m_to t\.NO parts: the _Ieft
highly localized distribution functions. We will also see that part (10-11) and the right part Wh_'Ch IS empty. Similarly
within this approach the variablé$y andhy map, respec- the fourth element (5) breaks thg interval<®&) into two
tively, onto the minimum and maximum energy of a directedPats: the left part (+4) and the right part (6) and so on.
polymer and hence the observed duality between them is Thus, one can think of the construction of the RBST as a
rather natural. dynamical fragmentation process where one starts with a
The main advantage of the present approach is that ﬁtiCk of initial length N and breaks it randomly into two
allows us to go beyond the random trees and obtain exagtarts: a left part of lengthN and a right part of length’N
asymptotic results for the statistics dfy andhy for BST's ~ with the constraint +r’=1, wherer is a random number
with arbitrary distributions. This is the main result of the distributed uniformly over the intervdl0—1]. At the next
present paper. Besides, we also generalize basic results $tep, one breaks each of these intervals again into two parts.
m-ary search trees with arbitrary distributions. At any stage of breaking, the random variableharacteriz-
ing the break point of an interval is chosen independently
. MAPPING OF THE BST PROBLEM TO A from interval to interval. They are _also independent from
FRAGMENTATION PROBLEM stage to stage. Aftem steps of breaking, there aré ter-
vals. Note that this fragmentation process has itself a tree
In order to derive the asymptotics of the statistics of thestructure and can be represented by a branching process as
height and the balanced height in the BST problem, it isdepicted in Fig. 3.
convenient to first map this problem to a fragmentation prob- A search tree of fixed sizdl is completed when in the
lem following Devroye[21,27. To illustrate how this map- corresponding fragmentation process, the lengths of all inter-
ping works, let us consider again the example in Fig. 1 whereals are less than 1 because this means that all the elements
the months(or the corresponding integers from 1 to 12) of the incoming data string have already been incorporated
appear in the particular sequence (7,9,12,5,4,2,1gnto the search tree. Although in the fragmentation problem
10,11,3,6,8). The first elemefwhich in this example is 7) we have continuous intervals whereas in the RBST the inter-
is chosen randomly from the availatle= 12 elements in the vals consist of discrete integers, it does not really matter
case of RBST. Once this element is chosen, the remainingince one can associate the integer part of a break point to a
elements will belong either to the interval {6) or (8  particular integer element of the RBST. For example, if the
—12), which are subsequently completely disconnected fronfirst break point in the fragmentation problem is 7.3, this
each other. Thus choosing the first element is equivalent tmeans that in the RBST problem, the first elem@né roo}
breaking the original interval (4 12) into two intervals, the is integer 7.
left (1—6) and the right (8-12) at the break point 7 which Let us first consider the heighty of the RBST. By defi-
is chosen randomly. Now consider the next element. It willnition, Hy is the distance from the ro¢depth of the farthest
either belong to the left or the right interval. In the particularelement in the RBST. The RBST stops growing beyéhg
example we are discussing, the next element 9 belongs to ttes all the incomind\ elements have been incorporated in the
right interval (8-12). This new element then divides the tree. Thus when the RBST attains the degtf, in the cor-
right interval (8-12) again into two parts: the left contain- responding fragmentation problem, the length of every inter-
ing only the single element (8) and the right (102). val is less than 1. Denote Hy, ..., |, the lengths of 2
These two new intervals subsequently become completelintervals aftern steps of breaking. Clearly, the probability
independent of each other. The third element (12) breakBrolj Hy<<n] in the RBST problem is the same as the prob-
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ability that all 2" intervals in the fragmentation problem have cial crashes in stock mark€t30], and in the stress propaga-

lengths less than 1, tion in granular mediuni31]. In our previous pap€33], we
had studied the asymptotic laws governing the probability
ProfHy<n]=Proljl;<1, ... J;n<1]. (3 distribution of the maximal lengths of the intervals after

steps of breaking in the random fragmentation problem using
traveling front techniques. The same differential equation
that describes the Laplace transform of this distribution was
also studied independently by Drmota via a different method
[37]. Both these methods work well for the random problem
where 5(r)=1] but seem difficult to extend to the general
Sse when the break point in the fragmentation process is
chosen from an arbitrary induced distributiagir) [33]. It

The right-hand side of Eq3) is also the probability that the
maximum of the lengths of the"dieces is less than 1 in the
fragmentation problem.

We next consider the balanced heigitof the RBST. By
definition, hy is the depth up to which the RBST is fully
saturated and balanced. Beyond this depth, some parts of t
RBST stop growingsee Fig. 1 wherdny=3). This means

]that in thi corresponditr:g rafncéom ljfagmerl‘ta“f’” procr?ss, &Brns out, however, that the fragmentation problem with gen-
ong as the step number of breaking is less than the eral »(r) can further be mapped to a MDP problem as pre-

lengths of all the intervals must still be bigger than 1, so thatsented in the next section. This further mapping followed by
each such interval can incorporate a new element. Thus th[

. ) . fie traveling front analysis then allows us to obtain exact
probab!l!ty Prol@hN>_n] n thg RBST is the same as the asymptotic results for the general case with arbitra(y).
probability that all 2 intervals in the fragmentation problem

have lengths bigger than 1,
IV. MAPPING OF THE FRAGMENTATION PROBLEM TO

Prod hy>n]=Prog1,>1, ... l,n>1]. (4) A MODIFIED DIRECTED POLYMER PROBLEM

The right-hand side of Ed4) is also the probability that the In this section, we further map the fragmgntation problem
minimum of the lengths of the™pieces is bigger than 1 in ©Nto @ MDP problem on a Cayley tree. This MDP problem
the fragmentation problem. turns out to be slightly different from the conventional DP

In the RBST. the new elements in the tree arrive ranlProblem studied in statistical mechanics due to the presence

domly. The corresponding fragmentation problem is also ran®f @ special constraint. NevetheIess, asymptotic. properties in
dom in the sense that at each stage an intérigabroken into the MDP problem can be derived analytically using the trav-

two parts of lengthgl andr’l with r+r’=1 where the €ling front techniques. _ _
random variable is chosen each time independently and is 10 understand this mapping, consider the set frier-
distributed uniformly ovef0—1]. One can, of course, gen- vals in the fragmentation problem aftersteps of breaking,

eralize this random fragmentation problem where the variSterting from the initial lengttN. Letl, denote the length of

abler is chosen independently each time but with an arbithekth interval wherek=1, ..., 2'. From Fig. 3, itis clear

trary distribution ovef 0— 1], not necessarily uniform. This that the length of any typical piedg can be expressed as the

would correspond to a BST problem where the new elementgroduct
arrive with a specified distribution. In general, at any stage of

n
breaking, the joint probability distribution afandr’ can be _ _
written as le= Niﬂl i, (6)
Pror,r']=¢(r)¢(r')s(r+r'—1). ) wherer,'s are the set of independent random variables en-

aountered in getting the final piece of lendthafter n steps

The delta function ensures that the total length is conserve . ST ;
of breaking the original interval of lengtk. Note that in the

at every stage of breaking. The joint distribution is written in

a symmetric way to ensure that batlandr’ have the same €T in Fig. 3, there is a unique path connecting the origi-
effective distribution that is given byz(r)=Prob() nal interval (the root element off *) to the kth interval at

_ Ty — . tagen and the set of random variabless encountered in

= [LProlr,r']dr' = ¢(r)$(1—r). The functiond(r) must sta . ;

be chosen such that (th)e i(nducfad distributipfr) (s;tisfies going from the root off* to thekth piece at staga defines

the conditions/25(r)dr=1 and i 5(r)dr=1/2. The first this unique path. Alternately, we can associate an energy
> 07 - ate) ol 7 e TF WS variablee; = —Inr;=0 to the bonds connecting this path and

condition ensures normalizability of the single point distri-

. - . the set of energiesg;'s also uniquely characterize the path
bution »(r) and the second condition comes from the strict . ; = .
constraintr +r'=1 that indicates(r)=(r')=1/2. In the (see Fig. 4. Taking logarithm in Eq(6), we see that the total

case of random breaking, the functig{r)=1 and conse- energyE, of a path(starting at the root and ending at the

quently the induced distributiom(r)=1 for Osr<1. A interval at the stage) becomes
simple example of a nonrandom break point distribution is n n
given by, ¢(r)=16r with the induced distribution(r) Ek:m(ﬂ):_g nr=> e 0
=6r(1—r) that satisfies the two constrair33]. i =T = T

Apart from connection to the BST problem, the random
fragmentation problem is interesting on its own rights as itThis path then represents a typical configuration of a directed
arises in various contexts such as the energy cascades polymer (directed in the downward directiprwith energy
turbulencd 28], rapture processes in earthquakg], finan-  given by Eq.(7) wheree;’s are random bond energies. Note
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whereEg,’s (k=1, ..., 2") are respectively the total ener-
gies of the all possible 2paths going from the root to the
leaves at thenth level in the DP problem. The probability in
the last line in Eq(10) is also the same as the probability
Prod min{E,, . .. .Eon}>InN]. Thus the height distribution
ProfHy<n] in the BST problem is precisely related to the
distribution of the minimum(ground state energy of the
MDP problem, a quantity of considerable interest in statisti-
cal physics.

Let us next consider the balanced height Using Egs.
84) and(7), it follows similarly that

FIG. 4. The MDP on a Cayley tree. This tree is isomorphic to
the tree of the fragmentation process shown in Fig. 3. Each bon
energye is related to the corresponding fractiomia e= —Inr. The
bond energies are correlated due to the constraints- e =1,

e fi1+e ©2=1, e*51,+effzy=1, etc. =Pr0t[El<|n N, C ,E2n<|n N], (11)

PI’Ok[hN>n:|=PI’Olf[|1>l, PR ,|2n>1]

that up to leveln, there are a total number of' different ~ Which is also the probability that the maximum energy

paths each having different total energies, . . ., Epn. maxE,, ... Eon} is less than IN. Thus the balanced height
In the conventional DP problem, the bond energigs  distribution Prophy>n] in the BST problem is related to

are completely uncorrelated. To understand why they are cofhe distribution of the maximum energy in the MDP prob-

related in the present problem, recall that when an interval i$M. @ quantity that is usually not of much interest in statis-

broken into two parts the random variableandr’ charac- tical mechanics.

terizing the lengths of the two daughter intervals satisfy the

length conservation constraimt}-r’=1. Translated into the A. Statistics of the height or the minimum energy
D,P proble,m, the_correspondmg bond energaers—ln_r and In this subsection we analyze the asymptotic statistics of
e'=—Inr' associated with the two bonds emanating down

‘the heightH, in the BST problem or equivalently that of the
minimum energy in the MDP problem. LetP,(x)
. =Prod min{E,, . . . Eon}>x], whereE,’'s with k=1, ...,
e ‘“+e =1 (8) 2" are the energies of the"Dolymer paths from the root to

thenth level. It is then easy to write a recursion relation for
This constraint holds at every branching point of the e P, (x),

Fig. 4). This correlation makes the MDP problem slightly
different from the conventional DP problem. _ f“’fw B o, , ,
The joint distributionp(e,€’) of the energies of the two Pn1(X) 0 Jo Pa(X=€)Pn(x—€")p(e,e')dede’,

wards from a given node must satisfy the constraint

bonds emanating from the common node and the induced (12
effective single bond distributiop(e) are obtained from Eq.
(5) to give wherep(e,€’) is the joint distribution of the two bond ener-
gies as given by Eq9). Equation(12) has been derived by
ple,e)=d(e ) p(e e < se +e < —1), analyzing different possibilities for the energies of the bonds

emanating from the root and using the fact that the two sub-
. sequent daughter trees are statistically independent. Note that
p(E)Ef p(e,e')de' =p(e )p(l—e e c. (9)  Inthe conventional DP problem, the corresponding recursion
0 relation would be simplified using the factorization property
of the joint distributionp(e,e’) and one would geit40,41]
For example, for the RBST we havigr)=1, and therefore
p(e)=e" . Note that in the conventional DP problem, the P (X)=
joint distributionp(e, €’) would simply be the product of the n+l
single point distributionsp(e,e’)=p(€)p(€’) since they
are independent. The MDP problem, however, lacks this fac- \We have to solve the recursion relatici®?) subject to the
torization property. initial condition
Having set up the notation we turn to the variableg

2

fan(X— €)p(e)de

0

(13

andhy in the original BST problem. What do the distribu- 1, x<0,
tions of Hy and hy correspond to in the MDP problem? Po(x)= 0. x>0 (14
First, consider the height distribution Pféby<n]. From ' '
Egs.(3) and(7), one finds and the boundary conditions
ProdHy<n]=Proll,<1, ... |,n<1] 1, X——o,
=ProdE;>InN, ... ,E;n>InN], (10 P“(X)H[O, X— 00, (19
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The recursion relatiofil2) is nonlinear and in general diffi- lem, the front finally selects the velocityA*) where\* is
cult to solve exactly. However, its asymptotic properties cargiven by the solution of Eq.20). Thus the asymptotic front
be derived analytically. As increases, the solutio®,(x) in  position, to leading order for large is given by

Eq. (12) looks like a (1-0) front(i.e., P,(x) ~1 for smallx

but falls off rapidly to 0 for largex) advancing in the posi- Xp=v(A*)n. (21
tive direction. This suggests that for largeEq. (12) admits
a traveling front solutionP,(x)=F(x—x,) wherex, de- While the leading behavior of the front positiog, is

notes the location of the front and the shape of the front igjiven exactly by Eq(21), it turns out that it has an associ-
described by the fixed point scaling functibrthat becomes ated slow logarithmic correction. This logarithmic correction
independent of.. This implies that the width of the front is to the front velocity was first derived by Bramson in the
of orderO(1), i.e., it saturates in the largelimit. The trav-  context of a reaction-diffusion equati¢h4], and was subse-
eling front ansatz also indicates that the front advances witlquently found in many other systems with a traveling front
a uniform velocity, i.e.x,~vn, to leading order for large [17,18,33,39,4D In Appendix A, we present a detailed deri-
where the velocityv is yet to be determined. Substituting vation of this correction term following the approach of Bru-
this traveling front ansatZ?,(x) =F(x—uvn) for largen in net and Derridd39]. The main result of this exercise is that
Eqg. (12), we find that the fixed point functioR(y) satisfies the asymptotic front position for largeis given by

the nonlinear integral equation,

3
Xp=~v(AN*)n+ z—Inn. (22

F(y—v)=f:j:F(y—E)F(y—e’)p(e,e’)dede’, 2\*

(160 one can even calculate the next correction term by employ-
ing a more sophisticated approafctB] but we omit these
results here. One important point to note is that while the
velocity v(A*) and\* are nonuniversal as they depend ex-
1 asy——o», plicitly on the distributionp(€), the prefactor 3/2 of the loga-
F(y)ﬂ[o as . (17)  rithmic correction in Eq.(22) is actually universal and is
y—ee. precisely the first excited state energy of a quantum har-

Let us first analyze Eq(16) in the tail regiony— —c. ~ Monic oscillator(see Appendix A
PluggingF(y)=1—f(y) in Eq.(16) and neglecting terms of Let us now translate back these results to see what they
orderO(f2) we find thatf(y) satisfies mean for the height distribution in the original BST problem.

From Eq.(10), it is clear that the cumulative height distribu-
tion for largen is given by

where the velocity is still undetermined ané (y) satisfies
the boundary conditions

f(y-0)=2 [ “y-ep(erde, 18)
0 Prof Hy<n]=P,(INN)=~F(InN—x,), (23)

where we have used the relatipfie) = [;p(e,€’)de’. This o o
linear equation(18) clearly admits an exponential solution Where the front positiorx, is given by Eq.(22) and the
f(y)=expQy) provided the inverse decay rateis related to function F(y) is given by the solution of Eq16). Since the

the velocityv via the dispersion relation function F(y) has the shape of a front with centeryat 0
and width of ordelO(1), its derivativeF’(y) is a localized

function aroundy=0 with width of orderO(1). From Eg.
. (19 (23) it then follows that the height distribution Piidiy
=n] is also localized around its average vallity) with a

For a given induced distributiop(e), the functiono(\)—  varianceV(Hy)~O(1). Thus Hy has a concentration of

—In(2)A as \—0 andv(\)—0 asA—o with a single Measure around its average vallit,) that is given by the
maximum at a finite\* determined via value ofn that corresponds to the zero of the argument of the

function F(y), i.e., whenx,=InN. Using x,=InN in Eq.

1 .
U()\)Z—Km 2]0 e “p(e)de

dv (22) and solving for the required value affor largeN, we
al =0 (200 obtain one of our main results
)\*
Thus for all\ such thatfje *¢p(e)de<1/2, the corre- Ho) = 1 InN— 3 In(n N 24
sponding velocity (\)>0. While any such\ is in principle (Hw v(\*) 2\*v(N*) (N, (249

allowed, a particular velocity is actually asymptotically se-

lected by the front. This velocity selection mechanism hasvherev(\) and\* are given respectively by Eq&l9) and
been observed in a large class of nonlinear problems with &0). This is the first result for the fragmentation problem
traveling front solution12—18,33,39—411 It is known that  with arbitrary break-point distribution going beyond the uni-
as long as the initial condition is shdras in the present case form case or equivalently for the BST problem where the
in Eq. (14)], the extreme value is chosen. From this generaklements in the tree arrive with an arbitrary distribution and
front selection principle, we infer that in our present prob-not just randomly.
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Itis useful to exemplify the above general results. For thegistributions, howeveif (y) vanishes for sufficiently largg

original RBST problem,¢(r)=1 or p(e)=e € [see Eq.
(9)]. Substitutingp(e)=e" € into Eq. (19 we get

1
v)== I

: (29

which has a single maximum at*=3.311@ ... with
v(A*)=0.231%. ... Substituting\* andv(\*) into Eq.
(24) we arrive at Eq.(1) with ¢(=4.311F ... anda;=
—1.953@..., inagreement with Ref§33,35.

Consider another example)(r)=/6r, a problem that

Recall that the distribution of the minimum of a set of un-
correlated random variables is known to have a universal
superexponential decay for large va[@8]. However, it was
shown in Ref[41] that in the conventional DP problem the
distribution of the minimum energy of a polymer violates
this Gumbel law due to hierarchical correlations between the
energies of different paths. From E@8) it is clear that in

the MDP problem the forward tail is nonuniversal since it
depends explicitly on the distributiop(e). Generally, the
forward tail is not superexponential thus clearly violating the
Gumbel statistics.

couldn’t be solved by the techniques used in our previous

short papef33]. This corresponds to the fragmentation prob-
lem where the induced distribution of the break point is

n(r)=6r(1-r). In the MDP problem, it corresponds to the
induced bond energy distribution

ple)=6e 2¢(1—e °). (26)
Substituting this form in Eq(19), we get
1 12
v()\)=—xln T3] (27)
which has a unique maximum at =3.924@® ... andthis

maximum velocity is given by (\*)=0.313 2 . . . . Substi-
tuting these results into the general form(24) we recover
Eqg. (1) with ¢;=3.1928 ... anda;=—1.22038... .

The traveling front approach also gives the full probabil-
ity distribution of the height variable in the BST and not just

its exact average value as in EG4). Indeed, we have seen
that cumulative height distribution is given by E@3)
where the functionF(y) is the solution of the boundary
value problem(16),(17). While we have not been able to
solve the nonlinear integral equatigh6) exactly, one can
easily deduce the extreme behavior Fofy). We have al-
ready seen that in the tail regign— — o, the functionF(y)
saturates to 1 exponentially fast-F(y) ~exd\*y], where
\* is the solution of Eq.(20). One can also deduce the
asymptotic behavior oF (y) wheny—c (Appendix B for
arbitrary distributionp(€). Thus the asymptotic behaviors of
the functionF(y) read

1-AY, y——,
(28)

F(y)~ %
¥ 2[ p(y' +v)dy’, y—o,
y

where A is a constant\* is found from Eq.(20), andv
=p(\*). In particular, for the RBST wherg(e)=¢e ¢, \*
=3.31107, and)(\*)=0.231 96, one has

1— Ae3.31l oy
1.5859@ 7Y,

Yy— =,
F(y)~( (29

y—>.

In conclusion, the height distribution is a localized func-

tion around its average valugiy) given by Eq.(24). For
any unbounded distributiop(e€), the height distribution de-
cays at in the tail regions according to Eg8). For bounded

B. Statistics of the balanced height or the maximum energy

The analysis of the statistics of balanced height) fol-
lows more or less the same approach as in the case of height
variable, except that one is now concerned with the distribu-
tion of maximum energy in the MDP problem. L&, (x)
=ProdmaxE, E,, ... Ex<x] where E, s with k
=1,2,...,2" are the energies of the Dolymer paths from
the root to thenth level. ThenR,(x) satisfies the same re-
cursion relation as th€,(x) in Eq. (12),

Ryi1(x)= J:C f:Rn(X— €)R(x—€")p(e,€')dede’.

(30)

The only difference is in the initial condition,

0, x=0,
R = 1
o0=11 4o, (31
and in the boundary conditions,
0, X——oo,

RiO—1 (32

As in the case of Eq.12), the recursion relatioB30) admits

a traveling front solution for largen, R,(x)=G(x—x})
where x}; is the front position and the fixed point scaling
function G(x) describes the shape of the front. Unlike the
[1—-0] front in the previous subsection, the front figg(x)

has a[0—1] form advancing in the positive direction. The
front again advances with asymptotically constant velocity
v4, i.e., the position of the front ix} ~v,n. Substituting
Rh(X)=G(x—wv4n) in Eq. (30), we find thatG(y) satisfies
the nonlinear integral equation

G(y—v1>=f;f:csw—e)e(y—e')p(ae’)dede’.
33

The velocityv, is still undetermined and the front shape
G(y) satisfies the boundary condition§(y)—0 asy—
—o andG(y)—1 for y—o. As in the previous subsection,
we will analyze the Eq(393) in the tail whereG(y)—1; in
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the present case, this meaps-o. SubstitutingG(y)=1
—g(y) in Eq. (33) and neglecting terms of ord€(g?) we
get the linear equation

g(y—v1)=2f:g(y—e)p(e)de- (34)

Equation (34) admits asymptotically exponential solution,

g(y) =exp(—uy) asy—», with

. (35

ZJ e*“p(e)de
0

(m) 1l
v =—In
1 “

The dispersion relation in E¢35) has a single minimum at

u=u* determined from relation

il g,
du

w*

(36)

PHYSICAL REVIEW E65 036127

which has a single minimum at* =0.626 @ ... where
v(pu*)=2.6783... . Thus, Eq.(40) reduces to Eq(2)
with oy’ =0.3733 ... anda,'=0.8937%4 ... .

For the second example(r) = \/6r or equivalentlyp(e)
given by Eq.(26), Eq. (35 becomes

12
(2=u)(3—p)

The functionv(x) in Eq. (42) has a single minimum at
pn*=1.1786 ... wherev,(u*)=1.7663 ... . Equation
(40) again reduces to Eq2) with ay’'=0.566d ... and
a'=0.7204 ... .

Finally we explain the duality betwedty andhy in the
BST problem. In the language of the MDP problem, these
variables correspond to the minimum and maximum energy
of a directed polymer in a random medium where the bond
energiese;'s have nonzero support only fey=0. Changing
the sign of the bond energies maps the minimum energy in
the negative support problem into the negative of the maxi-

1
vi(p)= ;In : (42

By the general front selection mechanism, we infer that thisnum energy in the positive support problem. This fact is

minimum velocity will be selected by the front

(37

Xp~vi(p*)n.

reflected in the relation between the two dispersion relations
in Egs.(19) and(35), v(—X)=vy(N). Thus\* and — u*
are actually the two different roots of the same transcenden-
tal equation(20). Consequently, the constantg and aq’ in

The associated slow logarithmic correction can also béEgs.(1),(2) are merely two different roots of the same tran-
worked out following the same calculation as in Appendix Ascendental equation.

and we finally get

3
xﬁ%vl(,u*)n—mlnn. (39

V. GENERALIZATION TO m-ARY SEARCH TREES WITH
ARBITRARY DISTRIBUTIONS

The results obtained in the previous sections for the sta-

Note that the correction term in E638) has a negative sign tistics of Hy andhy, of the BST’s with arbitrary distributions

compared to the positive sign in E@2).

In terms of the BST problem, it is clear from Ed.J1) that
the cumulative balanced height distribution for lames
given by

Prof hy>n]=R,(INnN)~G(InN—x}), (39
where the front positior;; is given by Eq.(38) and the
function G(y) is the solution of Eq(33). As argued in the
previous subsection, the derivati@ (y) is a localized func-
tion aroundy=0 with width of orderO(1). Thus the bal-
anced height distribution Prphy=n] is also localized
around its average valuéhy) with a variance V(hy)
~0O(1). Theaverage value reads

(hy)= ———~InN+

1* In(In N).
vi(p*)

3 40)
2u* vy (™)

can be generalized in a straightforward manner tontkerry
search trees. Amary search tree is constructed in the fol-
lowing way. One first collects the firsn{—1) elements of

the incoming data string and arranges them together in the
root of the tree in an ordered sequence< . ..<Xqy_1-
Next when themth elementx,, comes, one compares first
with x;. If X,<X4, themth element is assigned to the root of
the leftmost daughter tree. ¥;<x,,<X,, thenx,, goes to
form the root of the second branch and so on. Each subse-
quent incoming element is assigned to either of the
branches according to the above rule. Note that the level of
the tree will increase beyond a given node only when the
node gets filled beyond its capacity o 1) elements.
Thus in themrary search tree, each node will contain at the
most (m—1) elements.

The mapping to the fragmentation problem goes through
following the same line of arguments used for the binary tree
in Sec. lll. In this case, one starts with an interval of dive
and breaks it intan pieces. Subsequently each piece is fur-

Consider again the same examples that were studied fqrer broken intom pieces and so on. When an interval is
the height variable in the previous subsection. For the RBShroken intom pieces, each of the new pieces is a fraction of

problem wherep(r) =1 or equivalentlyp(e) =€~ ¢, Eq.(35)
becomes
2
1-ul

(m) 1'
v =—In
IV “

(41)

the original piece. The lengths of thesenew pieces are
characterized by a set @h random numbergrq, ...}
such that®™ ,r;=1 thus enforcing the length conservation.
For each interval a new set of's are chosen from the same
joint probability distribution
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Prot[rl,...,rm]=5(i21ri—1 ;Hl o(r)). (43 Ele’fizl. (48)

As in the binary case, the distributig@d3) is written in a  As in the binary case, this constraint holds at every branch-

symmetric form. Note that each new piece has the same efrg point of the tree. The joint distributiop(e;, . . . &) is
fective induced distributiony(r) given by the integral found from Eq.(43) to give
odro ... fadrm Prodr,ry, ... rl, or

Ples - ’Em):‘s( 2, ee“l)iﬂl e “igh(e ).
(49)

1 1 m m
77(r)=¢(r)fo . .fo 5(;2 ri+r—1)i]:[2 &(r)dr.

The function¢(r) must be chosen such tha(r) satisfies Also the induced bond energy distributipie) is related to

the conditions§7(r)dr=1 andf3r »(r)dr=1/m. the induced fraction distributiomy(r) via

The randomm-ary search tree corresponds to a random . .
fragmentation problem vvhere egch of _the fractiops. . ., p(E):f o J p(e €, ... em)de, . . .dep
rm—1 is chosen from a uniform distribution between 0 and 1, 0 0

settingrm=1—2{“:_11ri, and then keeping only those sets
wherer ,=0. This is precisely the so-called “uniform” dis-
tribution used by Coppersmitht al. in the context of the On this mbranch Cayley tree, there are a total raf

g-model of force fluctuations in granular med@d]. In this  osgible paths of the directed polymer going from the root to
case,¢(r) is a constant chosen in such a way that the jointhe |eaves at thath level. Following arguments similar to

distribution (43) is normalized. One findg31] the binary case, the cumulative height distribution in the
m m-ary search tree is related exactly to the distribution of the

Profry, ... rml=(m—1)! 5( E r— 1) _ (44) minimum energy of then" polymer paths in the MDP prob-
=1

=n(e e " (50)

lem via

The corresponding effective single point distributiesr) ProdHy<n]=Proll,<1, ... | n<1]

reads[31]
=ProjE;>InN, ... E,n>InN], (51
7(r)=(m—1)(1-r)""2, (45)
whereE,'s (k=1,2,...,m") are respectively the total ener-
Another interesting distribution ig(r)=r. In this case, gies of the all possiblen" paths. Similarly the cumulative
the normalized joint distribution is given bigee Appendix distribution of the balanced height is related to the distribu-
&) tion of the maximum energy of the polymer paths via

m

— ,rm]=1“(2m)5(__21 ri_l)Hl @8 Profhy>n]=Prolf1,>1, ... | n>1]

=ProjE;<InN, ... En<InN]J. (52
The corresponding effective distribution(r) can be de-

duced by recursive methas shown in Appendix Cand A. Statistics of the height
we get Let P,(x)=Profmin{E;, ... Emn}>x]. This distribu-
n(r)=(2m—1)(2m—2)r(1—r)2m*3. (47) tion satisfies the recursion relation

m
Note that form= 2, it reduces top(r)=6r(1—r) which was P (x :fx fw P (x—e)de
studied in detail for the binary case in Sec. IlI. ) o Jo plew, .. ’Em)iznl n-a(x=e)de;,

Them-piece fragmentation problem for the special case of (53
uniform distribution(44) was studied in Ref.33]. However, S o
as in the binary case, this method is not easy to extend tyhere the joint distributiorp(ey, . .. .ey) is given by Eq.

handle the general distribution(r) including, for example, (49). The recursion starts with the same initial condition as in
the distribution(47). To go beyond the uniform case, we first Ed. (14). The rest of the analysis is exactly the same as in the
map the fragmentation problem into the MDP problem as irPinary case. Substituting a traveling front solutid?y(x)

the binary case. One proceeds exactly as in the binary caseF(x—vn) in Eqg. (53) and then linearizing near the tajl

by associating an energg=—Inr, to each bond of a di- — —, we find as in the binary cas&(y)~1—e"’ where
rected p0|ymer going from the root to the leaves of a Cay|e>lhe YeIOCityU of the front is related to. via the diSperSion
tree, but now withm daughters emerging from each node. relation
The energies of thenbonds emanating downwards from any

given node are correlated due to the relatibfi ;r;=1

which translates into the constraint

[

v()\)z—%ln mfo e p(e)de|, (59
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where the induced distributign(€) is given by Eq(50). The  and the same initial and boundary conditid84),(32) as in
front velocity is then given by the maximum(A*) of the  the binary case. Plugging a traveling front solutiBR(x)
dispersion curve in Eq54) and is obtained by solving Eqs. =G(x—uvn) into Eq.(58) and linearizing in the tail region
(20) and (54). Similarly one can also work out the logarith- y—o according toG(y)~1—e™ Y, we arrive at the disper-
mic correction to the front velocity and the asymptotic front sion relation
position is given by the same formula in E@2), only A*
andv (\*) are different from the binary case. Similarly the
average heightHy) for the m-ary search tree is also given
by the same formula as in Eq24), only change is in the
dispersion curvey (\). where the induced distribution is given by Eg0). The front

Let us now present some specific results. For the unifornvelocity is then selected by the minimum(n*) of this
distribution,p(e)=(m—1)[1—e €]™ %e" € as follows from  dispersion relation. Proceeding as in the binary case, the
Egs.(45) and(50). Substituting this into the dispersion rela- asymptotic front position is given by the same general for-
tion (54) yields mula in Eq.(38), the only difference is that* andv,(u*)
are different from the binary case. Finally the average bal-
anced heighthy) for the m-ary search trees is also given by
the same general formula in EA0), the only difference
being the dispersion relatiamn (u).

whereB(m,n) is the Beta function. For instance, for=3 For the uniform distribution, Eq45), we reduce Eq(59)
the velocity v(\) has a single maximum at\* to

=3.489& ... with v(A*)=0.404§ ... . Plugging these

mjme’“p(e)de , (59

0

(m) 1l
v =—In
AV “

v()\)=—%In[m(m—l)B()\nLl,m—l)], (55)

in the general formuld24) we again arrive at Eq.1) with 1
@o=2.46% ... anda;=—1.0686... . vi(p)= 2 inmm=1)B(1=p,m=-1)]. (60
Consider now the largm limit. Using asymptotic proper-
ties of the Beta function, one gets Equation(60) can also be obtained from E(p5) by chang-
. . . ing the sign ofA\=—pu as expected. For example, fan
A =Inm,  v(AF)=In(m/\%). (56) =3, the dispersion relatiof60) has a unique minimum at

u*=0.6818 ... wherev,(u*)=3.902% ... . Then the
general formula (40) reduces to Eq.(2) with «}

=0.256% ... anda;=0.5637 ... .

1 3 For the distribution(47), the dispersion relation reads

N T iy O

Therefore, whemm— oo, the average height is given by Eq.
(1) with

a’o:
1
= ZIn[m(2m—1)(2m—2)B(2— u,2m—2)].
Similarly for the distribution(47), Egs.(50) and (54) lead valp) = Inlm(zm—1)(2m=2)B(2~u.2m~2)]

to the following dispersion relation: o
One hasu*=1.2866 ... andv,(u*)=2.6233. .. indi-

cating in the particular case afi=3, so in this situation the
averaged balanced height is given by HE) with «
=0.381D0... anda;=0.4449 . .. .

v(N)=— %In[m(Zm— 1)(2m—2)B(N+2,2n—2)].

For m=3, we get the maximum at*=4.178& ... with One can also work out the large behavior for arbitrary
v(N*)=0.5323%... . Theaverage height is given by Eq. distribution 5(r) (Appendix D. Unlike the case of the
(1) with «p=1.8784... anda;=-0.6742Z ... . The height variable, the largm behavior in the case of balanced

large m behavior turns out to be exactly the same as in theheight is nonuniversal and depends explicitly on the small
case of uniform distribution. One can work out the large  behavior of the distributiom(r). If 7(r)~r2 asr—0, then
asymptotics for arbitrary distribution(r) (see Appendix D (see Appendix D u*~a+1 and v,(u*)=~(a+2)/(a

and one gets the same asymptoti66) as in the above ex- +1)Inm. Both these quantities, and hence the average bal-
amples. Therefore, the asymptotic behaviok lf) is uni-  anced height, depend on the parameteéFherefore, the bal-
versal(independent of the details of the distributidn the  anced height remains nonuniversal in the lamgémit.

large m limit.

VI. CONCLUSIONS

B. Statistics of the balanced height ) ) o )
In this paper we studied the statistics of height and bal-

As in the binary case, we again utilize the distribution gnceqd height in the BST problem by exploiting a two stage
Rn(x) =Prof maxEy B, . .. Epn}<x]. This distribution  mapping “the BST problem— fragmentation problem-

satisfies the recursion relation the MDP problem” and then using the traveling front tech-
. . m niques to solve the MDP problem. While the first mapping

R.(x :J' o f R R, i(X—e)de; | has been used previously to obtain exact asymptotic results
) 0 0 Pley Em)iﬂl n-1(x—e)de for RBST problem, the second mapping allowed us to go

(58 beyond random trees and obtain exact asymptotic results for
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BST’s where the new entries arrive in the tree according tavhere the exponeng and the scaling functiohl(y) are not

any arbitrary distribution, not necessarily randomly. yet known. We only know that(y)—0 asy— *« [since
An interesting extension of the present work would be to0<f,(x)<1 for all x]. Also, since for largen, the prefactor

see if the traveling front techniques can be applied to obtaim? in Eq. (A2) must go away, indicating thad (y)~y asy

the asymptotic statistics of observables that are not necessar-0.

ily extreme. For example, in the context of the fragmentation et us definez,=(x—x,)/n?. Then to leading order for

problem, it would be interesting to compute the probabilitylarge n, one hasz,,;~z,— (y/n)z,—vn~?. Substituting

P,(k,N) that aftern levels of fragmentation there will be  z,_, in Eq. (A2) and keeping only leading order terms we

pieces(out of the total 2 piece$ with lengths less than 1, get for the left-hand side of E¢A1),

given that the initial length idl. This probability interpolates

between the two extreme limits=0 andk=2". For k=0, ‘ e x| vH'(z2) vy H

this is the probability that all pieces have lengths bigger than nr1(X)~n’e ()= n” nt (2)

1 and hence is just the probability that the balanced height g )

hy is bigger tham [see Eq(4)], as studied in this paper. On y_ dc Voo

the other hand, fok=2", this is the probability that all Fln AanW | H@T 5mH @) (A3

pieces have lengths less than 1 that is precisely the cumula-

tive distribution of the height variablely as in Eq.(3). It ~ In the above equation, we used the shorthand notatzgns

would be interesting to see if for any intermediatéo<k =2, H'(z)=dH/dz, andH"(z)=d’H/dZ".

<2") the probabilityP,,(k,N) has a traveling wave structure  Similarly, inserting Eq.(A2) into the right-hand side of

as in the case ok=0 andk=2" and if so, how does the Ed. (A1), expandingH[(x—x,—e€)n""] in Taylor series in

velocity v, depend ork? ee 7, and keeping only leading order terms, we find the
The fact that the traveling wave techniques, used previfight-hand side of Eq(A1)

ously in nonlinear physics, can be used successfully in com-

puter science problems is not just interesting but it allows us X)~mn*er x| 1, H(z —ﬂH’ 2+ M2 H"(z
to obtain the shape of the full distribution of height and not n+1(X) HoH(2) n” 2 2027 )|
just its moments. It would be interesting to apply these tech- (A4)
nigues to more sophisticated search algorithms in computer w K — . .
sc?ence P g P where = [ ee M p(€)de. Comparing the left-hand side
' given by Eq.(A3) and the right-hand side given by E&@4),
we recover, to leading order for large the dispersion rela-
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APPENDIX A: DERIVATION OF THE LOGARITHMIC

CORRECTION TO THE FRONT POSITION As argued before, the front will choose the maximum veloc-

ity v(A*) of the dispersion relation(A5). At A=\*,

In this appendix, we present a detailed derivation of thev’ (\*)=0. Differentiating Eq.(A5) with respect ton we
logarithmic correction to the asymptotic front position. We obtain v (A*)exd —A*v(A*)]=mp,. Using this in Eq.(A3)
employ the approach of Ref39] where such a correction shows that the term of ordar™ ? in Eq. (A3) cancels the
was computed for a reaction diffusion equation. In thecorresponding term on the right-hand side in E44). To
present context, our starting point is the recursion relation irensure that remaining terms are of the same order, we must
Eq. (53 for the mary search trees. We first substitute have y=1/2 and dc/dn=b/n. The latter equation gives
P.(x)=1—f,(x) in Eq. (53 and then neglect terms of order c¢(n)=b Inn, whereb is still undetermined. Employing these

O(f2) in the regimex— — to get a linear equation choices fory andc(n) and equating EqgA3) and(A4), we
obtain
an(X):me fn(X_E)p(E)dE, (Al) (UZ_me(\*v,le)H//(Z)—ZH,(Z)+(1_2b)\*)H(Z):O,

wherev =v(\*). This equation can be further simplified as
follows. Differentiating Eq(A5) twice with respect ta. and
using v’ (\*)=0 we get an additional relationy?(\*)
—mu, exg A o(\N*)]=N*v"(\*). By inserting this into the
above equation we finally arrive at the eigenvalue equation

wherep(e€) is the effective induced distributiop(e) given
by Eqg. (50). Next we assume that for largethe front posi-
tion is given byx,=vn+c(n), where both the velocity
and the functional form of the correction teitn) are yet to
be determined. Following Ref39], we then assume that for

largen the solutionf(x) of Eq. (Al) is given by the scaling —N*U"(NNYH"(2)+ ZH! (2) + (2bA* —1)H(2)=0
form .(A6)
X—Xn _ Note that v(\) has a maximum at\=\* indicating
=—n?7 }\(X Xn)
fa(x)=n H( n” )e ’ (A2) v"(A\*)<0. Rescalingz=\—\*v"(\*){, we find that the
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solution of Eq.(A6) that vanishes at—« is given by large and negative, indicating that the contribution from this
H(§)=Be*§2’4D2m*,2(§), where B is a constant and term is negligible ay— —. Neglecting the first term, one
D,(¢) is the parabolic cylinder function of indem. The finds that the resulting linear equation admits the exponential
condition thatH (¢)~ ¢ as{—0 enforces the choice of the solution 1-F(y)~e" wherev depends o through the
index p=2b\* —2=1 indicatingb=3/2\*. Note that the dispersion relation in Eq19). Thus one recovers the correct
above solution describes precisely the wave function of théesult in they— —oo limit, o

first excited state of a quantum harmonic oscillator and the Turn now to the complementary limig—c. Then the
factor 3/2 is the corresponding energy eigenvalue. Finallyarguments of’(y) inside the integrands of the first term on

the leading asymptotic behavior of the front position is giventhe right-hand side of E¢B2) can be close to zero to pick
by up a substantial contribution. For large one can approxi-
mateF'(y)=~ — &(y) inside the integrands on the right-hand
side of Eq.(B2) and one then gets

3
Xp=v(\*)n+ Wlnn. (A7)

A similar calculation can be carried out for the balanced F(y—v)~—1+Y(y,y)+2fo F(y—e)p(e)de. (B3)
height where one finds a dispersion relatioffx) as given

by Eg. (59) and front position is given by Y(y,y)—1 andF(y)—0 asy—c. To find the asymptotics
3 of F(y) we differentiate Eq(B3) with respect toy and use
XX =v(u*)— 55 Inn, (A8) F’(y)=~—4&(y) in the second term. This gives
. : . , IY(Y.Y2)
where u* denotes the point where;(x) has its unique Fiy—v)~=2p(y)+2—— (B4)
minimum. Y2 ly,-y
APPENDIX B: ASYMPTOTIC BEHAVIOR OF THE Using the definitions in Eq{B1) and(9) we find
CUMULATIVE HEIGHT DISTRIBUTION Y
In this appendix, we derive the largebehavior of the [?_h:_e—yz(b(e—yz)d,(l_e—yz) o(e Vite V2—-1).

cumulative height distributiori-(y). The functionF(y) is

the solution of the boundary V?Iue probléi) and(17). We  \heny, =y, is large, the argument of the step function in
already know that + F(y)~e" Y asy— —«, whereA* de-  the above equation is always negative, indicating that one
notes the value ok where the dispersion curvg\) in Eq.  can neglect the second term on the right-hand side of Eq.
(19) has its maximum. In order to derive the asymptotic be-(B4). This gives F'(y)~—2p(y+v). Hence the desired
havior of F(y) in the other limity—c, we first recast the largey behavior ofF(y) is given by

integral equatior{16) in a slightly different form. Let us first

define the cumulative distribution function o
F(y)%Zf ply +v)dy’, (BS)
y

Y(e,e’):j fe pP(X1,X5) dX; dXs, (B1)
0J0 wherev=v(\*) is the maximum velocity associated with
the dispersion relatiofiL9).

Note that the constraire™¢+e~¢ =1 does not modify
the form of the dispersion curve when compared to the un-
constrained conventional DP problgthe only difference is
that one has to first find the effective single point energy

w (o distributionp(€) in the constrained case from E®)]. How-
F(y—v)=J J F'(y—e)F'(y—€')Y(e, e )dede’ ever, the above constraint does modify the laygeehavior
00 of the cumulative distributiof (y). For example, Eq(B4) is

where the joint distributiorp(x;,x5) is given by Eq.(9).
Writing p(e,e’)=3d%Ylde e’ on the right-hand side of Eq.
(16) and performing the integrations by pdiitst overe and
then overe’), we finally arrive at the following equation:

o valid for the unconstrained problem as well. However, in the
+2J F(y—e)p(e)de—1, (B2)  unconstrained cas&,(y,y)=[[}p(€)de]?. In that case one
0 finds after taking the derivative, F'(y)~—2p(y

whereF'(y)=dF/dy and we have used the boundary con- T )Jyp(€)de indicating that for largey

ditions of F(y). Note that due to the concentration of mea- . .

sure,F(y) has roughly the shape of the step functibity) e J r g J

~ 6(—y) with the front located ay=0. Thus the derivative FWlunconsiane 2 || dy'p(y"+v) | ple)de. (BO)
roughly behaves as a negative delta functiéi(y)~

— 8(y). First reconsider the limiy— —. In this limit, the =~ For example, for the RBST where(e) =e™ ¢, the largey
arguments of the functior’ (y) inside the integrands in the asymptotics areF(y)~e™¥ (constrained caseand F(y)
first term on the right-hand side in E(B2) are always very ~e~ % (unconstrained cage

036127-13



SATYA N. MAJUMDAR AND P. L. KRAPIVSKY

APPENDIX C: DERIVATION OF THE
INDUCED DISTRIBUTION

In this Appendix we derive the induced distributiayr)
[see Eq(47)] starting from the joint distribution

Probjr, ... ,rm]zAméi(Zl ri—l)H1 ri. (Cl

PHYSICAL REVIEW E 65 036127

APPENDIX D: LARGE m RESULTS FOR
ARBITRARY DISTRIBUTION

In this appendix we derive the large behavior of(Hy)
and (hy) for mary search trees with arbitrary distribution
7(r). We start with the height variable and write the disper-
sion relation

e*“=mfwe*“p(e)de=mJ'lrM;(r)dr. (D1)

0 0

The constanA, in the above equation has to be chosen suchrhe constraintSr; =1 leads tof & n(r)dr=1/m. Thus for

thaf[ the joir_1t distri_bution is_ normalized. The in_duced distri- largem, a generic distribution(r) will be concentrated near
bution 7(r) is obtained by fixing one of the fractions, say the r = 0. Consider a class of distributions that behavenés)
first one, to the value and then integrating over all other ~C,_r2 =" near the origin. For exampl&,,=m—1, a

fractions. Thus by definition

m

77(I’)=AmrJOl o J’016<i_22 ri+r—1)H ridr;.

=2
(C2

Note thatr,’s denote the lengths ah intervals with the

total length equal to unity. Let us define a set of new vari-

ableS,X2=r+l’2, X3=X2+I‘3, .y Xm_1=xm_2+rm_1.

Here x;’s denote the points separating adjacent intervals.
Clearly thenx,,_;=1—r,, since the total length is unity.

With these change of variables the integral in Bg2) be-
comes

7(r)=Anl {m(r), (C3)
where{(r) is given by
1 1 1
Zm(r):ﬁ (Xz_r)dxzfx (X3=Xz)dXg ... ... fx (Xm-1
_mez)(l_xmfl)dxmfl- (C4)
Thus {,,(r) satisfies the recursion relation
1
Zm(r)=fr (X2= 1) {m-1(X2)dXz. (CH

One directly computes,(r)=1—r and {3(r)=(1-r)%6
which suggests to seek a solution in the fofg(r)=B,(1
—r)2M~3, Plugging the above expression in recursi@s)
yields

Bm—l

Bn= 2m=3)(2m—4)"

(C6)

which is iterated to giveB,,=1/(2m—3)!. Thus we obtain
7(r)=Anr(1—r)2™3/(2m—3)!. Thenormalization condi-
tion fén(r)drz 1 then givesA,=1"(2m) wherel'(x) is the
gamma function. Therefore

n(r)=(2m-1)(2m-2)r(1—r)*m%, (C7)

which is valid for allm=2.

=0, andb,,=m-2 for the uniform distribution(45). Simi-
larly, C,,=(2m—1)(2m-2), a=1 andb,,=2m-— 3 for the
distribution (47). These two examples suggest th@t,
~m?*l and b,~m. Making use of the constraints
[3n(r)dr=1 andf3r »(r)dr=1/m one indeed confirms the
above asymptoticd,,~(a+1)m andC,~bd" YT(a+1).

We now consider the integral in E¢P1). Substituting the
smallr behavior of5(r), performing the integral, and using
the Stirling formula one gets

V2m(\N+a)

Taking the logarithm, differentiating with respect Xq and
settingv’ (\*) =0 we determine.* andv(\*). The leading
contributions are given by Ed56). Therefore, the largen
behavior of(H,)) is indeed universal.

We now turn to the largen behavior of the average bal-
anced heighthy). In this case, the appropriate dispersion
relation is given by Eq(59),

AN+a\rta
T) . (D2)

oM
(be™)*~ I'(at1)

e’wl:mjwe’“p(e)dezmJ'll’*"?](r)dr- (D3)

0 0
Substituting the smalt behavior, 7(r)~C,r2e " and
performing the integral we obtain

(bylerim o
m I'a+1)
We will see that in the largen limit, u* —a+1. Hence we

write u—a+1— 8, assume thaf< 1, plug these in Eq.D4)
and take the logarithm to obtain

T'(a+1—p). (D4)

(a+1—8)(v,—Inby)~I Ins. (D5)

m
"Ta+1)
Differentiating Eq. (D5) with respect to§ and setting
v'(6%)=0 yields

L. at2
v(\ )mem-i-”'.

The parameten appears in the leading order even in the
large m limit. Consequently,(hy) also depends om and
thence the balanced height is not universal in the lamge
limit.
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