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Heterogeneous interfacial failure between two elastic blocks
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We investigate numerically the failure process when two elastic media, one hard and one soft that have been
glued together thus forming a common interface, are pulled apart. We present three main(fdgstiits:area
distribution of simultaneously failing glu¢bursts follows a power law consistent with the theoretically
expected exponent 2.8) the maximum load and displacement before catastrophic failure schfeaasiL°,
respectively, wherd. is the linear size of the system, aii8) the area distribution of failed glue regions
(clusters is a power law with exponent 1.6 when the system fails catstrophically.
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I. INTRODUCTION the literature in this field.There are also a number of studies
“on the market” that may be placed between the two ex-
The failure of interfaces under stress is a problem that hagsemes of equal and local load-sharing models. Among them,
obvious important technological relevance. In addition, fromwe find the early study by Newman and Gabrie[@@], who
a more fundamental point of view, this problem exhibits veryconstructed a hierarchically connected fiber bundle. Other
interesting features. It is the aim of this paper to bring outwork on hierarchical fiber bundle models may be found in
some of these features by means of a numerical model bas&#efs.[11-13.
on a discretization of the original problem. Much work by the physics community has gone into
For more than a decade, failure processes in different corstudying network models, of which thieise modelis the
texts have caught the attention of the physics community. Fomost well known[14,15. This model consists of a network
a considerably longer period, the mechanics community hasf electrical fuses where their burn-out thresholds have been
been involved in the study of such phenomena. In order tarawn from some probability distribution. This model may
place the present study in its proper context, we need to gbe regarded as yet another generalization of the fiber bundle
back to 1926 with the study of Peirce on what today ismodel, however, this time along the axis on which we find
known as theequal load-sharing fiber bundlel]. This con-  chains of fiber bundle§16]. Among the several interesting
sists ofN parallel fibers, each with its own breaking thresh- questions that have been studied in connection with the fuse
old and connected in such a way that when a fiber fails, thenodel, we mention the question of whether the breakdown
load it was carrying would be distributed equally among allprocess has the character of a second or first order phase
the surviving fibers. In 1945, Daniels published a very thor-transition[17—20. Central to this question is the question of
ough study of this model, which today forms the startingthe distribution of fuses that burn out simultaneously or—
point of any excursion into this fiel?], where among other equivalently in the fiber bundle model—the number of fibers
results, he presented its average load-deformation charactehat fail simultaneously. This question was first raised and
istics. The model has since these early days been generalizedlved analytically in the context of the equal load-sharing
in many directions, one of which consists in replacing thefiber bundle[21] and then for the local load-sharing model
“democratic” load-sharing rule by different local ones. One [22]. The same question was first studied in connection with
much studied variant is thlecal load-sharing modewhere  the fuse model in Ref.23].
the load on the failing fiber is distributed equally among the The particular problem we study here, elastic interfacial
nearest surviving fiberf3—6]. Results on, e.g., the average failure, has been addressed in the literature earlier by Dela-
load-deformation characteristics of the local load-sharingplace and co-workersl3,24,25. The system consists of two
model may be found in Ref§6—8|. There has also been elastic media that have been welded together, thus sharing a
several studies of time-dependent phenomena in connectimommon interface. In general, the media can have different
with the two variants of the fiber bundle model, see R&8f.  elastic constants. However, for the sake of simplicity and
(This paper in addition contains a very thorough review ofwithout loss of generality, we assume one of the media to be
infinitely stiff while the other is elastic. We can view this
simplification as an effective representation of the original
*Permanent address: Department of Physics, NTNU, N-749Bystem since it does not change the physics. Furthermore, we
Trondheim, Norway. assume that the “soft” medium is uniform with respect to its
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elastic properties; it has the same elastic properties everynodel, while the numerical algorithms are discussed in Sec.
where. However, the locatrengthof the glue—defined as |l B.

the maximum local load it may sustain without failing—

varies from point to point along the interface. This is the A. Description of model

source of disorder in the system. In real systems this disorder . . . o
y y We discretize the glued interface by replacing it with two

would typically be correlated. In this first attack on the prOb'.two-dimensional square X L lattices with periodic bound-

lem, we assume the disorder to be uncorrelated. Our ma'er conditions. The lower one represents the hard, stiff sur-

interest here is to understand how correlations develop duealgce and the upper one the elastic surface. The nodes of the
thedfalll_ur(ej pr(_)lcess. In Sec. Il we describe the numericayq |atices are matched.e., there is no relative lateral dis-
model in detail. _ _ _ placement The glue is modeled by springs connecting op-
The two joined media are subjected to a progressive Unipqsing nodes in the two lattices. All these harmonic springs
form load perpendicular to the glue interface. Local failuresyaye the same spring constaset to unity but breaking
will develop in the interface that changes the stress field ofresholds randomly drawn from a uniform distribution be-
the remaining intact interface. These changes in the stresgeen zero and one. The spacing between the springnis
field will compete with the local strength of the glue to de- photh thex andy directions. The force that each spring is
termine where the next failure happens. Sometimes, a loc@arrying is transferred over an area of sia#to the soft
failure will occur due to the glue being particularly weak at syrface. In other words, the spring is effectively attached to a
that point on the interface, other times failure will occur duesquare of area?. As the two glued media are separated by
to enhancements in the local stress field. This competitiogontrolling the displacement of the hard mediubn the
leads to the development of spatial correlations both in theorces carried by the springs increases. When the force car-
stress field and in the failure patterns, and in the failure prorjed by a spring reaches its breaking threshold, it breaks ir-
cess itself. _ o reversibly and the forces redistribute. The springs are, thus,
_ The two media can be pulled apart by controllifiging)  broken one by one until the two media are no longer in
either the applied force or theisplacementThe displace- mechanical contact. As this process is proceeding, the elastic
ment is defined as the change in the distance between tWeydy is of course deforming to accomodate the changes in
points, one in each medium, positioned far from the gluedne forces acting on it.
interface. Clearly, the line connecting these points is perpen- The equations governing the system are as follows. The

dicular to the average position of the interface. In our caseforce f, carried by theth spring is given by Hooke's law,
the pulling is accomplished by controlling the displacement.

As the displacement is increased very slowly, glued points fi=—k(u;—D), (1)
will fail. Sometimes the failed regions are very small, other
times the failed region is larger. Such events, when a largeherek is the spring constant ang| is the deformation of
area fails “intantaneously” compared to the time scale atthe elastic medium at site All unbroken springs havé
which the displacement is changed, are called bursts. One ef1 while a broken spring has=0. The quantity ¢;— D)
the quantities of interest to us is therst distribution[21] as s, therefore, the length spririgvas stretched. In addition, a
the failure process evolves. We show in Sec. Ill A that thisforce applied at a point on an elastic surface will deform this
distribution follows a power law. surface over a region whose extent depends on its elastic
In Sec. Il B, we investigate the scaling properties of theproperties. This is described by the coupled system of equa-
load and displacement of the system at the point when thgons,
failure process becomes unstable. This is the point at which
any further increase of either load or displacement will lead
to a catastrophic burst where all remaining glue fails. This u=2, Gifj, 2
point defines thestrengthof the interface, and the question !
we pose is how this scales with the system size. ) . o
We then investigate the geometrical properties of theVhere the elastic Green functid® ; is given by[26,27]

failed regions at the point when catastrophic failure occurs in

Sec. Il C. We find that the area distribution of the failed G 1—¢? (+a2 (+a2  dx'dy’ 3
regions follow a power law. i 2] _an ) e lix—x" v—v)|

We present our conclusions and outlook for further work med 2| (x=x"y=y")|
in Sec. IV.

In this equations is the Poisson ratie the elastic constant,

and|i —j| the distance between sitésndj. The indicesi

andj run over allL? sites. The integration over the arais

done to average the force from the springs over this area.
The system described in the Introduction is continuousStrictly speaking, the Green function applies for a medium

Two media, one elastic, the other infinitely stiff, are gluedoccupying the infinite half space. However, with a judicious

together thus forming a common interface. In order to treathoice of elastic constants, we may use it for a finite medium

this problem numerically, the continuum problem is replacedf its range is small compared 1o, the size of the system.

by a discrete one. In Sec. Il A we describe the discrete By combining Eqs(1) and(2), we obtain

Il. MODEL
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(1+KG)f=KD, (4)

where we are using matrix-vector notatidnis the L?x L2
identity matrix, andG is the Green function represented as

anL?x L2 dense matrix. The constant vec®ris L2 dimen-
sional. Thediagonal matrix K is also L?XL?2. Its matrix
elements are either 1 for unbroken springs, or O for broken
ones. Of cours&k and G do not commutegexcept initially
when there are no broken springs

Once Eq(4) is solved for the forcd Eq. (2) easily yields
the deformations of the elastic surface.

) ) ) FIG. 1. Each elementary square represents a bond. The color
B. Numerical method: Fourier acceleration scheme indicates when in the failure process a given bond failed,

Equation (4) is of the familiar formA)Z=6. Since the the lighter, the earlier. The lattice was 22828 with an elastic

Green function connects all nodes to all other nodes, thgonstante=10.
L2x L2 matrix A is dense that puts severe limits on the size . = PR
of the system that may be studied. There are direct, timghoice isQo=(I+KG) %, which would always solve the

consuming methods to deal with such matrices, see ReProblem in one iteration. Since this is not possible in general,

28]. However, as we shall see. this problem may be circ mwe Ic_>c_)k for a form forQ that sa_ltisfies the following two
[28] wey W 'S P Y reu onditions: (1) as close as possible ©Q,, and (2) fast to

vented and much more efficient methods may be employe§ X ! .
such as the Conjugate Gradient algorith@G) [gs,zq. ploy calculate. The choice of a godd is further complicated by

The simulation proceeds as follows. We start with a”the fact that as the system evolves and springs are broken,

springs present, each with its randomly drawn breakdowr?om?smndmg matrix elements &T are set to zero. So, the
threshold. The two media are then pulled apart, the force@1alrix (I+KG) evolves from the initial form (+G) to the
calculated using CG, and the spring that is the nearest to ifénal onel. We were not able to find a fixe@ that worked
threshold is broken, i.e., the matrix element corresponding tdroughout the breaking process.
it in the matrixK is zeroed. Then the new forces are calcu- Ve therefore chose the form
lated, a new spring broken, and so on until all springs have ~_, _ _ o
been broken and the media separated. Q=1=(KG)+(KG)(KG) = (KG)(KG)(KG)+- -, (7)
However, there are two problems that render the simula-
tion of large systems extremely difficult. The first is that which is nothing but the Taylor series expansionQy= (I
since G is L?x L? densematrix, the number of operations +KG) L. For best performance, the number of terms kept in
per CG iteration scales like*. Even more serious is the fact the expansion is left as a parameter, since it depends on the
that as the system evolves and springs are broken, the matiphysical parameters of the system. It is important to empha-
(I+kG) becomes very ill conditioned. size the following points(a) As springs are broken, the pre-
To overcome the problematlc* scaling of the algorithm  conditioning matrix evolves with the ill-conditioned matrix
we note that the Green function is diagonal in Fourier spaceand, therefore, remains a good approximation of its inverse
Consequently, doing matrix-vector multiplications using fastthroughout the breaking proceg®) All matrix multiplica-
Fourier transform's(FFT's) the scaling is much improved tions involvingG are done using FFT$c) The calculation of
and goes like_2In(L). Symbolically, this can be expressed asQ can be easily organized so that it scales like?In(L)
follows: wheren is the number of terms kept in the Taylor expansion,
. . Eq. (7).
(1+KF'FG)F'Ff=KD, ) We therefore have a stable accelerated algorithm that
scales essentially as the volume of the system. For example,
where F is the FFT operator ané~* its inverse €7 'F  for 5 128< 128 system, and taking=5, the CG algorithm

=1). Sincel andK are diagonal, operations involving them ajways converges in four or five iterations with the pre-
are performed in real space. With this formulation, the num-criped precision of 102

ber of operations/iterations in the CG algorithm now scales

like LIn(L). _ _ _ Ill. RESULTS
To overcome the runaway behavior due to the ill condi-
tioning we need to precondition the matfiX9]. This means We now present the results of our numerical simulations.
that instead of solving Ed5), we solve the equivalent prob- We show in Fig 1 a representation of the failure process.
lem Each elementary square represents a sgargpnd, and the
gray scale indicates when a particular spring failed: The
Q(I+KF~FG)F Ff=QKD, (6)  darker the color, the earlier the failure. In this particular case,

the elastic constarg was set to 10. There are no apparent
where we simply multiplied both sides by the arbitrary, posi-spatial correlations between the failing bonds in this figure.
tive definite preconditioning matrixQ. Clearly, the ideal However, we show in Fig. 2, the distance between succes-
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100 T T T

distance between broken bonds

0 5000 10000 15000
n,, broken bond

FIG. 2. Distance between successively broken bonds. The lattice

was 128128 with an elastic constaet=10. FIG. 4. Same as in Fig. 1 but with a narrow uniform threshold

distribution in the interva]9.5,10.5.
sively failing bonds for the same disorder realization of Fig. _
1. We see clearly in this figure that early in the process therénally the symmetry is broken and the system ruptures along
is no localization effect: Bonds tend to break far apart, theone of the lattice directions. o
location being determined by the strength of bonds, i.e., early \We note here that localization appears in Fig. 4 as a result
failure is disorder driven. However, halfway into the break-©f & narrow breaking threshold distribution. However, local-
down process, localization clearly develops. In Fig. 3, welzation will also result as the ratiea’k—0, wherea is the
show the corresponding plot f@=100. In this case local- distance between fibers. In other words, as the elastic me-

ization never develops for this size system and distribution oflum softens, the system will approach the local load sharing
thresholds. model. This is a different mechanism from localization as a
On the other hand, if the threshold distribution is much"€Sult of the narrowing of the threshold distribution.
narrower than[0,1] used above, localization can develop _Figure 5 shows the force-displacement curve for a system
early. For example, we show in Fig. 4 the fracture graymaﬁ""th elastic cons.tamaz 10. Whether we contr_ol the applied
(like Fig. 1) for a uniform threshold distribution in the inter- 1orce F or the displacemenD the system will eventually
val [9.5,10.9. We clearly see the fracture starting towardsSUfTer catastrophic collapse. However, this is not so waen

the center of the figure and spreading out in a spiral till =100 @s shown in Fig. 6. In this case, only controlling the
force will lead to catastrophic failure. In the limit when

—oo, the model becomes the equal load-sharing fiber bundle

100 T T T

model[1,2], whereF=(1—D)D. In this limit there are no

0 5000 : . . :
g 80
2 "
o
0
E 4000 | 1
o 60k
K}
§ 3000 - 1
S 8
g 40 £
2 2000 - 1
c
8
w0
S 20
© 1000 - 1

o L s e : 5 0 . L . ) L

0 5000 10000 15000 0 1 2 3

n,, broken bond Displacement

FIG. 3. Distance between successively broken bonds. The lattice FIG. 5. Force-displacement curve, 22828 systems with
was 128128 with an elastic constaet=100. e=10.
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FIG. 6. Force-displacement curve, 22828 systems with o
e=100. FIG. 7. Burst distribution for 128 128,e=10. The slope of the

straight line is—2.5.

spatial correlations and the force instability is due to the the
decreasing total elastic constant of the system making theaximum somewhere. F&=100, such a maximum exists
force on each surviving bond increase faster than the typicah the middle of failure process as seen in Fig. 8, whereas for
spread of threshold values. No such effect exists when core=10, the system only approaches such a maximum near
trolling displacemenD. However, when the elastic constant total failure, see Fig. 7. Assuming that the fluctuations about
e is small, spatial correlations in the form of localization do the average characteristics are Brownian—which can be
develop, and these are responsible for the diplacement instahown analytically in the limite—c [30-32—near the
bility that is seen in Fig. 5. In other words, the localization maximum the probability to find a burst of siZeis propor-
clearly visible in Fig. 2 starts to develop when the system igional to A ~*%exd —A(x—x.)?]. This result comes from a
near the peak of its force-displacement curve, and dominataaapping onto th&ambler’s ruin problenj33]. Furthermore,
when the system is on the negative slope branch of thah order to guarantee that the burst is not a burst within an
curve. even larger burst, the starting point of the burst must be the
highest point on the characteristics that has occured so far in
A. Burst distribution the failure process. This condition may also be mapped onto
. the Gambler’s ruin problem, and leads to an extra fackor (
We now turn to the study of the burst distribution. We —X¢) in the probability for a burst to occur. The probability

gefize :L‘etiiz.? c_>f altbursA, iT ouL_Pc;ﬁelfasEthehnulénber of to find a burst of sizé\ throughout the failure process is then
onads that tail Simultan€ously whilé the 1oreas neld Con- = yne  jntegral over x as x approaches x., [*edx(x

stant. In the equal load-sharing fiber bundle model it has—xc)A‘3’2exq—A(x—xc)2] that is proportional ta\ 52 As

been shown that the burst distribution is given[Bg] can be seen in Figs. 7 and 8, the numerical data are consis-
tent with the expected value=5/2.

1
N(A,D)=A—Tn(A"(x—xc)) (8) o -

wherex, is the damage, i.e., the density of broken bonds, at 10°
which the model fails catastrophically,is a crossover func-
tion that approaches a constant when the argument ap-
proaches zero, and which falls off as expf) as the argu-
menty gets large. Furthermore,

Number of events
=
w

5 1
T= E and o= 5 (9) 10 i
independent of the threshold distribution. 10’ J

We show in Figs. 7 and 8 the burst distribution fer
=10 and 100. In both cases we find that the burst distribution 10°

follows a power law with an exponent= —2.6=0.1. We 10° 10° RC 10°
. . Burst size
may argue that the exponent is the same as the one found in
the equal loading fiber bundle, E@), 7="5/2 in the follow- FIG. 8. Burst distribution for 128 128,e=100. The slope of

ing way. The characteristics,= F(x) must have a quadratic the straight line is—2.5.
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4 7 o . .
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/7 / 1 L Ll L MR | . PR Ly
/ Vi Rt 10° 10° 10°
o K . X 2 . ! . Cluster Size
0 1 2 3 L .
D FIG. 10. Area distribution of zones where glue has failed for

systems of size 128128 and elastic constaet=10. The straight
FIG. 9. Scaling of the failure characteristics for systems withline is a least square fit and indicates a power law with exponent

L=128(e=10),64f=5), and 326=2.5) using the reduced vari- —1.6.e=10

ablesF/L?% andD/L%C.

material. To this end we have developed a stable and accel-

erated algorithm that scalé£In(L) that enabled us to study
The load-displacement curves for different system sizes much bigger systems than previously possible.

coincide when we use the reduced varialfi¢s® andD/L" Our main physical results are: For a uniform threshold

wherea=2.0 andb=0.0, as seen in Fig. 9. We expect the gjstripution on the unit interval we findL) the distribution of

exponenta=2 sinceF/L? is the normal stress on the sur- simultaneously failing gluébursts is a power law with ex-

face. In the case of an infinitely stiff system, we explect ponent—2.6+0.1 that is consistent with the burst distribu-

=0. The elastic system studied here behaves in the sam@n found in the equal load-sharing fiber bundle problem.

way as long as the elastic constanis also scaled with..  (2) The point of catastrophic failure scaleslssin force and

For example, foi. =128 we tooke=10, forL=64e should | 0 iy displacement(3) The area distribution of failed re-

take half that value in order to reproduce the physics. This igjions (clusters at the onset of catastrophic failure when dis-

easy to understand considering the dependence of the Gregacement is the control parameter is consistent with a power

B. Strength scaling

function, Eq.(3), on the elastic constant. law with an exponent equal te-1.6. This hints at self-
organization.
C. Spatial damage distribution at failure We should note here that the conclusion in péitabove

As the failure process proceeds, there is an increasin’ggay, be altered as a result of changing, e.g., the threshold
competition between local failure due to stress enhancemef@iStribution ore, see[36] for a study of these questions on a
and local failure due to local weakness of material. As we'€lated model. _

saw above, when we control the displacemBnand e is In addition to the above observations, we saw that fgr
sufficiently small(for example,e=10), catastrophic failure '2r9€€, €.9.,e=100, the system does not suffer catastrophic
eventually occurs due to localization. The onset of this localféilure, and there is no localization. On the other hand,
ization, i.e., the catastrophic regime, occurs when the twgMmaller values oé, e.g.,e=10, resulted in catastrophic fail-
mechanisms are equally important. One may suspect th&f® due to Iocallzgtlon. By domg the S|mulat|ons fqr various
criticality due to self organizatiof84] occurs at this point. In values ofe we estimate that failure due to localization starts

order to test whether this is the case, we have measured i 0ccur fore~35-40. As we will see below, these values
size distribution of broken bond clusters at the point when Of € obtained for 128128 systems should be scaled appro-
reaches its maximum point on tife- D characteristics, i.e., Priately when the size of the system is changed.

the onset of localization and catastrophic failure. The analy- 'h€ disorder in our system was uncorrelated. As men-

sis was performed using a Hoshen-Kopelman algorfta&. tioned above, it is realistic to introduce correlations as exist,
We show the result in Fig. 10, for 56 disorder realizations,for €xample, in fracture surfaces. This can be done by gen-

L =128 ande= 10. The result is consistent with a power law erating spring breaking thresholds that have the desired cor-

distribution with exponent- 1.6, and consequently with self- relations. Furthermore, we have used a flat distribution for
organization. ' the disorder. One can use other distributions, e4.where

r is a uniformly distributed random number andan expo-
nent that can be negative. It is known from random fuse
models of fracture that the breakdown process depends on

We have studied numerically the failure of the glued in-the value ofa. It is not clear how these issues will modify
terface between an elastic and an infinitely stiff blocks ofour current results. This work is in progress.

IV. CONCLUSION
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