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Multifractal properties of resistor diode percolation
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Focusing on multifractal properties we investigate electric transport on random resistor diode networks at the
phase transition between the nonpercolating and the directed percolating phase. Building on first principles
such as symmetries and relevance we derive a field theoretic Hamiltonian. Based on this Hamiltonian we
determine the multifractal moments of the current distribution that are governed by a family of critical expo-
nents$c l%. We calculate the family$c l% to two-loop order in a diagrammatic perturbation calculation aug-
mented by renormalization group methods.
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I. INTRODUCTION

Percolation@1# has been of tremendous interest to dive
scientific disciplines for more than two decades. On o
hand, the percolation problem is almost trivially simple
state, on the other hand, it has an abundance of fascina
features. Although percolation is purely geometric in natu
it reflects many of the concepts of critical phenomena. T
percolation transition is the prototype of a geometrical ph
transition. In this respect, the role of percolation may
compared to that of the Ising model in conventional critic
phenomena. To date, percolation represents one of the
studied areas of statistical physics and yet it is a highly vi
and fascinating area of modern research.

Directed percolation~DP! @2# is an anisotropic variant o
ordinary isotropic percolation~IP! in which an effect or ac-
tivity can percolate only in a given preferred direction. If th
preferred~longitudinal! direction is viewed as time, DP ca
be interpreted as a dynamic process. In the dynamic inter
tation, DP represents one of the most prominent universa
classes of nonequilibrium phase transitions: the DP univ
sity class is the generic universality class for phase tra
tions between an active and an absorbing inactive state@3,4#.

Perhaps, DP is the simplest model resulting in branch
self-affine objects. It has many potential applications, incl
ing fluid flow through porous media under gravity, hoppi
conductivity in a strong electric field@5#, crack propagation
@6#, and the propagation of surfaces at depinning transiti
in one dimension@7#. Moreover, it is related to epidemic
with recovery@8# and self-organized critical models@9#.

In this paper we discuss multifractality@10# in DP. The
notion of multifractality describes the situation that an e
haustive characterization of the distribution of a local phy
cal quantity requires the introduction of an infinite set
independent critical exponents. This means that the distr
tion is not controlled by a single or several length scales,
rather by an infinite hierarchy of such scales. Systems
which multifractality has been observed include turbulen
@11#, diffusion near fractals@12# and polymers@13#, electrons
in disordered media@14#, polymers in disordered media@15#,
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random ferromagnets@16#, chaotic dissipative systems@17#,
and heartbeat@18#.

Since the 1980s several publications have appeared
have addressed multifractality in IP by studying random
sistor networks~RRNs! @19–25#. A RRN is a simple bond
percolation model on ad-dimensional hypercubic lattice
where bonds between nearest neighboring sites are occu
with probability p with a resistor or empty with probability
12p. In a typical setup one has two leads positioned at t
connected lattice sitesx and x8 at which a fixed externa
current I is injected and, respectively, extracted. It is we
established that the distribution of bond currents in RRNs
multifractal. This multifractality is accessible by experimen
or simulations via the moments of the distribution that a
@up to technical details, cf. Eq.~2.13!# given by

MI
~ l !~x,x8!;(

b
~ I b /I !2l . ~1.1!

Here I b denotes the current flowing through bondb and the
sum is taken over all bonds. Some of these multifractal m
ments are corresponding to quantities that have a particu
prominent role in percolation theory. For example,MI

(0) ,
MI

(1) , MI
(2) , and MI

(`) are proportional to the number o
bonds on the backbone~bonds that carry nonzero current!,
the total resistance, the noise~second cumulant of the resis
tance fluctuations!, and the number of the red bonds~bonds
that carry the full current!. At the percolation transition, the
moments are described by a power law in the separa
between the leads,

MI
~ l !~x,x8!;ux2x8uc l

IP/n, ~1.2!

wheren is the correlation length exponent of the IP unive
sality class. Thec l

IP are referred to as multifractal exponent
The multifractality of the current distribution manifests itse
in the fact that thec l

IP , when understood as a function of th
index l, are not related to each other in a linear or affi
fashion.

To our knowledge the issue of multifractality in DP ha
not been addressed hitherto. Here, we present such a s
By employing our real world interpretation of Feynman di
grams@23–34# as well as our concept of master operato
@23#, we find that the moments of the current distribution
r-
©2002 The American Physical Society24-1
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DP are governed by a family$c l% of multifractal exponents
analogous to$c l

IP%. For example, if the multifractal moment
are measured in the preferred timelike direction between
leads atx5(x'50,t) andx85(x'8 50,t8), then we find that

MI
~ l !~x,x8!;~ t2t8!c l /n i, ~1.3!

wheren i is the longitudinal correlation length exponent
the DP universality class. We calculate the family$c t% to
second order in an« expansion about the upper critical d
mension 5.

A brief account of our results has been given in Ref.@35#.
The aim of the present paper is to present our work in so
detail. Its remainder is organized as follows: Sec. II is d
voted to modeling issues. We start by briefly reviewing ra
dom resistor diode networks and Ohm’s and Kirchhof
laws. Then, static noise is introduced in the networks a
corresponding noise cumulants are defined. These noise
mulants are important because they are closely related to
multifractal moments that are not accessible by our meth
directly. Then, we set up a generating function for the no
cumulants by employing the replica trick. The replicati
leads to an effective Hamiltonian that we refine into a fie
theoretic Landau-Ginzburg-Wilson functionalH. We con-
clude Sec. II by analyzing the relevance of various coupl
constants appearing inH. We show that the noise cumulan
are associated with dangerously irrelevant couplings. Sec
III contains the core of our renormalization group analys
Its main content is the calculation of the generating funct
for the noise cumulants by employing renormalized fie
theory. It starts with determining the diagrammatic eleme
of our perturbation calculation upon recastingH into the
form of a dynamic functional. Next, we demonstrate how
incorporate the dangerously irrelevant noise couplings
our diagrammatic calculation via operator insertions.
show that the operators associated with the noise cumu
are master operators. We derive the scaling behavior of
generating functions. Then, the scaling behavior of the no
cumulants and multifractal moments is readily extracted
taking derivatives. Finally, our result for$c l% is stated and
several consistency checks are provided. Concluding
marks are given in Sec. IV. Technical details are relegate
two appendixes.

II. THE MODEL

A. Random resistor diode networks

Our approach is based on a model that captures both
and DP, viz., the random resistor diode network~RDN!. The
RDN was introduced by Redner@36,37#. Implicitly, however,
it was already contained in the pioneering work of Broadb
and Hammersley@38#. We start by reviewing substantial fea
tures of the RDN. A RDN consists of ad-dimensional hyper-
cubic lattice in which nearest-neighbor sites are connecte
a resistor, a positive diode~conducting only in a distin-
guished direction!, a negative diode~conducting only oppo-
site to the distinguished direction!, or an insulator with re-
spective probabilitiesp, p1 , p2 , andq512p2p12p2 .
The three-dimensional phase diagram~pictured as a tetrahe
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dron spanned by the four probabilities! comprises a nonper
colating and three percolating phases. The percolating ph
are isotropic, positively directed, or negatively directed. B
tween the phases there are surfaces of continuous transit
All four phases meet along a multicritical line, where 0<r
ªp15p2<1/2 and p5pc(r ). On the entire multicritical
line, i.e., independently ofr, one finds the scaling propertie
of usual isotropic percolation (r 50). For the crossover from
IP to DP see, e.g., Ref.@39#.

B. Kirchhoff’s laws

To be specific, we choosen51/Ad(1, . . . ,1) as thepre-
ferred direction. We assume that the bondsb^ i , j & between two
nearest neighboring lattice sitesi and j are directed so tha
b^ i , j &•n.0. We suppose that the directed bonds obey
nonlinear generalization of Ohm’s law

sb^ i , j &
~Vb^ i , j &

!Vb^ i , j &
5I b^ i , j &

, ~2.1!

whereVb^ i , j &
5Vj2Vi is the voltage drop over the bond be

tween sitesj and i, and I b^ i , j &
denotes the current flowing

from j to i. In the following we drop the subscript^i,j& when-
ever there is no risk of confusion. The bond conductan
sb5§bgb are equally and independently distributed rando
variables. Thegb take on the values 1,u(V), u(2V), and 0
with respective probabilitiesp, p1 , p2 , andq. u denotes the
Heaviside function. The nature of the§b will be specified
below. Note that the diodes are idealized: under forward-b
voltage they behave as ‘‘ohmic’’ resistors whereas they
insulating under backward-bias voltage. To prevent con
sion, we point out that the round brackets in Eq.~2.1! contain
the functional argument of the bond conductance. Beca
the bond conductance depends on the voltage drop over
bond only via a Heaviside function and sgn(Vb)5sgn(I b)
we may writesb(Vb)5sb(I b).

Assume that an external currentI is injected atx and
extracted atx8. It is understood thatx andx8 are connected.
The power dissipated on the network is by definition

P5I @Vx2Vx8#. ~2.2!

Using Ohm’s law it may be expressed entirely in terms of
voltages as

P5R1~x,x8!21@Vx2Vx8#
25(

b
sb~Vb!Vb

25P~$V%!.

~2.3!

The sum is taken over all current carrying bonds~the back-
bone! betweenx and x8 and $V% denotes the correspondin
set of voltages.R1(x,x8) stands for the macroscopic resi
tance whenI is inserted atx and withdrawn atx8. Similarly,
one definesR2(x,x8) as the macroscopic resistance whenI
is inserted atx8 and withdrawn atx. The two quantities,
however, are related byR1(x,x8)5R2(x8,x). From the
power, one obtains Kirchhoff’s first law

(̂
j &

sb^ i , j &
~Vb^ i , j &

!Vb^ i , j &
5(̂

j &
I b^ i , j &

52I i . ~2.4!
4-2
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as a consequence of the variation principle

]

]Vi
F1

2
P~$V%!1(

k
I kVkG50. ~2.5!

The summation in Eq.~2.4! extends over the nearest neig
bors of i, andI i is given byI i5I (d i ,x2d i ,x8).

Alternatively to Eq.~2.3!, the power can be expressed
terms of the currents as

P5R1~x,x8!I 25(
b

rb~ I b!I b
25P~$I %!, ~2.6!

with $I% denoting the set of currents flowing through the
dividual bonds.rb5sb

21 denotes a bond resistance. It is u
derstood thatrb(I b)I b

250 wheneversb(I b)50. Kirchhoff’s
second law, saying that the voltage drops along closed lo
vanish, can be stated in terms of the variation principle

]

]I ~ l ! P~$I ~ l !%,I !50, ~2.7!

i.e., there are no independent loop currentsI ( l ) circulating
around a complete set of independent, closed loops.

As customary in dealing with electric networks, Kirch
hoff’s equations may be exploited to calculate the total re
tanceR1 . Of course we are not primarily interested in a
particular random configurationC of the diluted network but
rather in an averagê̄ &C over all these configurations. Thi
average, however, requires a little caution because the r
tance between sites not connected by any conducting pa
infinite. Therefore, we will exclusively consider those sitex
andx8 known to be connected by such a path. In practice
is done by utilizing an indicator functionx1(x,x8) that takes
the value 1 ifx andx8 are positively connected, i.e., ifI can
percolate fromx to x8, and zero otherwise. Note tha
^x1(x,x8)&C5^x2(x8,x)&C is nothing more than the usua
DP correlation function. With help of the indicator functio
the average resistance, or more general, thel th moment of
the resistance, can by written as

^x1~x,x8!R1~x,x8! l&C /^x1~x,x8!&C . ~2.8!

C. Incorporation of noise

In the usual RDN all the§b are equal to 1. Here, we ar
interested in a more general setup where the bond con
tances fluctuate statistically about some average value§̄. In
other words, we are interested in a RDN with static noi
This noise is modeled by distributing the§b according to
some distribution functionf with mean§̄ and higher cumu-
lantsD ( l>2) satisfyingD ( l )! §̄ l . The condition on the cumu
lants is imposed to avoid unphysical negative conductan
The distribution functionf might, for example, be Gaussian
Nevertheless, our considerations are not limited to this p
ticular choice.

The noise average will be denoted by
03612
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$¯% f5E )
b

d§b
f ~§b!¯ ~2.9!

and itsl th cumulant by

$¯% f
~c!5

] l

]l l ln$exp@l¯#% fU
l50

. ~2.10!

Of course, both kinds of disorder, the random dilution of t
lattice and the noise, influence the statistical properties of
macroscopic resistance. Both are reflected mutually by
moments

MR
~ l !~x,x8!5

^x1~x,x8!$R1~x,x8! l% f&C

^x1~x,x8!&C
~2.11!

and the cumulants

CR
~ l !~x,x8!5

^x1~x,x8!$R1~x,x8! l% f
~c!&C

^x1~x,x8!&C
. ~2.12!

D. Moments of the current distribution

Primarily we are interested in the moments of the curr
distribution defined by

MI
~ l !~x,x8!5K x~x,x8!(

b
S I b

I D 2l L
C

Y ^x~x,x8!&C .

~2.13!

There exists an intimate relationship between theMI
( l ) and

the CR
( l ) that can be understood as a consequence of Co

theorem@40#. We shall now briefly review this relationship
In Eq. ~2.9! the noise average is defined as an aver

with respect to the distribution of the bond conductancessb .
Alternatively, one might express the macroscopic resista
in terms of the bond resistancesrb and average over thei
distribution. Of course, not only thesb but also therb are
distributed independently and equally. Assume that the
tribution function of the deviationsdrb5rb2 r̄ of the resis-
tance of each bond from its averager̄ has the form

gs~drb!5
1

s
hS drb

s D ~2.14!

and that

lim
s→0

gs~drb!5d~drb!. ~2.15!

s is a variable with units of resistance that sets the scale
the distribution. With this form ofgs , thenth cumulantvn of
drb tends to zero assn. This follows from the generating
function c(ls) of the vn ,
4-3
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exp@c~ls!#5$exp~ldrb!% f5E dy h~y!exp~lsy!

5expS (
n51

`
ln

n!
vnD , ~2.16!

where vn5cnsn with cn being constants. In genera
$R1(x,x8) l% f

(c) depends on the entire set of cumulants$vn%.
However, in the limits→0 the leading term is proportiona
to v l as we will see in a moment. Consider the generat
function C(l) of the cumulants$R1(x,x8) l% f

(c) .

exp@C~l!#5E )
b

ddrbgs~drb!exp@lR1~x,x8!#.

~2.17!

Expansion of the macroscopic resistance in a power serie
the drb leads to

exp@C~l!#5E )
b

dyb h~yb!

3expFlR1
0 ~x,x8!1l(

k51

`

(
b1 ,...,bk

sk

k!

3
]kR1~x,x8!

]rb1
¯]rbk

U
r̄

yb1
¯ybkG , ~2.18!

where R1
0 (x,x8) is the resistance whendrb50 for every

bondb. Equation~2.18! can be rearranged as

exp@C~l!#5expFlR1
0 ~x,x8!

1l(
k52

`

(
b1 ,...,bk

sk

k!

]kR1~x,x8!

]rb1
¯]rbk

U
r̄

3
]k

]zb1
¯]zbk

G
3)

b
exp@c~zb!#U

ls(b]R1~x,x8!/]rbu r̄

5expFlR1
0 ~x,x8!

1(
l 51

`

~ls! lcl(
b

S ]R1~x,x8!

]rb
U

r̄
D l

1(
i 52

`

f i~lsi !G , ~2.19!

where f i is a function oflsi . Hence, forl>2,
03612
g

in

$R1~x,x8! l% f
~c!5cl(

b
S s

]R1~x,x8!

]rb
U

r̄
D l

@11O~s!#.

~2.20!

In the limit s→0 the leading term is

$R1~x,x8! l% f
~c!5v l(

b
S ]R1~x,x8!

]rb
U

r̄
D l

5v l(
b

S I b

I D 2l

,

~2.21!

where we have used Cohn’s theorem in the form

]R1~x,x8!

]rb
5S I b

I
D 2

. ~2.22!

Upon substitution of Eq.~2.21! into Eq. ~2.12! one finds for
the noise cumulants

CR
~ l !~x,x8!5v lM I

~ l !~x,x8!, ~2.23!

i.e., thel th noise cumulant is proportional to thel th multi-
fractal moment of the current distribution. In the followin
we will exploit this relation in the sense that we will stud
the CR

( l ) as a surrogate for theMI
( l ) . We will see below that

the CR
( l ) are accessible in an elegant way by renormaliz

field theory whereas we do not know of such an approach
the MI

( l ) directly.

E. Replication

In this section we devise a generating function for theCR
( l )

based on the ideas of Stephen@41# and their refinement by
Park, Harris, and Lubensky~PHL! @22#. We demonstrate tha
this generating function indeed serves its purpose and
plain how the average conductance can be extracted from

PHL introduced the quantity

clJ~x!5exp~ i lJ•VJx!, lJÞ0J. ~2.24!

VJx is a (D3E)-fold replicated variant of the voltageVx at
lattice sitex,

VJx5S Vx
~1,1!

¯ Vx
~1,D !

] � ]

Vx
~E,1!

¯ Vx
~E,D !

D . ~2.25!

lJ, is apart from a factor2 i , a replicated external curren
that is likeVJx a matrix with (D3E) components. The cor
responding scalar product is defined aslJ•VJx

5(a,b51
D,E l (a,b)Vx

(a,b) .
In order to proceed towards the desired generating fu

tion we now consider the two-point correlation function
clJ(x),

G~x,x8,lJ !5^clJ~x!c2lJ~x8!& rep, ~2.26!

where the average is defined by
4-4
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^¯& rep5K H 1

)
b51

E

Z~$sb
~b!%,C!D

E )
j

dVJ j

3exp@2 1
2 P~$VJ ~d!%,$sb

~d!% ,C!#¯J
f

L
C

.

~2.27!

Here,dVJ j is an abbreviation forPa,b51
D,E dVj

(a,b)

P~$VW ~d!%,$sb
~d!%,C!5 (

g51

D

(
b

sb
~d!@Vb

~g,d!#2 ~2.28!

is the replicated version of the electric power withVW x
(d)

5(Vx
(1,d) , ...,Vx

(D,d)). The normalization factor in Eq.~2.27!
is given by

Z~$sb
~b!%,C!5E )

j
dVj exp@2 1

2 P~$V%,$sb
~b!%,C!#.

~2.29!

At this point we would like to comment on regularizatio
issues. First, it is important to realize that the integrands
Eqs. ~2.27! and ~2.29! depend only on voltage difference
and hence the integrals are divergent. To give these integ
a well defined meaning one can introduce an additio
power term (iv/2)( iVi

2. Physically the new term corre
sponds to grounding each lattice site by a capacitor of
capacity. The original situation can be restored by taking
limit of vanishing frequency,v→0. Second, it is not guar
anteed thatZ stays finite because infinite voltage drops m
occur. Thus, the limit limD→0 ZDE is not well defined. This
problem may be regularized by restricting the voltage va
ables to a finite interval. However, we have to bear in m
that lJ50J has to be excluded properly. We take care of b
points simultaneously by resorting to a lattice regularizati
To be specific, we switch to voltages taking discrete val
on a (D3E)-dimensional torus, henceforth called the repli
space. In practice we setqJ5Dq kJ with kJ being a
(D3E)-dimensional integer with2M,k(a,b)<M and
k(a,b)5k(a,b) mod(2M ). Dq5qM /M is the gap between
successive voltages andqM is the voltage cutoff. The con
tinuum may be restored by takinguM→` and Du→0. By
settingM5m2, qM5q0m, and, respectively,Dq5q0 /m,
the two limits can be taken simultaneously viam→`. For
the replica currents we set

lJ5Dl lJ, DlDu5p/M , ~2.30!

where lJ is a (D3E)-dimensional integer taking the sam
values askJ. This choice guarantees that the completen
and orthogonality relations

1

~2M !DE (
qJ

exp~ i lJ•uJ !5dlJ,0J mod~2MDl! ~2.31a!
03612
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1

~2M !DE (
lJ

exp~ i lJ•uJ !5duJ,0J mod~2MDu! ~2.31b!

do hold. Equation~2.31! provides us with a Fourier trans
form in replica space. It is important to note that the repl
space Fourier transform ofclJ(x),

FqJ~x!5~2M !2DE (
lJÞ0J

exp~ i lJ•qJ !clJ~x!

5dqJ ,qJx
2~2M !2DE , ~2.32!

satisfies the condition(qJFqJ(x)50. Hence, it can be identi
fied as a Potts spin@42# with q5(2M )DE states. The relation
of the RDN to the Potts model that emerges here as a c
sequence of the lattice regularization is important as wel
intuitively plausible. That is because the purely geome
properties of the RDN are those of percolation, either IP
DP, depending on the sector of the phase diagram con
ered. It is a well-known fact that the Potts model describ
percolation in the limitq→1@43#. Note that this limit corre-
sponds to the replica limit viaq5(2M )DE.

Before proceeding with the evaluation of the correlati
functions~2.26! we would like to make one more comme
on the replication procedure. The replication scheme e
ployed here goes beyond the usual replica trick in the se
that it involves a second replication parameter, i.e., that
replicated quantities are (D3E) tuples and not justD tuples.
This subtlety has its origin in the definitions~2.11! and~2.12!
that require to treat the averages^¯&C and $¯% f indepen-
dently. The great benefit of the replication is to provide f
the free parameterD that we may tune to zero@44#. In this
replica limit the normalization denominatorZ2DE goes to
one and hence does not depend on the distribution of
bond conductances anymore. Then the only remaining
pendence on this distribution rests in the electric poweP
appearing in the exponential in Eq.~2.27!. In the replica
limit, therefore, we just have to average this exponential
stead of the entire right-hand side of Eq.~2.27!. This average
then provides us with an effective electric power or Ham
tonian that serves as vantage point for all further calcu
tions. The effective Hamiltonian will be discussed
Sec. II F.

Now we come back to the role of the correlation functio
~2.26! as a generating function. The integrations associa
with the average~2.27! are not Gaussian. However, they ca
be carried out in an approximating manner by applying
saddle point method as it was done by Harris@45# in the
related problem of nonlinear random resistor networks.
extract the leading contribution to the integral stemmi
from the maximum of the integrand. This maximum is det
mined by the solution of Kirchhoff’s equations, i.e., by th
macroscopic resistance. The conditions under which
4-5
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saddle point method works reliably will be outlined in th
next paragraph. Under these conditions we find

G~x,x8,lJ !5K )
b51

E H expF2
lW ~b!2

2
R1

~b!~x,x8!G J
f
L

C
~2.33!

up to an unimportant multiplicative constant that goes to o
in the replica limit D→0. On defining Kl(lJ)
5(b51

E @(a51
D (l (a,b))2# l we obtain by expanding in terms o

cumulants

G~x,x8,lJ !5K expF(
l 51

`
~21/2! l

l !
Kl~lJ !$R1~x,x8! l% f

~c!G L
C

.

~2.34!

Upon expanding the exponential we get

G~x,x8,lJ !5^x1~x,x8!&CH 11(
l 51

`
~21/2! l

l !
Kl~lJ !

3CR
~ l !~x,x8!1¯J . ~2.35!

We learn here thatCR
( l ) can be calculated via

CR
~ l !~x,x8!5^x1~x,x8!&C

21

3
]

]F ~21/2! l

l !
Kl~lJ !G G~x,x8,lJ !U

lJ50J

,

~2.36!

i.e., G represents indeed the desired generating function
the noise cumulants.

Now to the conditions for the saddle point approximatio
We work near the limit when all the components oflJ are
equal and continue to large imaginary values. Accordin
we set@45#

l~a,b!5 il01j~a,b! ~2.37!

with real l0 and j (a,b), (a51
D j (a,b)50. The saddle point

approximation gives Eq.~2.33! provided that

ul0u@1. ~2.38!

On the other hand, one has

lW ~b!252Dl0
21jW ~b!2. ~2.39!

Thus, one can justify the expansion in Eq.~2.35! by invoking
the conditions

l0
2!D21 and jW ~b!2!1. ~2.40!
03612
e
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It is important to realize that the replica limitD→0 allows
for a simultaneous fulfilment of the conditions~2.38! and
~2.40!.

F. Field theoretic Hamiltonian

This section presents the derivation of our field theore
Hamiltonian for the noisy RDN. We start by revisiting E
~2.27! and note that the effective Hamiltonian heralded
Sec. II E is given by

H rep52 ln^exp@2 1
2 P~$qW %!#&C . ~2.41!

Carrying out the average over the diluted lattice configu
tions leads to

H rep52(
b

K~qW b!, ~2.42!

where we have introduced

K~qW !5 lnH q1p)
b51

E H expF2
§~b!

2
qW ~b!2G J

f

1p1 )
b51

E

E H )
a51

D

expF2
§~b!

2
u~q~a,b!!q~a,b!2G J

f

1p2 )
b51

E H )
a51

D

expF2
§~b!

2
u(2q~a,b!)

3q~a,b!2G J
f
J . ~2.43!

Now recall our choice forlJ in Eq. ~2.37!. SincelJ andqJ are
related via Ohm’s law@Eq. ~2.1!#, we have to chooseqJ con-
sistently,

q~a,b!5q01z~a,b!, ~2.44!

with realq0 andz (a,b), (a51
D z (a,b)50. We impose the con-

ditions

uq0u@1, q0
2!D21, zW ~b!2!1. ~2.45!

Under these conditions we haveu(q (a,b))5u(q0). Hence,
we can write

K~qW !5 lnH q1p1u~2q0!1p2u~q0!1@p1p1u~q0!

1p2u~2q0!#expF(
l 51

`
~21/2! l

l !
D~ l !Kl~qJ !G J .

~2.46!

After some additional algebraic steps and by dropping a te

u~q0!ln@12p2p1#1u~2q0!ln@12p2p2# ~2.47!

that does not depend on the bond conductances we arriv
4-6



w

-

n

in

the

g

n

at
g
ere-

-
hey

MULTIFRACTAL PROPERTIES OF RESISTOR DIODE . . . PHYSICAL REVIEW E 65 036124
K~qW !5u~q0!K1~qW !1u~2q0!K2~qW ! , ~2.48!

with

K6~qW !5 lnH 11
p1p6

12p2p6
expF(

l 51

`
~21/2! l

l !
D~ l !Kl~qJ !G J .

~2.49!

In order to proceed towards a field theoretic Hamiltonian,
expandK(qJ ) in terms of theclJ( i )5exp(ilJ•qJ i). Recalling
that b is a shorthand for the bondb^ i , j & between sitesi and j
we write

K~qJ b!5
1

~2M !DE (
lJ

(
qJ

exp@ i lJ•~qJ b2qJ !#K~qJ !

5 (
lJÞ0J

clJ~ i !c2lJ~ j !@u~l0!K̃1~lJ !

1u~2l0!K̃6~lJ !#. ~2.50!

Here, we have exploited thatu(q0)5u(l0). K̃6(lJ) stands
for the Fourier transform ofK6(qJ ),

K̃6~lJ !5
1

~2M !DE (
qJ

exp@ i lJ•qJ #K6~qJ !. ~2.51!

For evaluating Eq.~2.51! we switch back to continuous volt
ages,

K̃6~lJ !5E
2`

`

dqJ exp~2 i lJ•qJ !lnH 11
p1p6

12p2p6

3expF(
l 51

`
~21/2! l

l !
D~ l !Kl~qJ !G J , ~2.52!

where we have dropped a factor (2qM)2DE. Taylor expan-
sion of the logarithm yields a series of terms of the form

E
2`

`

dqJ expF2 i lJ•qJ2a§̄qJ 22(
l 52

bl~ §̄s! lKl~qJ !G ,
~2.53!

wherea the bl are constants of orderO(s0). For notational
simplicity we dropped the subscript6. In addition to the
expansion of the logarithm, we expand in a power series is,

Eq. ~2.53!5E
2`

`

dqJ exp@2 i lJ•qJ2a§̄qJ 2#

3H 11(
l 52

`

~ §̄s! l Pl~qJ !J . ~2.54!

Here, thePl are homogeneous polynomials of order 2l in lJ

which are sums of terms proportional to

)
i>2

Ki~qJ ! l i , ~2.55!
03612
e

such that( i i l i5 l . Completing squares in the exponential
Eq. ~2.54! gives

Eq. ~2.54!5expF2
lJ2

4a§̄
G E

2`

`

dqJ exp@2a§̄qJ 2#

3H 11(
l 52

`

~ §̄s! l PlS qJ2 i
lJ

2a§̄
D J

5expF2
lJ

4a§̄
G H 11(

l 52

`

~ §̄s! l

3F PlS lJ

§̄
D 1¯1 §̄ ~2r !Pl 2rS lJ

§̄
D 1¯G J ,

~2.56!

where we have omitted multiplicative factors decorating
Pl . Due to the homogeneity of thePl , Eq. ~2.56! can be
rearranged as

Eq. ~2.56!5expF2
lJ2

4a§̄
G H 11(

l 52

`

sl@ §̄2 l Pl~lJ !1¯

1 §̄2~ l 2r !Pl 2r~lJ !1¯# J
5expF2

lJ2

4a§̄
G H 11 (

l 851

` S s

§̄
D l 8

3@11O~s!#Pl 8~lJ !J , ~2.57!

up to multiplicative factors. By keeping only the leadin
contributions, we deduce forK̃(lJ) that

K̃6~lJ !5t61 (
p51

`

w6,plJ2p1(
Pl

v6,Pl
Pl~lJ !, ~2.58!

with t6 , w6,p;§̄2p, and v6,Pl
;D ( l )/ §̄2l being expansion

coefficients.
The termswplJ2p are irrelevant in the renormalizatio

group sense forp>2, cf. Sec. II G. ThevPl
Pl(lJ) are irrel-

evant as well. However, we will demonstrate in Sec. II G th
the terms proportional toKl(lJ) are indispensable in studyin
the noise cumulants; they are dangerously irrelevant. Th
fore, we restrict the expansion ofK̃6(lJ) to

KJ6~lJ !5t61w6lJ21(
l 52

`

v6,lKl~lJ !, ~2.59!

with w15w6,1 , and v6,l5v6,Kl
. Nevertheless, the ne

glected terms will regain some importance later on since t
are required for the renormalization of thev6,l . The expan-
sion coefficients in Eq. ~2.59! satisfy t6(p,p1 ,p2)
5t7(p,p2 ,p1), w6(p,p1 ,p2)5w7(p,p2 ,p1), and
4-7
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v6,l(p,p1 ,p2)5v7,l(p,p2 ,p1). TheKl are homogeneou
polynomials of order 2l . For l>2 they are possessing
S@O(D)E# symmetry whereaslJ2 has a fullO(DE) rotation
symmetry in replica space.

Next we decomposeK(qJ b) into two parts, one being eve
and the other being odd underlJ→2lJ:

K~qJ b!5 (
lJÞ0J

clJ~ i !c2lJ~ j !$ 1
2 @K̃1~lJ !1K̃2~lJ !#

1 1
2 @u~l0!2u~2l0!#@K̃1~lJ !2K̃2~lJ !#%.

~2.60!

Then we insert Eq.~2.60! into Eq. ~2.42!. We also carry out
a gradient expansion in position space that is justified
cause the interaction is short ranged. We find

H rep52 (
lJÞ0J

(
i ,bi

$ 1
2 @K̃1~lJ !1K̃2~lJ !#c2lJ~ i !

3@11 1
2 ~bi•¹!21¯#clJ~ i !

1 1
2 [u~l0!2u~2l0!] @K̃1~lJ !2K̃2~lJ !#

3c2lJ~ i !@bi•¹1¯#clJ~ i !. ~2.61!

We proceed with the usual coarse graining step and
place theclJ( i ) by order parameter fieldsclJ(x) that inherit
the constraintlJÞ0J. We model the corresponding field the
retic HamiltonianH in the spirit of Landau as a mesoscop
free energy and introduce the Landau-Ginzburg-Wilson-t
functional

H5E ddxH 1

2 (
lJÞ0J

c2lJ~x!K~¹,lJ !clJ~x!

1
g

6 (
lJ,lJ8,lJ1lJ8Þ0J

c2lJ~x!c2lJ8~x!clJ1lJ8~x!J ,

~2.62a!

where

K~¹,lJ !5t2¹21wlJ21(
l 52

`

v lKl~lJ !

1@u~l0!2u~2l0!#r•¹. ~2.62b!

In Eq. ~2.62! we have discarded terms of higher order in t
fields that are irrelevant in the renormalization group sen
The parametert is the coarse grained relative oft11t2 . It
specifies the ‘‘distance’’ from the critical surface under co
sideration. In mean field theory the transition occurs at
50. w;s21 is the coarse grained analog ofw11w2 . The
v l stem fromv1,l1v2,l . The vectorr lies in the preferred
direction, r5rn. t, w, v l , and r depend on the three prob
abilitiesp, p1 , andp2 . r is zero itp15p2 . We will see as
we go along that our HamiltonianH describes in the limits
w→0 andv l→0 the usual purely geometric DP. IndeedH
03612
-

e-

e

e.

-

leads forw→0 andv l→0 to exactly the same perturbatio
series as obtained in Refs.@3,46,47#.

G. Relevance

In this section we show that thev l are dangerously irrel-
evant. The notion ofdangerously irrelevant variableswas
coined by Fisher@48#. It applies to variables that cannot b
taken to zero because the quantity examined either vani
or diverges in this limit. Later on the notion was carried ov
to field theory by Amit and Peliti@49#. A characteristic fea-
ture of dangerously irrelevant variables is that correctio
due to them determine the asymptotic behavior of quanti
with the above property, so that their effect is felt arbitrar
close to a phase transition@50#. In contrast, usual irrele-
vant variables cause corrections to scaling that vanish
criticality.

We will see in a moment that thev l are irrelevant on
dimensional grounds, i.e., they are associated with a nega
naive dimension. However, we cannot simply take thev l to
zero by appealing to their irrelevance, because the am
tudes of the noise cumulants vanish in this limit.

Now we embark on a scaling analysis in the current va
able by rescalinglJ→b21lJ. Hereb denotes a scaling facto
and should not be confused with the index labeling
bonds. By substitutingclJ(x)5c

b21lJ
†

(x) into the Hamil-
tonian we get

H[c
b21lJ
†

~x!;t,r ,w,$v l%]

5E ddxH 1

2 (
lJÞ0J

c
b21lJ
†

~x!K~¹,lJ !c
2b21lJ
†

~x!

1
g

6 (
lJ,lJ8,lJ1lJ8Þ0J

c
2b21lJ
†

~x!c
2b21lJ8

†
~x!

3c
b21lJ1b21lJ8

†
~x!J . ~2.63!

Renaming the scaled voltage variableslJ†5b21lJ leads to

H@c
lJ
†

†~x!;t,r ,w,$v l%#

5E ddxH 1

2 (
lJÞ0J

c
lJ†
†

~x!K~¹,blJ†!c
2lJ†
†

~x!

1
g

6 (
lJ,lJ8,lJ1lJ8Þ0J

c
2lJ†
†

~x!c
2lJ8†
†

~x!c
lJ†1lJ8†
†

~x!J .

~2.64!

Obviously, a scaling of the current variable results in a sc
ing of the current cutofflM5DlM5pm/q0 , viz., lM
→b21lM . However, by taking the limitD→0 and thenm
→`, the dependence of the theory on the cutoff drops o
In other words,lM is a redundant scaling variable. Thus, o
can identifylJ† andlJ and comes to the conclusion that
4-8



le

n
an

ds
s,

sc

ti

s
the

ent.
i-

ch of

at

dy-
ti-

on
r-

r to
la-

m
y

g
t

n-
on
ing

MULTIFRACTAL PROPERTIES OF RESISTOR DIODE . . . PHYSICAL REVIEW E 65 036124
H@cb21lJ~x!;t,r ,w,$v l%#5H@clJ~x!;t,r ,b2w,$b2lv l%#.

~2.65!

Now we consider the consequences of Eq.~2.65! for the
correlation functions of the fieldclJ(x) defined by

GN~$x,lJ%;t,r ,w,$v l%!5E DcclJ1
~x1!¯clJN

~xN!

3exp„2H@clJ~x!;t,r ,w,$v l%#…,

~2.66!

whereDc indicates an integration over the set of variab

$clJ(x)% for all x andlJ. Equation~2.65! implies that

GN~$x,lJ%;t,r ,w,$v l%!5GN~$x,b21lJ%;t,r ,b2w,$b2lv l%!.

~2.67!

From Eq.~2.67! in conjunction with Eq.~2.35! we deduce

Kl~lJ !CR
~ l !
„~x,x8!;t,r ,w,$vk%…

5b22lKl~lJ !CR
~ l !
„~x,x8!;t,r ,b2w,$b2kvk%….

~2.68!

We are free to chooseb25w21. This choice gives

CR
~ l !
„~x,x8!;t,r ,w,$vk%…5wl f l S ~x,x8!;t,r ,H vk

wkJ D ,

~2.69!

where f l is a scaling function. We learn from Eq.~2.69! that
the coupling constantsvk appear only in the combinatio
vk /wk. A trivial consequence of the fact that the Hamiltoni
~2.62! must be dimensionless is thatwlJ;m2 and vkKk(lJ)
;m2, where m is an inverse length scale. In other wor
wlJ2 and vkKk(lJ) have a naive dimension of two. Thu
vk /wk;m222k and hence thevk /wk have a negative naive
dimension. This leads to the conclusion that thevk are irrel-
evant couplings.

Though irrelevant, one must not setv l50 in calculating
the noise exponents. In order to see this we expand the
ing function f l in Eq. ~2.69!,

CR
~ l !
„~x,x8!;t,r ,w,$vk%…5wl H Cl

~ l ! v l

wl 1Cl 11
~ l ! v l 11

wl 11 1¯J ,

~2.70!

with Ck
( l ) being expansion coefficients depending onx, x8, t,

and r. It is important to recognize thatCk, l
( l ) 50 because the

corresponding terms are not generated in the perturba
calculation. Equation~2.70! can be rewritten as

CR
~ l !
„~x,x8!;t,r ,w,$vk%…5v l H Cl

~ l !1Cl 11
~ l ! v l 11

wv l
1¯J .

~2.71!
03612
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Note thatv l 1k /(wkv l);m22k, i.e., the corresponding term
are irrelevant. The first term on the right-hand side gives
leading behavior. Thus,CR

( l ) vanishes upon settingv l50 and
we cannot gain any further information aboutCR

( l ) . In par-
ticular, we cannot determine the associated noise expon
In other words, thev l are dangerously irrelevant in invest
gating the critical properties of theCR

( l>2) .
We conclude this section by demonstrating that thewp>2

appearing in Eq.~2.58! as candidates for enteringH are ir-
relevant. Suppose that we had retained these terms. Ea
them had contributed a termwplJ2p to the kernel in Eq.
~2.62!. From the analysis above it is evident, however, th
wp had appeared in the noise cumulants only aswp /wp

;m222p. We conclude that keeping thewp>2 had produced
only corrections to scaling and that neglecting them in stu
ing the leading behavior at the critical point is indeed jus
fied.

III. RENORMALIZATION GROUP ANALYSIS

In this section we calculate the generating functi
G(x,x8,lJ) by employing field theory augmented by reno
malization. For background on these methods we refe
Ref. @51#. We perform a diagrammatic perturbation calcu
tion up to two-loop order.

A. Diagrammatic elements

Instead of working withH directly, we recastH into the
form of a dynamic functional@52–54#. This strategy is con-
venient because it simplifies the following calculations fro
the onset. AssumingrÞ0 we introduce new variables b
setting

xi5r•x5rrt, c5ur u21/2s, g5ur u1/2ḡ. ~3.1!

On substituting Eq.~3.1! into Eq. ~2.62! we obtain the dy-
namic functional

J5E dd'x'dtH 1

2 (
lJÞ0J

s2lJ~x' ,t !FrS t2¹'
2 1wlJ2

1(
l 52

`

v lKl~lJ !D 1@u~l0!2u~2l0!#
]

]tGslJ~x' ,t !

1
rḡ

6 (
lJ,lJ8,lJ1lJ8Þ0J

s2lJ~x' ,t !s2lJ8~x' ,t !

3slJ1lJ8~x' ,t !J , ~3.2!

whered'5d21. In Eq.~3.2! we dropped a term containin
a second derivative with respect tot because it is irrelevan
compared to the retained term containing]/]t.

From Eq.~3.2! we gather the diagrammatic elements co
tributing to our renormalization group improved perturbati
calculation. Dimensional analysis shows that the coupl
constantḡ has the naive dimension (42d')/2, i.e., d5d'
4-9
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1155 is the upper critical dimension. The Gaussian pro
gatorG(x' ,t,lJ) is determined by the equation of motion

H r~t2¹21wlJ2!1@u~l0!2u~2l0!#
]

]tJ G~x' ,t,lJ !

5d~x'!d~ t ! . ~3.3!

Note that we have not included the terms proportional to
v l due to their irrelevance. The proper treatment of th
terms will be explained in Sec. III B. Solving the equation
motion is straightforward. For the Fourier transfor
G̃(p,t,lJ) of G(x' ,t,lJ) we obtain

G~p,t,lJ !5G̃1~p,t,lJ !1G̃2~p,t,lJ !, ~3.4!

wherep is the momentum conjugate tox' and

G̃6~p,t,lJ !5u~6t !u~6l0!exp@7tr~t1p21wlJ2!#

3~12dlJ,0J!. ~3.5!

For the perturbation expansion it is sufficient to keep eit
G̃1(p,t,lJ) or G̃2(p,t,lJ) and hence we discardG̃2(p,t,lJ).
The factor (12dlJ,0J) on the right-hand side of Eq.~3.5! en-
forces the constraintlJÞ0J. Due to this factor the principa
propagatorG̃1(p,t,lJ) decomposes into

G̃1~p,t,lJ !5G̃cond~p,t,lJ !2G̃ins~p,t !. ~3.6!

The first part

G̃cond~p,t,lJ !5u~ t !u~l0!exp@2tr~t1p21wlJ2!#
~3.7!

is carrying replicated currents and hence we call it condu
ing.

G̃ins~p,t !5u~ t !exp@2tr~t1p2!#dlJ,0J ~3.8!

on the other hand, is not carrying replicated currents and
refer to it as the insulating propagator. The decomposition
the principal propagator allows for a schematic decomp
tion of the principal diagrams into sums of conducting d
grams consisting of conducting and insulating propagat
In Fig. 1 we list the result of the decomposition procedure
to two-loop order.

According to our real world interpretation@23–34#, the
conducting diagrams may be viewed as being resistor
works themselves with conducting propagators correspo
ing to conductors and insulating propagators correspond
to open bonds. In our interpretation the timest appearing in
the conducting propagators correspond to resistances an
replica variableslJ ~up to a factor2 i ! to currents. Just as th
physical currents are conserved in the nodes of real
works, the replica currents are conserved in each vertex
we may write for each edgei of a diagram,lJ i5lJ i(lJ,$kJ%),
wherelJ is an external current and$kJ% denotes a complete
set of independent loop currents.
03612
-

e
e

r

t-

e
f
i-
-
s.
p

t-
d-
g

the

t-
nd

B. Diagrammatic treatment of the dangerously irrelevant
couplings

Since the coupling constantsv l are irrelevant, they canno
be treated in the same fashion as the other coupling cons
t and w pertaining to the bilinear part ofJ. Suppose we
would naively add2tr( lv lKl(lJ) to the argument of the
exponential in Eq.~3.5! and then use the resulting expressi
as the Gaussian propagator. By doing so we would ruin
perturbation expansion. This can be understood by expa
ing any of the diagrams in terms ofv l . For increasing orders
of this expansion one encounters increasing orders of su
ficial divergence. The diagrammatic expansion can be fix
however, by truncating the expansion in thev l at linear or-
der. This is equivalent to treatingv l by means of the insertion

O~ l !52
r

2
wlE dd'pE dt(

lJ
Kl~lJ !wlJ~p,t !w2lJ~2p,t !,

~3.9!

that is associated with the coupling constantv l /wl . In Eq.
~3.9!, wlJ(p,t) denotes the Fourier transform ofslJ(x' ,t).

Now we analyze the structure of the conducting diagra
after O( l ) has been inserted into one of their conducti
propagators. This situation is sketched in Fig. 2. Any of the
diagrams has a current-dependent part of the form

2t irwl(
$kJ%

Kl~lJ i !expF2rw(
j

t jlJ j
2G

52t irwl(
$kJ%

Kl~lJ i !exp@rwP~lJ,$kJ%!#,

~3.10!

FIG. 1. Decomposition of the primary two-leg diagrams~bold!
into conducting diagrams composed of conducting~light! and insu-
lating ~dashed! propagators. It is important to bear in mind that th
conducting diagrams inherit their combinatorial factor from th
bold diagram. For example, the diagrams A and B have to be
culated with the same combinatorial factor1

2.
4-10
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FIG. 2. Calculation scheme. The hatche
blobs symbolize an arbitrary number of close
conducting loops. The solid dots indicate inse
tions.
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whereP denotes the electric power of the diagram. The su
mation is carried out by completing the squares in the ex
nential. The corresponding shift in the loop currents is giv
by the minimum of the quadratic formP that is determined
by a variation principle completely analogous to the o
stated in Eq.~2.7!. Thus, completing the squares is equiv
lent to solving Kirchhoff’s equations for the diagram. It lea
to

2t irwl(
$kJ%

Kl S lJ i
ind1(

j
Ci , j~$t%!kJ j D

3expF2rwR~$t%!lJ22rw(
i , j

Bi , j~$t%!kJ i•kJ j G .
~3.11!

lJ i
ind5ci($t%)lJ is the current induced by the external curre

into edgei. ci($t%) andCi , j ($t%) are homogeneous function
of the times of degree zero.Bi , j ($t%) and the total resistanc
of the diagramR($t%) are homogeneous functions of th
times of degree 1. By a suitable choice of thekJ, the matrix
constituted by theBi , j is rendered diagonal, i.e.,Bi , j;d i , j .
At this stage it is convenient to switch to continuous curre
and to replace the summation by an integration,

(
$kJ%

→E )
i 51

L

dkJ i , ~3.12!

where L stands for the number of independent conduct
loops. This integration is Gaussian and therefore straight
ward. In the limitD→0 one obtains

2t irwlKl~lJ i
ind!1¯52t ici~$t%!2lrwlKl~lJ !1¯ .

~3.13!

The terms neglected in Eq.~3.13! are not required in calcu
lating thec l . This issue is discussed in detail in Sec. III
Diagrammatically, the calculation scheme can be conden
into Fig. 2. Appendix A illustrates the calculation scheme
terms of an example.

C. Renormalization and scaling

Now we will consider the renormalization of the field an
the various parameters appearing in the dynamic functio
~3.2!. Most of the techniques we are going to use, such
dimensional regularization and minimal subtraction, belo
to the standard repertoire of renormalized field theory,
Ref. @51#. The renormalization of thev l , however, is some-
what intricate. Hence, we will elaborate on it in this sectio
03612
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We start with those quantities that can be renormalized
a straightforward fashion. For these we use the same re
malizations as in Refs.@29,32#.

s→ s̊5Z1/2s, ~3.14a!

r→ r̊5Z21Zrr, ~3.14b!

t→ t̊5Zr
21Ztt, ~3.14c!

w→ẘ5Zr
21Zww, ~3.14d!

ḡ→ g̊̄5Z21/2Zr
21Zu

1/2G«
21/2u1/2m«/2, ~3.14e!

where«542d' andm is the usual inverse length scale. Th
factor G«5(4p)2d'/2G(11«/2), with G denoting the
Gamma function, is introduced for convenienceZ, Zt , Zr ,
and Zu are the usual DPZ factors, which can be found to
second order in« in the literature@3,47#. Zw can be gleaned
to second order in« from Refs.@29,32#.

To prepare for the renormalization of the noise couplin
we proceed with reviewing some general features of oper
insertions. An operatorOi of a given naive dimension@Oi #
inserted one time in a vertex function generates new pri
tive divergences corresponding to operators of equal or lo
naive dimension. Thus, one needs these newly generated
erators as counterterms in the Hamiltonian. The operator
lower naive dimension can be isolated by additive renorm
ization,

Oi→Ôi5Oi2 (
@Oj #,@Oi #

Xi , jOj . ~3.15!

Dimensional regularization in conjunction with minimal su
traction leads toXi , j containing a monomial int as a factor
that is at least of degree 1. Hence, theseXi , j vanish at the
critical point. Being interested in the leading behavior
criticality, we thus can neglect the operators of lower na
dimension in the following.

Now to the particular case we are interested in, viz.,
insertion ofO( l ) defined in Eq.~3.9!. Whereas the represen
tation ~3.9! is well suited for practical calculations, we find
convenient to rewriteO( l ) for the argumentation in this sec
tion as

O~ l !52
1

2r
wlE dd'pE dv(

lJ
Kl~lJ !

3flJ~p,v!f2lJ~2p,2v!, ~3.16!

whereflJ(p,v) stands for the Fourier transform ofwlJ(p,t).
InsertingO( l ) into a conducting diagram withn external legs,
see Fig. 3, generates primitive divergences that must be
celed by counterterms of the structure
4-11



m

op

t

e

th
us
rt

or

rse,

ing

ed

is

ve

le

c.

e
te

a-

nc-

t
,

e

OLAF STENULL AND HANS-KARL JANSSEN PHYSICAL REVIEW E65 036124
Pr~lJ !p2avbflJ~p,t !n, ~3.17!

where

Pr~lJ !5)
i

Ki~lJ !r i, ~3.18!

with ( i i r i5r , is a homogeneous polynomial of degree 2r .
The notation that we use here and in the following is sy
bolic. Such a counterterm depends in general on an entire
of external momenta, frequencies, and currentsflJ(p,v)n is,
for example, an abbreviation forP i 51

n flJ i(pi ,v i). We drop
constants, integrals, etc., for notational simplicity.

The naive dimension of operators of the type~3.17! is
given at the upper critical dimension by 2(r 1a1b1n
23), as straightforward power counting shows. Hence,
erators having the same naive dimension asO( l ) satisfy

l 125r 1a1b1n. ~3.19!

For n52 one is led tol>r , i.e., the insertion ofO( l ) gener-
ates operators containing homogeneous polynomials in
replica currents of degree equal or lower 2l . In particular,
O( l ) generates an operator of type

v lKl~lJ !flJ~p,v!2. ~3.20!

The important question now is, if the other operators gen
ated byO( l ) generateO( l ) also. Considern>3. With help of
Eq. ~3.19! one obtainsl 21>r>1. The second inequality is
a basic feature of the summations over loop currents in
limit D→0. Bearing in mind that maximal homogeneo
polynomials of degreel 21 in lJ are generated, we reinse
these operators of the type in Eq.~3.17! with n>3 into two-
leg diagrams, see Fig. 4. The resulting terms are of the f

Pr 8~lJ !p2a8vb8flJ~p,v!2, ~3.21!

FIG. 3. O( l ) inserted into a conducting diagram withn external
legs.

FIG. 4. An operator of the type in Eq.~3.17! with n>3 inserted
into a conducting two-leg diagram.
03612
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with the leading contributions satisfyingr 1a1b1n23
5r 81a81b821. Thus, r 8>r 1a2a81b2b811, or in
other words, the homogeneous polynomials inlJ may have a
higher degree than 2l . Nevertheless, they are of the type

Pr 8~lJ !5K1~lJ !s )
2< i<r

Ki~lJ !r i, ~3.22!

with ( i i r i<r< l 21 and ( i i r i1s5r 8. These polynomials
have a higher symmetry than the originalKl .

We have learned in the preceding paragraph thatO( l ) gen-
erates itself and an entire family of new operators. Of cou
the entire family of operators associated withO( l ) has to be
taken into account in the renormalization procedure, lead
to a renormalization in matrix form

Ô~ l !→O̊~ l !5~ZwZr
21!2 lZ~ l !Ô~ l ! . ~3.23!

The vector

Ô~ l !5~O~ l !,Ô2
~ l ! ,...! ~3.24!

represents the family of operators associated withO( l ). The
factor (ZwZr

21)2 l reflects the fact that we have incorporat
a wl in the definition ofO( l ).

The important conclusion from our reasoning above
that the operators generated byO( l ) do not in turn generate
O( l ). For operators with this outstanding feature we ha
introduced the notion of master operators@23#. Master opera-
tors are associated with renormalization matrices

Z~ l !511O~u!, ~3.25!

where 1= stands for the unit matrix, of a particularly simp
structure,

Z~ l !5S Z~ l ! L ¯ L

0 L ¯ L

] ] ¯ ]

0 L ¯ L

D . ~3.26!

The L symbolizes arbitrary elements. We will see in Se
II D, as a consequence of the simple structure ofZ= ( l ), that the
operators induced byO( l ) can be neglected in calculating th
scaling index of their master. Owing to their subordina
role, we refer to these operators as servants.

D. Scaling

In this section we set up a Gell-Mann–Low renormaliz
tion group equation~RGE!. Its solution will provide us with
the scaling behavior of the order parameter correlation fu
tions and finally with the scaling behavior of theCR

( l ) .
The bare~unrenormalized! theory has to be independen

of the length scalem21 introduced by renormalization. Thus
the bare connectedN point correlation functions satisfy th
identity
4-12
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m
]

]m
G̊N~$x' ,r̊t,ẘlJ2%t̊,g̊̄!OI̊ ~ l !50. ~3.27!

The subscriptÔ( l ) indicates that the corresponding opera
has been inserted. Equation~3.27! translates via the Wilson
functions defined by

g ...~u!5m
]

]m
ln Z...U

0

, ~3.28a!

b~u!5m
]u

]mU
0

5~2«1g12gr2gu!u , ~3.28b!

k~u!5m
] ln t

]m U
0

5gr2gt , ~3.28c!

zw~u!5m
] ln w

]m U
0

5gr2gw , ~3.28d!

zr~u!5m
] ln r

]m U
0

5g2gr , ~3.28e!

g~ l !~u!52m
]

]m
ln Z~ l !U

0

~3.28f!

~the u0 indicates that bare quantities are kept fixed while t
ing the derivatives! into the RGE

H FDm1
N

2
gG1=1g

=

~ l !2 l zw1= J GN~$x' ,rt,wlJ2%;t,u,m!Ô~ l !

50. ~3.29!

Here,Dm is a shorthand for

Dm5m
]

]m
1b

]

]u
1tk

]

]t
1wzw

]

]w
1rzr

]

]r
.

~3.30!

To solve the RGE we employ the method of characte
tics. Considering the ingredients of the RGE as being fu
tions of a single flow parameterl , we write

l
]m̄

]l
5m̄, m̄~1!5m, ~3.31a!

l
]ū

]l
5b„ū~ l !…, ū~1!5u, ~3.31b!

l
]

]l
ln r̄5zr„ū~ l !…, r̄~1!5r, ~3.31c!

l
]

]l
ln t̄5k„ū~ l …!, t̄~1!5t, ~3.31d!

l
]

]l
ln w̄5zw„ū~ l !…, w̄~1!5w, ~3.31e!
03612
r
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l
]

]l
ln Z̄5g„ū~ l !…, Z̄~1!51, ~3.31f!

l
]

]l
ln Z̄~ l !52g

=

~ l !
„ū~ l !…, Z̄~1!51= . ~3.31g!

These characteristics describe how the parameters trans
if we change the momentum scalem according to m

→m̄(l )5l m. Being interested in the infrared~IR! behavior
of the theory, we study the limitl →0. According to Eq.
~3.31b! we expect that in this IR limit the coupling consta
ū(l ) flows to a stable fixed pointu* satisfyingb(u* )50.
At this fixed point the RGE simplifies to

H FDm* 1
N

2
g* G1=1g

=

~ l !* 2 l zw* 1= J
3GN~$x' ,rt,wlJ2%;t,u* ,m!OÎ ~ l !50, ~3.32!

whereg* is an abbreviation forg(u* ), g
=

( l )* for g
=

( l )(u* ),
and so on. To proceed towards a solution of the RGE i
important to realize that the matrixg

=

( l )* inherits the simple
structure ofZ( l ), viz,

g
=

~ l !* 5S g~ l !* L ¯ L

0 L ¯ L

] ] � ]

0 L ¯ L

D . ~3.33!

By virtue of this structure,u1&5(1,0, . . . ,0)T is a right ei-
genvector with eigenvalueg ( l )* . We denote the remaining
right eigenvectors with eigenvaluesgk>2

( l )* by uk&. The left
eigenvectors are ^1u5(1,L, . . . ,L) and ^ku
5(0,L, . . . ,L). Employing spectral decomposition we re
castg

=

( l )* in terms of its eigenvalues and eigenvectors as

g
=

~ l !* 5u1&g~ l !* ^1u1 (
k>2

uk&gk
~ l !* ^ku. ~3.34!

Now we substitute the decomposition~3.34! into the RGE
~3.32!. Multiplying the resulting equation from the left-han
side with ^1u leads to

FDm* 1
N

2
g* 1g~ l !* 2 l zw* GGN~$x' ,rt,wlJ2%;t,u* ,m!A~ l !

50. ~3.35!

Here,A( l ) is an abbreviation for

A~ l !5^1uÔ~ l !5Ô~ l !1 (
k>2

LÔk
~ l ! . ~3.36!

Note that

^kuÔ~ l !5 (
m>2

LÔm
~ l ! , ~3.37!
4-13
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i.e., the RGE~3.35! contains all the information on theO( l ).
In the form ~3.35! the RGE is readily solved. With help o
the characteristics we obtain

GN~$x' ,rt,wlJ2%;t,u,m!A~ l !

5l g* N/21g~ l !* 2 l zw*

3GN~$l x' ,l zr* rt,l zw* wlJ2%;l k* t,u* ,l m!A~ l !.

~3.38!

To account for the naive dimensions of the various qua
ties, Eq.~3.38! needs to be supplemented by a dimensio
analysis. Simple power counting reveals that

GN~$x' ,rt,wlJ2%;t,u,m!A~ l !

5md'N/212l 22

3GN~$mx' ,m2rt,m22wlJ2%;m22t,u,1!A~ l !. ~3.39!

Equation~3.38! in conjunction with Eq.~3.39! now gives

GN~$x' ,rt,wlJ2%;t,u,m!A~ l !

5l ~d'1h!N/22c l /n'1 lf/n'

3GN~$l x' ,l zrt,l 2f/n'wlJ2%;l 21/n't,u* ,m!A~ l ! .

~3.40!

Equation~3.40! features the well-known critical exponen
for DP that have been calculated previously to second o
in « @3,47#:

h5g* 52
«

6 H 11F 25

288
1

161

144
lnS 4

3D G«J , ~3.41a!

z521zr* 522
«

12H 11F 67

288
1

59

144
lnS 4

3D G«J ,

~3.41b!

n'5
1

22k*
5

1

2
1

«

16H 11F107

288
2

17

144
lnS 4

3D G«J .

~3.41c!

f5n' (22zw* ) is the resistance exponent for DP that w
derived recently@29,32# to second order in«:

f511
«

24H 11F151

288
2

157

144
lnS 4

3D G«J . ~3.42!

c l is defined byc l5n(22g ( l )* ). The« expansion result of
c l is given below.

From here only a few more steps are required to rev
the scaling behavior of theCR

( l ) . Recall that our strategy is to

derive theCR
( l ) from their generating functionG(x,x8;lJ). By

now, we know of the scaling behavior of a central ingredie
to the generating function, viz., we know that the two-po
correlation function with insertion scales at criticality as
03612
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G2~ ux'2x'8 u,t2t8,wlJ2!A~ l !

5l d'1h2c l /n'1 lf/n'

3G2„l ux'2x'8 u,l z~ t2t8!,l 2f/n'wlJ2
…A~ l ! , ~3.43!

where we dropped several arguments for notational simp
ity. In the following we setx'8 50 and t850, again for the
sake of simplicity. A further ingredient of the generatin
function is the two-point correlation function without inse
tion. Its scaling behavior can be inferred from a renormali
tion group treatment similar to that above. This analysis
comparatively straightforward~cf. Ref. @32#! and gives

G2~ ux'u,t,wlJ2!5l d'1hG2~ l ux'u,l zt,l 2f/n'wlJ2!.~3.44!

Now we put Eqs.~3.43! and ~3.44! together. Recalling tha
our master operatorO( l ) is associated with a coupling con
stantv l /wl we write the generating function as

G~ ux'u,t,lJ !5l d'1hH G2~ l ux'u,l zt,l 2f/n'wlJ2!

1(
l 52

`
v l

wl l 2c l /n'1 lf/n'

3G2~ l ux'u,l zt,l 2f/n'wlJ2!A~ l !J . ~3.45!

We have the freedom to choose the flow parameter as
please. The choicel 5ux'u21 and a Taylor expansion of th
right-hand side of Eq.~3.45! lead to

G~ ux'u,t,lJ !5ux'u12d2h f S t

ux'uzD
3H 11wlJ2ux'uf/n' f wS t

ux'uzD
1(

l 52

`

v lKl~lJ !ux'uc l /n' f v lS t

ux'uzD1¯J ,

~3.46!

where thefs are scaling functions that vanish for vanishi
argument. Instead of choosingl 5ux'u21 we can likewise
choosel 5t21/z. This leads then upon Taylor expansion t

G~ ux'u,t,lJ !5t ~12d2h!/zhS ux'uz

t D
3H 11wlJ2tf/n ihwS ux'uz

t D
1(

l 52

`

v lKl~lJ !tc l /n ihv lS ux'uz

t D1¯J ,

~3.47!
4-14
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TABLE I. The coefficientsa( l ) andb( l ) appearing in Eq.~3.50!.

l 0 1 2 3 4 5 6 >7

a( l ) 85

1728

151

6912

68387

4976 640

3307 921

334 430 208

4661 703 289

619 173 642 240

8258 257 317 517

1373 079 469 031 424

24 071 498 466 367

4808 089 723 207 680

0.005.a.0

b( l )
2

53

864

157

3456

1091

27 648

13 589

442 368

173 149

7077 888

2281 853

113 246 208

30 950 909

1811 939 328

0.015.b.0
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with theh’s being scaling functions that tend to constants
vanishing arguments.n i is defined byn i5n'z.

Possessing of the generating function we solely nee
take the appropriate derivatives to extract the scaling beh
ior of the CR

( l ) that is by virtue of Eq.~2.23!, up to unimpor-
tant constants, identical to that of theMI

( l ) . With help of Eq.
~2.36! we deduce that

MI
~ l !;tc l /n i ~3.48!

if measured along the preferred direction. For measurem
in other directions it is appropriate to choose a length scaL
and to express the longitudinal and the transverse coo
nates in terms ofL: ux'u;L andxi;Lz;T. With this choice
the scaling functionsf reduce to constants and we obtain

MI
~ l !;Lc l /n';Tc l /n i. ~3.49!

We still owe our result for the multifractal exponent
Since we only need to compute a single element of eac
the renormalization matricesZ( l ), viz, Z( l ), we manage to
calculate thec l to two-loop order. In« expansion, our resul
reads

c l511
«

3322l 11 1«2@a~ l !2b~ l !ln~ 4
3 !#1O~«3!.

~3.50!

The a( l ) andb( l ) are l-dependent coefficients taking on th
values listed in Table I.c0 andc1 stem from extending the
sum overl in the Hamiltonian~2.62! so that it comprisesl
50 andl 51. Figure 5 depicts the dependence ofc l on l for
«51,2,3 corresponding tod'53,2,1.

We point out that our result~3.50! fulfills several consis-
tency checks.c0 is related to the fractal dimensionDB of DP
clusters viaDB511c0/n'2z ~cf. @29,31#!. Equation~3.50!

FIG. 5. Dependence ofc l on l for d'53 ~stars!, d'52 ~tri-
angles!, andd'51 ~squares!.
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is in agreement with the« expansions ofn' ,z @3,47#, andDB

~see Refs.@29,31#! to second order in«. c1 is in conformity
with our result for the resistance exponentf given in Refs.
@29,32#. This has to be the case becauseCR

(1)5MR
(1) . Multi-

fractal exponents like thec l have the general feature tha
they are convex monotonically decreasing if being und
stood as a function of the indexl @55#. Our result possesse
this feature. Moreover, it tends to unity for largel as one
expects from the relation ofc` to the fractal dimension of
the singly connected~red! bonds,dred511c` /n'2z, see
Refs.@21,31,56#.

IV. CONCLUDING REMARKS

In summary, we derived a field theoretic Hamiltonian f
RDN that captures the multifractality of the current distrib
tion in these networks. To characterize the current distri
tion, we determined the scaling behavior of its momen
Each moment is governed by an independent critical ex
nent, i.e., these exponents are not related to each other
linear or affine fashion, as commonly occurs in critical ph
nomena under the name of gap scaling. We determined
family of multifractal moments to two-loop order.

Our approach thrived on two cornerstones, viz., our re
world interpretation of Feynman diagrams and our conc
of master operators. The real-world interpretation remed
the apparent complexity of the field theory. It makes the fi
theory more intuitive and provides practical guidance for
diagrammatic calculations. Being interested in some quan
in real networks, one basically just has to determine its co
terpart in the Feynman diagrams. In the present case we
termined the multifractal moments of the diagrams to stu
the multifractal moments in physical RDN. Without the co
cept of master operators the renormalization group anal
presented in this paper is hardly feasible. Since the multifr
tal moments correspond, in the field theoretic formulation
dangerously irrelevant operatorsO( l ), they generate unde
renormalization a myriad of other irrelevant operators. A
these must be taken into account in the renormaliza
group. Thus, one has, in principle, to compute and diago
ize renormalization matrices that are giants for largel. Al-
ready handling the full renormalization matrix associat
with l 52 to one-loop order is tedious. The effort is comp
rable to that of determining corrections to scaling associa
with a (lW 2)2 term in the field theory of RRN@57#. Due to the
master operator property of theO( l ), however, it is sufficient
4-15



o

ep
in
it
an
ti
t
o

he

as
o
a
th

en
la
-
i

g
e
w

eu

ut
o
m
e
-
e

c
to

ag

it

m-
ni-

he
is

.
on

ng
the

out
ms
tain

not

OLAF STENULL AND HANS-KARL JANSSEN PHYSICAL REVIEW E65 036124
for our purposes to calculate a single element of the ren
malization matrix pertaining to eachO( l ), and we can work
to two-loop order with reasonable effort. To date, the conc
of master operators has proved to be powerful in study
multifractality in RRN and RDN. We expect, though, that
has many more applications. It might be the case that
multifractal quantity can be associated in the field theore
framework with master operators. This is a speculation, bu
is not implausible at all. For example, preliminary studies
the random field Ising model indicate the applicability of t
master operator concept.

To our knowledge, the issue of multifractality in DP h
not been studied hitherto. In particular, we do not know
any other work, theoretical, simulational or experiment
that provides results suitable for comparison to ours. For
RRN, in contrast, the multifractal exponents of the curr
distribution have been determined by Monte Carlo simu
tions @20,58#. It would be very interesting to have corre
sponding numerical estimates for the RDN. Work on this
in progress@59# and will be reported in the near future.
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APPENDIX A: CALCULATION SCHEME FOR DIAGRAMS
WITH INSERTION

In this appendix we illustrate our calculation scheme o
lined in Sec. III B in terms of an example. For the sake
simplicity we consider the simplest conducting diagra
comprising a closed loop of conducting propagators, nam
diagram A introduced in Fig. 1. WithO(2) inserted succes
sively in both conducting propagators, the mathematical
pression for that diagram reads

AO~2!5
r2g2

2 E
0

`

dtE
k
(
kJ

exp~2 ivt !

3exp$2rt@2t1k21~k2p!21wkJ21w~kJ2lJ !2#%

3~2 !rw2t$K2~kJ !1K2~lJ2kJ !%, ~A1!

where *k is an abbreviation for (2p)2d'*dd'k. Note that
P(lJ,kJ)52tkJ22t(kJ2lJ)2 corresponds to the electri
power of diagram A. For practical purposes we switch
continuous loop currents. This step is justified at this st
because the constraintlJÞ0J is safely implemented via the
decomposition of the corresponding bold diagram into
conducting diagrams. We obtain
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3E
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dkJ exp@wP~lJ,kJ !#

3w2$K2~kJ !1K2~lJ2kJ !%, ~A2!

where we have also modified the integration variablet. The
integration over the loop current can be simplified by co
pleting the squares in the exponential. We look for the mi
mum of the quadratic formP(lJ,kJ). The minimum is deter-
mined by a variation principle completely analogous to t
one stated in Eq.~2.7!. Thus, completing the squares
equivalent to solving Kirchhoff’s equations for the diagram
After carrying out the straightforward momentum integrati
we then find

AO~2!52
rg2

2

1

~4p!d'/2 E
0

`

dt t~2t !2d'/2

3expF2tS iv

r
12t1
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2
p2D G

3exp@2R~ t !wlJ2#E
2`

`

dkJ exp@2twkJ2#

3w2$K2~kJ1 1
2 lJ !1K2~kJ2 1

2 lJ !%. ~A3!

R(t)5t/2 is the total resistance of diagram A.lJ/2, and, re-
spectively2lJ/2, are the currents induced in the conducti
propagators by the external current. Upon integrating out
loop current we get in the replica limitD→0

AO~2!52
rg2

8

1

~4p!d'/2 E
0

`

dt t12d'/2

3expF2tS iv

2r
1t1

1

4
p21

w

4
lJ 2D G

3H 1

8
w2K2~lJ !1

w

t
lJ 2J . ~A4!

Next we expand the exponential function. Then we carry
the remaining integration. Upon discarding convergent ter
that are not required for renormalization purposes we ob
in « expansion

AO~2!52rg2
G«

32«
t2«/2H w2K2~lJ !2wlJ2

3F4
iv

r
18t12~p21wlJ2!G J . ~A5!

The example considered here highlights two points. First,
only primitive divergences proportional toK2(lJ), but also
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proportional totlJ2, vlJ2, p2lJ2, and (lJ2)2 are generated
Second, the basic task in computing contributions prop
tional to Kl(lJ) is to determine the currents induced by t
external current in the conducting propagators.

APPENDIX B: DETAILS ON THE TWO-LOOP DIAGRAMS

Here we sketch the computation of conducting two-lo
diagrams with insertions. We restrict ourselves to a few
amples. The techniques presented for these examples
then straightforwardly be adapted to the remaining diagra
For briefness, we will exclusively consider those parts of
diagrams proportional toKl(lJ). Moreover, we set externa
momenta and frequencies equal to zero.

At first we consider diagram H. We start by determini
the currents flowing through the conducting propagato
Kirchhoff’s law ~2.4! applies to the four vertices of the dia
gram. This allows us to eliminate three of the five unkno
currents~one of the vertices is inactive with respect to th
purpose since the external currentlJ must be conserved!. The
potential drop around closed loops is zero. Hence we
eliminate the two remaining unknown currents via the var
tion principle ~2.7! and express all currents flowing throug
conducting propagators in terms of the times andlJ. The
momentum integrations are straightforward. They can
done by using the saddle point method that works exa
here since the momentum dependence is purely quadr
After carrying out the momentum integration we have
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2 t3

2t112t21 3
2 t3

G n

12t3F1

2

t11t21t3

2t112t21 3
2 t3

GnJ ,

~B1!

where n52l . Upon doing a little algebra we rewrite Eq
~B1! as

HO~ l !52wlKl~lW !
rg4

2
$2I 112I 21212nI 31I 4%, ~B2!

where we have introduced the abbreviations
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Now consider I 1 . The integrations can be simplified b
changing variablest1→ 1

2 ty, t2→ 1
2 t(12x2y), and t3

→ 2
3 tx. This gives, after doing the integration overt andy,
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22n

24 S 3

4D d'/2 G~42d'!

~4p!d'
td'24E

0

1

dxx2d'/2

3~12x!2~11x!d'24~11 1
3 x!n. ~B7!

The remaining integral overx may be simplified by separat
ing its divergent and convergent contributions via Taylor e
pansion,
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3
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Carrying out the integration and expansion for small« then
gives the result
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1

3
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n

3
lnS 4

3D J . ~B9!

Here, we have used the shorthand
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Fm,l~n!5 (
k5m

n S n
kD l 2k

k2m11
. ~B10!

I 2 , I 3 , and I 4 can be evaluated in the same fashion asI 1 .
Thus, we merely state the results:
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Upon collecting, we obtain for diagram H the final result
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As a further example, we now treat diagram C. We emp
once more our calculation scheme and determine for e
conducting propagator the induced external current. T
provides us with the noise cumulants of the diagram a
leads to

CO~ l !52wlKl~lW !rg4$I 512I 612I 7%, ~B15!

where we have used the abbreviations
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Exemplarily we drill into the integralI 5 . It can be simplified
by changing variables according tot1→t(x21), t2→t(y
21), andt3→t. Upon carrying out the integration overt we
obtain

I 55
G~42d'!

~4p!d'
td'24E

1

`

dx dy

3
@2x12y21#d'24@x1y21#n

@4xy21#n1d'/2 . ~B19!

A further simplification can be achieved by rearranging t
remaining integrations as

I 55
G~42d'!

~4p!d'
td'24227E

1

`

dxE
1

`

dy

3
@x1y2 1

2 #d'24@x1y21#n

@xy2 1
4 #n1d'/2

. ~B20!

We learn from Eq.~B20! that I 5 is convergent ford'<4.
Hence it is legitimate to evaluate it directly atd'54. In
contrast to the integrals constituting diagram H we were
able to evaluateI 5 for arbitraryn. The technical difficulty is
the binomial appearing in the denominator of the integra
of I 5 . For n not too large, however, the number of terms
this binomial~2n12 at d'54! is manageable and one can
least carry out the integrations for each reasonablen sepa-
rately. We refrain from stating all the results because t
would be rather space consuming. We annotate thatI 6 andI 7

can be treated in a similar fashion asI 5 , except that these
calculations are somewhat more tedious.I 6 and I 7 are not
convergent likeI 5 so that in practice one has to separa
divergent and convergent contributions as it was dem
strated in considering diagram H.
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