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Multifractal properties of resistor diode percolation
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Focusing on multifractal properties we investigate electric transport on random resistor diode networks at the
phase transition between the nonpercolating and the directed percolating phase. Building on first principles
such as symmetries and relevance we derive a field theoretic Hamiltonian. Based on this Hamiltonian we
determine the multifractal moments of the current distribution that are governed by a family of critical expo-
nents{,}. We calculate the familyf¢,} to two-loop order in a diagrammatic perturbation calculation aug-
mented by renormalization group methods.
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I. INTRODUCTION random ferromagnetfsl6], chaotic dissipative systeni&7],
and heartbedt18].

Percolatior{1] has been of tremendous interest to diverse Since the 1980s several publications have appeared that
scientific disciplines for more than two decades. On onehave addressed multifractality in IP by studying random re-
hand, the percolation problem is almost trivially simple toSistor network{RRNs [19-25. A RRN is a simple bond
state, on the other hand, it has an abundance of fascinatifgrcolation model on a-dimensional hypercubic lattice
features. Although percolation is purely geometric in natureWhere bonds between nearest neighboring sites are occupied
it reflects many of the concepts of critical phenomena. Thévith probability p with a resistor or empty with probability
percolation transition is the prototype of a geometrical phasd —p. In a typical setup one has two leads positioned at two
transition. In this respect, the role of percolation may beconnected lattice sitex and x’ at which a fixed external
compared to that of the Ising model in conventional criticalcurrent! is injected and, respectively, extracted. It is well
phenomena. To date, percolation represents one of the bergtablished that the distribution of bond currents in RRNs is
studied areas of statistical physics and yet it is a highly vividmultifractal. This multifractality is accessible by experiments
and fascinating area of modern research. or simulations via the moments of the distribution that are

Directed percolatioDP) [2] is an anisotropic variant of [up to technical details, cf. E¢2.13] given by
ordinary isotropic percolatiofiP) in which an effect or ac-
tivity can percc_)late onIy_in algiven preferred di_rection. If the Mf')(x,x’)~2 (1,712, (1.1)
preferred(longitudina) direction is viewed as time, DP can b -

be interpreted as a dynamic process. In the dynamic interpre-

tation, DP represents one of the most prominent universalityi€re!n denotes the current flowing through bobdnd the
um is taken over all bonds. Some of these multifractal mo-

classes of nonequilibrium phase transitions: the DP universY

sity class is the generic universality class for phase transfMents are corresponding to quantities that have a pa(rot)rcularly

tions between an active and an absorbing inactive Eaé promrnent role in percolation theory. For examphd,
Perhaps, DP is the simplest model resulting in branching{"”, M{?, and M{”) are proportional to the number of

self-affine objects. It has many potential applications, includbonds on the backbon(é)onds that carry nonzero currgnt

ing fluid flow through porous media under gravity, hopping the total resistance, the noiggecond cumulant of the resis-

conductivity in a strong electric fielfb], crack propagation tance fluctuations and the number of the red bongsonds

[6], and the propagation of surfaces at depinning transitionthat carry the full current At the percolation transition, the

in one dimensior{7]. Moreover, it is related to epidemics moments are described by a power law in the separation

with recovery[8] and self-organized critical mode|l9]. between the leads,
In this paper we discuss multifractalifyl0] in DP. The .
notion of multifractality describes the situation that an ex- M}')(x,x’)~|x—x’|"’l v, (1.2

haustive characterization of the distribution of a local physi-

cal quantity requires the introduction of an infinite set of wherew is the correlatlon length exponent of the IP univer-

independent critical exponents. This means that the distribusality class. They|” are referred to as multifractal exponents.

tion is not controlled by a single or several length scales, buThe multifractality of the current distribution manifests itself

rather by an infinite hierarchy of such scales. Systems ifin the fact that the//,'P, when understood as a function of the

which multifractality has been observed include turbulencendex |, are not related to each other in a linear or affine

[11], diffusion near fractalf12] and polymer$13], electrons  fashion.

in disordered medifl4], polymers in disordered medja5], To our knowledge the issue of multifractality in DP has
not been addressed hitherto. Here, we present such a study.
By employing our real world interpretation of Feynman dia-

*Present address: Department of Physics and Astronomy, Univegrams[23—34] as well as our concept of master operators
sity of Pennsylvania, Philadelphia, PA 19104-6396. [23], we find that the moments of the current distribution in
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DP are governed by a familjyy,} of multifractal exponents dron spanned by the four probabilitfesomprises a nonper-
analogous tg zpl'P} For example, if the multifractal moments colating and three percolating phases. The percolating phases
are measured in the preferred timelike direction between tware isotropic, positively directed, or negatively directed. Be-
leads atx=(x, =0) andx’=(x| =0t'), then we find that tween the phases there are surfaces of continuous transitions.
All four phases meet along a multicritical line, where=0
M (x,x" )~ (t—t")y !, (1.3 :=p,=p_<1/2 andp=p(r). On the entire multicritical
line, i.e., independently af, one finds the scaling properties
where v, is the longitudinal correlation length exponent of of usual isotropic percolatiorr €0). For the crossover from
the DP universality class. We calculate the famiily,} to 1P to DP see, e.g., Ref39].
second order in as expansion about the upper critical di-
mension 5. B. Kirchhoff’s laws
A brief account of our results has been given in R848].
The aim of the present paper is to present our work in som?
detail. Its remainder is organized as follows: Sec. Il is de- er
voted to modeling issues. We start by briefly reviewing ran- nearest neighboring lattice sitesandj are dlrected so that
dom resistor diode networks and Ohm's and Kirchhoff'sPa.jy-n=>0. We suppose that the directed bonds obey the
laws. Then, static noise is introduced in the networks and'‘onlinear generalization of Ohm's law
corresponding noise cumulants are defined. These noise cu-
mulants are important because they are closely related to the
multifractal moments that are not accessible by our method reV, =V-—V- is the voltage drop over the bond be-
directly. Then, we set up a generating function for the noise (0] .
cumulants by employing the replica trick. The rephcaﬂonwveen sneg andl and Ib( o)) denotes the current flowing
leads to an effective Hamiltonian that we refine into a fieldfromj toi. In the following we drop the subscrigtj) when-
theoretic Landau-Ginzburg-Wilson functiona. We con-  ever there is no risk of confusion. The bond conductances
clude Sec. Il by analyzing the relevance of various coupling?b=Sp7p are equally and independently distributed random
constants appearing iH. We show that the noise cumulants variables. They, take on the values #(V), 6(—V), and 0
are associated with dangerously irrelevant couplings. Sectiowith respective probabilities, p.., p—, andg. 6 denotes the
Il contains the core of our renormalization group analysis.Heaviside function. The nature of thg will be specified
Its main content is the calculation of the generating functiorPelow. Note that the diodes are idealized: under forward-bias
for the noise cumulants by employing renormalized fieldvoltage they behave as “ohmic” resistors whereas they are
theory. It starts with determining the diagrammatic elementdnsulating under backward-bias voltage. To prevent confu-
of our perturbation calculation upon recastifiy into the  sion, we point out that the round brackets in E1) contain
form of a dynamic functional. Next, we demonstrate how wethe functional argument of the bond conductance. Because
incorporate the dangerously irrelevant noise couplings intéhe bond conductance depends on the voltage drop over that
our diagrammatic calculation via operator insertions. Webond only via a Heaviside function and s¥fj=sgn(y)
show that the operators associated with the noise cumulanyge may writeay,(Vp) = oy(1p)-
are master operators. We derive the scaling behavior of the Assume that an external currehtis injected atx and
generating functions. Then, the scaling behavior of the noisextracted ak’. It is understood that andx’ are connected.
cumulants and multifractal moments is readily extracted bylhe power dissipated on the network is by definition
taking derivatives. Finally, our result fdr/} is stated and
several consistency checks are provided. Concluding re- P=1[Vi= V1. 2.2
marks are given in Sec. IV. Technical details are relegated t
two appendixes.

To be specific, we choose=1/\/d(1, ...,1) as there-
red direction. We assume that the bobgs, between two

T (Vg ) Vg 1y = by 2D

QJsing Ohm’s law it may be expressed entirely in terms of the
voltages as

I THE MODEL P=R.(xX) "V, =V 2= ay(Vy)Vg=P (V).

A. Random resistor diode networks b 2.3
Our approach is based on a model that captures both, IP

and DP, viz., the random resistor diode netwtRON). The ~ The sum is taken over all current carrying borittee back-
RDN was introduced by RednE86,37. Implicitly, however, —bong betweenx andx’ and{V} denotes the corresponding
it was already contained in the pioneering work of Broadbenget of voltagesR . (x,x") stands for the macroscopic resis-
and Hammerslef38]. We start by reviewing substantial fea- tance wher is inserted ak and withdrawn ak’. Similarly,
tures of the RDN. A RDN consists ofdidimensional hyper- one definesR_(x,x") as the macroscopic resistance when
cubic lattice in which nearest-neighbor sites are connected big inserted atx’ and withdrawn atx. The two quantities,
a resistor, a positive diodéconducting only in a distin- however, are related bR, (x,x")=R_(x’,x). From the
guished directiop a negative diodéconducting only oppo- power, one obtains Kirchhoff’s first law
site to the distinguished directignor an insulator with re-
spective probabilitiep, p,, p_, andg=1—-p—p,.—p_. — —_1.
The three-dimensional phase diagrgpictured as a tetrahe- <§,;’ o) Vi) Vi % 'by) li- 24
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as a consequence of the variation principle
(= [T g s 29
o1 > =0 2 -
N > PAVH+ 4 1 V| =0. (2.9

and itslth cumulant by

The summation in Eq(2.4) extends over the nearest neigh- 5

bors ofi, andl; is given byl;=1(8 ,— & /). {}=—In{exd A1}
Alternatively to Eq.(2.3), the power can be expressed in IN

terms of the currents as

(2.10

A=0

Of course, both kinds of disorder, the random dilution of the
lattice and the noise, influence the statistical properties of the

P=R+(X’X,)|2=§b: PE“E)'E: P, (2.6 macroscopic resistance. Both are reflected mutually by the
- moments
with {I} denoting the set of currents flowing through the in-
dividual bonds,ob=ag1 denotes a bond resistance. It is un- | (O OOXDIRL (X)) e
derstood thapy(1,)12=0 wheneveroy(1,)=0. Kirchhoff's MR (x,x")= TRCED) (2.1
second law, saying that the voltage drops along closed loops e
vanish, can be stated in terms of the variation principle
and the cumulants
i h - ’ 1y (c)
a0 P{I"}1)=0, (2.7 CO(xx')— (X +(X,x ){R+(j<,x )} >c. (2.12
(x+(XX"))c

i.e., there are no independent loop curretts circulating
around a complete set of independent, closed loops.

As customary in dealing with electric networks, Kirch-
hoff’s equations may be exploited to calculate the total resis- Primarily we are interested in the moments of the current
tanceR, . Of course we are not primarily interested in any distribution defined by
particular random configuratio@ of the diluted network but |2l
rather in an averag(e--)cl over all these configurations. This M,(')(x,x’)=<X(x,x’)E (_b) > /(X(X,X')>c-
average, however, requires a little caution because the resis- 5\ | c
tance between sites not connected by any conducting path is (2.13
infinite. Therefore, we will exclusively consider those sites
andx’ known to be connected by such a path. In practice thi
is done by utilizing an indicator functiog, (x,x") that takes
the value 1 ifx andx’ are positively connected, i.e., lifcan
percolate fromx to x’, and zero otherwise. Note that
(x+ (XX )ye={x_(x",x))c is nothing more than the usual
DP correlation function. With help of the indicator function
the average resistance, or more general,lthenoment of
the resistance, can by written as

D. Moments of the current distribution

There exists an intimate relationship between khe and
the CYY that can be understood as a consequence of Cohn’s
theorem[40]. We shall now briefly review this relationship.

In Eq. (2.9 the noise average is defined as an average
with respect to the distribution of the bond conductanegs
Alternatively, one might express the macroscopic resistance
in terms of the bond resistanceg and average over their
distribution. Of course, not only the,, but also thep, are
, , , distributed independently and equally. Assume that the dis-
(s (XDR (XD e Hx+ (X ) 28 fibution functior? of the geviatior?§pbi/pb—ﬁof the resis-

tance of each bond from its averagehas the form
C. Incorporation of noise

In the usual RDN all thg,, are equal to 1. Here, we are 9<(Spy) = Eh(%) (2.14
interested in a more general setup where the bond conduc- RS S '

tances fluctuate statistically about some average valua

other words, we are interested in a RDN with static noiseand that

This noise is modeled by distributing thg, according to

some distribution functiori with means and higher cumu- lim gs(dpy) = 8(Spp). (2.19

lants A('=2) satisfyingA('<s'. The condition on the cumu- s=0 - -

lants is imposed to avoid unphysical negative conductances.

The distribution functiorf might, for example, be Gaussian. sis a variable with units of resistance that sets the scale of

Nevertheless, our considerations are not limited to this parthe distribution. With this form ofs, thenth cumulant , of

ticular choice. dpy, tends to zero as". This follows from the generating
The noise average will be denoted by functionc(\s) of thev,,,
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exticins)={exihony)} = | dy hy)expnsy

co 3, M)

where v,=c,s" with ¢, being constants.
{R,(x,x")'}{% depends on the entire set of cumulafis}.

(2.19

However, in the limits— 0 the leading term is proportional
to v, as we will see in a moment. Consider the generatin

function C(\) of the cumulantgR. (x,x")'}% .

extcoul- | T] 11 donug.(on xiaR. (xx)1
(217

In general,

PHYSICAL REVIEW E65 036124

R,
{Re (X1 =¢, 2 ( %X) [1+0(9)].
b Po 15
(2.20
In the limit s—0 the leading term is
IR (x, x| \! )2
{Re(xx)} =02 (% ) =0 (,—”) ,
b Po 1y ]
(2.21

g%Nhere we have used Cohn’s theorem in the form

IR (X.x') :<'_b>2 (2.22

Ipp I

Upon substitution of Eq(2.21) into Eq.(2.12) one finds for

Expansion of the macroscopic resistance in a power series ﬁ'ﬁ‘e noise cumulants

the 6p;, leads to

exfC(\)]= f l'b[ dyp h(yp)

R4 (x,X")
X—

: (2.18
Ipp, ¢9Pbk

Yb, Y,

where R% (x,x) is the resistance whedp,=0 for every
bondb. Equation(2.18 can be rearranged as

exp:C()\)]=ex;{)\R3(x,x’)

s€ KR, (x,x")
by K! 9P, Py, o

(9'(

Xa ...a
Zpy " 0%,

x]'b[ exrl ¢(zp)]

)\SEEf?R+(X,X’)/&pE|;
= ex;{ AR% (x,x")

IR (X,X")

Ipp

+2 (\s) CE (

J

(2.19

+22 fi(ns) |,

wheref; is a function ofAs'. Hence, forl =2,

cPx,x)=v,M"(x,x"), (2.23
i.e., thelth noise cumulant is proportional to tthéh multi-
fractal moment of the current distribution. In the following
we will exploit this relation in the sense that we will study
the CY) as a surrogate for thil{" . We will see below that
the C{) are accessible in an elegant way by renormalized
field theory whereas we do not know of such an approach for
the M(" directly.

E. Replication

In this section we devise a generating function for(ﬂﬂ%
based on the ideas of Stephetl] and their refinement by
Park, Harris, and LubenskyHL) [22]. We demonstrate that
this generating function indeed serves its purpose and ex-
plain how the average conductance can be extracted from it.

PHL introduced the quantity

- o

gr(x)=exp(in-V,), N#0. (2.24

V, is a (DX E)-fold replicated variant of the voltagé, at
lattice sitex,

V;l'l) Vg(l,D)

!

<
x
I

: : (2.29
VED V(ED)

X X
X, is apart from a factor-i, a replicated external current
that is likeV, a matrix with (O X E) components. The cor-
responding scalar product is defined a3 -V,
— EB:E: lk(“’ﬁ)V)((“"B) ) | -

In order to proceed towards the desired generating func-

tion we now consider the two-point correlation function of

Ui(X),
GOX,X" ,N) = () (X)) reps (2.26

where the average is defined by
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1 ~ and
<"'>rep: E j H de

H1 Z({o},C)°

= b

1 o o
WZ expliN- 0)= 056 modamae (2.310
A

xexf — 3PV}, {a}”},C)]-
do hold. Equation2.31) provides us with a Fourier trans-

?2 22) form in replica space. It is important to note that the replica
' space Fourier transform af;(x),
Here,dV; is an abbreviation fofI3'5_,dV{*#
S e ®5(x)=(2M) PE X explik- F)yi(0)
P({V} {0}, },C>=;1 2 oIV (229 20
) i =355~ (2M)PF, (2.32
is the replicated version of the electric power wmri'”
=V ... v{9). The normalization factor in Eq2.27)
is given by satisfies the conditio® & 5(x) =0. Hence, it can be identi-
fied as a Potts spifg2] with g=(2M)PE states. The relation
ZUaPh C :f dv. _1pU\Vt LB C)1. of the RDN to the Rotts mode! thgt emerges here as a con-
(o 1,C) H j&xXH — 2PV oy O] sequence of the lattice regularization is important as well as

(2.29 intuitively plausible. That is because the purely geometric
properties of the RDN are those of percolation, either IP or
At this point we would like to comment on regularization pp, depending on the sector of the phase diagram consid-
issues. First, it is important to realize that the in_tegrands iNred. It is a well-known fact that the Potts model describes
Egs. (2.27) and (2.29 depend only on voltage differences percolation in the limitg— 1[43]. Note that this limit corre-
and hence the integrals are divergent. To give these mtegragbonds to the replica limit vig=(2M)PE.
a well defined meaning one can introduce an additional " gefore proceeding with the evaluation of the correlation
power term {w/2)Z;V{. Physically the new term corre- fynctions(2.26) we would like to make one more comment
sponds to grounding each lattice site by a capacitor of unipn the replication procedure. The replication scheme em-
capacity. The original situation can be restored by taking the)oyed here goes beyond the usual replica trick in the sense
limit of vanishing frequencyw—0. Second, it is not guar- that it involves a second replication parameter, i.e., that the
anteed thaZ stays finite because infinite voltage drops mayreplicated quantities ard(x E) tuples and not jusb tuples.
occur. Thus, the limit lig_ Z°% is not well defined. This  This subtlety has its origin in the definitiof®.11) and(2.12
problem may be regularized by restricting the voltage varithat require to treat the averages-)c and{---}; indepen-
ables to a finite interval. However, we have to bear in minddently. The great benefit of the replication is to provide for
thatA =0 has to be excluded properly. We take care of boththe free parametdd that we may tune to zerl4]. In this
points simultaneously by resorting to a lattice regularizationreplica limit the normalization denominat@ °F goes to
To be specific, we switch to voltages taking discrete value®ne and hence does not depend on the distribution of the
on a O X E)-dimensional torus, henceforth called the replicabond conductances anymore. Then the only remaining de-
space. In practice we sef=A9K with K being a pendenpe on this distributign rests in the electric power
(DX E)-dimensional integer with—M<k(®A)<M and appearing in the exponential in E.27). In the replica
k(@h =k(@h) mod(2M). A9=9y /M is the gap between limit, therefore, we !ust have tq average this e>_<ponent|al in-
successive voltages antl, is the voltage cutoff. The con- stead of the entire right-hand side of &R.27). This average
tinuum may be restored by takingy— > andA§—0. By then provides us with an effective electric power or Hamil-
settingM =m2, 9, = 9,m, and, respectivelyA 9= 9,/m, tonian that serves as vantage point for all further calcula-

the two limits can be taken simultaneously via—. For tions. The effective Hamiltonian will be discussed in

the replica currents we set Sec. IIF. , _
Now we come back to the role of the correlation functions
N=ANT ANAG=m/M (2.30 (2.26) as a generating function. The integrations associated

with the averagé2.27) are not Gaussian. However, they can
be carried out in an approximating manner by applying the
saddle point method as it was done by Hafd$] in the
Telated problem of nonlinear random resistor networks. We
extract the leading contribution to the integral stemming
1 from the maximum of the integrand. This maximum is deter-
——5e > exfliN- 6)=655 moqamar) (2.31@  mined by the solution of Kirchhoff's equations, i.e., by the
(2M)™= 45 macroscopic resistance. The conditions under which the

where [ is a (DX E)-dimensional integer taking the same

values ask. This choice guarantees that the completenes
and orthogonality relations
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saddle point method works reliably will be outlined in the It is important to realize that the replica lim—0 allows

next paragraph. Under these conditions we find

11 o5 R0 )

(2.33

RA(x,x")

G(x,x',X’)=<

for a simultaneous fulfilment of the conditiori2.38 and
(2.40.

F. Field theoretic Hamiltonian

This section presents the derivation of our field theoretic
Hamiltonian for the noisy RDN. We start by revisiting Eq.

up to an unimportant multiplicative constant that goes to oné2.27) and note that the effective Hamiltonian heralded in

in the replica limit D—0. On defining K|()T)
=35_,[Z0_;(\*#)2]' we obtain by expanding in terms of
cumulants

- So(-w2
G(x,X’,h)=<exr{E (l—,)Kl(k){R+(x,X’)'}$°) > :
=1 :
C
(2.39
Upon expanding the exponential we get
- , oS-
G(x,x",N)={x+(Xx )>c[ 1+|21 — Ki)
XCY(X,X )+ 1. (2.39
We learn here thaty can be calculated via
CROX)=(x+(xx))c?
X i G(X,x",\
(_1/2)| - (X!X! ) y
o Ki(X) o
: A=0
(2.39

Sec. Il E is given by

Hyep= — In(exd — 3P{ P )c. (2.41)

Carrying out the average over the diluted lattice configura-
tions leads to

Hyep= — % K(), (2.42

where we have introduced

(B)

E
q+pll |exp{— =_jwe
p=1 2

,

<)
H ex _79(19(11@)19((1,3)2

K(5)=In[

|

b 5B
H EX[{ - 7 9(—19(0(’3))

(2.43

Now recall our choice fok in Eq.(2.37. Since\ andd are

related via Ohm’s laWEq. (2.1)], we have to choosé con-
sistently,

i.e., G represents indeed the desired generating function for

the noise cumulants.

Now to the conditions for the saddle point approximation.

We work near the limit when all the components Jofare

equal and continue to large imaginary values. Accordingl

we set[45]
NaB) =jxg+ g@p) (2.37

with real Ay and &@#), 3P_ £«h =0, The saddle point
approximation gives Eq2.33 provided that

INo|>1. (2.39
On the other hand, one has
NP2= D)2+ £P2, (2.39

Thus, one can justify the expansion in Eg.35 by invoking
the conditions

N<D! and &A?<1. (2.40

glah) = B+ g(a,ﬁ)’ (2.44

with real 9, and(*#), 3P_, ((«F)=0. We impose the con-

);Jitions

|9g|>1, 92<D1, [F2<1, (2.45

Under these conditions we hawg9(*#)=0(9,). Hence,
we can write

K(5)=|H[Q+p+0(—ﬁo)+p—0(ﬂo)+[p+p+0(ﬂo)

= qyo
+p0(—ﬁo)]ex;{|21 ( %/2) A(”K.(S)}

(2.49

After some additional algebraic steps and by dropping a term
6(90)IN[1—p—p ]+ 6(—Jg)IN[1-p—p_] (2.47)

that does not depend on the bond conductances we arrive at
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K(9)= 6 Fo)K (§)+6(— ﬂO)K_(é) (2.48 such that¥;il;=I1. Completing squares in the exponential in
i ’ Eq. (2.54 gives
with .
N2 e o —y
R +p. 2 (—1/2) ~ Eq. (2.54)=ex;{——4f dd exd —as9“]
K+(1‘}):In{1+ %ex;{z ( T ) A<|>K|(ﬂ)“. das |/ -
— M M= I=1 :

A . N
(2.49 X4 1+ D (ss)'P|(f}—i—_)]
=2 2as
In order to proceed towards a field theoretic Hamiltonian, we . .
expandK(5) in terms of thezp{(i):equﬁf}}). Recalling —exd — L 1+Z (;5)|
thatb is a shorthand for the borig}; ;, between sites andj 4ag =2
we write N - =
A — A
- 1 e e e X[P|=|++sTP | =]+ ]
K(ag):mz > exfiN: (Fp— ) IK(D) s s
Mo (2.56
= Z‘a z,b;(i)z/f,;(j)[e()\o)ﬁ+(f) where we have omitted multiplicative factors decorating the
A#0 P,. Due to the homogeneity of the,, Eq. (2.56) can be
~ o rearranged as
+0(—No)K . ()], (2.50 g
~ > X’z ” —_— -
Here, we have exploited tha(¥,) = 0(\o). K+ (\) stands Eq. (2.56)=ex;{ — —4|1+2 s'[g*'P,()\)+---
for the Fourier transform oK . (), 4as =2
~ 1 Lo o P +_*(|7T)P ()‘\_’)_}_]
Ke(N)= 5o 2 exdin- 91K.(9). (259 s I
(2M)PE =
> oo II
For evaluating Eq(2.51) we switch back to continuous volt- —exd — )‘_2 1+ 2 (i
ages, 4as I"=1\8s
~ - * < Lo o p+ pi .
Ke(\)=] ddexp—ir-9)in 1+m X[14+0(s)]P;/(N) ¢, (2.57
* |
Xexr{E (=172 A(')K|(5)H= (2.52 up to multiplicative factors; Bey keeping only the leading
= I contributions, we deduce fat(\) that
where we have dropped a factordg) ~PE. Taylor expan- o * . .
sion of the logarithm yields a series of terms of the form Ki(N)=7.+ 2 wi,p)\29+2 viyplP,()\), (2.58
p=1 Py
j df}’exr{—if T—asd2— > b|(g_s)'K|(5)}, with 7., w.. ,~5 P, andv. p ~A/s? being expansion
% =2

(2.53 coefficients.
o _ The termswp)'f2p are irrelevant in the renormalization
V\{her(_ee_l the b, are constants of orc_IéD(s ). Fo_r _notatlonal group sense fop=2, cf. Sec. Il G. Thevp Pl(f) are irrel-
simplicity we dropped the subscript. In addition to the !

expansion of the logarithm, we expand in a power series in evant as well. However, we will demonstrate in Sec. Il G that

the terms proportional tK|(>T) are indispensable in studying

Eq. (2.53= fx 45 N e the noise cumulants; they are dangerously irrelevant. There-
q- (259= | ddexg—ir-d-asd’] fore, we restrict the expansion &f. (\) to

]

. (2.54) Ki(ﬁ)=7i+wtﬁ2+|22 v Ki(N), (2.59

x[1+|22 (s9)'P,()

Here, theP, are homogeneous polynomials of ordéri@ X\ With w,=w. ;, and v. =v. . Nevertheless, the ne-

which are sums of terms proportional to glected terms will regain some importance later on since they
are required for the renormalization of the ;. The expan-
T k(&' (2.55 sion coefficients in Eq.(2.59 satisfy 7.(p,p+.,p-)
i=2 =7:(p.p-,P+),  W(pP,p+,p-)=Wz(p,p-,p+), and
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v+ (PP+,P-)=v5(P,p-,p+). TheK, are homogeneous leads forw—0 andv,—0 to exactly the same perturbation
polynomials of order R For [=2 they are possessing a series as obtained in Ref8,46,47.

S O(D)E] symmetry whereas? has a fullO(DE) rotation

symmetry in replica space. G. Relevance
Next we decor_npos&(z‘}g) into two parts, one being even | this section we show that the are dangerously irrel-
and the other being odd under— —\: evant. The notion ofifangerously irrelevant variablesas
coined by Fishef48]. It applies to variables that cannot be
K(§9)= ZH lﬁi(i)iﬁ—X(j){%[KAf)‘*' K_ (V)] takep to zero be'ca'us.e the quantity exa.mlned elther vanishes
N or diverges in this limit. Later on the notion was carried over
- o to field theory by Amit and Pelitj49]. A characteristic fea-
+3[6(No)— O(—N) ITK (M) =K_(M)1}. ture of dangerously irrelevant variables is that corrections

(2.60 due to them determine the asymptotic behavior of quantities
with the above property, so that their effect is felt arbitrarily
Then we insert Eq(2.60 into Eq.(2.42. We also carry out close to a phase transitiob0]. In contrast, usual irrele-
a gradient expansion in position space that is justified bevant variables cause corrections to scaling that vanish at

cause the interaction is short ranged. We find criticality.
We will see in a moment that the, are irrelevant on

dimensional grounds, i.e., they are associated with a negative

_ I (\aw (v o
Hiep= ga |Eb| (LK (M) + K- (M) ]g-5() naive dimension. However, we cannot simply take #hé¢o
a zero by appealing to their irrelevance, because the ampli-
X[1+3(bi- V)24 Tys(i) tudes of the noise cumulants vanish in this limit.

. e -4 Now we embark on a scaling analysis in the current vari-
+ 200N )~ (= No)][K+ (M) =K _(M)] able by rescaling.—b~I\. Hereb denotes a scaling factor
X (Db V4 1u5(h). (2.61) and should not .be'confused v¥|th the'mdex Iabellng the
- bonds. By substituting)(X) = ¢, -1;(X) into the Hamil-
We proceed with the usual coarse graining step and repnjan we get
place theyy (i) by order parameter fieldg,(x) that inherit

the constraink # 0. We model the corresponding field theo- HLYy 1500 7.0 W, {v)}]
retic Hamiltonian{ in the spirit of Landau as a mesoscopic 1
free energy and introduce the Landau-Ginzburg-Wilson-type :f dy| = T L
functional d'x 255 Yoy ORIV MY 1700
ay) L N N) 9 t t
H= | d%{ 5 2 #-XOK(V.X)g5(x) S-S YRR I (S AR 0
A#0 6>\,>\',>\+>\'¢0
9 - - - T
+6“’“ ZH _}lrb*)\(x)w*}\'(x)lp)\Jr)\’(x) ' wa1£+b1£’(x)}' (263)
NN NN #0
(2.62a . -
Renaming the scaled voltage variable's=b~*\ leads to
where
N
o H[l/l;T(X);T,r,W,{U&]
K(V,N)=7—V2+W\2+ > v,K ()
=2 |l + ot
= | d%{ 5 2 v (0K(V.DRD g (%)
+[O(Ng)— 6(—Ng)]r-V. (2.62h A#0

In Eq. (2.62 we have discarded terms of higher order in the i 9 T 0 - 00w - (x
fields that are irrelevant in the renormalization group sense. 6;’;,’%:;,#5 PR OO SO0 S (X) 1 -

The parametet is the coarse grained relative of +7_ . It

specifies the “distance” from the critical surface under con- (2.64
sideration. In mean field theory the transition occursrat

=0.w~o ! is the coarse grained analogwf. +w_. The _Obviously, a scaling of the current variable resuI'Fs in a scal-
v, stem fromv, |+v_ . The vector lies in the preferred INg of the current cutoffy=AAM=mm/J,, viz., Ay
direction,r=rn. 7, w, v,, andr depend on the three prob- —b~ "\ . However, by taking the limiD—0 and thenm
abilitiesp, p.., andp_ . ris zero itp,. =p_ . We will seeas —%» the dependence of the theory on the cutoff drops out.
we go along that our Hamiltoniak describes in the limits In other wordsjy, is a redundant scaling variable. Thus, one
w—0 andv,—0 the usual purely geometric DP. Indeg  can identifyA" and\ and comes to the conclusion that
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H[ - 15(X); 7,0, Wo{v = HL g (x); 7.1, b2w,{b? v }]. Note thatv, . /(W*v,)~u 2, i.e., the corresponding terms

26 are irrelevant. The first term on the right-hand side gives the
(269 leading behavior. Thui;g) vanishes upon setting=0 and

Now we consider the consequences of E65 for the ~ We cannot gain any furthgr mformatlon.abcm&) . In par-
correlation functions of the fielgh(x) defined by ticular, we cannot determine the associated noise exponent.

In other words, the, are dangerously irrelevant in investi-
s . I N gating the critical properties of the=2)
NN EARTACA PP, ()R (Xn) We conclude this section by demonstrating thatwthe ,
- appearing in Eq(2.58 as candidates for enteririg are ir-

xexp(—HL g (x); 7,r,w,{v}]), relevant. Suppose that we had retained these terms. Each of

(2.66 them had contributed a terrwpf2p to the kernel in Eq.
(2.62. From the analysis above it is evident, however, that
where Dy indicates an integration over the set of vanablesw had appeared in the noise cumulants onlyvgsw?

{y5(x)} for all x and\. Equation(2.65 implies that ~,u2 2P, We conclude that keeping tve,~, had produced
only corrections to scaling and that neglecting them in study-
Gn{X A 7 Wv ) =GN({x,b™ I} 7,1, b2w,{bZv }). ing the leading behavior at the critical point is indeed justi-
fied.
(2.67
From Eq.(2.67 in conjunction with Eq.(2.35 we deduce IIl. RENORMALIZATION GROUP ANALYSIS

~ () N In this section we calculate the generating function
KiMCRI((xXT) 7.1, W {uid) G(x,x’,N) by employing field theory augmented by renor-
—h-2lk (D . 2 2k malization. For background on these methods we refer to
b™TKI M) CRI(O6XT); 7,1, bW, {bT0id). Ref. [51]. We perform a diagrammatic perturbation calcula-
(2.68  tion up to two-loop order.

_ 71 . . .
We are free to choose?=w . This choice gives A. Diagrammatic elements

" N | . Uk Instead of working withH directly, we recast{ into the
Cr (X )i mrw o) =wii| (X )imr o ] form of a dynamic functional52—54. This strategy is con-
(2.69 venient because it simplifies the following calculations from
the onset. Assuming#0 we introduce new variables by
wheref, is a scaling function. We learn from E(.69 that  setting
the coupling constants, appear only in the combination _
v /wK. Atrivial consequence of the fact that the Hamiltonian x=r-x=rpt, ¢=[r["%s, g=[r["g. (3.9

(2'622) must be dimensionless is that ~u” andvKk(N)  on gupstituting Eq(3.1) into Eq. (2.62 we obtain the dy-
~p°, whereu is an inverse length scale. In other words .o i functional

wh? and v, K (X) have a naive dimension of two. Thus,

v /WK~ 1?2~ 2% and hence the,/wX have a negative naive . R
dimension. This leads to the conclusion that theare irrel- «7—] dox, dty 5 E S_\(x.,t)| p| 7= VI+WA
evant couplings. A#0

Though irrelevant, one must not sgt=0 in calculating ‘ P
the noise exponents. In order to see this we expand the scal- + 0K (M) | 00 ) — 0(—No) ] = s5(X, 1)
ing functionf, in Eq. (2.69, .22 il L6(o) = B(=ho)] 5 Sxs
) / 1l ~hY (1 “1+1 +p—5 2 S_(X B)s_y(X,,b)
CR ((XIX );T,r,W,{l)k})zw C| Wr C|+ WT‘I‘ 6 e oo —AN\AL —N\AL
MNANOGAENT#0
(2.70
XS)T+)T’(XL 1t) ’ (32)
with C{) being expansion coefficients dependingon’, .

andr. It is important to recognize th&{),=0 because the
corresponding terms are not generated in the perturbatio
calculation. Equatiori2.70 can be rewritten as

ofhered, =d—1. In Eq.(3. 2) we dropped a term containing
a second derivative with respect tdecause it is irrelevant
compared to the retained term containiffgt.
Vii1 From Eq.(3.2) we gather the diagrammatic elements con-
CR((xx");7,r,w{v =0, Cf')+C|('ﬁlw—+--- : tributing to our renormalization group improved perturbation
vi calculation. Dimensional analysis shows that the coupling
(2.77 constantg has the naive dimension (4d,)/2, i.e.,d=d,
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+1=5 is the upper critical dimension. The Gaussian propa-
gator G(x, ,t,)T) is determined by the equation of motion

p(7—V2+WN2) +[6(\g) — 0(—)@]% G(X, ,t,N)

= 5(x,)8(1). (3.3 ¢
Note that we have not included the terms proportional to the + ( +o
v, due to their irrelevance. The proper treatment of these £ N\LE

terms will be explained in Sec. Ill B. Solving the equation of

motion is straightforward. For the Fourier transform
G(p,t,\) of G(x, ,t,\) we obtain

G(p,t, \)=G,(p,t,N)+G_(p,t,N), (3.4)

wherep is the momentum conjugate 19 and -

i m L e
e )= (- + = 2 \ 2
G (p,t.M) = 0(=) O(= ho)exd +tp(7+p™+WA%)] FIG. 1. Decomposition of the primary two-leg diagrathsld)
X(1=680¢). (3. into conducting diagrams composed of conductiight) and insu-
' lating (dashegl propagators. It is important to bear in mind that the
For the perturbation expansion it is sufficient to keep eitheconducting diagrams inherit their combinatorial factor from their
fe (.t )T) orG (pi.t )‘\*) and hence we discad (pit )T) bold diagram. For example, the diagrams A and B have to be cal-
+ 14y — 14 — 1Ly . . . .
The factor (1= 65 ) on the right-hand side of E¢3.5 en- culated with the same combinatorial factbr

forces the constraint# 0. Due to this factor the principal g Diagrammatic treatment of the dangerously irrelevant

propagatoiG . (p,t,\) decomposes into couplings
& =\ — gicon o\ Rins Since the coupling constants are irrelevant, they cannot
G (Pt M) =G (p.t )~ G™(p.1). 3.8 be treated in the same fashion as the other coupling constants
The first part 7 and w pertaining to the bilinear part off. Suppose we
would naively add—tpE,v|K,()T) to the argument of the
écond(p,t,)'(): 6(t) 6(No)exd —tp(r+ p2+W)T2)] exponential in Eq(3.5 and then use the resulting expression

(3.7 as the Gaussian propagator. By doing so we would ruin our
perturbation expansion. This can be understood by expand-
@s carrying replicated currents and hence we call it conducting any of the diagrams in terms of. For increasing orders
Ing. of this expansion one encounters increasing orders of super-
. ficial divergence. The diagrammatic expansion can be fixed,
G"™(p,t)=O(t)exd —tp(7+p?)]6y 5 (3.8 however, by truncating the expansion in theat linear or-

) ) ) der. This is equivalent to treating by means of the insertion
on the other hand, is not carrying replicated currents and we

refer to it as the insulating propagator. The decomposition of n P g _— ~

the principal propagator allows for a schematic decomposi- ©'=~5W J d LpJ dt>, Ki(N)ex(p.he_i(—p.b),
tion of the principal diagrams into sums of conducting dia- A (3.9
grams consisting of conducting and insulating propagators. '

In Fig. 1 we list the result of the decomposition procedure up . . . . |
to two-loop order. that is associated with the coupling constaptw'. In Eq.

According to our real world interpretatiof23—34, the (39, @x(p.t) denotes the Fourier transform sf(x, ,t).

conducting diagrams may be viewed as being resistor net- Now we analyze the structure of the conducting diagrams

I . . . .
works themselves with conducting propagators corresponcter O has been inserted into one of their conducting
ropagators. This situation is sketched in Fig. 2. Any of these

ing to conductors and insulating propagators corresponding_
to open bonds. In our interpretation the tinteappearing in  diagrams has a current-dependent part of the form

the conducting propagators correspond to resistances and the
replicavariableg(uptoafactor—i)to currents. Just as the —tow'S Ki(Nhexd — owS .82
physical currents are conserved in the nodes of real net- P % () p 2 17
works, the replica currents are conserved in each vertex and

we may write for each edgeof a diagram\;=X;(\ {&}), = —tipw' >, K(Xpexd pwP(X {i})],
where\ is an external current and¢} denotes a complete {rch
set of independent loop currents. (3.10
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2 <
¢ ({th)” Ki(2) _
o o FIG. 2. Calculation scheme. The hatched
pe,/\i,tzpi,ki,ti blobs symbolize an arbitrary number of closed

conducting loops. The solid dots indicate inser-
‘l“lll’ - tions.

whereP denotes the electric power of the diagram. The sum- We start with those quantities that can be renormalized in
mation is carried out by completing the squares in the expoa straightforward fashion. For these we use the same renor-
nential. The corresponding shift in the loop currents is givenmalizations as in Ref§29,32,.

by the minimum of the quadratic forfa that is determined

& 71/

by a variation principle completely analogous to the one s—8=2"%, (3.143
stated in Eq(2.7). Thus, completing the squares is equiva- o_7-17 314

lent to solving Kirchhoff’s equations for the diagram. It leads p=p oP: (3.149

to T—7=2,'Z,1, (3.149

w—Ww=2'Z,w, (3.140

—tipw'Z} Ki| N+ ci,j<{t})f?,-)
{x J

-Gz v, 7 A, 3114

Xex;{ — pWR({tHN2—pw, Bi j({t}) Ki- ij|. wheree=4—d, andy is the usual inverse length scale. The
L factor G,=(47) “”I'(1+&/2), with T denoting the

(3.1)  Gamma function, is introduced for convenien€ez,, Z,,
and Z, are the usual DR factors, which can be found to
second order i in the literature[3,47). Z,, can be gleaned
to second order i from Refs.[29,32.

To prepare for the renormalization of the noise couplings
we proceed with reviewing some general features of operator
insertions. An operato®; of a given naive dimensiopQ; ]

X’}“d= ci({t})f is the current induced by the external current
into edgei. ¢;({t}) andC; ;({t}) are homogeneous functions
of the times of degree zer8; ;({t}) and the total resistance
of the diagramR({t}) are homogeneous functions of the
tlmes'of d((ja%reehl. By_ a sméabledcglome Ofl “5’3”‘9 m;tnx inserted one time in a vertex function generates new primi-
constituted by t B Is renaered diagonal, |._eBi,j~ - tive divergences corresponding to operators of equal or lower
At this stage it is convenient to switch to continuous currents, Jive dimension. Thus. one needs these newly generated op-
and to replace the summation by an integration, erators as counterterms in the Hamiltonian. The operators of
lower naive dimension can be isolated by additive renormal-

L . .
D _}J 11 di (3.12 ization,
(&) =t R
0—0=0— > X 0. (3.19
whereL stands for the number of independent conducting | C [0j1<10] R

loops. This integration is Gaussian and therefore straightforD

S . imensional regularization in conjunction with minimal sub-
ward. In the limitD—0 one obtains

traction leads td; ; containing a monomial ir as a factor
P ol e X the_t is at I_east of degree 1. Hence, thege \_/anish at t_he
—tipW K{(A™) + = =t ({th) T pw K (N) +---. critical point. Being interested in the leading behavior at
(3.13 criticality, we thus can neglect the operators of lower naive
. ) ) dimension in the following.
The terms neglected in E€3.13 are not required in calcu-  Now to the particular case we are interested in, viz., the
Iating the lﬂ] . This issue is discussed in detail in Sec. IlIC. insertion Of(’)(') defined in Eq(39) Whereas the represen-
Diagrammatically, the calculation scheme can be condensegdion (3.9) is well suited for practical calculations, we find it
into Fig. 2. Appendix A illustrates the calculation scheme incnvenient to rewrited() for the argumentation in this sec-

terms of an example. tion as
C. Renormalization and scaling oh=_ iw|f ddef dwE K,()T)
Now we will consider the renormalization of the field and 2p N
the various parameters appearing in the dynamic functional X ¢i(p, )b (—p,— w) (3.16

(3.2). Most of the techniques we are going to use, such as

dimensional regularization and minimal subtraction, belongwvhere ¢;(p, ) stands for the Fourier transform of(p,t).

to the standard repertoire of renormalized field theory, cfinserting®(" into a conducting diagram with external legs,
Ref. [51]. The renormalization of the,, however, is some- see Fig. 3, generates primitive divergences that must be can-
what intricate. Hence, we will elaborate on it in this section.celed by counterterms of the structure
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with the leading contributions satisfying+a+b+n—3
=r'+a’+b’'—1. Thus,r'=r+a—a’+b—-b’'+1, or in
other words, the homogeneous polynomialgimay have a
higher degree thanl2 Nevertheless, they are of the type

Pr(N)=Ky(0)® I KR, (3.22
<is<r
FIG. 3. O inserted into a conducting diagram withexternal
legs. with Xjir;<r<I—-1 andX,ir;+s=r'. These polynomials
have a higher symmetry than the origit@l.
P.(N)p22wPhi(p,t)", 3.1 We have learned in t'he prepedlng paragraph tM8tgen-
(MPTi(p.) (3.17 erates itself and an entire family of new operators. Of course,
where the entire family of operators associated wif) has to be

taken into account in the renormalization procedure, leading
. . to a renormalization in matrix form
P.(\)=I1 K", (3.18 o

| O -0V =(z,z,H~'zHd". (3.23
with Z;ir;=r, is a homogeneous polynomial of degree 2
The notation that we use here and in the following is sym-1ne vector
bolic. Such a counterterm depends in general on an entire set . .
of external momenta, frequencies, and currestép, )" is, Q(”=((9('),O(2'),---) (3.29
for example, an abbreviation fdi{_, ¢5i(p;,w;). We drop
constants, integrals, etc., for notational simplicity. represents the family of operators associated With. The

The naive dimension of operators of the ty(®17 is  factor (ZWZ;1)*' reflects the fact that we have incorporated

given at the upper critical dimension by ”€a+b+n  aw'in the definition ofO".
—3), as straightforward power counting shows. Hence, op- The important conclusion from our reasoning above is

erators having the same naive dimensior43 satisfy that the operators generated 6" do not in turn generate
O". For operators with this outstanding feature we have
[+2=r+a+b+n. (3.19 introduced the notion of master operatf28]. Master opera-

tors are associated with renormalization matrices
Forn=2 one is led td=r, i.e., the insertion o) gener-

ates operators containing homogeneous polynomials in the zV=1+0(u), (3.29
replica currents of degree equal or lowdr. 2n particular, -7
O generates an operator of type where 1stands for the unit matrix, of a particularly simple
structure,
N 2

oiK (N) (P, ). (3.20 0 o o
The important question now is, if the other operators gener- o ¢ - O
ated byO" generate?!) also. Considen=3. With help of z0=1 . . (3.26
Eq. (3.19 one obtaind —1=r=1. The second inequality is - ) ) )
a basic feature of the summations over loop currents in the o ¢ -

limit D—0. Bearing in mind that maximal homogeneous _ _ . .
polynomials of degreé—1 in X are generated, we reinsert The & symbolizes arbitrary el_ements. We will see in Sec.
these operators of the type in E§.17) with n=3 into two- 11D, as a consequence of the simple structurg®f, that the

. | . - .
leg diagrams, see Fig. 4. The resulting terms are of the forrRPerators induced b@_() can be neglected in calculating the
scaling index of their master. Owing to their subordinate

- b - role, we refer to these operators as servants.
P (M)p? P p5(p,w)?, (3.21) P

D. Scaling

In this section we set up a Gell-Mann—Low renormaliza-
tion group equatioRGE). Its solution will provide us with
the scaling behavior of the order parameter correlation func-
tions and finally with the scaling behavior of th}(R') .

The bare(unrenormalizefitheory has to be independent
of the length scalg. ! introduced by renormalization. Thus,

FIG. 4. An operator of the type in E¢3.17 with n=3 inserted  the bare connecteN point correlation functions satisfy the
into a conducting two-leg diagram. identity
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J . o 9 — _
,u,ﬁGN({XL,f)t,\7v)\2}3',§)€9<|)=0. (3.27 /(9—/InZ=y(u_(/)), Z(1)=1, (3.319

The subscripO® indicates that the corresponding operator I = =
has been inserted. Equati¢.27) translates via the Wilson /&/I E :_2’“)(”—(/))' Z(1)=1. (3319
functions defined by
These characteristics describe how the parameters transform
(3.283 if we change the momentum scale according to u
o — u(/)=/n. Being interested in the infrargtR) behavior
of the theory, we study the limit"—0. According to Eq.
(3.31h we expect that in this IR limit the coupling constant
=(—ety+2y,~vJu, (B.280 {1,y flows to a stable fixed point* satisfying B(u*)=0.
0 At this fixed point the RGE simplifies to

P
7...(U)=M@|n Z..

Ju
B(U)=M£

dln 7]

= =y — N
K(U) M I o Yo~ Vs (3280 [ 'D;"F E,y* :=|.+ Z(I)* _lgtv:l-]
dlnw Y21 - * P
L(W)=p G| = Yo Y (3.289 X GN({X, ,pt, WAL 7,u™ 1) =0, (3.32
° where y* is an abbreviation fory(u*), y(') for y(u*),
alnp and so on. To proceed towards a solution of the RGE it is
{p(U)=n o | Y e (3.280  important to realize that the matrix"* inherits the simple

structure on(') viz,

(h J U] (1%
P(W)=-py Iz (3.281 Yo o
0 e 0 O e O
(the |, indicates that bare quantities are kept fixed while tak- Yy = : N (3.33
ing the derivativesinto the RGE
O <> . O
N -
[ D+ y|1+ 2/<')—I§W;]GN({Xl PLWNZE 7,U, 1) i) By virtue of this structure|1)=(1,0, ...,0Y is a right ei-
genvector with eigenvaluet"”. We denote the remaining
=0. (3.29  right eigenvectors with eigenvalueg* by |k). The left
) eigenvectors  are (1|=(1,0,...,0) and (K|
Here, D, is a shorthand for =(0,9, ...,0). Employing spectral decomposition we re-
J g J J g casty)* in terms of its eigenvalues and eigenvectors as
D#Z,u,& +B—+7'K(9 +W§W6W+p§p&p
(3.30 y*=1)y0* (1] + 2 Ky Y * (K. (3.34

To solve the RGE we employ the method of characteris-
tics. Considering the ingredients of the RGE as being funcNow we substitute the decompositi¢8.34 into the RGE
tions of a single flow parametef, we write (3.32. Multiplying the resulting equation from the left-hand
side with(1] leads to

ow
/W:M’ w(l)=pu, (3.313 N -
/ D+ Ey*+y<'>*—lg;*v Gn({X, ,pt,WAZY 7,u* ) 4
=
/= BEY), Th=u, (3.31B ~o. (339

p Here, A" is an abbreviation for
/o Np=,@). pl)=p, (3310

AD=(1]0" = '>+2 oo, (3.39
g _ R
/&—/MTZK(U(/)), (1)=r, (3.310 Note that
/Wan=§W(U(/)), w(l)=w, (3.318 <k|0<'>—2 ool (3.37)
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i.e., the RGE3.35 contains all the information on the®). Gol[x, =X |, t—t",Wh?) 4
In the form (3.395 the RGE is readily solved. With help of

the characteristics we obtain =/dtnmlv ey,
Gn({X, ,pt,WRZY 7,u, 1) 400 X G/ %, =X [/t =t"),/~?wh?) 00, (343
= 7Nz i where we dropped several arguments for notational simplic-
‘ . . - . ity. In the following we setx| =0 andt’=0, again for the
X GN{/X, /%0 pt,/ SwWNZ /% 7, U,/ ) 4. sake of simplicity. A further ingredient of the generating

function is the two-point correlation function without inser-
(3.38 . . ) X ;
tion. Its scaling behavior can be inferred from a renormaliza-
To account for the naive dimensions of the various quantition group treatment similar to that above. This analysis is
ties, EqQ.(3.39 needs to be supplemented by a dimensionaFomparatively straightforwarctf. Ref.[32]) and gives
analysis. Simple power counting reveals that ~ ~
. Go(|x,|,t,wh?) =94 71G,(/|x, |,/ %,/ ¥"LwN?)3.44)
Gn({X1 ,pt, WAZ}; 7,u, 1) 4
d, N2+ 21 -2 Now we put Eqs(3.43 gnd (3.44) together. Recalli.ng that
our master operata®" is associated with a coupling con-
stanty, /w' we write the generating function as

=
X Gn({ux, u2pt,u 2WRZn27,u,0) 4. (339

Equation(3.38 in conjunction with Eq(3.39 now gives G|x, [ ,t.K) =747 Go(/1x, |,/ %/~ 7 wK?)

Gn({X, ,pt,WAZ}; 7,U, 1) 400 .
— A+ pN2= gy [y +16lv, +E E'r/*WVLHWVL
=2 W

XGn({/x, ,/Zpt,/ ¥ oWk /T Uk ) )
(3.40 XGZ(/|XL|,/Zt,/‘/”VLW)TZ)A(UJ. (3.4

Equation(3.40 features the well-known critical exponents

for DP that have been calculated previously to second ordéf/e have the freedom to (ihoose the flow parameter as we
in & [3,47]: please. The choic&=|x, |~ and a Taylor expansion of the

right-hand side of Eq(3.45 lead to

. 8{1+[ > | 1o (4) ] (3.41a
n:y == Yy _n = 8 1 . -
6 288 144 '\ 3 G(|XJ_|,t,)\)=|XJ_|1_d_”f _
X, |
Ry S 67+ 59| : t
z=2t, =273 288" 1443/ %[’ x{1+wf2|xi|¢”ﬂfw(—)
z
(3.410 x|
1 1 e 107 17 (4 ’ o t
= =—4 —  _ Inl= + o K (V)X [ Vifv<— S
s 2+16{1+[288 144'”(3) e & o |

(3.419 (3.46

o=v, (2—¢}) is the resistance exponent for DP that we

derived recentlyi29,37 to second order i: where thefs are scaling functions that vanish for vanishing

argument. Instead of choosing=|x, |~ we can likewise
] choose/’=t"*2 This leads then upon Taylor expansion to
€

=1+ (3.42

24| 17| 288 122" 3

e 151 157 (4
24 3

- - X, [*
G(|x,|,t,\)=t2"d ">’Zh<—)

o is defined byy,=(2—y""). The e expansion result of t
Yy is given below. N Ix, |2
From here only a few more steps are required to reveal x[1+w)\2t¢”hw(%)

the scaling behavior of th@S) . Recall that our strategy is to

derive theC{)) from their generating functio®(x,x’;\). By ” N Ix, |2

now, we know of the scaling behavior of a central ingredient + 2 vK ()t /V'hu|< i )+} ,

to the generating function, viz., we know that the two-point =2

correlation function with insertion scales at criticality as (3.4
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TABLE I. The coefficientsa(l) andb(l) appearing in Eq(3.50.

| 0 1 2 3 4 5 6 =7

a(l) 85 151 68387 3307921 4661703289 8258257 317517 24071498 466367 0.005>a>0
1728 6912 4976640 334430208 619173642240 1373079469 031424 4808089 723 207 680

b(l) 53 157 1091 13589 173149 2281853 30950909 0.015>b>0
864 3456 27648 442368 7077888 113246 208 1811939328

with the h's being scaling functions that tend to constants foris in agreement with the expansions of, ,z[3,47], andDg
vanishing arguments;; is defined byy,=v, z. (see Refs[29,31)) to second order im. ¢ is in conformity
Possessing of the generating function we solely need tith our result for the resistance exponefgiven in Refs.
take the appropriate derivatives to extract the scaling behay2g 32, This has to be the case beca@®'=M® . Multi-
ior of the CR that is by virtue of Eq(2.23, up to unimpor-  fractal exponents like thel have the general feature that
tant constants, identical to that of th"). With help of Eq.  they are convex monotonically decreasing if being under-
(2.36 we deduce that stood as a function of the inddX55]. Our result possesses
this feature. Moreover, it tends to unity for lar§eas one
MEI)NtWVn (3.48 expects from the relation aof,, to the fractal dimension of
the singly connectedred bonds,d.q=1+ ¢../v, —2, see
if measured along the preferred direction. For measurementefs.[21,31,56.
in other directions it is appropriate to choose a length scale
and to express the longitudinal and the transverse coordi-
nates in terms of: |x, |~L andx,~L*~T. With this choice IV. CONCLUDING REMARKS
the scaling function$ reduce to constants and we obtain

In summary, we derived a field theoretic Hamiltonian for
M,(')~L‘/’| vl (3.49 RDN that captures the multifractality of the current distribu-
tion in these networks. To characterize the current distribu-
~We still owe our result for the multifractal exponents. tion, we determined the scaling behavior of its moments.
Since we only need to compute a single element of each GEach moment is governed by an independent critical expo-
the renormalization matrice&”, viz, Z), we manage to pent, je., these exponents are not related to each other in a
calculate the; to two-loop order. Ine expansion, our result  linear or affine fashion, as commonly occurs in critical phe-
reads nomena under the name of gap scaling. We determined the
family of multifractal moments to two-loop order.
€ . Our approach thrived on two cornerstones, viz., our real-
=1+ W+32[a(l)—b(I)In(g)]+(’)(s3). world interpretation of Feynman diagrams and our concept
(3.50  of master operators. The real-world interpretation remedies
the apparent complexity of the field theory. It makes the field
Thea(l) andb(l) arel-dependent coefficients taking on the theory more intuitive and provides practical guidance for the
values listed in Table ly, and; stem from extending the diagrammatic calculations. Being interested in some quantity
sum overl in the Hamiltonian(2.62 so that it comprise$  in real networks, one basically just has to determine its coun-
=0 andl =1. Figure 5 depicts the dependence/pfon| for  terpart in the Feynman diagrams. In the present case we de-
e=1,2,3 corresponding td, =3,2,1. termined the multifractal moments of the diagrams to study
We point out that our resulB.50 fulfills several consis-  the multifractal moments in physical RDN. Without the con-
tency checksyy is related to the fractal dimensidg of DP cept of master operators the renormalization group analysis
clusters viaDg=1+ 4o/ v, —z (cf. [29,31)). Equation(3.50  presented in this paper is hardly feasible. Since the multifrac-
tal moments correspond, in the field theoretic formulation, to

2 dangerously irrelevant operato€d!), they generate under
1.8 renormalization a myriad of other irrelevant operators. All
W, 1.6 these must be taken into account in the renormalization
1.4 group. Thus, one has, in principle, to compute and diagonal-
1.2 ; ize renormalization matrices that are giants for largél-
1 ready handling the full renormalization matrix associated
o 1 2 3 4 5 with | =2 to one-loop order is tedious. The effort is compa-
! rable to that of determining corrections to scaling associated
FIG. 5. Dependence of; on | for d, =3 (star, d, =2 (tri-  with a (\?)2 term in the field theory of RRI57]. Due to the
angles, andd, =1 (squares master operator property of ti@"), however, it is sufficient
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malization matrix pertaining to eadd"), and we can work
to two-loop order with reasonable effort. To date, the concept
of master operators has proved to be powerful in studying ) )
multifractality in RRN and RDN. We expect, though, that it X fk exp{—t[27+k"+ (k=p)°]}
has many more applications. It might be the case that any
multifractal quantity can be associated in the field theoretic
framework with master operators. This is a speculation, but it
is not implausible at all. For example, preliminary studies of
the random field Ising model indicate the applicability of the XW2{K (&) + Kz()'f— ©)}, (A2)
master operator concept. . _ . i

To our knowledge, the issue of multifractality in DP has Where we have also modified the integration varigbléhe
not been studied hitherto. In particular, we do not know oflNtégration over the loop current can be simplified by com-
any other work, theoretical, simulational or experimental,P'€ting the squares in the exponential. We look for the mini-

that provides results suitable for comparison to ours. For th&um of the quadratic fornP(A, k). The minimum is deter-
RRN, in contrast, the multifractal exponents of the currentMined by a variation principle completely analogous to the

distribution have been determined by Monte Carlo simula2N€ Stated in Eq(2.7). Thus, completing the squares is
tions [20,58. It would be very interesting to have corre- equivalent to solving Kirchhoff’s equations for the diagram.

sponding numerical estimates for the RDN. Work on this isAﬁiLcar;Y'gg out the straightforward momentum integration
in progresg59] and will be reported in the near future. we thenfin

for our purposes to calculate a single element of the renor- pg? (= )
AO(Z):—TJ dttexp —i—t
0

X J dZexgwP(X\,%)]

2
p9” 1 " -
Aoa=="5" (4m)° /e fo det(2078 2

ACKNOWLEDGMENTS
This work has been supported by the Sonderforschungs- Xex;{ —t I_w+27.+ Epzﬂ
bereich 237 “Unordnung und grof3e Fluktuationen” of the p 2

Deutsche Forschungsgemeinschaft. Also, O. S. acknowl- (=
edges support by the Emmy-Noether-Programm of the Deut- x exd — R(t)WA?] J diexy —twi?]
sche Forschungsgemeinschaft. o

XWAH{K ( R+ 3N) +Ko(— N1 (A3)

APPENDIX A: CALCULATION SCHEME FOR DIAGRAMS R(t)=t/2 is the total resistance of diagram iglzl and, re-

WITH INSERTION spectively— N/2, are the currents induced in the conducting

In this appendix we illustrate our calculation scheme out{Propagators by the external current. Upon integrating out the
lined in Sec. I B in terms of an example. For the sake ofloop current we get in the replica lim@—0
simplicity we consider the simplest conducting diagram

.l . 2 1 0
comprising a closed loop of conducting propagators, namely, A= — P9” f dt t-du/2
diagram A introduced in Fig. 1. WitkP® inserted succes- o 8 (4mT7 ],
sively in both conducting propagators, the mathematical ex- )
pression for that diagram reads xexd —t '_w+ T+ Ep2+ ﬂxz

2 4 4
p?g? (= x| Zwak,(R) + 252 (Ad)
AO{ZFTJ' dth exp(—iwt) 8W 2(N) t .
0 K%

Next we expand the exponential function. Then we carry out
the remaining integration. Upon discarding convergent terms
that are not required for renormalization purposes we obtain

X exp{ — pt[ 27+ K2+ (k—p)2+wiZ+w(Z—N)2]}

_ 2. > 9_ <>
X (=) pWHK(K) +Ko(A = i)}, (AL in & expansion
. o 2Ce _plia o 2
where [ is an abbreviation for (2) % [d%k. Note that Ao1==pggo 77 WKa(A) — WA

P(N,K)=—ti®—t(<i—X\)2 corresponds to the electric
power of diagram A. For practical purposes we switch to
continuous loop currents. This step is justified at this stage
because the constraint= 0 is safely implemented via the _ o _ _
decomposition of the corresponding bold diagram into itsThe example considered here highlights two points. First, not
conducting diagrams. We obtain only primitive divergences proportional #6,()\), but also

X

iw -
4?+87+2(p2+w)\2)H. (A5)
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proportional to7h2, w\?, p?\2, and (\?)? are generated.
Second, the basic task in computing contributions propor-

tional to K,(\) is to determine the currents induced by the
external current in the conducting propagators.

1 o
Il:m JO dtldtzdtg exp[— T(2t1+ 2t2+ 3t3)]

taty+tp+t5]"
>< 1
(2tg) W 2t; + 2t + Sta]" 702

(B3)

APPENDIX B: DETAILS ON THE TWO-LOOP DIAGRAMS

1 ©
| =—d—J dt,dt,dt; exd — 7(2t; +2t,+ 3t
Here we sketch the computation of conducting two-loop 2 (4ma Jo T =2t 2 2

diagrams with insertions. We restrict ourselves to a few ex-

amples. The techniques presented for these examples can talty + o+ 5t3]"

then straightforwardly be adapted to the remaining diagrams. X (2t5)9:2[ 2t + 2t,+ 2t ]n+dil2’

For briefness, we will exclusively consider those parts of the 3 1hefen s

diagrams proportional th|()T). Moreover, we set external 1 w

momenta and frequencies equal to zero. |3=—C'_J dt;dt,dtz exd — 7(2t; + 2t,+ 3t3) ]
At first we consider diagram H. We start by determining (4m)" Jo

the currents flowing through the conducting propagators.

Kirchhoff’s law (2.4) applies to the four vertices of the dia- ,

gram. This allows us to eliminate three of the five unknown (2tg) M 2ty + 2t + St5]" T2

currents(one of the vertices is inactive with respect to this

purpose since the external curréntmust be conservédThe 1 * B

potential drop around closed loops is zero. Hence we can |4_(477)ai 0 dtydtodts expl = 7(2t; + 2o+ 3ty) ]
eliminate the two remaining unknown currents via the varia-

tion principle (2.7) and express all currents flowing through o[ty +t+ 5t5]"

conducting propagators in terms of the times andThe d /2 3, nid, /2
momentum integrations are straightforward. They can be (2t5) 22t 20+ 5t
done by using the saddle point method that works exactl;&I
here since the momentum dependence is purely quadrati
After carrying out the momentum integration we have

(B4)

ta[ty +to+t3]"

(B5)

(B6)

ow considerl,. The integrations can be simplified by
&hanging variablest;— 3ty, t,—it(1—x—vy), and ts
—2tx. This gives, after doing the integration oveandy,

27"(3\%2T(4-d)) 1
. pgt 1 % N L d—4f —d, 2
HO(l):_WIKl()\)TWJQ dtldtzdt3 Il 24 (4) (477)aL T 0 dxx

X (1=x)2(1+x)% 421+ 3x)". (B7)

1
xXexd — (2t +2t,+3t3) | s—a 7
L= r(2t+ 21+ 3t3)] (2t3)™ The remaining integral ovet may be simplified by separat-

ing its divergent and convergent contributions via Taylor ex-

1 1 .
X pansion,
(2t0) ™" [2t, + 21, + Jtg]t 02
| 2—"(3)%/2r(4—dl) g _4fld
ti+ttty " “oa\al T@ams T X
X3 (G4 t)| — 22| 4 (ty+ o+ ts) 2414 (4m) 0
2t,+2t,+ 3ty n
) ><|x‘dﬂ2+x1‘dﬂ2 —2+d, -4+
" t;+t,+3t5 . 1 ty+t,+tg |° 3
122 s ——23 |
2t,+2t,+ 3t 2 ot +2t,+ 3t n
1re2teis 1reen e X7 (1-x)%(1+3%)"— 1+ 2x— =X

3

} . (B®)
(B1)

Carrying out the integration and expansion for smathen
where n=2I. Upon doing a little algebra we rewrite Eq. 9ives the result

(B1) as N
| 327G 4+2n 3+F 2F
. 1= 128 ?T g g 2,3(”) l,3(n)
Hon=—wK,(X) - (21,421,421 M +1,), (B2) 3 .3 (4"t 4y n a4y
ni T nrIls N3/ *t3hiz) - B9
where we have introduced the abbreviations Here, we have used the shorthand
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n

Fmi(n)= 2>,

k=m

n| 17k
Klkcmr1 (B10

I,, 13, andl, can be evaluated in the same fashionl as
Thus, we merely state the results:

3x27 " G? ‘ 4 2n

lo=—5g % 7 | "5 3z 3tFa-a(M—2F15(n)
3 3[4\ 2|4 nI 4 B11
nri n+1i3) 2Nz 3Ng)) B
27"GI (2 3
SRETIPN PR E L
3 4 n+1 4
—m(g) +In(§>], (B12)
2" G2
=76 % 7 |5 TPV
4 n+1 I 4
+m § +1n § . (B13

Upon collecting, we obtain for diagram H the final result

pg? 3x 27" G?
2 128 &

. 16
Hom=—w'K;(X) T_S[—§—6+Fzy3(n)

3

2 4 n+1
+F2,_3(n)—2F1‘3(n)—§F1,_3(n)+ )

2\nt1l 4 8|4
3 nt1 33

n+1

1

n+1

L8 4 4
+28 T g Pt

3e n+1

4\n+1 4I 4
3 T3N3

4

] (B14)
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1 o
IGZW JO dtldtzdtg exp[— T(2t1+ 2t2+ 3t3)]

t4[ 2t,t,+ 2t t5+ 3t tg+ 2t3]2
[4(ty+1ta)(ty+1tg) —t5]" T OL/2”

(B17)

1 LS
|7:WI J;) dtldtzdt3 eX[i— ’T(2t1+ 2t2+ 3t3)]

(ty+1g)[ 2t t+ 2t t5+toty+13]"
[4(t;+13)(tp+1t5) —t5]" 972

(B18)

Exemplarily we drill into the integrals. It can be simplified
by changing variables according tg—t(x—1), t,—t(y
—1), andt;—t. Upon carrying out the integration ovewe
obtain

rea-d) , [~
L AL
[2x+2y—1]% "4 [x+y—1]"
[4Xy_1]n+di/2

(B19)

A further simplification can be achieved by rearranging the
remaining integrations as

_F@a-d) 4, —7fw JOC
IS_WTL 2 1dX 1dy

[x+y—3]% " *[x+y-1]"
X

[Xy— %]nerL/Z

(B20)

As a further example, we now treat diagram C. We employ ,

once more our calculation scheme and determine for eachye €armn from Eq.(B20) that 5 is convergent ford, <4.
conducting propagator the induced external current. Thigtence it is legitimate to evaluate it directly dt =4. In
provides us with the noise cumulants of the diagram an&ontrast to the integrals constituting diagram H we were not

leads to

Con=—WK;(N)pg*{ls+2l5+2I5}, (B15)

where we have used the abbreviations

1 )
ISZW J'O dt;dt,dtz exg — 7(2t; + 2t,+ 3t3) ]

9  ty+tp+ta]"
X
[4(t;—t3)(to+1tg) —t5]" 0L/

(B16)

able to evaluatés for arbitraryn. The technical difficulty is
the binomial appearing in the denominator of the integrand
of I5. Forn not too large, however, the number of terms of
this binomial(2"*2 atd, =4) is manageable and one can at
least carry out the integrations for each reasonabsepa-
rately. We refrain from stating all the results because this
would be rather space consuming. We annotatelthahdlI -,

can be treated in a similar fashion bs except that these
calculations are somewhat more tediols.and |, are not
convergent likels so that in practice one has to separate
divergent and convergent contributions as it was demon-
strated in considering diagram H.
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