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Diffusion in disordered media with long-range correlations: Anomalous, Fickian,
and superdiffusive transport and log-periodic oscillations
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We present the results of extensive Monte Carlo simulation of diffusion in disordered media with long-range
correlations, a problem which is relevant to transport of contaminants in field-scale porous media, such as
aquifers, gas transport in soils, and transport in composite materials. The correlations are generated by a
fractional Brownian motion characterized by a Hurst exporé&ntor H>1/2 the correlations appear to have
no effect, and the transport process is diffusive. Howeverdfarl/2 and depending on the morphology of the
medium, three distinct types of transport processes, namely, anomalous, Fickian, and superdiffusive transport
may emerge. Moreover, if the medium is anisotropic and stratified, biased diffusion in it is characterized by
power-law growth of the mean square displacements with the time in which the effective exponents charac-
terizing the power-law oscillates log periodically with the time. This result cannot be predicted by any of the
currently available continuum theories of transport in disordered media.
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I. INTRODUCTION tuous transport paths. Diffusion and other forms of molecular

. transport in a well-connected disordered medi(ira., one

Transport processes in disordered media constitute an iNja; from the percolation threshalih which there exist long-
portant class of problems, in view of their relevance to therange correlations in the distribution of the local raicro-

modeling of a wide variety of phenomena in natural andscopictransport properties, have received much less atten-
industrial processes. A partial list of their applications in-tion. The interest in such problems is more than academic:
cludes flow and transport phenomena in porous media, difThey are in fact relevant to modeling of a variety of phenom-
fusion in soil and through biological tissues, conductionena of practical importance. For example, as mentioned ear-
through composite solids, and many more. Many transpori€r, geological formations, such as soil, oil reservoirs, and
processes in heterogeneous media are nonlocal in the serff@undwater aquifers have been shown to contain such cor-
that, they involve long-range correlations. By long range we€lations[1]. Thus, for example, understanding of diffusion
mean the correlation length is comparable with the lineaPf 92S€s in soil is an important problem that is essential to

extent of the medium. Such correlations either exist in thd"'"'MiZINg the potential hazards to the environment that

morphology of the heterogeneous media, or are induced b f1se as a result' of migration of pO”U“’.‘Q gases in soil.
roundwater aquifers are usually contaminated by transport
the transport proceses themselves. A well-known example o

of pollutants that spreads the hazardous materials in the sys-

the firs_t type of Io_ng-range correlations is those that exist Mem. Many other systems of scientific and industrial impor-
geological formation$1]. An example of the second type of tance involve long-range correlatiofig], and thus study of

long-range correlations is those that arise in vector transpogitr,sion and other types of transport processes in them is
in rigidity percolation, or in mechanical fracture of materials gggential.
[2,3]. Nonlocal transport processes are highly complex and  The purpose of this paper is to study diffusion in a disor-
often, because of the long-range correlations, a continuuered medium that is characterized by a distribution of local
formulation of them is not possible or even meaningful.  conductances that contains long-range correlations. Our main
However, despite their significance, most of the transporinterest in this problem is to understand whether diffusion of
processes in disordered media that have been studied ovggllutants in soil can be modeled by the classical diffusion
the past several decades involve no correlations, or at moguation with a constant diffusivity, or whether the presence
short-range correlations. Geometrical fractals, such as thef the correlations gives rise to a nonlocal transport process
sample-spanning percolation clust@SPG at the percola- at the macroscopic level that cannot be represented by the
tion threshold 4,5] p.. do induce long-range correlations, and diffusion equation. In the latter case, one must develop the
transport in such systems has been studied extensi@gly appropriate transport equation.
However, long-range correlations in the SSP@atre due The plan of this paper is as follows. In the following
to the poor connectivity of the cluster that gives rise to tor-section, we describe the model of the disordered medium and
its conductance distribution. We then describe the details of
Monte Carlo simulations that we utilize to study diffusion in
*Present address: Department of Applied Mathematics, Resear¢che medium. In Sec. IV, we present the results and discuss
School of Physical Sciences and Engineering, Australian Nationatheir implications. Section V contains a summary of the
University, Canberra ACT 0200, Australia. results.
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II. GENERATION OF LONG-RANGE CORRELATIONS IlI. MONTE CARLO SIMULATION

We represent the disordered medium by a square lattice in We used the power spectrum method to generate the FBM
which the bonds represent the transport paths. Each bond distribution. All of the results presented in this paper were
assigned a conductange To assign the bond conductances obtained with 10241024 lattices. This size of the lattice
and generate long-range correlations between them, we uggves rise to a conductance distribution the broadness of
the following two methods. which is about 2—3 orders of magnitude variations in the

(1) In the first method, we assume that the distribution ofbonds’ conductances. Periodic boundary conditions were
the conductances is a fractional Brownian moti&GiBM). used in all the directions. The diffusion process was simu-
This assumption is based on the discovery that the statistidated by the random walk of a particle that is initia{gt time
of the permeabilities and hydraulic conductances of oil rest=0) inserted into the lattice at a randomly selected site. The
ervoirs[8], groundwater aquiferg9], and soils[1] follow a  particle executes a random walk between the nearest neigh-
FBM. Briefly, the FBM is a stochastic proce8(r) [10] bor sites of the lattice. Each step of the walk from one site to

with the properties thatB,,(r) —By(ro))=0, and another is taken with a transition probability proportional to
) o the conductance of the bond between the two sites. After
([Bu(r)=By(ro)1%)~Ir—rol*", (1) each step, the time is increased by one unit. The mean

square displacement®!SD) (R%(t)) of the walkers at time
are computed, where the averaging is taken over the initial
positions of the walkers, and the different realizations of the
lattice. Typically, we used 4000 walkefge., 4000 initial
positions and 40 realizations of each of the conductance

where r=(x,y,z) and ro=(Xg,Yp,29) are two arbitrary

points in space, and is the Hurst exponent. The main prop-
erty of the FBM is that it generates correlations with an
extent that ignfinite (i.e., the extent of the correlations is as

large as thg linear size of the sysl)emlqreover, the type of distributions. All the random walkers took21(P steps(i.e.,
the correlations can be tuned by varyiHg For H>1/2 the the MSD were computed up to tinte=2x 10F). Moreover,

FBM displays persistence or positive correlations, Le., 4o study the effect of the nature of the correlations, we used
trend(for example, a high or low value of the conductances several values of the Hurst exponet

at r is likely to be followed by a similar tre_nd a_t+Ar, To characterize the diffusion process, we write the MSD
whereas forH<1/2 the FBM generates antipersistence or :

. . ) e of the particles as
negative correlations, i.e., a trendras likely to be followed
by its opposite at + Ar. ForH=1/2 the trace of the FBM is (R2(1))~ 1@ 4
similar to that of a random walk and the increments are un- '

correlated. A convenient way of representing a stochastiuavhere D=2/ is the fractal dimension of the walf6]
w .

function is through its spectral densi§(w), the Fourier i 2 ;
transform of its variance. Forddimensional FBM it can be rl\}l:\:reng:lr)gedgigzagltq?azzphoor‘;[Mr?eéitr)geg%v:vszvgt?té.f)(nRe(tr)nza;y
shown tha{10] grows linearly witht, and therefore diffusion is Fickian, i.e.,
a the effective diffusivityD, defined by(R?(t))=2Ddt (d is
S(w)= —d%, (2) the dimensionality of the systemis a constant(2) D,,>2,
(2 wg) which implies tha{ R?(t)) grows witht slower than linearly.
= In this case diffusion is called anomalo[,12] or fractal
[13]. In this regimeD—0 ast— . Diffusion in geometrical
where w=(wq,...,0q), With w; being the Fourier compo- fractals, such as the SSPC, is anomal¢8s!f D,,<2, then
nent in theith direction, andy, is a constant. The variance of (R?(t)) grows witht faster than linearly. This type of trans-
the FBM depends on the size of the system, and diverges fqrort process is calleduperdiffusion[14]; in this case,D
a large enough system. Thus, the broadness of the condus-« ast—o. The results presented below indicate that dis-
tance distribution with FBM-type correlations increases withordered media of the type that we study in this paper not
the size of the system. Note that the correlation functioronly can give rise to these three types of diffusion processes,
C(r) of the FBM is given by but also to a new type in which the random walk fractal
dimensionD,, varies with the time

C(r)—C(0)~r?", 3
so that as long asi>0, which is physically the case, the IV. RESULTS AND DISCUSSIONS
correlation functionincreaseswith increasingr. We have carried out extensive simulations of diffusion in

(2) In the second case, we assume thatgdgllows the  gisordered media of the type described above with a variety
statistics of the FBM. The reason for this assumption is thatys onductance distributions and morphologies. In what fol-

it has been showfiL1] that the distribution of the permeabili- |4y \ve present the results and discuss their implications.
ties and hydraulic conductances of some porous media is so

broad that cannot be described by a FBM, rather the loga-
rithm of the conductances seem to follow the FBM. There-
fore, this case represents a disordered medium with a very Figure 1 presents the MSD vs the tirhéor three values
broad distribution of the conductances which, however, conef H. In these systems, the conductance distribution is rep-
tains long-range correlations. resented by the FBM. Analysis of the results based on4qg.

A. Isotropic media
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FIG. 3. The map of the conductance distribution witl+=0.3.

FIG. 1. Mean square displacemer®2(t)) vs the timet for
three values of the Hurst exponedst The conductances are distri-

uted according to the FBM.

indicates that for all values dfl, even at relatively short
times, diffusion is Fickian, i.e.o=1 (D,,=2). Consider
next the case in which the logarithm of the bonds’ conduc-
tances follows the FBM. Figure 2 presents the results. A
short times, diffusion is anomalous for all values Hf as
expected. However, while fdid > 0.5 the long time behavior
of the diffusion process approaches the Fickian regime, fo
H<0.5, it is not; instead it is anomalous with<1. To ob-
tain the true asymptotic values a{H), we fit the MSD data

to Eq. (4) using the data withi=t,=5x 10" and obtain an
estimate ofa. We then fit the data to Ed4) again but with
t=t,=10P and obtain a second estimateafBy increasing

10°t

All the low conductance&maller than a fixed threshgldre black.

to we obtain a series of, which when extrapolated tt,

—oo, yields the true asymptotic value of When this was
done for all the data obtained fdi>1/2, we always ob-
tained =1, whereas we obtained=0.81, 0.89, and 0.97

for H=0.1, 0.3, and 0.5, respectively. The céte 1/2 rep-
resents a borderline limit, indicating that diffusion is almost
Fickian.

To understand these results better, we define a conduc-
fance threshold, where € is defined as a fraction of the
argest bond conductance in the system, and prepare a map
of the local conductances. Figure 3 presents the results for
H=0.3, while Fig. 4 shows the same fbir=0.8, where the
Samee was used in both cases. In these figures, all the con-
ductances that are less thamare shown as the black areas,
while those that are larger tharepresent the white regions.

In the case of théd=0.8 system, there are well-connected,
but separated, regions of the low- and high-conductance re-
gions. Therefore, if the number of the particles and the simu-
lation times are both large enough, one expects asymptoti-
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v / /" e
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cally Fickian diffusion, consistent with our numerical
estimate ofe=1. In contrast, in the case &f=0.3 (Fig. 3

most of the medium consists of islands of very low conduc-
tances dispersed in the high-conductance patches. Thus, the

FIG. 2. Same as in FIG. 1, except that the logarithm of the
conductances follows the FBM statistics.

FIG. 4. Same as in FIG. 3, but fét=0.8.
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35 R tances are correlated and follow the statistics of FBM, while
T for L>1. they are uncorrelated and randomly distributed. We
sl e may expect to have Fickian diffusion whéR?(t))¥>>1.,
P while in the opposite case we should have anomalous diffu-
P sion. Figure 5 presents the resulting MSD vs titmir H
2 e =0.3 and three values of the cutoff length scaeasured in
L units of the lattice bondswhen the logarithm of the conduc-
' — =10 tances follow FBM. Analysis of the data for the MSD indi-
7 — -~ =100 cates that in all the cases the asymptotic value &f unity,
7 confirming our expectations. The main difference between
/ the three cases studied is the rate of convergence of the trans-
/ port process to the asymptotic Fickian regime: While for
try small values of ; diffusion of the particles quickly becomes
— Fickian, in the case of large valuesgfit takes a long time
05k == to reach the Fickian regime. The crossover between the Fick-
TR ian and anomalous diffusion regime should take place at a
0 , L l crossover timd. such that

N
T
N

10 < R(t)’ >

-
(6]
T
~

10°t to~12. (6)

FIG. 5. Mean square Qisplacements V-S the tirfor three cutoff F|gure 6 presents a plot of |¢g VS |Oglc, which indicates
lengthsl . for the correlations. The logarithm of the conductancesthattC~|B with 8=1.91+0.10, consistent with Eq6). The
c . . y .

follows the FBM statistics wittH =0.3. significance of Eq(6) is that, if measurements of the trans-
vast majority of the particles begin their diffusion in the low- POrt properties of such disordered media are done at time
conductance islands, and can hardly escape from them fortc, the resulting transport coefficients would be time de-

long periods of time, as a result of which diffusion is slow pendent, and therefore, it is critical to identify the extent of
and anomalous. the correlations in heterogeneous media in order to ensure

Next, we introduce a cutoff length scdlgfor the extent that the measurements are carried out at sufficiently long
of the (;orrelations and study its effect. To inclugden the times after the diffusants have been introduced into them.

conductance distribution, we rewrite the spectral density of
FBM as B. Anisotropic media

We also investigated diffusion in anisotropic disordered

a : ; )
S(w)= 5 0 T (5) media that contain long-range correlations. There are several
+3 W2 ways of generating an anisotropic medium. For example, the
@eT o @i distribution of the bonds’ conductances may be direction de-

pendent. Alternatively, one may consider disordered media
where wczlllg. Thus, for length scales<I. the conduc- that are stratified and contain a distribution of layers with

10.5 T T T T T T T T T

FIG. 6. Scaling of the crossover tintg with
the cutoff length scalé,. The results are fok,
=10(¢), 1.=1000), andl.=25000).

log | olc

1 1 1 1 1 1 1 1 L

7
13.2 13.4 13.6 13.8 14 14.2 14.4 14.6 14.8 15 15.2
log s otc
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FIG. 7. Two typical aniso-
tropic media with two anisotropy
factorsb, and H=0.7. Note that
increasingb, increases stratifica-
tion.

large conductance contrasts between the layers. Such disquic media described above. Figure 8 presents the typical
dered media, which are anisotropic, are used in this studMSD in the x andy directions, and analysis of these data
Our use of such disordered media is motivated by the facindicated thatr,<1 anday,<1. However, as the number of
that many natural disordered media, such as rock, oil resethe strata increases, the nature of transport in the two direc-
voirs, and groundwater aquifers are typically layered. In adtions becomes very different. In thedirection, i.e., parallel
dition, many semiconducting materials, such as the family oto the strata, diffusion is not Fickian, since when the number
dichalcognides of transition metalsX, have a layered mor- of the strata is large, each stratum is a narrow, essentially
phology, and therefore are highly anisotropic in that, theyone-dimensional and highly disordered channel, and there-
contain a preferred direction for conduction and transport. Tdore, one expects to have non-Fickian diffusiall. For ex-
generate a stratified medium, we use the spectral representanple, forH=0.3 we obtaina,=0.88. However, diffusion
tion of FBM, and rewrite it as

aq
2 2 '
(bxwx+ wy)H+d/2

S(w)= ()

whereb, is a constant, such théat>1 generates strata that
are essentially parallel to each other in the direction perpen:
dicular to thex direction. Figure 7 presents two examples of
such anisotropic disodered media, where xhdirection is
the horizontal direction of the figure, and the logarithm of the
conductances follows the statistics of FBM with=0.3.
Note that increasind, increases the number of strata of the
medium. Because of the anisotropy of the medium, we must
calculate MSD separately for each principal direction, so that
we write

10* MSD

(RAt))~t™,  (RO(1))~t%. ®)

Our simulations indicate that foH>1/2 diffusion in
these anisotropic media is Fickian. However, b 1/2, the
extent of stratification greatly influences the nature of the
transport process. When the number of strata is small, i.e., FIG. 8. Mean square displacements vs time in the direction per-
when the system is almost isotropic, diffusion in both direc-pendicular to the stratéhe x direction) and parallel to the strata
tions is not Fickian, in agreement with the results for isotro-(the y direction with anisotropy factob, = 10.
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in the x direction, i.e., in the direction perpendicular to the
strata is still Fickian.
35 ————— B=0.950
C. Biased diffusion e i
sr ——— - B=0.993
We now consider the effect of an external field on the
diffusion process. The external field can be an electric field, .| -
as in composite materials, or a pressure gradient, as in flov s ' P
in a porous medium. The external field induces bias in the<, N -7
motion of the diffusants and generates a preferred directior% P
for the transport process. In principle, the preferred directionc e g
changes locallydynamically, but at the macroscopic scale, tsr e
it is parallel to the direction of the external field. Thus, the e L
simplest way of investigating the effect of the external field T P /4,,/-"/' o
is to bias the motion of the particles in a particular direction e T T
[15], say thex direction, so that the probability that the par- o5 /s T T
ticles move in this direction is higher than the other direc- A
tions. Hence, we introduce a bi& so that in the square : ~ETT oL " " >

lattice the probability of moving in the direction parallel to
the external field(i.e., the positivex direction is B+ (1
—B), while in the direction opposite to the external field and  FIG. 9. Mean square displacements vs the tinie the trans-
also in the transverse directidne., perpendicular to the ex- verse direction(perpendicular to the bixsas a function of the bias
ternal field the probability of jump from one node to another B, for H=0.3.
is (1—B).

We carried out extensive simulations using 9B

Schneider[16] found that f d Ik -
<0.99, and computedRZ(t)) and(Ri(t)). We also calcu- o e, er[16] found that for a random walk on a one

: . dimensional lattice with a special type of the distribution of
2
lated theoverall MSD (R*(t)). When the biasB is very éhe transition ratesi.e., the probabilities of jumping from

small, we expect to recover the behavior fqr .the. unbiase one node to anothgrthe exponenty, varieslog periodically
case, and our simulations indicated that this is indeed thgvith the timet. Seifert and Suessenbaft7], who studied
case. Moreover, if there were no correlations in the syste ' '

then one would expe¢L5] to havea=2, i.e., the motion of r.[Biased diffusion on percolation clusters, found thatvaries

the particles is superdiffusive. Our simulations indicated SMoOthly with log. More recently, Stauffer and Sornette
once again, that there is a qualitative difference betwéen [18] found that biased diffusion on three-dimensional perco-
<1/2 andH>1/2. In the latter case, the behavior of the lation lattices far from the percolation threshold and with
system is similar to the case of no correlations, i.e., the trans=0-95 exhibits the same type of log-periodic variations of
port process is superdiffusive wita=2. However, interest- the effective exponent, with the timet. Such log-periodic

ing results emerge for <1/2. For 0..B<0.99 the MSD  Oscillations have also been observed in many other phenom-
<R§(t)) in the transverse directiofperpendicular to the di-
rection of the biasis asymptotically diffusive, i.e.qr,=1.

Figure 9 presents typical results f()Rf,(t)) obtained with a5l //
various values o8 and H=0.3. On the other hand, the T B i
asymptotic behavior ofR2(t)), the MSD in the longitudinal sl o B=0.990 a,

(biag direction, is superdiffusive. For example, for &B — —— - B=0.993 / /

=<0.99 andH =0.3 we finda=5/3; see Fig. 10 for the typi-
cal results.

D. Log-periodic oscillations

10™ <R (1) >

Simulation of diffusion in some disordered medit6—
18] have indicated that, under certain conditions, the effec-
tive value of the exponent varies smoothly with time, so
that no unique value of this exponent can be defined. More
specifically, if one defines, through E@4), an effective
value «, by

_ d[log(R*(1))]

" ""dlogt ©

thena, is found to be a function of the time, never reaching FIG. 10. Same as in FIG. 9, but for the longitudinal direction
an asymptotic constant value. In particular, Bernasconi anéparallel to the bias
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FIG. 11. The effective exponeni, [see Eq.(9)] vs the loga- FIG. 13. Same as in FIG. 11, but in a stratified medium with an

rithm of the timet in a medium in which the logarithm of the anisotropy factob,=500. The bias i88=0.970.

conductances follows a FBM witH =0.3, with 10% of the lowest

conductances removed. The biasBis 0.930. stratified. Biased diffusion in such a medium represents a

realistic model of transport in many natural disordered me-

ena, ranging from fracture of rockl9] to stock market dia, such as soil and groundwater aquifers. We thus gener-

crashes; see Sornef20] for a comprehensive review of the ated a stratified medium by the same method that was de-

subject. scribed above, and carried out simulation of biased diffusion
We find similar log-periodic oscillations of the exponent jn the medium. Figure 13 presents the results obtained with

ae When the diffusion process is simulated in two completelyg=0.97 andH=0.3. Once again, the effective value of the

different media. In one case, we generated the disorderegkponenta exhibits log-periodic oscillations with the time.

medium by assuming that the logarithms of the conductanceg/e believe that this is an important result in that, to the

follow the statistics of FBM. Then, in the spirit of the work extent that this model simulates transport processes in disor-

of Stauffer and Sornette, we removed a small fractit®?9  dered and stratifiedanisotropi¢ media under the influence

of the bonds, except that, in order to preserve the correlaof an external fieldnoneof the present continuum models of

tions, we did not remove the bonds at random, rather Weransport in such media can predict such a behavior, and
removed 10% of the bonds with the lowest conductances. Weherefore, one must develop new a theoretical framework for

then simulated biased diffusion in this medium using variousexplaining and modeling these results.
values of the bia8. We found that foB=0.93 the effective
value a, varies log-periodically with the time. Figure 11 pre-
sents the results obtained with=0.3. Similar results were
obtained when we removed about 20% of the bonds with the \We have carried out extensive simulations of diffusion in
lowest conductances; see Fig. 12. disordered media with long-range correlations. The correla-

A much more realistic model is one in which the system istions are generated by a fractional Brownian motion and are
characterized by a Hurst expondiit Our two most impor-
tant results are as follows.

(1) There is a qualitative difference between the behavior
0.08 of the transport process witH>1/2 andH<1/2. While in
the former case diffusion is Fickian, the later case represents
a system that gives rise to non-Fickian diffusion. In a sense,
this is consistent with the simulation of percolation in sys-
tems with the type of long-range correlations that is used
0.06L here. Knackstedt, Sahimi, and Sheppat] showed that for
H>1/2 the percolation clusters are compact and nonfractal,
whereas foH < 1/2 one obtains fractal structures with fractal
0.05 dimensions that depend on the Hurst exporiént

(2) Depending on the morphology of the medium, one
may have anomalous or superdiffusive transport. Previous
5 s & & simulations of diffusion in fractal systems always yielded
' log t anomalous diffusion. In addition, biased diffusion in aniso-

* tropic media with long-range correlations is characterized by

FIG. 12. Same as in FIG. 11, but with about 20% of the lowestan effective value of the exponent that characterizes the

conductances removed. power-law growth of the mean square displacements with the

V. SUMMARY

0.07 -

effective exponent

0.04 -
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