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Diffusion in disordered media with long-range correlations: Anomalous, Fickian,
and superdiffusive transport and log-periodic oscillations
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We present the results of extensive Monte Carlo simulation of diffusion in disordered media with long-range
correlations, a problem which is relevant to transport of contaminants in field-scale porous media, such as
aquifers, gas transport in soils, and transport in composite materials. The correlations are generated by a
fractional Brownian motion characterized by a Hurst exponentH. For H.1/2 the correlations appear to have
no effect, and the transport process is diffusive. However, forH,1/2 and depending on the morphology of the
medium, three distinct types of transport processes, namely, anomalous, Fickian, and superdiffusive transport
may emerge. Moreover, if the medium is anisotropic and stratified, biased diffusion in it is characterized by
power-law growth of the mean square displacements with the time in which the effective exponents charac-
terizing the power-law oscillates log periodically with the time. This result cannot be predicted by any of the
currently available continuum theories of transport in disordered media.
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I. INTRODUCTION

Transport processes in disordered media constitute an
portant class of problems, in view of their relevance to
modeling of a wide variety of phenomena in natural a
industrial processes. A partial list of their applications
cludes flow and transport phenomena in porous media,
fusion in soil and through biological tissues, conducti
through composite solids, and many more. Many transp
processes in heterogeneous media are nonlocal in the s
that, they involve long-range correlations. By long range
mean the correlation length is comparable with the lin
extent of the medium. Such correlations either exist in
morphology of the heterogeneous media, or are induced
the transport proceses themselves. A well-known exampl
the first type of long-range correlations is those that exis
geological formations@1#. An example of the second type o
long-range correlations is those that arise in vector trans
in rigidity percolation, or in mechanical fracture of materia
@2,3#. Nonlocal transport processes are highly complex a
often, because of the long-range correlations, a continu
formulation of them is not possible or even meaningful.

However, despite their significance, most of the transp
processes in disordered media that have been studied
the past several decades involve no correlations, or at m
short-range correlations. Geometrical fractals, such as
sample-spanning percolation cluster~SSPC! at the percola-
tion threshold@4,5# pc do induce long-range correlations, an
transport in such systems has been studied extensively@6#.
However, long-range correlations in the SSPC atpc are due
to the poor connectivity of the cluster that gives rise to t
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tuous transport paths. Diffusion and other forms of molecu
transport in a well-connected disordered medium~i.e., one
far from the percolation threshold! in which there exist long-
range correlations in the distribution of the local ormicro-
scopic transport properties, have received much less at
tion. The interest in such problems is more than academ
They are in fact relevant to modeling of a variety of pheno
ena of practical importance. For example, as mentioned
lier, geological formations, such as soil, oil reservoirs, a
groundwater aquifers have been shown to contain such
relations@1#. Thus, for example, understanding of diffusio
of gases in soil is an important problem that is essentia
minimizing the potential hazards to the environment th
arise as a result of migration of polluting gases in so
Groundwater aquifers are usually contaminated by trans
of pollutants that spreads the hazardous materials in the
tem. Many other systems of scientific and industrial imp
tance involve long-range correlations@7#, and thus study of
diffusion and other types of transport processes in them
essential.

The purpose of this paper is to study diffusion in a dis
dered medium that is characterized by a distribution of lo
conductances that contains long-range correlations. Our m
interest in this problem is to understand whether diffusion
pollutants in soil can be modeled by the classical diffus
equation with a constant diffusivity, or whether the presen
of the correlations gives rise to a nonlocal transport proc
at the macroscopic level that cannot be represented by
diffusion equation. In the latter case, one must develop
appropriate transport equation.

The plan of this paper is as follows. In the followin
section, we describe the model of the disordered medium
its conductance distribution. We then describe the details
Monte Carlo simulations that we utilize to study diffusion
the medium. In Sec. IV, we present the results and disc
their implications. Section V contains a summary of t
results.
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II. GENERATION OF LONG-RANGE CORRELATIONS

We represent the disordered medium by a square lattic
which the bonds represent the transport paths. Each bon
assigned a conductanceg. To assign the bond conductanc
and generate long-range correlations between them, we
the following two methods.

~1! In the first method, we assume that the distribution
the conductances is a fractional Brownian motion~FBM!.
This assumption is based on the discovery that the stati
of the permeabilities and hydraulic conductances of oil r
ervoirs @8#, groundwater aquifers@9#, and soils@1# follow a
FBM. Briefly, the FBM is a stochastic processBH(r ) @10#
with the properties that̂BH(r )2BH(r0)&50, and

^@BH~r !2BH~r0!#2&;ur2r0u2H, ~1!

where r5(x,y,z) and r05(x0 ,y0 ,z0) are two arbitrary
points in space, andH is the Hurst exponent. The main prop
erty of the FBM is that it generates correlations with
extent that isinfinite ~i.e., the extent of the correlations is a
large as the linear size of the system!. Moreover, the type of
the correlations can be tuned by varyingH. For H.1/2 the
FBM displays persistence or positive correlations, i.e.
trend~for example, a high or low value of the conductance!
at r is likely to be followed by a similar trend atr1Dr ,
whereas forH,1/2 the FBM generates antipersistence
negative correlations, i.e., a trend atr is likely to be followed
by its opposite atr1Dr . ForH51/2 the trace of the FBM is
similar to that of a random walk and the increments are
correlated. A convenient way of representing a stocha
function is through its spectral densityS(v), the Fourier
transform of its variance. For ad-dimensional FBM it can be
shown that@10#

S~v!5
a0

S (
i 51

d

v i
2D H1d/2 , ~2!

where v5(v1 ,...,vd), with v i being the Fourier compo
nent in thei th direction, anda0 is a constant. The variance o
the FBM depends on the size of the system, and diverges
a large enough system. Thus, the broadness of the con
tance distribution with FBM-type correlations increases w
the size of the system. Note that the correlation funct
C(r ) of the FBM is given by

C~r !2C~0!;r 2H, ~3!

so that as long asH.0, which is physically the case, th
correlation functionincreaseswith increasingr.

~2! In the second case, we assume that logg follows the
statistics of the FBM. The reason for this assumption is th
it has been shown@11# that the distribution of the permeabil
ties and hydraulic conductances of some porous media i
broad that cannot be described by a FBM, rather the lo
rithm of the conductances seem to follow the FBM. The
fore, this case represents a disordered medium with a
broad distribution of the conductances which, however, c
tains long-range correlations.
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III. MONTE CARLO SIMULATION

We used the power spectrum method to generate the F
distribution. All of the results presented in this paper we
obtained with 102431024 lattices. This size of the lattic
gives rise to a conductance distribution the broadness
which is about 2–3 orders of magnitude variations in t
bonds’ conductances. Periodic boundary conditions w
used in all the directions. The diffusion process was sim
lated by the random walk of a particle that is initially~at time
t50! inserted into the lattice at a randomly selected site. T
particle executes a random walk between the nearest ne
bor sites of the lattice. Each step of the walk from one site
another is taken with a transition probability proportional
the conductance of the bond between the two sites. A
each step, the timet is increased by one unit. The mea
square displacements~MSD! ^R2(t)& of the walkers at timet
are computed, where the averaging is taken over the in
positions of the walkers, and the different realizations of
lattice. Typically, we used 4000 walkers~i.e., 4000 initial
positions! and 40 realizations of each of the conductan
distributions. All the random walkers took 23106 steps~i.e.,
the MSD were computed up to timet523106!. Moreover,
to study the effect of the nature of the correlations, we u
several values of the Hurst exponentH.

To characterize the diffusion process, we write the MS
of the particles as

^R2~ t !&;ta, ~4!

where Dw52/a is the fractal dimension of the walk@6#.
Normally, depending on hoŵR2(t)& grows witht, one may
have three distinct transport regimes.~1! Dw52, i.e.,^R(t)2&
grows linearly witht, and therefore diffusion is Fickian, i.e
the effective diffusivityD, defined by^R2(t)&52Ddt ~d is
the dimensionality of the system!, is a constant.~2! Dw.2,
which implies that̂ R2(t)& grows witht slower than linearly.
In this case diffusion is called anomalous@6,12# or fractal
@13#. In this regime,D→0 ast→`. Diffusion in geometrical
fractals, such as the SSPC, is anomalous.~3! If Dw,2, then
^R2(t)& grows with t faster than linearly. This type of trans
port process is calledsuperdiffusion@14#; in this case,D
→` as t→`. The results presented below indicate that d
ordered media of the type that we study in this paper
only can give rise to these three types of diffusion proces
but also to a new type in which the random walk frac
dimensionDw varies with the time.

IV. RESULTS AND DISCUSSIONS

We have carried out extensive simulations of diffusion
disordered media of the type described above with a var
of conductance distributions and morphologies. In what f
lows we present the results and discuss their implication

A. Isotropic media

Figure 1 presents the MSD vs the timet for three values
of H. In these systems, the conductance distribution is r
resented by the FBM. Analysis of the results based on Eq.~4!
6-2
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DIFFUSION IN DISORDERED MEDIA WITH LONG- . . . PHYSICAL REVIEW E 65 036116
indicates that for all values ofH, even at relatively shor
times, diffusion is Fickian, i.e.,a51 (Dw52). Consider
next the case in which the logarithm of the bonds’ cond
tances follows the FBM. Figure 2 presents the results.
short times, diffusion is anomalous for all values ofH, as
expected. However, while forH.0.5 the long time behavio
of the diffusion process approaches the Fickian regime,
H,0.5, it is not; instead it is anomalous witha,1. To ob-
tain the true asymptotic values ofa(H), we fit the MSD data
to Eq. ~4! using the data witht>t0553105 and obtain an
estimate ofa. We then fit the data to Eq.~4! again but with
t>t05106 and obtain a second estimate ofa. By increasing

FIG. 1. Mean square displacements^R2(t)& vs the timet for
three values of the Hurst exponentH. The conductances are distr
uted according to the FBM.

FIG. 2. Same as in FIG. 1, except that the logarithm of
conductances follows the FBM statistics.
03611
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t0 we obtain a series ofa, which when extrapolated tot0
→`, yields the true asymptotic value ofa. When this was
done for all the data obtained forH.1/2, we always ob-
taineda51, whereas we obtaineda.0.81, 0.89, and 0.97
for H50.1, 0.3, and 0.5, respectively. The caseH51/2 rep-
resents a borderline limit, indicating that diffusion is almo
Fickian.

To understand these results better, we define a con
tance thresholde, where e is defined as a fraction of the
largest bond conductance in the system, and prepare a
of the local conductances. Figure 3 presents the results
H50.3, while Fig. 4 shows the same forH50.8, where the
samee was used in both cases. In these figures, all the c
ductances that are less thane are shown as the black area
while those that are larger thane represent the white regions
In the case of theH50.8 system, there are well-connecte
but separated, regions of the low- and high-conductance
gions. Therefore, if the number of the particles and the sim
lation times are both large enough, one expects asymp
cally Fickian diffusion, consistent with our numerica
estimate ofa51. In contrast, in the case ofH50.3 ~Fig. 3!
most of the medium consists of islands of very low condu
tances dispersed in the high-conductance patches. Thus

e

FIG. 3. The map of the conductance distribution withH50.3.
All the low conductances~smaller than a fixed threshold! are black.

FIG. 4. Same as in FIG. 3, but forH50.8.
6-3
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M. SAADATFAR AND MUHAMMAD SAHIMI PHYSICAL REVIEW E 65 036116
vast majority of the particles begin their diffusion in the low
conductance islands, and can hardly escape from them
long periods of time, as a result of which diffusion is slo
and anomalous.

Next, we introduce a cutoff length scalel c for the extent
of the correlations, and study its effect. To includel c in the
conductance distribution, we rewrite the spectral density
FBM as

S~v!5
a0

S vc1(
i 51

d

v i
2D H1d/2 , ~5!

wherevc51/l c
2. Thus, for length scalesL, l c the conduc-

FIG. 5. Mean square displacements vs the timet for three cutoff
lengthsl c for the correlations. The logarithm of the conductanc
follows the FBM statistics withH50.3.
03611
for

f

tances are correlated and follow the statistics of FBM, wh
for L. l c they are uncorrelated and randomly distributed. W
may expect to have Fickian diffusion when^R2(t)&1/2@ l c ,
while in the opposite case we should have anomalous di
sion. Figure 5 presents the resulting MSD vs timet for H
50.3 and three values of the cutoff length scale~measured in
units of the lattice bonds!, when the logarithm of the conduc
tances follow FBM. Analysis of the data for the MSD ind
cates that in all the cases the asymptotic value ofa is unity,
confirming our expectations. The main difference betwe
the three cases studied is the rate of convergence of the t
port process to the asymptotic Fickian regime: While
small values ofl c diffusion of the particles quickly become
Fickian, in the case of large values ofl c it takes a long time
to reach the Fickian regime. The crossover between the F
ian and anomalous diffusion regime should take place a
crossover timel c such that

tc; l c
2. ~6!

Figure 6 presents a plot of logtc vs loglc , which indicates
that tc; l c

b with b.1.9160.10, consistent with Eq.~6!. The
significance of Eq.~6! is that, if measurements of the tran
port properties of such disordered media are done at timt
,tc , the resulting transport coefficients would be time d
pendent, and therefore, it is critical to identify the extent
the correlations in heterogeneous media in order to en
that the measurements are carried out at sufficiently l
times after the diffusants have been introduced into them

B. Anisotropic media

We also investigated diffusion in anisotropic disorder
media that contain long-range correlations. There are sev
ways of generating an anisotropic medium. For example,
distribution of the bonds’ conductances may be direction
pendent. Alternatively, one may consider disordered me
that are stratified and contain a distribution of layers w

s

FIG. 6. Scaling of the crossover timetc with
the cutoff length scalel c . The results are forl c

510(L), l c5100(h), and l c5250(s).
6-4
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FIG. 7. Two typical aniso-
tropic media with two anisotropy
factors bx and H50.7. Note that
increasingbx increases stratifica-
tion.
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large conductance contrasts between the layers. Such d
dered media, which are anisotropic, are used in this st
Our use of such disordered media is motivated by the
that many natural disordered media, such as rock, oil re
voirs, and groundwater aquifers are typically layered. In
dition, many semiconducting materials, such as the family
dichalcognides of transition metalsTX2 have a layered mor
phology, and therefore are highly anisotropic in that, th
contain a preferred direction for conduction and transport.
generate a stratified medium, we use the spectral repres
tion of FBM, and rewrite it as

S~v!5
ad

~bxvx
21vy

2!H1d/2 , ~7!

wherebx is a constant, such thatbx.1 generates strata tha
are essentially parallel to each other in the direction perp
dicular to thex direction. Figure 7 presents two examples
such anisotropic disodered media, where thex direction is
the horizontal direction of the figure, and the logarithm of t
conductances follows the statistics of FBM withH50.3.
Note that increasingbx increases the number of strata of t
medium. Because of the anisotropy of the medium, we m
calculate MSD separately for each principal direction, so t
we write

^Rx
2~ t !&;tax, ^Ry

2~ t !&;tay. ~8!

Our simulations indicate that forH.1/2 diffusion in
these anisotropic media is Fickian. However, forH,1/2, the
extent of stratification greatly influences the nature of
transport process. When the number of strata is small,
when the system is almost isotropic, diffusion in both dire
tions is not Fickian, in agreement with the results for isot
03611
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pic media described above. Figure 8 presents the typ
MSD in the x and y directions, and analysis of these da
indicated thatax,1 anday,1. However, as the number o
the strata increases, the nature of transport in the two di
tions becomes very different. In they direction, i.e., parallel
to the strata, diffusion is not Fickian, since when the num
of the strata is large, each stratum is a narrow, essent
one-dimensional and highly disordered channel, and th
fore, one expects to have non-Fickian diffusion@7#. For ex-
ample, forH50.3 we obtainay.0.88. However, diffusion

FIG. 8. Mean square displacements vs time in the direction p
pendicular to the strata~the x direction! and parallel to the strata
~the y direction! with anisotropy factorbx510.
6-5
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M. SAADATFAR AND MUHAMMAD SAHIMI PHYSICAL REVIEW E 65 036116
in the x direction, i.e., in the direction perpendicular to th
strata is still Fickian.

C. Biased diffusion

We now consider the effect of an external field on t
diffusion process. The external field can be an electric fie
as in composite materials, or a pressure gradient, as in
in a porous medium. The external field induces bias in
motion of the diffusants and generates a preferred direc
for the transport process. In principle, the preferred direct
changes locally~dynamically!, but at the macroscopic scal
it is parallel to the direction of the external field. Thus, t
simplest way of investigating the effect of the external fie
is to bias the motion of the particles in a particular directi
@15#, say thex direction, so that the probability that the pa
ticles move in this direction is higher than the other dire
tions. Hence, we introduce a biasB so that in the square
lattice the probability of moving in the direction parallel
the external field~i.e., the positivex direction! is B1 1

4 (1
2B), while in the direction opposite to the external field a
also in the transverse direction~i.e., perpendicular to the ex
ternal field! the probability of jump from one node to anoth
is 1

4 (12B).
We carried out extensive simulations using 0.1<B

<0.99, and computed̂Rx
2(t)& and ^Ry

2(t)&. We also calcu-
lated theoverall MSD ^R2(t)&. When the biasB is very
small, we expect to recover the behavior for the unbia
case, and our simulations indicated that this is indeed
case. Moreover, if there were no correlations in the syst
then one would expect@15# to havea52, i.e., the motion of
the particles is superdiffusive. Our simulations indicat
once again, that there is a qualitative difference betweeH
,1/2 and H.1/2. In the latter case, the behavior of th
system is similar to the case of no correlations, i.e., the tra
port process is superdiffusive witha52. However, interest-
ing results emerge forH,1/2. For 0.1<B<0.99 the MSD
^Ry

2(t)& in the transverse direction~perpendicular to the di-
rection of the bias! is asymptotically diffusive, i.e.,ay51.
Figure 9 presents typical results for^Ry

2(t)& obtained with
various values ofB and H50.3. On the other hand, th
asymptotic behavior of̂Rx

2(t)&, the MSD in the longitudinal
~bias! direction, is superdiffusive. For example, for 0.1<B
<0.99 andH50.3 we finda.5/3; see Fig. 10 for the typi-
cal results.

D. Log-periodic oscillations

Simulation of diffusion in some disordered media@16–
18# have indicated that, under certain conditions, the eff
tive value of the exponenta varies smoothly with time, so
that no unique value of this exponent can be defined. M
specifically, if one defines, through Eq.~4!, an effective
valueae by

ae5
d@ log^R2~ t !&#

d log t
, ~9!

thenae is found to be a function of the time, never reachi
an asymptotic constant value. In particular, Bernasconi
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Schneider@16# found that for a random walk on a one
dimensional lattice with a special type of the distribution
the transition rates~i.e., the probabilities of jumping from
one node to another!, the exponentae varieslog periodically
with the time t. Seifert and Suessenbach@17#, who studied
biased diffusion on percolation clusters, found thatae varies
smoothly with logt. More recently, Stauffer and Sornet
@18# found that biased diffusion on three-dimensional per
lation lattices far from the percolation threshold and withB
>0.95 exhibits the same type of log-periodic variations
the effective exponentae with the timet. Such log-periodic
oscillations have also been observed in many other phen

FIG. 9. Mean square displacements vs the timet in the trans-
verse direction~perpendicular to the bias!, as a function of the bias
B, for H50.3.

FIG. 10. Same as in FIG. 9, but for the longitudinal directi
~parallel to the bias!.
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DIFFUSION IN DISORDERED MEDIA WITH LONG- . . . PHYSICAL REVIEW E 65 036116
ena, ranging from fracture of rock@19# to stock market
crashes; see Sornette@20# for a comprehensive review of th
subject.

We find similar log-periodic oscillations of the expone
ae when the diffusion process is simulated in two complet
different media. In one case, we generated the disord
medium by assuming that the logarithms of the conductan
follow the statistics of FBM. Then, in the spirit of the wor
of Stauffer and Sornette, we removed a small fraction~10%!
of the bonds, except that, in order to preserve the corr
tions, we did not remove the bonds at random, rather
removed 10% of the bonds with the lowest conductances.
then simulated biased diffusion in this medium using vario
values of the biasB. We found that forB>0.93 the effective
valueae varies log-periodically with the time. Figure 11 pre
sents the results obtained withH50.3. Similar results were
obtained when we removed about 20% of the bonds with
lowest conductances; see Fig. 12.

A much more realistic model is one in which the system

FIG. 11. The effective exponentae @see Eq.~9!# vs the loga-
rithm of the time t in a medium in which the logarithm of the
conductances follows a FBM withH50.3, with 10% of the lowest
conductances removed. The bias isB50.930.

FIG. 12. Same as in FIG. 11, but with about 20% of the low
conductances removed.
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stratified. Biased diffusion in such a medium represent
realistic model of transport in many natural disordered m
dia, such as soil and groundwater aquifers. We thus ge
ated a stratified medium by the same method that was
scribed above, and carried out simulation of biased diffus
in the medium. Figure 13 presents the results obtained w
B50.97 andH50.3. Once again, the effective value of th
exponenta exhibits log-periodic oscillations with the time
We believe that this is an important result in that, to t
extent that this model simulates transport processes in d
dered and stratified~anisotropic! media under the influence
of an external field,noneof the present continuum models o
transport in such media can predict such a behavior,
therefore, one must develop new a theoretical framework
explaining and modeling these results.

V. SUMMARY

We have carried out extensive simulations of diffusion
disordered media with long-range correlations. The corre
tions are generated by a fractional Brownian motion and
characterized by a Hurst exponentH. Our two most impor-
tant results are as follows.

~1! There is a qualitative difference between the behav
of the transport process withH.1/2 andH,1/2. While in
the former case diffusion is Fickian, the later case repres
a system that gives rise to non-Fickian diffusion. In a sen
this is consistent with the simulation of percolation in sy
tems with the type of long-range correlations that is us
here. Knackstedt, Sahimi, and Sheppard@21# showed that for
H.1/2 the percolation clusters are compact and nonfrac
whereas forH,1/2 one obtains fractal structures with fract
dimensions that depend on the Hurst exponentH.

~2! Depending on the morphology of the medium, o
may have anomalous or superdiffusive transport. Previ
simulations of diffusion in fractal systems always yield
anomalous diffusion. In addition, biased diffusion in anis
tropic media with long-range correlations is characterized
an effective value of the exponenta, that characterizes the
power-law growth of the mean square displacements with
t

FIG. 13. Same as in FIG. 11, but in a stratified medium with
anisotropy factorbx5500. The bias isB50.970.
6-7
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time, which itself varies log periodically with the time. Th
type of transport process is important from a practical po
of view, as it models diffusion of gases in soils and transp
of tracers in flow through groundwater aquifers. Howev
log periodicity of the effective exponenta cannot be pre-
dicted by any of the currently available continuum mode
and therefore, new theoretical frameworks must be de
oped in order to explain and predict their properties.
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