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Three-state cyclic voter model extended with Potts energy
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Research Institute for Technical Physics and Materials Science, P. O. Box 49, H-1525 Budapest, Hungary

~Received 12 October 2001; published 12 February 2002!

The cyclically dominated voter model on a square is extended by taking into consideration the variation of
Potts energy during the nearest neighbor invasions. We have investigated the effect of surface tension on the
self-organizing patterns maintained by the cyclic invasions. A geometrical analysis is also developed to study
the three-color patterns. These investigations clearly indicate that in the ‘‘voter model’’ limit the pattern
evolution is governed by the loop creation due to the overhanging during the interfacial roughening. Con-
versely, in the presence of surface tension the evolution is governed by spiral formation whose geometrical
parameters depend on the strength of cyclic dominance.

DOI: 10.1103/PhysRevE.65.036115 PACS number~s!: 02.50.2r, 05.50.1q, 87.23.Cc
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I. INTRODUCTION

In systems with several species~particles, opinions, etc.!
the cyclic invasion processes can maintain a self-organiz
domain structure. Although this phenomenon is investiga
extensively in different areas, such as the chemical react
on crystal surfaces@1,2#, biological ~Lotka-Volterra! systems
@3–6#, Rock-Scissors-Paper~RSP! games in evolutionary
game theories@7#, and cyclically dominated voter mode
@8–10#, the mechanism sustaining the polydomain pattern
not well understood. At the same time, this type of spa
self-organizations is believed to play crucial role in the b
logical evolution@11# and it can provide protection for th
participants against some external invaders@12,13#.

One of the simplest models exhibiting variations in a se
organizing domain structure was introduced by Tainaka
Itoh @8,9#. In this cyclically dominated voter model, thre
states (A, B, andC) are permitted on the sites of a squa
lattice. The system evolution is governed by the iteration
invasions between two randomly chosen nearest neighb
The probability of each invasion process is independen
the location of neighboring sites and the invasion rates refl
cyclical ~uniform! dominance. The strength of dominan
was characterized by the difference of probabilities betw
two opposite invasions~e.g.,AB→AA andAB→BB). In the
absence of cyclical dominance this system is equivalen
the voter model@15,16# exhibiting growing domains whos
correlation length is proportional toAt if the system is
started from a random initial state. Contrary, for the spa
RSP gameA beatsB beatsC beatsA and these deterministi
rules sustain a self-organizing, three-color polydomain str
ture in which the linear domain size can be characterized
a correlation length ofj.2.5 ~measured in lattice units!.
Tainaka and Itoh have shown that the typical domain s
diverges when the cyclical dominance tends to zero@8#.
Their numerical analysis is focused on the density of vorti
that are defined by those points of a three-color map wh
the three states~domain walls! meet. In fact, one can distin
guish vortices and antivortices~rotating clockwise and coun
terclockwise! and they are created and annihilated in pa
during the evolution of domain structure. According to t
early Monte Carlo~MC! simulations the vortex density van
1063-651X/2002/65~3!/036115~7!/$20.00 65 0361
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ishes algebrically when decreasing the strength of cy
dominance@8#.

In the above system the domain walls separating two
mogeneous domains are very irregular. This irregularity p
vents the observation of expected spirals to be formed by
rotating vortex arms for smooth interfaces@9,14#. In the ab-
sence of cyclic invasion~and related vortex rotation! some
features of the rough interfaces are already studied by sev
authors considering the two-state voter model@15–20#. In
the presence of cyclic invasion, however, the topological a
geometrical features of domain structure are not yet inve
gated rigorously even for smooth interfaces. Very recen
some geometrical features and drift of a single spiral wa
are studied by using a continuous reaction-diffusion mo
@21,22#.

In the voter models the irregular interfaces are created
random invasions that are not influenced by the neighb
hood. Smoother interfaces are observed for many other
tems where the local change is directly affected by the ne
borhood. The Potts models represent the simplest descrip
of such a phenomenon. This is the reason why we have
troduced a model where the nearest neighbor invasion is
fected by an interfacial~Potts! energy@23,24# whose strength
is controlled by an additional parameter. Investigating t
model we can study the effect of surface tension on the s
organizing domain structures maintained by cyclic invasio
on a square lattice. Performing systematic MC simulatio
we have determined the vortex density and interfacial ene
in different stationary states. In order to have a deeper
more quantitative insight into the domain structure we ha
developed a method to study some geometrical feature
the interfaces. This analysis throws light on some relev
geometrical features of the emerging domain structure
confirms the necessity of these types of sophistica
approaches.

II. THE MODEL

We consider a square lattice where at each sitex5( i , j ) ( i
andj are integers! there is a state variable with three possib
states, namely,sx50,1,2. The Potts energy for a configur
tion s5$sx% is defined as
©2002 The American Physical Society15-1
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H52 (
^x,y&

@d~sx ,sy!21#, ~1!

where the summation runs over the nearest neighbor
andd(s,s8) indicates the Kronecker’sd @23,24#. Notice that
the coupling constant is chosen to be energy unit. In
present form the Potts energy measures the length of equ
lent interfaces~in lattice unit a51) separating the thre
types of domains and its inverse estimates the average
main radius@25#. Evidently, in the threefold degenerated~ho-
mogeneous! ground stateH50.

The configuration evolves in time according to eleme
tary invasions between two nearest neighbor sites (x andy)
chosen randomly. More precisely, a pair of neighboring s
variables (sx ,sy) ~assumingsxÞsy) transforms into (sy ,sy)
with a probability

G@~sx ,sy!→~sy ,sy!#5
1

11exp~KDH1PD!
, ~2!

where

DH5H f2H i ~3!

is the energy difference between the final and initial sta
andK, as an inverse temperature, controls the effect of P
energy on this single site flip. The second term in the ar
ment of exponential function describes the cyclic domina
with a strengthP, where

D5H 11 if sx5~sy11! mod 3,

21 if sx5~sy12! mod 3.
~4!

In the caseK50 the present model is equivalent to tho
introduced by Tainaka and Itoh@8#. Evidently, the ordinary
three-state voter model is reproduced ifP50 and K50.
Furthermore, the limitP→` ~for uKu,P) represents the de
terministic RSP game. ForK.0, however, the interfaces be
come more smooth because the present dynamics suppr
those elementary processes that increase the interf
~Potts! energy.

We have to emphasize that forP50 this system exhibits
domain growth independently of the value ofK. Further-
more, in the present model the new state at a given
should be equivalent to one of the neigboring one. T
means that the changes are localized along the bound
separating the homogeneous domains.

Notice that the above rules conserve the cyclic symme
among the three states. As a result, in a sufficiently la
system the three states are present with the same proba
(1/3). For small system, however, one of the species
become extinct due to the effect of fluctuations and fina
the system evolves toward one of the three~homogeneous!
absorbing states. Henceforth our analyses will be restric
to the large system limit that is provided by choosing t
system size to be much larger than any length character
to the corresponding pattern.

The above model is investigated by MC simulations un
periodic boundary conditions on a square lattice consis
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of N5L3L sites. The system is started from a random i
tial state where the three states are present with equal p
abilities. During the simulations we have recorded the nu
ber of vortices and antivortices defined above. For t
purpose we have counted those 232 block configurations
containing all the three possible states@8–10#. After a suit-
able transition time we have determined the average vo
density as well as its fluctuation defined in Ref.@10#. The
system size is varied fromL5400 to 2000 to have suffi-
ciently large number of vortices in the stationary states. T
numerical results of vortex densities are summarized i
log-log plot as demonstrated in Fig. 1.

If P@max(K,1) then the dynamics is governed by th
deterministic RSP rule that maintain a self-organizing st
with small domain sizes (j.2.5) as mentioned above. Con
sequently the vortex density becomes independent ofK for
sufficiently large values ofP as demonstrated in Fig. 1.

In the caseK50 theP dependence of vortex density ca
be well described by a power law, namely,rv.Pb within the
range 0.003,P,0.3. The best fit is found forb50.29(1)
confirming our previous result@10#. At the same time Fig. 1
clearly demonstrates that the vortex density is dramatic
reduced when the interfacial energy is switched on. FoK
51 the MC data can be well approximated by another pow
law with an exponentb52.05(9). It should be emphasize
that within the statistical error our data are consistent wit
quadratic behavior. Similar behavior can be conjectured fr
the trends represented by MC data for lowerK in Fig. 1.
Unfortunately, we could not confirm this expectation by d
termining the leading term in theP dependence of vortex
density for lowerK values because this analysis requires
tremely long run time and large sytems. Just to indicate
difficulties, the determination of a data point at low vorte
densities has required more than four-week run time on a
PC. We think that further numerical analyses are necessa
justify ~or modify! the above conjecture.

Due to the long run times we could derive the vort
density fluctuations (x) with an adequate accuracy. As dem
onstrated in Fig. 2, the numerical data indicate the div
gence of the vortex density fluctuation in the absence of
terfacial energy (K50). Within the investigated region, thi

FIG. 1. Vortex densities as a function ofP for K51 ~closed
triangles!, 1/4 ~open triangles!, 1/16 ~closed squares!, 1/64 ~open
squares!, and 0 ~pluses!. The solid line shows the predicted powe
law behavior ifK50. The dashed line~with a slope of 2.05! indi-
cates the best power law fit forK51.
5-2
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THREE-STATE CYCLIC VOTER MODEL EXTENDED . . . PHYSICAL REVIEW E65 036115
fluctuation can be approximated asx;P2g with g
50.3(1) in good agreement with a previous result@10#.

In the presence of interfacial energy (K.0) the vortex
density fluctuation vanishes withP as indicated in Fig. 2.
The vortex density fluctuation seems to be proportiona
the vortex density for sufficiently lowrv . Similar features
have been found for some systems of particles and anti
ticles performing branching annihilating random wal
@14,10#. This is the reason why we have reinvestigated
parallel drawn between the vortex dynamics in pres
model and a system of particles and antiparticles as s
gested in Ref.@10#. According to a simple idea the rotatin
vortices form spirals whose long and narrow arms enha
the probability of the creation of a new vortex-antivort
pair. The movement of vortices can be well approximated
a random walk on a lattice. Furthermore, the vortex and
tivortex annihilate each other when meeting at the same
during their random walks. The balance between the ann
lation process and pair creation yields an average conce
tion in the stationary state. Within the framework of a simp
mean-field analysis~details are given in Ref.@10#! the qua-
dratic behavior of vortex density (rv.P2) can be explained
if we assume that the pair creation is proportional toPrv

3/2 or
P2rv . From the view-point of vortex dynamics, howeve
both possibilities demand a better understanding about
relationship between the creation of vortex-antivortex pa
and the geometry of interfaces.

As mentioned above the total length of interfaces
equivalent to the Potts energy defined by Eq.~1!. By this
means we could easily determine the expected value of
interfacial energy per sites,

E5
1

N
^H&, ~5!

where ^•••& indicates the average over the sampling tim
The results of our simulations are summarized in a log-
plot ~see Fig. 3!.

At the first glance theP andK dependences of the vorte
density and Potts energy seem to be very similar. Howe
the detailed numerical analysis gives different values for

FIG. 2. Fluctuation of vortex density versusP for different K
values denoted by the same symbols as in Fig. 1. The solid
indicates the fitted power law divergency in the absence of inte
cial energy.
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exponents when fitting a power law (E5aPa) for small P
values. Namely, we have obtaineda50.08(2) and 1.3~1! for
K50 and 1, respectively.

If the convex domains are separated by approxima
straight boundaries thenb52a is expected as it is found fo
some other models@26#. The deviation from this behavio
reflects the importance of curved interfaces due to vor
rotation.

The self-organizing domain structure shows striking d
ferences depending on whether the interfacial energy
switched on or not. For the sake of illustration two typic
patterns are shown in Figs. 4 and 5. In the absence of in
facial energy (K50) the nearest neighbor invasions yie
irregular boundaries whose overhanging results in small
lands ~loops!. Their random motion, extension, shrinkin
splitting, and fission seem to play crucial roles in the patt
evolution as well as for the three-state voter model. In t
former case (P50), however, these elementary events a
not able to prevent the growth of domains whose charac
istic linear size increases with time asAt @19#.

Choosing a particular initial state, it is already demo
strated that the cyclic dominance drives the vortex rotat
~for P.0) which is accompanied by spiral formation@9,10#.

e
-

FIG. 3. Average Potts energy per sites as a function ofP for the
same values ofK plotted in Fig. 1. The solid and dashed line
indicate the slopes of 0.08 (K50) and 1.3 (K51).

FIG. 4. Typical part (50350) of snapshot in a larger system fo
K50 andP50.01.
5-3
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GYÖRGY SZABÓAND ATTILA SZOLNOKI PHYSICAL REVIEW E 65 036115
In Fig. 4 the rotating spirals are not recognizable due to
irregular interfaces. However, the spiral formation becom
visible when the interfacial roughness is reduced by the
face tension as demonstrated in Fig. 5.

In Fig. 5 one can easily identify the vortices and antiv
tices rotating clockwise and counterclockwise, respectiv
This rotation creates spirals because the average inva
velocity is constant. We have to emphasize that this pat
cannot be characterized by a single length unit~e.g., corre-
lation length! because the main features of spirals~arm-
length, average curvature, average distance, etc.! depend on
the model parameters. This is the reason why we have
veloped a method to study some geometrical features
three-color maps on a square lattice.

III. GEOMETRICAL ANALYSES

On a three-color, continuous, planar map the domains
separated by three types of smooth boundaries. Dedic
points are the vertices where three or more boundaries m
If such a map evolves smoothly then the appearance of
tices with more than three edges becomes negligible. T
our analysis can be restricted to those maps that contain
three-edge vortices and antivortices. However, as we s
later, the qualitative feature of the system remains unaffec
if four-leg vertices are not ignored. One can easily check t
these vortices and antivortices are positioned alterna
along domain boundaries@10#. Our geometrical analysis wil
be focused on determining the average value of arclen
rotation of tangent vector, and curvature for those bounda
connecting a vortex and an antivortex. Henceforth the ro
ing vertex is called vortex.

On a square lattice the boundaries are polygons consis
of unit length parts whose tangential rotation may beDf
56p/2 and 0. For a given vortex edge the tangential ro
tion is determined by summarizing these quantities step
step along the edge from a vortex to the connected anti
tex. At the same time arclength is also obtained as the n

FIG. 5. Spiral formation sustained by the rotating vortices a
antivortices is recognizable on a 2003200 part of a larger system
for K51/2 andP50.3.
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ber of steps. The elementary step is based on the identi
tion of the 232 block configurations. This algorithm
assumes that first we have determined the vortex positi
To reduce the statistical error this procedure was repe
many times during the simulations.

The above algorithm is well defined if the three-color p
tern is free of four-edge vertices. Unfortunately, the inves
gated self-organizing patterns contain undesired four-e
vertices~see Figs. 4 and 5!. Some of them~involving all the
three states! can be considered as a vortex-antivortex p
just before their annihilation or after their creation@10#. The
others involve only two states and make the paths~from
vortex to antivortex! indefinite. Both types can be remove
by executing an invasion through one of the random
choosen four edges. Before the geometrical analysis all
investigated distributions are slightly adjusted by repeat
the random invasions at the four-edge vertices until they v
ish. Evidently, the effect of these modifications on the ene
or vortex density is negligible if the typical domains a
sufficiently large. The most relevant effect appears atK50
when the density of vortex-antivortex pairs is approximat
rv/6 in the whole region ofP where we studied the system
Consequently, theP dependence of vortex density remai
power law after the pattern adjustment.

After having removed the four-edge vertices the patt
becomes topologically equivalent to the continuous, thr
color map mentioned above. In this case we can distingu
two types of boundaries, namely, loops~surrounding an iso-
lated domain! and vortex edges~starting at a vortex and end
ing at one of the connected antivortices!. Using the men-
tioned algorithm we have determined the average lengthl av
and tangential rotationfav of vortex edges.

In Fig. 6 the log-log plot of the average length of vorte
edges shows thatl av increases slowly whenP is decreased
for K50. Significantly faster increase can be observed in
presence of surface tension. The arrangement of MC data
K51 has inspired us to fit a power law,l av5aP2l as we
had done for the vortex density and the Potts energy per
Within the same region ofP the best fit is found forl
51.75(5).

The above behavior is not surprising because the ave
vortex distance exhibits qualitatively similarP dependence.
For the quantitative analysis an average vortex distance
be deduced from the density of vortices asdav51/Arv. The

d

FIG. 6. Average arclength of vortex edges versusP for different
K values. Symbols as in Fig. 1.
5-4
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striking difference caused by the introduction of surface t
sion and cyclic invasion becomes visible when the pairs
datadav and l av are plotted on a log-log plot~see Fig. 7!. In
Fig. 7 the straight line (l av51.05dav) demonstrates those se
of domain structures that can be well characterized b
single length scale. For example, such a situation can
observed when considering the domain growth in the thr
state Potts model below the critical temperature. In the
sence of interfacial energy the MC data indicate a sign
cantly different relation that may be approximated asl av

.dav
0.8 within the given region. The slower increase of t

average length of vortex edges can be explained by the
creasing number of those vortex-antivortex pairs that h
two common~short! edges. Shuch a pair is frequently cr
ated when the moving islands meet the third type of dom
during their random movements.

An opposite tendency can be recognized for those ca
where the spiral formation becomes relevant because th
clength of spiral arms always exceed the distance betw
the corresponding vortex and antivortex. At the same ti
our data reflect that the average tangential rotation of a
tex edge increases withdav. This statement is supported b
those data in Fig. 8 we obtained forK.0. Particularly, for
K51 one can observe that bothfav ~see Fig. 8! andl av ~Fig.
6! increases monotonously whenP goes to zero. Unfortu-

FIG. 7. Relation between the average vortex distance (dav) and
arclength of vortex edges (l av) for those parameters~and symbols!
plotted in Fig. 1. Both lengths are measured in units of lattice c
stant.

FIG. 8. Average tangential rotation of vortex edges as a func
of cyclic dominance~P! for different K values~symbols as in Fig.
1!.
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nately, we were not able to study what happens when
average tangential rotation becomes larger than 2p.

In Fig. 8 the angle of tangential rotation is measured
the unitp/2 that is a natural choice on a square lattice. O
can observe thatfav becomes practically zero in theP→0
limit in the absence of interfacial energy. In the light of th
result one can think that the spiral formation does not pla
dominant role in the pattern formation forK50. At the same
time, we should keep in mind that the cyclic invasion (P
.0) is required to sustain the self-organizing domain str
tures, otherwise the domains would grow unlimited. Unfo
tunately, we cannot explain quantitatively the microsco
mechanism yielding this behavior. Now we can only gi
some additional arguments supporting the crucial role of
lands as mentioned above.

The total interfacial~Potts! energy can be separated in
two parts. The first contribution comes from the isla
boundaries and the second part from the vortex edges. T
the energy per site can be written in the form

E5Ei13rvl av, ~6!

where Ei denotes the contributions of islands to the to
Potts energyE defined by Eq.~5!. The second term indicate
that the contribution of vortex edges can be expressed
product of the density of~three-edge! vortices (rv) and the
average length of vortex edges (l av). Using this expression
we can determine the values ofEi from those data plotted in
Figs. 1, 3, and 6. The results of this calculation are illustra
in Fig. 9.

For K51 the interfacial energy contribution of island
vanishes at sufficiently low values ofP. This tendency can
be observed in Fig. 9 for otherK.0 values. The lower the
value of K, the lower is the value ofP whereEi becomes
negligible. This means that in the stationary state the num
of islands are reduced by the interfacial energy. This t
dency can be visually checked if the reader compares the
snapshots shown in Figs. 4 and 5.

Notice, furthermore, that forK51 the energy contribu-
tion of islands is negligible for weak cyclic dominance whe
theP dependence ofE, rv , andl av can be well approximated
by power laws as mentioned above. The substitution of

-

n

FIG. 9. The interfacial energies of islands vsP for different K
values. Symbols as in Fig. 1.
5-5
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corresponding expressions into Eq.~6! yields a relation be-
tween the exponents, namely,a5b2l. Our numerical data
support this result.

The investigation ofEi for K50 shows surprising results
In the case of strong cyclic dominance the dominant par
interfacial energy comes from the vortex edges. According
our simulations, the contribution ofEi to the total interfacial
energy increases, meanwhileE decrease~see Fig. 3! when
decreasingP in the investigated region. SinceE.Ei , there-
fore, these opposite tendencies imply the possibility o
break point forP,0.002.

IV. CONCLUSIONS

We have numerically studied the effect of surface tens
on the self-organizing patterns maintained by cyclic inv
sions among three species on a square lattice. For this
pose the cyclic voter model introduced by Tainaka and I
@8# is extended in a way that the cyclic symmetries are c
served. In the original model the invasion between two~ran-
domly chosen! nearest naighbors is not affected by t
neighborhood. In the extended model the nearest neigh
invasion rate is influenced by the neighborhood via tak
the variation of Potts energy into account. Our analyses
restricted to those situations (K>0) where this modification
favors those invasions that reduce the length of interfa
separating the domains.

Our simulations have justified that the introduction of i
terfacial energy causes relevant changes in the observed
terns. To have a more quantitative and sophisticated pic
we have determined the average value of some geomet
features of the interfaces~e.g., arclength and tangential rot
tion of vortex edges!. This method is based on the analogy
the continuous limit of a three-color map. By this way w
could study the contributions of vortex edges and isla
separately. In the light of this analysis we can distingu
three types of typical domain structures.

In the deterministic limit@P@max(K,1)# the pattern con-
sists of small compact domains and contains many vort
n

ur

ev

ev

-
n-
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and antivortices. In the absence of interfacial energyK
50) the typical domain size as well as the contribution
island interfacial energy increases when the the cyclic do
nance~P! is decreased. Here the island creation via the
terfacial roughening seems to be a relevant phenome
Conversely, in the presence of interfacial energy the isla
vanish whenP is decreased and vortex~spiral! rotations
dominate the pattern evolution. The transitions among th
typical behaviors are smooth.

Our numerical results are obtained in a limited region
the parameterP due to the technical difficulties appearing fo
large typical domain sizes. For some cases (K50 and 1! our
data can be approximated by power laws in a region ofP. We
are, however, not convinced that these~expected universal!
behaviors remain valid for lowerP values. For example, we
do not know what happens when the average tangentia
tation of vortex edges becomes significantly larger than 2p.
Deviations can also appear forK50 at lowerP values where
Ei is expected to decrease monotonously withP.

The suggested geometrical analyses confirm that the
organizing patterns cannot be characterized by a sin
length unit as it happens for many other systems. In th
cases two patterns cannot be transformed into each othe
choosing a suitable length scale. In the presence of interfa
energy this feature is strongly related to the appearanc
spiral vortex edges whose average tangential rotation
mains unchanged during such a geometrical magnificat
We think that this type of geometrical analysis unites diffe
ent approaches and models, furthermore, it motivate
theoretical effort to find general relations among the
quantities.
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