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Three-state cyclic voter model extended with Potts energy
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The cyclically dominated voter model on a square is extended by taking into consideration the variation of
Potts energy during the nearest neighbor invasions. We have investigated the effect of surface tension on the
self-organizing patterns maintained by the cyclic invasions. A geometrical analysis is also developed to study
the three-color patterns. These investigations clearly indicate that in the “voter model” limit the pattern
evolution is governed by the loop creation due to the overhanging during the interfacial roughening. Con-
versely, in the presence of surface tension the evolution is governed by spiral formation whose geometrical
parameters depend on the strength of cyclic dominance.
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[. INTRODUCTION ishes algebrically when decreasing the strength of cyclic
dominancq8].
In systems with several specigzarticles, opinions, etg. In the above system the domain walls separating two ho-

the cyclic invasion processes can maintain a self-organizinghogeneous domains are very irregular. This irregularity pre-
domain structure. Although this phenomenon is investigatedents the observation of expected spirals to be formed by the
extensively in different areas, such as the chemical reaction®tating vortex arms for smooth interfack%14]. In the ab-

on crystal surfacegl,2], biological (Lotka-Volterrg systems sence of cyclic invasiorfand related vortex rotatiorsome
[3-6], Rock-Scissors-PapeiRSP games in evolutionary features of the rough interfaces are already studied by several
game theorieg7], and cyclically dominated voter models authors considering the two-state voter mofE$—20. In
[8—10], the mechanism sustaining the polydomain patterns ishe presence of cyclic invasion, however, the topological and
not well understood. At the same time, this type of spatialgeometrical features of domain structure are not yet investi-
self-organizations is believed to play crucial role in the bio-gated rigorously even for smooth interfaces. Very recently
logical evolution[11] and it can provide protection for the Some geometrical features and drift of a single spiral wave
participants against some external invaddr 13. are studied by using a continuous reaction-diffusion model

One of the simplest models exhibiting variations in a self-[21,22.

organizing domain structure was introduced by Tainaka and N the_voter_ models the irregu_lar interfaces are crez_ited by
ltoh [8,9]. In this cyclically dominated voter model, three random invasions that are not influenced by the neighbor-
states A, B, andC) are permitted on the sites of a square hood. Smoother interfaces are olbserved for many other Sys-
lattice. The system evolution is governed by the iteration of€MS Where the local change is directly affected by the neigh-

invasions between two randomly chosen nearest neighborgorhOOd' The Potts models represent the simplest descr|pt_|on
. . . L f such a phenomenon. This is the reason why we have in-
The probability of each invasion process is independent o : ) S
the location of neighboring sites and the invasion rates reﬂeq odugr—i)d a m.ode:c where the nearesztsn?ghbhor nvasion |hs af-
: : ) . cte an interfaciglPotts ener ,24] whose strengt
cyclical (uniform) dominance. The strength of dominance y 9 oyt 4 9

. . is controlled by an additional parameter. Investigating this
was characterized by the difference of probabilities betweep, j4a| we can study the effect of surface tension on the self-
two opposite invasionge.g.,AB—AA andAB—BB). In the

‘ ) ] ) i organizing domain structures maintained by cyclic invasions
absence of cyclical dominance this system is equivalent tgn a square lattice. Performing systematic MC simulations
the voter mode[15,1€] exhibiting growing domains whose e have determined the vortex density and interfacial energy
correlation length is proportional tgt if the system is in different stationary states. In order to have a deeper and
started from a random initial state. Contrary, for the spatialnore quantitative insight into the domain structure we have
RSP gameA beatsB beatsC beatsA and these deterministic developed a method to study some geometrical features of
rules sustain a self-organizing, three-color polydomain structhe interfaces. This analysis throws light on some relevant
ture in which the linear domain size can be characterized bbeometrical features of the emerging domain structure and

a correlation length of=2.5 (measured in lattice units  confirms the necessity of these types of sophisticated
Tainaka and Itoh have shown that the typical domain sizgpproaches.

diverges when the cyclical dominance tends to zg8b
Their numerical analysis is focused on the density of vortices

that are defined by those points of a three-color map where Il. THE MODEL
the three state&@lomain wall$ meet. In fact, one can distin-
guish vortices and antivorticésotating clockwise and coun- We consider a square lattice where at eachxsitéi,j) (i

terclockwisg and they are created and annihilated in pairsandj are integersthere is a state variable with three possible
during the evolution of domain structure. According to thestates, namelys,=0,1,2. The Potts energy for a configura-
early Monte CarldMC) simulations the vortex density van- tion s={s,} is defined as
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H=— > [4&(s,,s,)—1], (1)
(x,y)

where the summation runs over the nearest neighbor sites
and §(s,s’) indicates the Kronecker's [23,24]. Notice that

v
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the coupling constant is chosen to be energy unit. In the = £
present form the Potts energy measures the length of equiva- " . J
lent interfaces(in lattice unit a=1) separating the three 0.0001 F
types of domains and its inverse estimates the average do- . . . .
main radiug 25]. Evidently, in the threefold degeneratéub- 0.01 0.1 1 10
mogeneousground stateH=0. P

The configuration evolves in time according to elemen-
tary invasions between two neareSt ne.|ghbor.S|Iear(.dy) triangles, 1/4 (open triangles 1/16 (closed squares 1/64 (open
Cho_sen randomly. More _preC|ser, a pair of ne_lghborlng Stat%quare; and O(pluses. The solid line shows the predicted power
variables €,,s,) (assumings,#s,) transforms into §,,5,)  jaw behavior ifK=0. The dashed linéwith a slope of 2.05indi-
with a probability cates the best power law fit fét=1.

FIG. 1. Vortex densities as a function &f for K=1 (closed

1
Flsosy)= (s s)1= Trgawanspp); @

of N=L XL sites. The system is started from a random ini-
tial state where the three states are present with equal prob-
abilities. During the simulations we have recorded the num-
ber of vortices and antivortices defined above. For this
purpose we have counted thos& 2 block configurations
containing all the three possible sta{@s-10]. After a suit-

is the energy difference between the final and initial statesable transition time we have determined the average vortex
andK, as an inverse temperature, controls the effect of Pottdensity as well as its fluctuation defined in REEQ]. The
energy on this single site flip. The second term in the argusystem size is varied froh =400 to 2000 to have suffi-
ment of exponential function describes the cyclic dominanceiently large number of vortices in the stationary states. The
with a strengthP, where numerical results of vortex densities are summarized in a
log-log plot as demonstrated in Fig. 1.

If P>maxK,1) then the dynamics is governed by the
deterministic RSP rule that maintain a self-organizing state
with small domain sizesg=2.5) as mentioned above. Con-
In the caseK=0 the present model is equivalent to thosesequently the vortex density becomes independen &dr
introduced by Tainaka and Itdi8]. Evidently, the ordinary sufficiently large values o as demonstrated in Fig. 1.
three-state voter model is reproducedPf=0 and K=0. In the caseK =0 theP dependence of vortex density can
Furthermore, the limiP— (for |K|<P) represents the de- be well described by a power law, namegly~ P# within the
terministic RSP game. Fat€>0, however, the interfaces be- range 0.003XP<0.3. The best fit is found fog=0.29(1)
come more smooth because the present dynamics suppressesfirming our previous resuftL0]. At the same time Fig. 1
those elementary processes that increase the interfaciaglearly demonstrates that the vortex density is dramatically
(Potty energy. reduced when the interfacial energy is switched on. Ikor

We have to emphasize that fBr=0 this system exhibits =1 the MC data can be well approximated by another power
domain growth independently of the value Kf Further- law with an exponenB=2.059). It should be emphasized
more, in the present model the new state at a given sitéhat within the statistical error our data are consistent with a
should be equivalent to one of the neigboring one. Thigquadratic behavior. Similar behavior can be conjectured from
means that the changes are localized along the boundarid®e trends represented by MC data for lowernn Fig. 1.
separating the homogeneous domains. Unfortunately, we could not confirm this expectation by de-

Notice that the above rules conserve the cyclic symmetryermining the leading term in thE dependence of vortex
among the three states. As a result, in a sufficiently largelensity for lowerK values because this analysis requires ex-
system the three states are present with the same probabilityemely long run time and large sytems. Just to indicate the
(1/3). For small system, however, one of the species cadifficulties, the determination of a data point at low vortex
become extinct due to the effect of fluctuations and finallydensities has required more than four-week run time on a fast
the system evolves toward one of the thfeemogeneoys PC. We think that further numerical analyses are necessary to
absorbing states. Henceforth our analyses will be restricteplistify (or modify) the above conjecture.
to the large system limit that is provided by choosing the Due to the long run times we could derive the vortex
system size to be much larger than any length characteristidensity fluctuations ) with an adequate accuracy. As dem-
to the corresponding pattern. onstrated in Fig. 2, the numerical data indicate the diver-

The above model is investigated by MC simulations undeigence of the vortex density fluctuation in the absence of in-
periodic boundary conditions on a square lattice consistingerfacial energy K=0). Within the investigated region, this

where

+1 if s,=(sy+1) mod 3,

D= -1 if s,=(s,+2) mod 3. @
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FIG. 3. Average Potts energy per sites as a functioR fufr the

FIG. 2. Fluctuation of vortex density versi&sfor different K game values oK plotted in Fig. 1. The solid and dashed lines
I denoted by th bol in Fig. 1. Th lid li . T
values denoted by the same symbo's as in "ig © Sol In|nd|cate the slopes of 0.0&(=0) and 1.3 K=1).

indicates the fitted power law divergency in the absence of interfa-

cial energy. -
exponents when fitting a power lavE € aP®) for small P

values. Namely, we have obtained-0.08(2) and 1.@) for
K=0 and 1, respectively.

If the convex domains are separated by approximately
straight boundaries the®=2« is expected as it is found for

The vortex density fluctuation seems to be proportional to?°Me Other modelg26]. The deviation from this behavior
reflects the importance of curved interfaces due to vortex

the vortex density for sufficiently low, . Similar features )
otation.

have been found for some systems of particles and antipaF- h i 7ing d . h ikinal dif
ticles performing branching annihilating random walks "€ Sel-organizing domain structure shows striking dif-

[14,10. This is the reason why we have reinvestigated 4€rénces depending on whether the interfacial energy is
parallel drawn between the vortex dynamics in presen§W|tched on or not. _For_the sake of illustration two typl_cal
model and a system of particles and antiparticles as su _atFerns are shown in Figs. 4 and 5'. In the gbsence of_mter-
gested in Ref[10]. According to a simple idea the rotating 'aC|aI energy K:,O) the nearest nelg.hbor invasions Y'e"?'
vortices form spirals whose long and narrow arms enhanci&régular boundaries whose overhanging results in small is-
the probability of the creation of a new vortex-antivortex |2nds (100ps. Their random motion, extension, shrinking,

pair. The movement of vortices can be well approximated b);plitting, and fission seem to play crucial roles in the pattern

a random walk on a lattice. Furthermore. the vortex and an€volution as well as for the three-state voter model. In this
' rmer case P=0), however, these elementary events are

tivortex annihilate each other when meeting at the same sitf? i
during their random walks. The balance between the annihil©t able to prevent the growth of domains whose character-
lation process and pair creation yields an average concentrigtiC linear size increases with time a&.[;g]_

tion in the stationary state. Within the framework of a simple  €hoosing a particular initial state, it is already demon-

mean-field analysigdetails are given in Ref10]) the qua- strated that the cyclic dominance drives the vortex rotation

dratic behavior of vortex density(=P?) can be explained (for P>0) which is accompanied by spiral formatig®, 10].
if we assume that the pair creation is proportionaPjs’? or
P2p,. From the view-point of vortex dynamics, however,
both possibilities demand a better understanding about the
relationship between the creation of vortex-antivortex pairs
and the geometry of interfaces.

As mentioned above the total length of interfaces is
equivalent to the Potts energy defined by Ef. By this
means we could easily determine the expected value of the
interfacial energy per sites,

fluctuation can be approximated ag~P~ 7 with vy
=0.3(1) in good agreement with a previous re$a].

In the presence of interfacial energiK#0) the vortex
density fluctuation vanishes witR as indicated in Fig. 2.

1
E= i (H), ®

where(- - -) indicates the average over the sampling time.
The results of our simulations are summarized in a log-log
plot (see Fig. 3.

At the first glance thé andK dependences of the vortex
density and Potts energy seem to be very similar. However, FIG. 4. Typical part (5& 50) of snapshot in a larger system for
the detailed numerical analysis gives different values for the&<=0 andP=0.01.
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FIG. 6. Average arclength of vortex edges verBusr different
K values. Symbols as in Fig. 1.

ber of steps. The elementary step is based on the identifica-
tion of the 2x2 block configurations. This algorithm
assumes that first we have determined the vortex positions.

o reduce the statistical error this procedure was repeated
many times during the simulations.

The above algorithm is well defined if the three-color pat-
Jern is free of four-edge vertices. Unfortunately, the investi-
gated self-organizing patterns contain undesired four-edge
vertices(see Figs. 4 and)5Some of then{involving all the

visible when the interfacial roughness is reduced by the surth at b dered ; tivort .
face tension as demonstrated in Fig. 5. ree statescan be considered as a vortex-antivortex pair

In Fig. 5 one can easily identify the vortices and antivor—jUSt before their annihilation or after their creatid®0]. The

tices rotating clockwise and counterclockwise, respectivelyf)thers mvolv_e only_two states and make the patirem
grtex to antivortex indefinite. Both types can be removed

This rotation creates spirals because the average invasi . . :
y executing an invasion through one of the randomly

velocity is constant. We have to emphasize that this patter . X

cannot be characterized by a single length (eig., corre- phoo;en four gdges.. Before thg geomemeal analysis aII.the

lation length because the main features of spirésm- mvestlgated' dIStI’!bUtIOﬂS are slightly adjugted by' repeating
the random invasions at the four-edge vertices until they van-

Itﬁggrt: c’): (\alle;r)zggrr? g{g?st u[ﬁ;i: \E rte;]gee rglz:;%rr]lc\%h?/u\?vinﬁ a(\)/r; d égh. Evidently, the effect of these modifications on the energy
' Qr vortex density is negligible if the typical domains are

veloped a method to study some geometrical features of _. "
threg-color maps on a squa);e Iatticeg sufficiently large. The most relevant effect appear& atO

when the density of vortex-antivortex pairs is approximately

p,/6 in the whole region oP where we studied the system.

Consequently, thé dependence of vortex density remains
On a three-color, continuous, planar map the domains argower law after the pattern adjustment.

separated by three types of smooth boundaries. Dedicated After having removed the four-edge vertices the pattern

points are the vertices where three or more boundaries mediecomes topologically equivalent to the continuous, three-

If such a map evolves smoothly then the appearance of vefolor map mentioned above. In this case we can distinguish

tices with more than three edges becomes negligible. Thuvo types of boundaries, namely, loofsirrounding an iso-

our analysis can be restricted to those maps that contain onlgted domainand vortex edgegstarting at a vortex and end-

three-edge vortices and antivortices. However, as we shoig at one of the connected antivortitetJsing the men-

later, the qualitative feature of the system remains unaffectetioned algorithm we have determined the average lehgth

if four-leg vertices are not ignored. One can easily check tha@nd tangential rotatiom,, of vortex edges.

these vortices and antivortices are positioned alternately In Fig. 6 the log-log plot of the average length of vortex

along domain boundarig¢40]. Our geometrical analysis will edges shows thdt,, increases slowly wheR is decreased

be focused on determining the average value of arclengttipr K=0. Significantly faster increase can be observed in the

rotation of tangent vector, and curvature for those boundariegresence of surface tension. The arrangement of MC data for

connecting a vortex and an antivortex. Henceforth the rotatK =1 has inspired us to fit a power lalg,~aP~ as we

FIG. 5. Spiral formation sustained by the rotating vortices an
antivortices is recognizable on a 20Q00 part of a larger system
for K=1/2 andP=0.3.

In Fig. 4 the rotating spirals are not recognizable due to th

IIl. GEOMETRICAL ANALYSES

ing vertex is called vortex. had done for the vortex density and the Potts energy per site.
On a square lattice the boundaries are polygons consisting/ithin the same region oP the best fit is found forx
of unit length parts whose tangential rotation may &é =1.755).

=+/2 and 0. For a given vortex edge the tangential rota- The above behavior is not surprising because the average
tion is determined by summarizing these quantities step byortex distance exhibits qualitatively simil& dependence.
step along the edge from a vortex to the connected antivoFor the quantitative analysis an average vortex distance can
tex. At the same time arclength is also obtained as the nunbe deduced from the density of vorticeshg= 1/\/5. The
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FIG. 7. Relation between the average vortex distarigg) @nd FIG. 9. The interfacial energies of islands Rdor different K

arclength of vortex edges {) for those parameter@nd symbols  values. Symbols as in Fig. 1.
plotted in Fig. 1. Both lengths are measured in units of lattice con-

stant. nately, we were not able to study what happens when the

average tangential rotation becomes larger than 2
striking difference caused by the introduction of surface ten- |n Fig. 8 the angle of tangential rotation is measured in
sion and cyclic invasion becomes visible when the pairs othe unit/2 that is a natural choice on a square lattice. One
datad,, andl,y are plotted on a log-log plasee Fig. 7. In can observe tha,, becomes practically zero in tHe—0
Fig. 7 the straight linelg,= 1.05d,,) demonstrates those sets |imit in the absence of interfacial energy. In the light of this
of domain structures that can be well characterized by fesult one can think that the spiral formation does not play a
single length scale. For example, such a situation can bgominant role in the pattern formation fir=0. At the same
observed when considering the domain growth in the threefme, we should keep in mind that the cyclic invasio (
state Potts model below the critical temperature. In the ab>0) is required to sustain the self-organizing domain struc-
sence of interfacial energy the MC data indicate a signifiyyres, otherwise the domains would grow unlimited. Unfor-
cantly different relation that may be approximatedlgs tunately, we cannot explain quantitatively the microscopic
=dg,’ within the given region. The slower increase of the mechanism yielding this behavior. Now we can only give
average length of vortex edges can be explained by the insome additional arguments supporting the crucial role of is-
creasing number of those vortex-antivortex pairs that havgands as mentioned above.
two common(shory edges. Shuch a pair is frequently cre-  The total interfacialPotty energy can be separated into
ated when the moving islands meet the third type of domainwo parts. The first contribution comes from the island
during their random movements. boundaries and the second part from the vortex edges. Thus

An opposite tendency can be recognized for those caseRe energy per site can be written in the form
where the spiral formation becomes relevant because the ar-

clength of spiral arms always exceed the distance between

the corresponding vortex and antivortex. At the same time E=Ei+3p,lavs (6)
our data reflect that the average tangential rotation of a vor-

tex edge increases witth,,. This statement is supported by
those data in Fig. 8 we obtained f&>0. Particularly, for
K =1 one can observe that bo#h, (see Fig. 8 andl ,, (Fig.

6) increases monotonously whéhgoes to zero. Unfortu-

where E; denotes the contributions of islands to the total
Potts energ¥ defined by Eq(5). The second term indicates
that the contribution of vortex edges can be expressed as a
product of the density ofthree-edggvortices (p,) and the
average length of vortex edgek,j. Using this expression
we can determine the values Bf from those data plotted in
] Figs. 1, 3, and 6. The results of this calculation are illustrated
. in Fig. 9.
] For K=1 the interfacial energy contribution of islands
] vanishes at sufficiently low values & This tendency can
s be observed in Fig. 9 for othé¢>0 values. The lower the
- . ] value ofK, the lower is the value oP whereE; becomes
fea, . . negligible. This means that in the stationary state the number
"e. s p ommes A & dasas of islands are reduced by the interfacial energy. This ten-
O p--F+Q--0-0 0o m B H ¥ - . .
' ' ' ' dency can be visually checked if the reader compares the two
0.01 0.1 P 1 10 snapshots shown in Figs. 4 and 5.
Notice, furthermore, that foK=1 the energy contribu-
FIG. 8. Average tangential rotation of vortex edges as a functiorfion of islands is negligible for weak cyclic dominance where
of cyclic dominancegP) for differentK values(symbols as in Fig. theP dependence &, p,, andl,, can be well approximated
1). by power laws as mentioned above. The substitution of the

Oay [7/2]
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corresponding expressions into E) yields a relation be- and antivortices. In the absence of interfacial enerffy (
tween the exponents, namely= 8—\. Our numerical data =0) the typical domain size as well as the contribution of
support this result. island interfacial energy increases when the the cyclic domi-
The investigation oE; for K=0 shows surprising results. nance(P) is decreased. Here the island creation via the in-
In the case of strong cyclic dominance the dominant part oferfacial roughening seems to be a relevant phenomenon.
interfacial energy comes from the vortex edges. According t&Conversely, in the presence of interfacial energy the islands
our simulations, the contribution &; to the total interfacial vanish whenP is decreased and vortefspiral rotations
energy increases, meanwhitedecreasgsee Fig. 3 when  dominate the pattern evolution. The transitions among these
decreasind® in the investigated region. Sin&>E;, there-  typical behaviors are smooth.
fore, these opposite tendencies imply the possibility of a Our numerical results are obtained in a limited region of

break point forP<0.002. the parameteP due to the technical difficulties appearing for
large typical domain sizes. For some casd€s-Q and 1 our
IV. CONCLUSIONS data can be approximated by power laws in a regioR. af/e

are, however, not convinced that thgegpected universal

We have numerically studied the effect of surface tensiomehaviors remain valid for lowe? values. For example, we
on the self-organizing patterns maintained by cyclic inva-go not know what happens when the average tangential ro-
sions among three species on a square lattice. For this pUation of vortex edges becomes significantly larger than 2
pose the cyclic voter model introduced by Tainaka and Itolpeyiations can also appear fiée=0 at lowerP values where
[8] is extended in a way that the cyclic symmetries are CONE, js expected to decrease monotonously ViAth
served. In the original model the invasion between tvem- The suggested geometrical analyses confirm that the self-
domly chosen nearest naighbors is not affected by theqrganizing patterns cannot be characterized by a single
neighborhood. In the extended model the nearest ne|ghb(péngth unit as it happens for many other systems. In these
invasion rate is influenced by the neighborhood via takingzases two patterns cannot be transformed into each other by
the variation of Potts energy into account. Our analyses argnoosing a suitable length scale. In the presence of interfacial
restricted to those situation& &0) where this modification  energy this feature is strongly related to the appearance of
favors those invasions that reduce the length of interfacegpiral vortex edges whose average tangential rotation re-
separating the domains. i . ~mains unchanged during such a geometrical magnification.

Our simulations have justified that the |.ntroduct|on of in-\we think that this type of geometrical analysis unites differ-
terfacial energy causes relevant changes in the observed pght approaches and models, furthermore, it motivates a

terns. To have a more guantitative and sophisticated picu_”fﬁeoretical effort to find general relations among these
we have determined the average value of some geometricg|,antities.

features of the interfacgg.g., arclength and tangential rota-

tion of vortex edges This method is based on the analogy to

the continuous limit of a Fhree-color map. By this way we ACKNOWLEDGMENTS
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