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Nonequilibrium precursor model for the onset of percolation in a two-phase system
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Using a Boltzmann-like equation, we investigate the nonequilibrium dynamics of nonperturbative fluctua-
tions within the context of Ginzburg-Landau models. As an illustration, we examine how a two-phase system
initially prepared in a homogeneous, low-temperature phase becomes populated by precursors of the opposite
phase as the temperature is increased. We compute the critical value of the order parameter for the onset of
percolation, which signals the breakdown of the conventional dilute gas approximation.
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The process by which an ordered low-temperature systerbeyond the mean-field approximation. One approach is to
approaches disorder as its temperature is increased has farvoke time-dependent renormalization group techniqdés
ranging applications in many areas of physics. In systemslere, we would like to propose an alternative approach,
that allow for low-temperature symmetry breaking, such pro-based on the dynamics of large-amplitude fluctuations, from
cesses would describe symmetry restoration. There is considthich we can examine the nonequilibrium properties of the
erable overlap between treatments found in the condensexystem. As we will show, our approach is valid up to the
matter literature within the context of Ginzburg-Landau©nset of percolation, which is known to occur before criti-
models[1,2] and those found in the high-energy physics lit- cality for three-dimensional systems.
erature through the use of temperature-corrected effective Let us start by considering a standard Ginzburg-Landau
potentials[3], although clearly there are several crucial dif- model where local fluctuations about homogeneous equilib-
ferences as well4]. In this paper, we would like to explore fium have the free energy
an issue that is of interest to both areas, namely, how to

describe the dynamics of nonperturbative thermal fluctua- F(¢ T):f d3x 9|V¢|2+V(¢)} (1)
tions in simple systems, modeled by the Ginzburg-Landau ’ 2 ’
model.

It is well known that ferromagnets will become paramag-With V(¢) =Vo+a(6—1)$*/2+ X\ ¢*/4, wherea, b, Vo, and
netic above a certain critical temperature. It is also wellX are (positive) constants and) is the temperature ratio
known that such emergence of disorder is due to the nuclel/Tc- For convenience, we have added the constant ¥gm
ation of ferromagnetic domains of the opposite phisle  to fix the minima of the free-energy density=t-T, at zero,
The dynamics of the domain interfaces, as well as theif$)=*va(l—6)/A=¢., which then gives thatV,
growth, is of interest in many diverse areas, from materials=a°(1— 6)?/(4\). The constantsa and b can easily be
science to particle physics to cosmology, even if some sysscaled away ang(¢,T) can be made dependent only on the
tems require more complicated order parameters. Exampldéemperature rati@ and on the coupling constant
include the recent experiments on Bose-Einstein condensa- We choose to study the dynamics of the fluctuations as the
tion in dilute atomic gasel$] and the study of the growth of system is heated from if6=0 state, where it is in one of its
the condensat§7], ultrarelativistic heavy-ion collision ex- ordered states, say_, to a temperatur& <T, focusing on
periments[8], formation of topological defects both in the its evolution to a final equilibrium state determined by a
laboratory, via pressure quench experimédi®} or in the time-independent value of the order paraméig) at tem-
early Universg[10], and the nematic-isotropic transition in peratureT. We model the fluctuations away from the initial
liquid crystals[11]. Diverse as these systems are, they allequilibrium state as Gaussian shaped, spherically symmetric
have one feature in common; their change in behavior is dueonfigurations with a core valugc and radiusR. These
to the onset of nonequilibrium conditions, which are poorlyprecursors are also called subcritical bubbles and treatments
understood. involving them have been successfully used in many other

In studying these kinds of problems one usually starteontexts beford13]. By expressing the amplitude of the
with mean-field theory, or some of its microscopic versions fluctuation asp,= ¢c— ¢_ , the fluctuations are parameter-
such as the equilibrium one-loop approximation in fieldized as¢;(r)= ¢ exp(—r?R%)+¢_ . (The Gaussian satisfies
theory or the Hartree approximation. In these approximathe physical boundary conditions—regularity at the origin
tions, localized, high amplitude fluctuations are neglectedaind asymptotic approach to the background, while costing
and replaced by an average interaction of the system with theery little free energy. See R€f13] for details)
thermal environment[4]. However, this approximation Since we are interested in fluctuations that can probe the
breaks down as the system approaches criticality and thesgher available free-energy minimum, their amplitudes can
fluctuations become more important. be easily determined by the condition that(r) represents

It has long been recognizdd 2] that in order to fully unstable fluctuations inside the-{-vacuum phase. We then
understand the dynamics of a given system one must gsimply have, from the symmetric double well potential used
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in Eq. (1) (note that small-amplitude fluctuations are already 083 T
incorporated in the mean-field approximation to the free-
energy density that those fluctuations witlpc= ¢,,,=0
are the ones probing ther() phase. As folR, we allow for
fluctuations larger than the correlation lengy,;,=&),
where &(T)=[V"(¢.)] Y2 consistent with the natural
coarse-graining scale dictated by the continuous free energy.
Substitutinge;(r) in Eqg. (1) we obtain the free-energy bar- 0.1
rier for a fluctuation with amplitude$, and radiusR
as F(R ¢a,T)=(3V2m¥g3/8)R+ m*’p7[ 2V"(¢-)/8
+\BV"(d_) pal54+ VI (p_) $p2/1192]R3. We will refer to —
the fluctuations withpc= ¢ax as “(+)-phase fluctuations” ° 02 04 06 o8 1
and the background phase as the-*( phase.” ' R '

We next study the dynamical evolution of these fluctua-
tions. For this we use the Boltzmann-like equation derived in
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FIG. 1. The volume fractiory as a function of time fon=1

Ref.[14] for the distribution function of ¢)-phase fluctua- andA/[v|=1.
tions of radiusk and amplitudep, , T, (R, ¢4 ,t), which sat- _ B 3.
isfies the equation |:f+ dée " dR4T’R f+ dR/iT4e—Ff/T_ (4)
mac | Jem 3 IR lv]
af+ af+ g . .
o —= | +(1— VG =G, . _, 2 Writing y(t)= y{B(t), and using Eqgs(2) and (3), we find

an equation fo3(t), after integrating all terms in E¢2) by

. . . . . f ¢ decf gde(Afﬂ' R3/3)
where the first term in the right-hand side incorporates the "™

collapse of subcritical domains, which we approximate as dB(t)
having constant velocity = gR/ét. In a forthcoming publi- BT Y_B(t)_ y—=0, ()
cation we will show that this is a valid approximation for ed ed

most of the interesting range of bubble radii. The secondyherel’, the total volume-integrated nucleation rate, is given
term describes the thermal nucleation of fluctuations of theyy,

(+) phase inside the ) phase, with nucleation rate

G__ ., while the last term describes the inverse process,

with rateG, _, . For a degenerate potential these two rates I'= J d¢C
are the same, which we express in terms of the free energy of e

the fluctuationsF¢, as given by a standard Gibbs distribu- The differential equatiori5) has a simple solution, given by
tion: G(¢p,R)=G_ .. =G, _._=AT*exp(—F¢/T), where B(t)=1—exp(=t/7), where 7=y./I" is the equilibration
A'is a constant. Note also that from H§), detailed balance time scale. Therefore, the analytical solution feft) is
imposes that the rati8/|v| be constant, which will be taken y(t) = y.{1—e~"7). This solution fits very well the numeri-
as a free parameter in our model; it can be determined fogal solution fory shown in Fig. 1. In Fig. 2 we compare the
specific models, as shown in Réfl4]. In fact, the ratio theoretical and numerical results for the equilibration time
Allv| must depend on dynamical quantities that are, in prinscaler, as a function of the temperature, for two different
ciple, expressable in terms of the only two parameters in thalues of\, the agreement is quite striking. The results in
model free energy\ and 6, that must control heat diffusion

R). (6)

0.2

and fluctuations dynamics and can be mapped to specific 0.5 e
applications.y in Eq. (2) is the total fraction of volume in C ]
the (+) phase, defined bj14] 04 r=0.1 4
oo +e  47R® 03 F 3
max g(T) T : :

Note that from our initial condition at=0, we have
v(0)=0 and, in the asymptotic equilibrium regime at tem- 0.1
perature B<T<T.,0<ye~1/2. Equation2), together with
Eq. (3), is an integrodifferential equation that we numerically
solve for+y. The result is shown in Fig. 1 for different values 0 5 066 07 08 09
of temperature and =1. 6

Yeq Can be computed from Ed2) by setting the time FIG. 2. The equilibration timer for A=1 and A=0.1 with
derivative term in the left-hand side to zero. The resultinga/|v|=1. The dots are the numerical results from E2).and the
expression foryeq, using Eq.(3), is yeq=1/(1+21), where lines are the theoretical resultyeo= veq/T -
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Fig. 2 reveal a peak in the equilibration time scale. For small T T T T
temperatures, the equilibration time grows continuously until l

it reaches a maximum at the temperatdig,(\). This is
reminiscent of the critical slowing down behavior character-
istic of critical phenomena, although we cannot recover the
discontinuity at the critical point with our simple model.
What we do provide is a dynamical picture of the approach
to criticality, which we expand below. As the temperature

increases, a larger fraction of the volume of the initial state in

the (—) phase is populated by fluctuations of the)(phase; -1

also, as the free-energy barrier decreases with increasing il e i
temperature, these fluctuations will become larger in size. 0.4 0.6 0.8
Hence, their equilibration time scales grow with increasing o

T,as dlsplaygd m, Fig. 2. For tempera_ltur_es larger tag, . FIG. 3. The effective velocity of correlation-length fluctuations,
the equilibration time decreases, vanishing at the mean-flelgeﬁ: (47£2)~1dV,/dt as a function of temperature far=1 and
critical temperatureT. This is due to the fact that & )\ -1 A/|s] is again set to 1.

>Tmax the system is described by a free-energy density with

a single minimum atp=0; thus, the true critical temperature . . .
is not atT,. This is in accordance with what is expected fqr correlation-volume fluctuations. Our numerical results
when corrections beyond the mean field to the potential ar8Ve the valued pe,=0.72T for A =1 andT e~ 0.96T; for
taken into accounf15] and explicitly seen in large-scale =0-1. Tperc Obtained with Eq.(7) is very close toT ya

Langevin simulations performed on the lattifes]. From  9iven before. As percolation sets in, Hg) begins to under-
Fig. 2 our model predicts the valuds,,,~0.79T, for A=1 estimate the growth of fluctuations and the further develop-
. ax . [

andT, ., ~=0.97T, for A=0.1. These results are dependent onment of the systeml ,e.cthen determines the limit of v_alidi'Fy
the ratio A/|v| that involves the microscopic details of a ©f EG:(2), or the breakdown of the dilute gas approximation,

given model under study. Physical lower bounds on this rati(peyond which coalescence of phase fluctuations begins to be
will be discussed below. of importance. Nevertheless, Eq®) and (7) describe quite

As the temperature is increased and the volume density d’f’e” the dynamics ‘%F‘t”. the onset c_)f continuous percolation
(+)-phase fluctuations grows, the system will eventuallyas well as the equ'“b””m properties of the _systdmote .
reach an instability point beyond which domains of the that continuous percolation, as opposed to lattice percolation,

(+) phase will grow by percolating with their nearest neigh-'> V€™, poorly understood, and only within simple two-
bors[17]. The question is at what temperature such percolatdimensional mathematical models, such as the Boolean-
ing instability occurs. In order to answer this question, Wepo's.son m'od.eﬂ.l7].) o )

take full advantage of our dynamical modéA preliminary _ Finally, it is important to_ test the validity of this model
approach can be found in Ref14].) Since correlation- with respect to the calculation of the free energy of the fluc-

volume fluctuations have the smallest free-energy barrierfﬂuat'onts)' Ilt |skcl_?_aar that als the free er(;t_alc‘gfyfor_ flrl]JcthuatloPs
they will be statistically dominant. In order to model the 4OPS DelowkgT we no longer can distinguish them from

percolation instability, consider a domain of the Y phase simple thermal noise, which then becomes statistically domi-

of correlation-length radius. There are three main processes'ant: the description of the nucleation of large-amplitude

that can change its volume: shrinking due to its surface tenf-lucw""t"mS with rateG becomes meaningless. Using the

sion, growth due to the thermal nucleation of another€MPEratured ay and Tpere, We can set a lower bound on
(+)-phase domain of radiug just outside it, which accounts

for a change of volumeAV=4=[(¢+2R)3—£%]/3, and | e o
thermal destruction of the correlation size fluctuation due to \\\ 6. = 0.87 ]
inverse nucleation, that changes the volume A&y’ -
=4m¢33. We thus arrive at an approximate equation de- 0.8

scribing the rate of change of;:

-0.5

Vere/ IV

—_

9
dV, oo +e 4R3 0.6
—:—|v|47'r§2+f d¢cf dR G(¢c,R)AV
dt Pmax &) 3
+ oo 47754 , 04
R N et
2malx —4 _2 0 2 4
=4TEV i (7 log,o(A/Iv])

In Fig. 3 we show the numerical solution for the effective  FIG. 4. 6,5 Tmax/Tc @nd perc= Tpere/ T @s a function o/ v |
velocity, vegr, as a function of temperature. The temperaturefor A =1. The dotted line is defined by the conditién/T|; =1,
for which v >0,Tper{\), indicates the onset of percolation from which we obtain the bound/|v|>10"2.
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the value ofA/|v|.This is shown in Fig. 4 for the case af the results of Fig. 2. Furthermore, the model studied here,
=1, where we show hoW ., and Tec change withA/[v|.  despite its simplicity, exhibits a dynamical picture of sym-
The conditioan/TlTnzl applied to the fluctuations of low- mMetry restoration and the breakdown of mean-field theory

_ _ ; - observed both numerically and analytically, without recourse
is_t Irzende;le;%yggg¢%ixfg%l?l & gives T, =087 for large-scale numerical simulations. The model can easily
- n’v . C - . .

Summarizing. we have presented a simole model baseb extended to different systems including inhomogeneous
9, P . P ~ nucleation, or systems outside the Ising universality class.
on the dynamics of phase fluctuations that is able to providg,,

. . . e expect to report soon on these applications.
a dynamical description of how a continuous ordered system
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