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Exact result on topology and phase transitions at any finiteN
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We study analytically the topology of a family of submanifolds of the configuration space of the mean-field
XY model, computing also a topological invaridtite Euler characteristicWe prove that a particular topo-
logical change of these submanifolds is connected to the phase transition of this system, and exists also at finite
N. The present result is the firahalytic proof that a phase transition has a topological origin and provides a
key to a possible better understanding of the origin of phase transitions at their deepest level, as well as to a
possible definition of phase transitions at finle
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Phase transition€PT9 are one of the most striking phe- manifoldsM,, of configuration space, defined by the poten-
nomena in nature. They involve sudden qualitative physicatial energyV(¢) as: My=Mg_g, i.e., the subsets of the
changes, accompanied by sudden changes in the thermodyonfiguration spac# contained within the equipotential hy-
namic quantities measured in experiments. From a mathpersurface of leveV=E—K, whereE is the total energy. In
ematical point of view, both qualitative and quantitative other words, the existence of a PT would be written in the
changes at PTs are conventionally described by the loss glotential energy function as the existence of a peculiar TC of
analyticity of the probability measures and of the thermody-the manifoldsM,,. Abrupt TCs of these manifolds can yield
namic functions. According to statistical mechanics, such &ingular derivatives in the microcanonical volunii(E)
nonanalytic behavior can exist only in the thermodynamiqg,1(y; if this behavior is persistent with increasihg such a
limit, i.e., in the case of a system witN— degrees of TC will result in a loss of analyticity of the thermodynamic
freedom [1]. PTs in real systems would then be the gbservables, only in thel— oo limit [14].

“shadow,” at finite but largeN, of this idealized behavior. The topological approach to phase transitions seems then
However, the necessity of taking the—co limit to speak of  very promising in the light of a possible solution to the two
PTs seems less satisfactory today, since there is growing exbove-mentioned problems with the conventional approach
perimental evidence of PT phenomena in systems snthll  to PTs, because not only does it link the existence of a PT
N (e.g., atomic clusters, nuclei, and mesoscopic systems, ifith the analytical properties of the potential energy function
general2]). V(¢) encoding the topology of th&l,, independently of

There is also another reason why the conventional apthe statistical probability measures, but it also provides a
proach to PTs is not yet completely satisfactory. Consider @atural way to extend the concept of a PT to firliteln the
classical system described by a Hamiltoniadf=K(m)  topological approach, the loss of analyticity of the thermo-
+V(¢), where K(m)=1/2N,_, 77 is the kinetic energy, dynamic observables in thd—oo limit is due to a deeper
V(¢) is the potential energy ang={¢;} and7w={m;}'s are,  primitive topological cause of a PT, which is already present
respectively, the canonical conjugate coordinates and maat finite N.
menta. Although, in principle, all the information on the sta-  The topological approach has been put forward on a heu-
tistical properties is contained in the functidife), no gen-  ristic basis in Ref[3]: since then, by means of numerical and
eral result is available to specify which featuresv@fp) are  analytical investigations on particular models, evidence has
necessary and sufficient to entail the existence of a PT. Thisccumulated in favor of its validity, but this evidence is still
is the more surprising since in many cases, knovarggiori circumstantial. For the lattice* model, indirecf4] as well
that a system undergoes a PT, several relevant properties a direc{6] evidence has been found, but only numerically.
the PT can be predicted just in terms of very general featureth Ref.[5], an analytical argument which strongly supports
of V(¢) (e.g., by means of renormalization-group tech-the validity of the topological approach in the case of the
niques. mean-fieldXY model has been given, however, it does not

An alternative approach to PTs has been recently prorigorously prove the existence of a TC which is connected to
posed[3-8], which connects the existence of a PT to thea PT. Moreover, these studies have shown tiwitall pos-
properties of the potential energy(¢), resorting totopo-  sible TCs are related to PT8], and no general argument is
logical concepts. According to this topological hypothesis,yet at hand to define theufficientconditions under which a
PTs would be related ttopology change$TCs) of the sub-  TC is actually related to a PT. Analytical, as well as numeri-

cal results[4-6], give no direct hint to the solution of this
problem, suggesting only that a TC related to a PT should be

*Electronic address: casetti@fi.infn.it a “second-order” one, i.e., not a mere change in the topology
Electronic address: egdc@rockefeller.edu but also a “change in the way of changing” the topology.
*Electronic address: pettini@arcetri.astro.it Confirmation or confutation of this idea, as well as further

1063-651X/2002/663)/0361124)/$20.00 65036112-1 ©2002 The American Physical Society



LAPO CASETTI, E. G. D. COHEN, AND MARCO PETTINI PHYSICAL REVIEW B5 036112

insight into the nature of the TCs related to PTs should be&opology of M, changes in a way completely determined by
provided by analytical calculations of topological invariantsthe local properties of the Morse function: at any critical
of the manifoldsM,, . level ak-handleH™ is attached13], wherek is theindexof
In the present paper, we prove on a firm mathematicathe critical point, i.e., the number of negative eigenvalues of
basis the existence of a TC which is connected with the PThe Hessian matrix of at this point. Notice that if there are
of the mean-fieloXY model. Moreover, we give a complete m>1 critical points on the same critical level, with indices
analytical characterization of all the TCs in the configurationk,,... k,, then the TC is made by attaching disjoint
space, which clearly indicates the difference between the TGandlesH v ... Hm  This way, by increasing, the full
related to the PT and other TCs. We are also able to computgonfiguration spac®l can be constructed sequentially from
analytically a topological invariant of th&/,, the Euler theM,. Knowing the index of all the critical points below a
characteristicy, showing that the TC connected to the PT given levelv, we can obtairexactlythe Euler characteristic
corresponds here to a sharp discontinuous jumg.inci-  of the manifoldsM, , given by
dentally this confirms that the TC related to the PT is
“second-order” because also the derivative pfshows a N
sharp change. X(Mv)=k§_:0 (—D*u(M,), 2
Although still limited to a particular model, the present N
result is the first analytical confirmation of the validity of the \yhere theMorse numbery, is the number of critical points
topological approach, which then can be put on a firm basisyf 1) which have index [15]. The Euler characteristig is a
Moreover, the technique here used to study analytically th?opological invariant any change in¢(M,) implies a TC in
TCs and to computg is completely general and could hope- e\
fully be applied also to other systems. To the best of our This in order to detect and characterize topological
knowledge, this is also the first analytical calculation of thechanges iV, , we have to find the critical points and the
Euler characteristic foN-dimensional configuration spaces .yitical valuesv ofV, which means solving the equations
of physical models.
Let us now summarize a few needed facts about topology (@) .
before discussing the case of our model. The TCs we are Frs =0, i=1,..N, (©)
referring to are those transformations which map a manifold !
onto one which is not diffeomorphic to the previous one, i.e..and to compute the indices afl the critical points ofV, i.e.,

which cannot be mapped back to it by means of a differenthe number of negative eigenvalues of its Hessian
tiable transformation. A TC is therefore any transformation

which “breaks the fabric” of a manifold: making a hole— FaY%
without boundary—in a sphere transforms it into a torus, and Hij= 9@ dg:
there is no smooth way to transform a torus back to a sphere. e
Morse theory[12] provides a way of classifying TCs of In the case of the mean-fieldY model, which describes a
manifolds, and linkglobal topological properties witlocal system ofN equally coupled planar classical rotatgfst],
analytical properties of smooth functions defined on them, selue to the mean-field character of the interactions, such a
that they can be used as a practical tool to study their topolealculation can be done in a completely analytical way. This
ogy. Given a(compact N-dimensional manifoldM and a allows then a discussion of the relationship between TCs and
smooth functionf: M— R, a pointxe M is called acritical the PT of this model, whose potential energy is
point of f if df=0, i.e., if the differential off at x vanishes,
while the valuef(x) is called acritical value A level set J
f~1(a)={xe M:f(x)=a} of f is called acritical levelif ais V(ig)= m.Zl [1—cos¢i—¢))]— hi21 cosg;, (5
a critical value off, i.e., if there is at least one critical point e -
Xe f~!(a). The functionf is called aMorse function on Mf  \here, <[0,21r] is the rotation angle of thith rotator and
its critical points are all nondegenerate, i.e., if the Hessian of, js an external field. The model describes also a plax¥y
fatx has only nonzero eigenvalues, so that the critical point$yejsenberg system with interactions of equal strength among
x are isolated. We now consider the configuration space of || the classical spins = (cosg;,sing;). We consider only
classical system as our manifdid, and the potential energy he ferromagnetic casé>0; for the sake of simplicity, we
per particlel(¢) =V(¢)/N as our Morse function. Then, the getj=1. In the limith—0, the system has a continuous PT,
submanifoldsM,, of M whose topology we want to investi- \yith classical critical exponents, a.=1/2, or e.=3/4,
gate are wheres =E/N is the total energy per partic[d4]. Defining
. the magnetization vector per partice=(m,,m,), where
M, =V (—»v]={peM: W ¢)<v}, D m=1N3IN,_, cosg;, m,=1/N3N,_;sing;, the potential
energyV can be written as a function of as

ij=1,..N. (4

N N

i.e., the same as thkly,=Mg_¢ defined abovgwhere in

M, V has been rescaled byN/i.e.,v=V/N, in order to V(e)=V(m,,my)=5(1-mi—m)—hNm. (6)
make the comparison of systems with differdh¢asiey. All

the submanifold$/, of M, with increasing, have the same The range of values of the potential energy per partitle,
topology until a critical levelV 1(v) is crossed. Here, the =V/N, is then—h<V<1/2+h?/2.
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The configuration spaceM of the model is an
N-dimensional torus, being parameterized by thengles
{oi}=¢1,...,on- We now study the topology of the family
of submanifoldsM, for this model. First, since TCs d¥l,
can occur only at critical points df, there are no TCs when
v>1/2+h?/2, i.e., all theM,’s with v>1/2+h?/2 must be
diffeomorphic to the wholeM, that is, they must b&\ tori.
Then one has to find all the solutions of E¢3), which can
be rewritten in the forni5,8]

(my+h)sing;—m, coseg;=0, i=1,..N. (7)
As long as (n,+h)+#0 andm,#0 (m, andm, are both zero
only on the leveb = 1/2+ h?/2), the solutions of Eqg7) are
all those configurations for which the anglesare either 0
or 7. These configurations correspond to a value e¥hich
depends only on the number of angieswhich are equal to
7, and using Eq(6) one obtains

1 1 ) h
U(nw)zz 1_W(N_2nfrr) —N(N—an), (8)

where O=n_<N. We have thus shown that aschanges
from its minimum—h (corresponding tm .= 0) to 1/2(cor-
responding ton_.=N/2) the manifoldsM, undergo a se-
guence of topology changes at thecritical valuesv(n,)
given by Eq.(8). There might be a TC also at the ldstaxi-
mum) critical valuev,=1/2+h?/2. However, the above ar-
gument does not prove it, since the critical pointslofor-
responding to this critical level may be degenefdté], so
that on this level,y would not be a proper Morse function.
Then, a critical value . is still a necessary condition for the

existence of a TC, but it is no longer sufficient. However, as

argued in Refs[5,8], it is just this TC atv. which should be
related to the thermodynamic PT of the mean-fiedf
model. For the temperatuig the energy per particle and
the average potential energy per partigle ())) obey, in the
thermodynamic limit, the equationeZ=T+2u(T), where
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approximate the index of the critical point with the number

of negatived's atx. At a given critical point, with givem .,

the eigenvalues db are
6i = mx+ h

i=1,.N—n_; (99

Si=—(my+h) i=N-n_+1,..N, (9b)
where thex component of the magnetization vector g
=1-2n_/N, so thatm>0 (resp<0) if n_.<N/2 (resp.
>N/2). Then, if the external field is sufficiently small, and
denoting by index if,;) the index of a critical point with

givenn_, we can write

N
indexn,)=n_ if n,< > (103
: . N
indexn,)=N-n_ if Ne>>. (10b)

The numberC(n ) of critical points having a givem .,
which is the number of distinct strings of 0’s ands of
length N havingn_, occurrences ofr, is given by the bino-
mial coefficientC(nW)z(r’}'ﬁ). Thus, at any critical level
—h=wv(n,)=<1/2, wherev(n,) is given by Eq.(8), a topo-
logical change irM,, occurs, which is made up of attaching
C(n,) k handles, wher&k(n,)=index (n,) given in Eg.
(10). Here,n, as a function o) can be obtained by solving
Eq. (8), yielding

2

N 1
ngT*)(v):int.(E 1+h+ h2—2(v——) ] (11
where int{a} stands for the integer part af Equationg10)
and (11) allow us to write the Morse numberg, of the

manifoldsM, , for —h=<v<1/2+h?/2, as

w(v)={1-0[k—n'")(v)]+O[N—k—n'"(v)]}

we have set Boltzmann’'s constant equal to one. Substituting

in this equation the values of the critical energy per particle

and of the critical temperature, we get=u(T.)=1/2; as
h—0,v.—1/2, so thav.=u.. Thus, a TC inM occurring at
thisv., whereuv.. is independendf N, is connected with the
PT in the limit N—o, andh—0, when indeed thermody-
namic PTs are usually defined.

Let us now prove that a TC af, actually exists and try to

., k=0,1,...N, (12

N
|k
where O(x) is the Heaviside theta function. We note that
since 0=<n{)<N/2 andN/2+1<n{")<N, Eq.(12) implies

m(v)=0VYk>N/2, i.e.,no critical points with index larger
than N2 exist as long a$ <1/2+h?/2. On the other hand,

understand why it is different from the other TCs, i.e., thosefor v>1/2+h2/2, M, must be anN-torus T, and forany
occurring at Gsv<v.. To do that, we characterize all the Morse function on such a manifold, one has8] u(T")

TCs occurring at the critical valuessv <v. using Morse
theory, computing théndicesof the critical points of). At
these points, where the angles are either @,ove can write
the Hessian matrix4) in the formNH=D + B, whereD is
diagonal,D =diag(s), with §,=(m,+h)cosg;, and the ele-
ments ofB, b;; , can be written in terms of a vecterwhose
N elements are either 1 orl: bjj=—1/Nojo;, with o=
+1 (resp—1) if ;=0 (resp.mw). The matrixB has only one

=() for k=0,1,..N. Thus, as 1/Zv<1/2+h?/2, the
manifold is only “half” an N torus, and since we know that
for v>1/2+h%2, M, is anN torus, we conclude that at
=v.=1/2+h?2, a TC mustoccur, which involves the at-
taching of {') k handles for eack ranging fromN/2+1 to

N. This is surely a “big” TC: all of a sudden, “half” arN
torus becomes a ful torus. Now we can use Eg&), (11),
and(12) to compute the numerical values of the Euler char-

nonzero eigenvalue. This implies that the number of negativacteristic of the manifold, as a function ob: it turns out
eigenvalues of equals the number of negative eigenvaluesthat y jumps from positive to negative values, so that it is
of D=1 [17], so that asN gets large, we can conveniently easier to look aty]. In Figure 1, log(x|(M,))/N is plotted as
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FIG. 1. Plot of logfx|(M,))/N as a function ob for h=0.01 and
increasingN =50, 200, 800from bottom to top.

a function ofv for various values oN ranging from 50—800.

The “big” TC occurring at the maximum value. of V,
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as well as a possible hint about what could be gh#icient
conditions for a TC in configuration space to yield a PT. For,
in the model studied here, tieTCs which are not related to
the PT involve the simultaneous attachment of handles which
are all of thesametype, while that occurring at is the
simultaneous attaching of handles GfN) differenttypes.
Hence, we mightonjecturethat this is a sufficient condition
for a TC to be in one-to-one correspondence with a thermo-
dynamical PT, also in other models. The model studied here
has nonphysical long-range interactions. However, since a
cuspy pattern of the Euler characteristic—of the equipoten-
tial hypersufaces—was numerically found at the PT point
also in the @-lattice ¢* model with nearest-neighbor inter-
actions[6], we surmise that the results of the present paper
may be of general validity; moreover, being analytic, they
may provide the basis for a theory of the origin of PTs based
on the topology of configuration space as encoded in the
potential energy. The topological approach might also prove
useful in dealing with some aspects of disordered systems
such as glasses. In fact, for glass-forming liquids, topological
concepts have been recently invoKdd|.
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[O(eN) in our caséto zero, which is the value of for anN
torus.

, jumping from a big value

tions. This work is part of the INFM PAIS Equilibrium and
Non-Equilibrium Dynamics of Condensed Matter Systems.
E.G.D.C. is indebted to the Office of Basic Energy Sciences

The analytical results we have presented provide analytief the U.S. DOE under Contract No. DE-FG02-88-ER13847
cal proof of the soundness of the topological approach to PTand to the IS Sabbatical of the INFM-Sez. G.

[1] This was first suggested by Kramers in 1938. See, e.g., E. G.

proach to finiteN PTs is presented in Ref2].

D. Cohen, Am. J. Phy$8, 619(1990. Then this was proved [12] J. Milnor, Morse Theory(Princeton University, Princeton, NJ,

for the grandcanonical ensemble in: C. N. Yang and T. D. Lee,
Phys. Rev87, 404(1952, and by Sinai, Ruelle, and others for
the canonical ensemble, see: H. O. GeorGibbs Measures
and Phase Transitiongde Gruyter, New York, 1988 How-
ever, in principle, in the microcanonical ensemble, singularities
could show up also at finitBl. For a recent survey on micro-
canonical PTs, see RdR].

[2] D. H. E. Gross, Phys. Re279, 119 (1997.

[3] L. Caiani, L. Casetti, C. Clementi, and M. Pettini, Phys. Rev.
Lett. 79, 4361(1997.

1963; R. S. Palais and C. Terng;ritical Point Theory and

Submanifold Geometr§Springer, Berlin, 1988 a summary of

Morse theory is also given in Ref8].

[13] Morse theory builds up the submanifolds by “attaching

handles”[12]. Handles are products of diskskehandleH®

in N dimensions (6=k<N) is the product of &-dimensional
disk—or k disk—and an K—k) disk, i.e., defined byH®
=DM xDIN=K A zero disk is a point, a one disk a segment,
a two disk an ordinary disk, a three disk a ball, and so on.

[14] M. Antoni and S. Ruffo, Phys. Rev. &2, 2361(1995.

[4] R. Franzosi, L. Casetti, L. Spinelli, and M. Pettini, Phys. Rev.[15] This follows from the so-called Morse inequalities, stating that

E 60, R5009(1999.

[5] L. Casetti, E. G. D. Cohen, and M. Pettini, Phys. Rev. L&2f.
4160(1999.

[6] R. Franzosi, M. Pettini, and L. Spinelli, Phys. Rev. L&,
2774(2000.

[7] M. Cerruti-Sola, C. Clementi, and M. Pettini, Phys. Re\6 E
5171(2000.

[8] L. Casetti, M. Pettini, and E. G. D. Cohen, Phys. R&g¥7, 237
(2000.

[9] D. Ruelle, Statistical MechanicéBenjamin, Reading, 1969

[10] In Ref.[7], the connection between derivatives @f{E) and
topological invariants of the equipotential hypersurfages,
the boundaries of th® g ) is discussed.

[11] This argument can be extended to the canonical and grand
canonical ensembles since the partition and grand-partition
functions are Laplace transforms 6f(E). A different ap-

036112-4

the Betti numbersthe fundamental topological invariants of a

manifold) are bounded by the Morse numbers, and from that,

the Euler characteristic is the alternate sum of the Betti num-

bers(see, e.g., Ref.12]).

[16] The solutions of the two equations W variablesm,=m,

=0 need not be isolated.

[17] The proof, to be published in a subsequent paper, follows from

a theorem found in J. H. WilkinsoiThe Algebraic Eigenvalue
Problem(Clarendon, Oxford, 1965

[18] The w,’s are upper limits of the Betti numbe(see[15]); the

kth Betti number of arN torus is ().

[19] L. Angelaniet al, Phys. Rev. Lett85, 5356(2000; A. Cava-

gna, |. Giardina, and G. Parisi, J. Phys34 5317(2002); T.

S. Grigera, A. Cavagna, |. Giardina, and G. Parisi, e-print
cond-mat/0107198; R. M. C. de Almeida, N. Lemke, and I. A.
Campbell, e-print cond-mat/0003351.



