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Numerical comparison of two approaches for the study of phase transitions in small systems
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We compare two recently proposed methods for the characterization of phase transitions in small systems.
The validity and usefulness of these approaches are studied for the casegef4hendq=5 Potts model,
i.e., systems where a thermodynamic limit and exact results exist. Guided by this analysis we then discuss the
helix-coil transition in polyalanine, an example of structural transitions in biological molecules.
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I. INTRODUCTION of these two approaches. For this purpose we apply them to
systems where a thermodynamic limit exists. In order to be
The study of phase changes in macroscopic systems hagiaeful the two approaches should be able to identify the mac-
long tradition in statistical physics. Its basic assumption is'oscopic phase transition from investigations of small system
that the dimensions of the macroscopic system are very larggizes. Our test case is the two-dimensioi2dd) Potts model
when compared with those of the constituting elementswith q=5 states where the order of the phase transition is
phase transitions are well defined only for infinite systemsdifficult to distinguish and which is therefore a challenging
However, there are many phenomena in finite systems thdest for these approaches. Simulations of the Potts model
resemble phase transitions; see, for instance, Ré&fs4]. with q=4 states add data for the case of a second order
Because of their importance for the understanding of thghase transition. Our numerical investigations complement
physics of clusters of atonj§] or the folding of proteins and earlier work in Ref[8] on theq= 10 Potts model, which has
other biological moleculel$], to name only a few examples, a pronounced first order phase transition.
these “phase transitions” in small systems have recently at- Guided by our results for the Potts model we finally con-
tracted renewed interest. The main question is how the obsider the helix-coil transition in polyalanine. The purpose of
served effects in small systems can be related to true phageis investigation is to test whether the two approaches allow
transitions in macroscopitor infinite) systems. A few at- a characterization of a structural transition in biological mol-
tempts were recently made in this direction, either througtecules.
studying for finite and small systems the topology of curva-
tures qf the entropy-density surfasee,n) [7]in Fhe micro- Il. PARTITION EUNCTION AND DENSITY
canonical ensemble! or by e_x_plorlng t_he density of complex OF COMPLEX ZEROS
zeros of their canonical partition functiofé,8].
The latter approach is closer to the traditional view of In the canonical ensemble a system is completely de-
phase transitions. For infinite systems the physical featurescribed by its partition function
of a phase transition can be obtained from the distribution of
the complex zeros of partition functions of finite systems. As B
the number of complex zerqg = 3;(L) grows with system Z(B)= EE: n(E)exp(— BE). @
size L they will (for a system with no external fielginch
the positive realB axis, and for large. the corresponding
value is the inverse of the physical critical temperatlige
One example of the extension of these ideas to finite syste
is the classification scheme by Borrmaenal. [4] which
explores the linear behavior for the limiting density of zeros
[9,10]. Another description was suggested by Janke and Z(u)=>, n(E)UE. 2)
Kenna (JK) who propose a scaling relation to identify the E
order and strength of a transition from the behavior of small
systemd8]. The number of complex zerosu; [uj=exp(—kg)),j
In this paper we try to evaluate the usefulness and validity=1,2, . . .] of this polynomial will grow with system size. In
the case of a phase transition, we expect the z@noat least
the ones close to the real axi® condense for large enough

Introducing variablesu=exp(—kB) with conveniently de-
fined constantk allows the partition function for discrete
Mhergy models to be written as a polynomial:
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As the system sizk increases, those zeros will move toward j—

the positive reali axis and the corresponding value for large =ay[Imu;(L)]%2+a3. (8)

L is the inverse of the physical critical temperatiire Cru-

cial information on phase transitions can be obtained fromA dition for th ist faoh i ii
the way in which the first zero approaches the rgaxis. necessary condition for the existence of a pnase transition

However, such an analysis depends on the extrapolation t6§ thata is compatible with zero, else it would indicate that

ward an infinitely large system and does not allow characterN® System is in a well-defined phase. The values of the con-

ization of the situation in small systems stantsa,; anda, then characterize the phase transition. For
One possible extension of the above ideas to “phase trarnstance, for first order transitions the constant should

sitions” in small systems is the classification scheme byt@ke valuesa,~1 for smallr, and in this case the slope of
Borrmannet al. [4]. The idea behind this scheme is to use this equation is related to the latent heat through the relation

not only the first complex zero,, but also higher zeros,, (8]
uz, and u,. Writing the complex zeros asi,=Re(uy) _
+i7., wherer, stands for Im(,), the assumed distribution Ae=kuczmay, ©
of zeros on a straight line allows the definition of two pa-yith u.=exp(—kB,). On the other hand, a value af larger
rameterse, andy,: than 1 indicates a second order transition whose specific heat
exponent is given byr=2-—as,.
au:m $(73) —In ¢(72) , (4) The above approach was originally developed and tested
In73—1In 7, for systems with well-defined first order phase transitions
such as the 2D ten-state Potts and 3D three-state Potts model.
The results obtained agree with previous work from numeri-
1 1 1 cal simulations and partition function zero analysis of sys-
d(7)= > tems up toL=64[11,12 (L= 36 for the 3D cas¢l3]).
The classification of phase transitions by Borrmaal.
with k labeling the first zeros, and has be(_an tested for finite Bose—Ein;tein condensates in a
harmonic trap and for small magnetic clusters and nuclear
yu=[Re(Uy) —Re(uy) ]/ (7= 7). (5)  multifragmentatior{4].
In the following we will show that despite these success-
Note that our notation differs from that in Ré#] in that we  ful tests both approaches can lead to wrong conclusions if
define the discrete line density as a function of the zeras  applied blindly. For this purpose we study systems where
instead of the temperaturg. Following the classification determination of the order of the phase transition is known to
scheme by Grossmann and Rosenh4@¢l0], phase transi- be computationally difficult. We will concentrate on the 2D
tions can now be classified according to the values of thesBotts model withg=4 (second order transitiorand q=5
two parameters: forr,<0 andy,=0 one has a phase tran- (weak first order transitionstates since a series of exact
sition of first order, it is of second order for<Ox,<1 and results[14] exists for both models. For instance, the critical
arbitrary y,, and for «,>1 and arbitraryy, one has a temperatures are known to & =In(1+./q) and the latent
higher order transition. In addition to the above parametersheat is given byAe(q=5)=0.0529187. Finally, we re-
71 also plays an important role: only for,—0 does one search whether the two approaches can be used to character-
obtain in the thermodynamic limit a real temperature for aize structural transitions in biological molecules.
phase transition.
Another extension of partition function zero analysis t0 ||| RESULTS FROM POTTS MODEL SIMULATIONS
small systems is the approach by Janke and K¢8havhich

uses the fact that the average cumulative density of #8jos ~ \We start by presenting our results for the two Potts mod-
els with =4 andq=5 on small lattices. Our study was

2j—1 performed on lattice sizels=16, 32, 64, and 128 foqg=4
Gury)=——4 (6)  andL=8, 12, 16, 20, 24, 32, 64, 96, and 128 tpr-5. For
2L these models and system sizes we have evaluated the com-
plex partition function zeros from heat-bath simulations with
large statistics at temperaturgg listed in Table I. For each
lattice size, our results rely on 16 bins of 500 000 measure-
Guo(r)=0u(0)r+ar™ 1+.... 7) ments. ForL<96 each measurement was separated by an
additional Monte Carlo sweep which was discarded; for
Here, the slope at the origin is related to the latent heatlarger sizes measurements were only taken every fifth sweep.
Aexg.,(0). Equations(3) and(7) imply that the distance, For lattice sizes up th =20, we could calculate all com-
of a zero from its critical point can be written for large plex zeros from the polynomial form of the partition function
enough lattice sizes as lm(L) since Reau;(L)~u.. Hence, using MATHEMATICA . For larger lattice sizes such a direct
in this limit Egs. (6) and (7) lead to the following scaling evaluation is no longer possible with standard numerical al-
relation for the cumulative density of zeros as an equation irgorithms, even when double precision is used. Only by using
j andL, the scan methodsee[15] and references therginvere we

where

+ 1
lug—Ug—1] U=y

can be written in the thermodynamic limit and for a first
order transition as
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TABLE I. Heat-bath simulations g8, for the four- and five- 16 independent bins for each lattice size. Details of this

state Potts model in two dimensions. method are presented in the Appendix.
For both models, the obtained values of the Borrmann
L Bo(q=4) Bo(q=5) et al. parametersy, and y, show no size dependence, but
8 11283 rather seems to fluctuate around some average value. For the
12 1.1489 caseq=4, the values ofy, and y, are compatible with the

well-known fact that this model has a second order phase

16 1.084 1.1580 o . L
transition in the thermodynamic limit. However, our ap-

20 1.1626 . . .
24 11655 proach seems to fail for the cage=5 which has a weak first
32 1.090 i16866 order phase transition and where we would expegt0
64 1.096 1'17240 and y,=0. Our results rather indicate a second order transi-

: . tion (0<a,<1 andvy, arbitrary). However, theq=5 Potts
96 117332 model is well known to have a very large correlation length
128 1.09755 1.17373

(of order 2000 lattice unitgl8]), and hence its true behavior
may only be caught for very large lattice sizes. Figu¢e) 1
does not give any indications that we are even close to lattice
able to obtain reliable estimates for the filstomplex zeros. sizes where the approach by Borrmagtral. would lead to
Note thatJ is limited by the precision of our data: insuffi- the correct result since the values fe, and y, show no
cient statistics of our simulation will lead to the presence ofsystematic size dependence for the lattice sizes that we have
so-called fake zerofl6]. For instance, for thg=4 Potts  studied ( <128).

model we could get reliable estimates only for the first three  Our results indicate that an uncritical application of the
zeros(Table Il) while for theq=5 Potts model we were able Borrmannet al. approach may lead to wrong conclusions
to obtain estimates for the first four partition function zerosabout the nature of the phase transition in a system. In the
(presented in Table lll The error bars were calculated from case of thegy=5 Potts model this approach fails to identify
the fluctuation of the averages taken over each of those 1fhe nature of the phase transition from the distribution of
bins. zeros on small lattices. This seems to limit the usefulness of
this method to systems where the order of the transition is
clear.

A. The Borrmann et al. approach
From the listed zeros in Tables Il and Il we obtain our B. The Janke-Kenna approach

first result: even for our smallest lattice size=16 for q A similar method to study phase transitions in small sys-
=4 andL =8 for g=5) the' zeros stay on a straigh'g line and tems is the one proposed by Janke and Kef#jaln this

the real parts are approximately constants. This is a necegpnroach one has to calculate the average cumulative density
sary condition for both the Borrmaret al. and the JK ap- ot ;er65G(r) from the zeros listed in Tables Il and III. In

proaches. We first calculate for both=4 andq=5 Potts 4 ger to investigate the phase transitions in our two systems
models the parameters, and y, on which the Borrmann e nas to fit the cumulative densi®(r) to
et al. classification scheme relies. Their values are listed in

Table 1V for all lattice sizes, and also plotted in Figajlfor G(r)=a;r*2+as. (10

the g=4 Potts model and in Fig.(l) for the case ofj=5.

For theq=4 Potts model we were able to obtain reliable The aim of this fit is to obtain an estimate fag sinceas;
estimates for only the first three zeros for each lattice size=0 indicates the existence of a phase transition. However, a
However, in order to calculate the parametgr we need simple evaluation of this fit may be misleading if lattice sizes
four zeros. For this reason, we have included here the lessre too small. In this case it may be necessary to study the
reliable fourth zero, which is not listed in Table Il. As a FSS dependence of these quantities, i.e., how their estimates
consequence, our results for tge=4 Potts model are less are related to ones obtained for larger systems or even in the
reliable than those for thg=5 model where we also have thermodynamic limit.

acceptable estimates for the fourth zeros. Estimates and stan- In the case of thg=4 Potts model we have to rely only
dard deviations presented in Table IV were obtained byon the first three zeros for each lattice size, which is too
means of the bootstrap methfdti7] based on our statistics of small a number for a meaningful three-parameter fit. For this

TABLE Il. Complex partition function zeros; (j=1, 2, and 3 for the four-state Potts model.

L Re(u,) Im(u,) Re(u,) Im(u,) Re(us) Im(uz)

16 0.33901(®8)  0.016488333) 0.33590666)  0.03275784)  0.3342340) 0.0458923)
32 0.3356387)  0.00641920) 0.334568348  0.01287%52) 0.3343018) 0.0178722)
64 0.33419610)0  0.00248219) 0.33403447)  0.00505@31) 0.3335917) 0.00682477)
128 0.333674L0) 0.000947478)  0.33354212) 0.00195210) 0.3333307) 0.00261828)
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TABLE Ill. Complex partition function zerosi; (j=1, 2, 3, and #for the five-state Potts model.

L Re(u,) Im(u,) Re(u,) Im(u,) Re(us) Im(us) Re(u,) Im(u,)

8 0.32152226) 0.03318419) 0.31372858) 0.06748133) 0.3072822) 0.0961918) 0.301311) 0.122311)
12 0.3162686) 0.01816814) 0.31267829) 0.03789729) 0.3103@15) 0.0541113) 0.3085@87)  0.0693%54)
16 0.31383@5 0.01180810) 0.31179734) 0.02495725  0.3104@13) 0.0361411) 0.3085982)  0.0455@54)
20 0.31251115 0.00844114) 0.31107814) 0.01803718) 0.31027777) 0.02606297) 0.3099457) 0.0328%29)
24 0.3116880) 0.00639411) 0.31063920) 0.01379120) 0.31003780) 0.02016678) 0.3100832) 0.0256Q027)
32 0.31076Q18) 0.004119487) 0.31015813) 0.00899817) 0.30981042) 0.01319855 0.3095718) 0.0165115)
64 0.3096258) 0.001412(24) 0.309436%61) 0.003162842) 0.30935814) 0.00468%17) 0.30937058) 0.00598864)
96  0.309340443) 0.000737831) 0.309247754) 0.00169482) 0.309221893) 0.002532781) 0.30919933) 0.00319825)
128 0.309220671) 0.000465428) 0.309161467) 0.001079(82) 0.30913%11) 0.001610454) 0.30916127) 0.00207913)

reason, we have combined the zeros of two neighboring lat- Let us first consider the casg=4. Figure 2 displays the
tice sizes and our fit therefore relies on six zeros for eaclvalues fora,(L) as a function of lattice size. In this plot we
pair. The estimates so obtained fj(L) are listed in Table do not observe any dependencyagfon the system size and
V. For the case of thg=5 Potts model we have four zeros the possibility of a first order transitionrag=1) is clearly

for each lattice size, but we have also calculadgfl) from  excluded. Hence, our analysis reproduces the well-known
fits where the eight zeros of two neighboring lattice sizesfact that theq=4 Potts model has a second order phase
were combined, which leads to a more robust estimate of thigansition. However, with our estimate af from our largest
parameter. The sets ak(L) so obtained are listed in Table lattice size, we find as critical exponenk=2-a,

VI. We note that for both models the values ®@f(L) are  =0.430Q18). This value is far from the thermodynamic limit
compatible with zero for all lattice sizes, demonstrating that2/3[19-21]. This discrepancy may be due to the dependence
the two Potts models indeed have a phase transition. of a,(L) on the higher and less precise zeros in the fits. This

The next question is whether and for what sizes the aboveependence is less pronounced if we merge the zeros of all
approach is able to identify the order of the transition. Thislattice sizes. Evaluating the resulting cumulative density
requires us to calculate an accurate estimate for the quantifgads to a value of,=1.466(23) which corresponds t®
a, in Eq. (10). For this purpose, we sag in Eq.(10) to zero  =0.534(23). This value of the critical exponedtis closer
and replace that equation by the simpler two-parameter fit to, but still far from, the theoretical value. It follows that on

G(r)y=ayr®. (12) 100 [T T T T

! () =4 < oM |

Extracting the parametees anda, from this fit requires an C]; 0 % A E
extremely careful data analysis and error estimation. For this S 450 [ E
reason we have again used the bootstrap method for estimat- < ' % ]
ing averages and standard errors. The valuea;ofnd a, 55 025 | =
o= ]

obtained are presented for all lattice sizes and lojstl# and E ]
g=>5 in Tables V and VI. In Table VI we list these param- - , z E

eters as a function of the first four complex zeros. 025 Fo. = .
-U. - . e by ey s T

=3

2

=3
T

TABLE IV. Bootstrap bias-corrected estimates and bias- 0 2 20 7 E) 01
corrected standard errors for the parametgrandy,, for q=4 and
g=>5. A B I I IR I
075 [(b) q=>5 o o, (L) ]
q=4 q=5 3 : +v,M)
L ay Yu ay Yu 5: 0.50 — %%% %: % % —:
8 0.40255  —0.226720) = ' % ¢ ]
12 0.32251) —0.181416) 2 05 ¢ E
16 0.6%12) —0.1897(43)  0.4A1) —0.155224) > oo b ]
20 0.47984)  —0.150319) [ _ _ - -
24 0.51474)  —0.141423) 025 —'| T
32 0.3813) —0.1650(84) 0.54®B3) —0.123325) 0 25 50 75 100 125
64 0.4416) —0.05818) 0.43365  —0.107415 L
96 0.45873) —0.097@46)
128 0.3618) —0.12515) 0.32940) —0.099@59) FIG. 1. ¢,(L) and y,(L) estimates foig=4 Potts model data

(a) and forg=5 Potts model datéb).
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TABLE V. Bootstrap bias-corrected estimates and bias-correctegh[a,(L)—1]=Inb—cInL (i.e., we seta,=1). In this way,
standard errors for the JK parameters from the first three zeros f%e obtainb=0.71716) andc=0.1765(69), with the good-

q=4. ness of fit [23] Q=0.72 for four zeros andb
=0.7910(88)¢=0.2050(40), with a smalleQ=0.09 for

L & a (L.L9 a3 three zeros. The corresponding fit for the case of four zeros is
16 1.2603) 1.57407) (16, 32 —0.0000893) shown in Fig. 4 and demonstrates that our data are indeed
32 1.4810) 1.57916) (32, 64 —0.0000324) compatible with the expected vala~1 for a first order
64 1.8319) 1.59419) (64,128  —0.00000659) phase transition. However, we can still obtain acceptable fits
128 1.8622 157018 (Q>0.7) for the whole range of€a,=<1.013(but note that

values ofa,<1 are difficult to interpret in the JK theory, and
rather indicate numerical instabilitiesvhich shows the dif-
the simulated lattice sizes the JK scaling relations do allow diculty in determining the order of the phase transition for the
qualitative characterization of the transition in e 4 Potts =5 Potts model. Only if we restrict our analysis to the first
model, but do not allow one to obtain quantitative resultsthree zeros does the goodness of fit show a maximum for
such as the numerical values of critical exponents. This limi@az;~1.
tation is a somewhat surprising result since the density and The JK approach allows us also to calculate the latent heat
the cumulative density of zeros seem to be fi@gfrom the  for the case of a first order phase transition by means of Eq.
multiplicative logarithmic corrections to the leading power- (9). However, that equation is valid only wheg(L)=1. In
law finite-size behaviof21,22] which hamper the determi- the case of thgg=5 Potts model we hava,(L)>1 for all
nation of the critical exponents and v in other approaches. lattice sizes. Hence, we cannot use E9). to calculate the

At first sight, the situation seems to be worse for the latent heat from our values @f;(L). Instead we have re-
=5 Potts model. Even if we discard the fourth zero, whichplaced Eq(11) by
has larger fluctuations, and repeat our analysis only for the
more reliable first three, our data do not lead to the expected
resulta,~1. This can also be seen from Fig. 2 where we.

plot for this model also the paramety(L) as a function of !s?ud|aezd( Lt%] ésf;ﬁ{[k:git: éecsi c;}iniqulfl)thbey : éévwzq,uzgay?i\)/e
lattice sizeL. However, unlike in the Borrmanet al. analy-

sis of theq=5 Potts model, our data show a clear trendWhICh has the same limiting value as(L). Values forA,

toward the expected value for a first order phase transitiod"® listed in Table VI. In order to calculate the latent heat of
) the g=>5 Potts model we evaluate firaf=A;(«) from the

(a,~1). Our data suggest that by an extrapolation towar inite-size-scaling fit

large (ideally infinite) lattices the true value of, can be

determined with the JK approach even for the5 Potts Aj(L)=A;()+BL"C, (14

model. This is consistent with the fact that the=5 Potts

model has a very large correlation lengthf order 2000  which leads with a goodness of {@=0.68 to the values

lattice unitg, and hence its true behavior can be caught onlya,; =0.0284(18),B=1.381(21), andC=0.6187(80) when

for very large lattice sizes. The log-log plot @$(L) in Fig.  the first four zeros are used for each lattice size. Restricting

3 indicates that one should use a polynomial fit for the exthe analysis toA;(L) calculated only from the first three

Gu(r)=Aq()r, (13

trapolation toward the thermodynamic limit: zeros at each lattice size leadsap=0.030 85(78)(with a
goodness of fiQ=0.75). Applying Eq.(9) we therefore find
ay(L)=ay(*)+bL"". (12)  as latent heate=0.0551(35)[Ae=0.0599(15) in case of
three zerok which is very close to the theoretical value
In order to see how acceptable the expected lapit1 is, Ae(q=5)=0.05D ... . This result is surprisingly good

we replace the above equation by a two-parameter fitvhen compared with other numerical estimates. For instance,

TABLE VI. Bootstrap bias-corrected estimates and bias-corrected standard errors for the JK parameters
from the first four zeros fog=>5.

L a; a, A as (L,L") as

8 1.30528) 1.498179) 0.4119198) —0.002(25) (8,12 —0.0003(60)
12 1.20027) 1.454663) 0.323612) —0.001(11) (12, 16 —0.0003(37)
16 1.17040)  1.437G81)  0.275914) —0.0001(55) (16, 20 —0.0001(24)
20 1.16136) 1.429Q@67) 0.245110) —0.0001(35) (20, 29 —0.0001(16)
24 1.08730) 1.409660) 0.2213477) 0.000123) (24, 32 0.0000691)
32 1.04%30) 1.394957) 0.1906962) 0.000113) (32, 69 0.0000117)
64 0.86341) 1.347%82) 0.1335376) 0.0000231) (64, 96 0.00000985)
96 0.73431) 1.317562) 0.1104942) 0.0000114) (96, 128 0.00000750)
128 0.66629) 1.300266) 0.0968735) 0.00000674)
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FIG. 2. Parametea,(L) as a function of system sidefor the

=4 Potts model and the=5 Potts model.

a recent study using lattices of uplte=4000 led to a latent

heat value ofAe=0.054[24].
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FIG. 4. a5(L) —1 [=a,(»)] as a function of system sidein a
log-log plot. The straight line through the data points is from our fit.

this model toward the new valute=0.69692). The large
error is due to the fact that only the largest sikes32, 38,

Note that Eq.(14) corresponds to the finite-size-scaling 48, and 64, for which the first correction term can be dis-

behavior of the specific heat if we identii@=(1—«a)/v
since the latent heat scales withAT.(L), and at the criti-

cal temperature we haveT.(L)~L ¥ and

Clr)nax(l_):Cl‘F CzLa/V.

carded, were considered in our calculation. Here, our data
rely on the values quoted in Rgfl1].

Our results indicate that the JK scaling relations are more
suitable than the Borrmanet al. approach for studying
phase transitions from the behavior of small systems. Unlike
in the Borrmanret al. approach the order of the phase tran-

This allows us to identify theoretically a second correctionsition could be determined for both tlie=4 and theq=>5

term in Eq.(14):

Ay(L)=A () +B L A alvyp |~

Potts models. In the latter cagand for theq=10 Potts
model which also has a first order phase transjtibrwas
possible to calculate the latent heat with good accuracy.
However, the approach failed to give the correct value for the

A check shows that our value @=0.6187(80) is indeed
close to (- «)/v=0.627, where the values of the so-called
pseudocritical exponentg=0.63(5) andv=0.59(3) were
taken from finite estimates in R€f18].

We also see from Eq16) that for a strong first order
phase transitioias for instance in the earlier studiga- 10
Potts mode[8]) where we haver=1/d anda=1, we do not
have the first correction term in E@L6). This explains why . ; .
very good estimates of the latent hgAte=0.6982), which factor in the early stqges of protein foldifgs]. It _h_as long
one has to compare with the exact value for gel0 Potts been known Fhatz helices undergo a sharp transition toward
model, Ae(q=10)=0.696 049 4[14]] could be obtained a random-coil state when the temperature is increased. The

even from small lattice sizes for the=10 Potts model in characteristics of this so-called helix-coil transition have

Ref. [8]. In fact, these estimates can easily be improved byP€€n studied extensivel6]. In previous work 2729 evi-
including a second correction term, which goesLa2 for dence was presented that polyalanine exhibits a phase tran-
sition between the ordered helical state and the disordered

critical exponenta in the case of theg=4 Potts model,
which has a second order transition.

IV. HELIX-COIL TRANSITION IN POLYALANINE

A common, ordered structure in proteins is thehelix
and it is conjectured that formation @f helices is a key

040 |1

ln(az)

035

030 [

025 -,

—
q=5

FIG. 3. Parametea,(L) as a function of system side for the

gq=>5 Potts model in a log-log plot.

In(L)

random-coil state when interactions between all atoms in the
molecule are taken into account. Here, we reconsider poly-
alanine and investigate the helix-coil transition by means of
the partition function analysis with the classification schemes
of Borrmannet al. and of Janke and Kenna.

Our investigation of the helix-coil transition for polyala-
nine is based on a detailed, all-atom representation of that
homopolymer. Since one can avoid the complications of
electrostatic and hydrogen-bond interactions of side chains
with the solvent for alaninéa nonpolar amino acjdexplicit
solvent molecules were neglected. The interaction between
the atoms was described by a standard force fieldrp/2
[30] (as implemented in theoNF90 program[31]). Chains of
up toN=30 monomers were considered, and our results rely
on multicanonical simulation$32] of N, Monte Carlo
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TABLE VII. Partition function zeros for polyalanine.

N Re(u,) Im(u,) Re(u,) Im(u,) Re(us) Im(us) Re(u,) Im(u,)

10 0.3053012) 0.0772Q14) 0.282313) 0.1382@61) 0.245972) 0.185163) 0.17211) 0.220Q71)
15 0.3568681) 0.05334639) 0.3416760) 0.1044059) 0.333148) 0.145428) 0.3067181) 0.168932)
20 0.37401641) 0.04233145) 0.3616127) 0.0810924) 0.356927) 0.115413) 0.333856) 0.147@27)
30 0.37818619) 0.02716732) 0.3739914) 0.0542027) 0.369311) 0.080413) 0.3585463) 0.102243)

sweeps starting from a random initial conformation, i.e., The valuesa; are compatible with zero for chains of all
without introducing any bias. We chosH,,,=400000, lengths, indicating that we have indeed a phase transition. In
500 000, 1000000, and 3000000 sweepsNerl0, 15, 20, order to evaluate the kind of transition we also calculate the
and 30, respectively. Measurements were taken every fourtparametersa;(N) and a,(N) which we also summarize in
Monte Carlo sweep. Additional 40 00INE 10) to 500000 Table 1X. Similar to the case of thg=5 Potts model, the
sweeps N=30) were needed for the weight factor calcula- parameteir,(N) decreases with increasing system size. The
tions by the iterative procedure described in R&2]. In log-log plot of this quantity as a function of chain length in
contrast to our earlier calculation of complex zeros presente#tig. 5 suggests again a scaling relation

in Ref.[28], where we divided the energy range into inter-

vals of length 0.5 kcal/mol in order to make E®) a poly- ay(N)=a,+bN"C. (18)
nomial in the variablei=e ™42, we avoided any approxima-

tion scheme in the present work. This is because the abovg nymerical fit of our data to this function leads to a value of
approximation wprks very well f_or the f|.rs.t zero,_but not for a,=1.31(4) with Q=0.95. Using @=2—a, we find a

the next ones. Since we need high precision estimates for thx_ao_70(4) which is barely compatible with our previous

next zeros also we again applied the scan method. 5 ye of ¢ =0.86(10) in Ref[28], obtained from the maxi-
In Table VII we present our first four partition function m,m of the specific heat. A fit of all four chain lengths can
zeros for seven bins, although the fourth one is less reliablg|sq not exclude a value,=1 since we can find acceptable

due to the presence of fake zeros. It is hardly possible t¢is with Q>0.55 in the range 0.92a,< 1.44. However, a

divide our production data into a larger number of bins dueclose examination of Fig. 5 shows that the=30 data point

to the limited statistics of our runs. Using the bootstrapspqs 4 considerable deviation from the trend suggested by

method again we first calculated from the zeros for each bil?he smaller chain lengths. Since the=30 data are the least
the parameterg,, and y, that characterize phase transitions reliable, we also evaluated EqL8) omitting the N=30

n S”?a” systems in the Borrmaren aI_.approach.As Onecan chain. This leads to a value @,=1.16(1) and a critical
see in Table VIl the values obtained for polyalanine are

. onente =0.84(1) which is now compatible with our pre-
characterized by large error bars and show no clear trena)gijs resulta:04(86)3(\1v0)l ! W patible with our p
with chain length. It seems that the median of thevalues i ’

. ~0 which \d indicate a first order t ition. H Let us summarize our results for the helix-coil transition
IS a, =Y, which wou'd indicate a first order transition. HOw" gy, ies of polyalanine. The JK approach is able to reproduce

ever, our data have errors too large to draw such a conclusq;ar polyalanine results obtained in previous wd@é], but

on the nature of the helix-coil transition. does not lead here to an improvement over other finite-size-

For this reason, we tried instead the JK scaling relations, _: ; ;
. ' scaling techniques. In particular, the JK approach does not
Table IX lists the parameteas(N) of Eq. (8). Here, the 9 9 b bp

. ) . allow one to establish the order of the helix-coil transition
average cumulative density of zeros is replaced by from simulations of small chains. Our results for the param-
2j—1 etera, seem to favor a second order transition, but this may
Gn(rj) = N (170  be due to large errors and is disputed by R&B], where

indications for a finite latent heat were found. In the present
study we considered only a special kind of biological mol-
ecule, homopolymers of amino acids, where in principle the
thermodynamic limit can be considered. This allows finite-

where we have translated the linear lengittas N [28].
Therefore all finite-size-scaling relations can be written in
terms of the number of monomeks

TABLE VIII. Bootstrap bias-corrected estimates and bias- TABLE IX. Bootstrap bias-corrected estimates and bias-
corrected standard errors for the parametgrand vy, for the poly-  corrected standard errors for the JK parameters for polyalanine.
alanine model.

N oy Yu N a.]_ a2 ag

10 ~0.36(17) —0.365(17) 10 6.1760) 1.86246) 0.01(14)
15 0.4119 —0.291(11) 15 4.3719 1.66416) 0.01469)
20 0.0614) —0.3229(78) 20 3.6226) 1.55824) —0.014(98)
30 0.1914) —0.1568(58) 30 3.5431) 1.47330) —0.007(61)
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FIG. 5. Parametea,(N) for polyalanine molecules of lengtid FIG. 6. Histogram of 400 bootstrap replications for the param-
in a log-log plot. eter o, from four-state Potts model data.

size scaling, which is an essential tool for obtaining the corflorida. He thanks Brian Tonner, Alfons Schulte, and the

rect results with the JK approach. However, in general sucRther faculty at the Department of Physics for the kind hos-
finite-size scaling is not possible for biomolecules that have ®itality extended to him.

distinct size and composition. In these cases we have to rely

on the approach of Borrmaret al. However, in our example APPENDIX: BOOTSTRAP METHOD

of polyalanine, that approach led to even less conclusive re- . . . .
sults since the error bars were large. Hence, it seems thgt The bootsirap is a simulation method based on a given

both approaches are limited in their usefulness for the stud ::3 s;%pr:leéntg ‘;rogig(;?cztr?g;técc?l ér;{?rrrgt]cc)(rasfc?rkethtgerr?;r;
of phase transitions in biomolecules.

sample[17]. The bootstrap algorithm assumes that our data
can be obtained from an unknown probability distributfon
V. CONCLUSION by random sampling,

We have evaluated two recently proposed schemes for FoX=(X1,Xp, - .. Xp). (A1)
characterizing phase transitions in small systems. Simulating
the q=4 andq=5 Potts models, where for the thermody- Here the pointx; refer to oum= 16 bins for each lattice size
namic limit we can compare our data with exact results, wen the Potts model or ta=6 bins for polyalanine. For each
found that both the Borrmanet al. and the JK approaches bin, the pointsx; contain the first four complex zeros.
work well when the order of the phase transition is not in oy statistics of interest are estimates for mean vallies

question[as in the case of thg=4 Potts model(second = 9(X) for the parameters and y in the Borrmannet al.
ordey or the earlier studied first order transition in the  approach,

=10 Potts modd! The situation is different for cases such as

the q=5 Potts model where it is difficult to distinguish be- a=F(X), (A2)
tween a weak first order and a strong second order transition.
A careful application of the JK approach led to the correct Y=G(X) (A3)

result of a weak first order transition for thgg=5 Potts

modeltvygllet_;[che tBorrrr;am_rettal. ae[proacf:hdlﬂ nlotttallow_ & and their respectives standard err6ts) and&(y). Here F
correct identification of this transition wi € latlice SIZ€S 34 g stand for the application of the functions in Eg$)
studied by us. Our results from Potts model simulations in-, - 4 (5)

dicate that both approaches have to be applied with great The bootstrap algorithm continues by considering our

care if one wants to avoid wrong conclusions on the nature | irical distributiéh wh hd .
of the phase transition in a system. This may limit their use-S2MPI€ as an empirical distributién where each data point

fulness to systems where the order of the transition is cleat@S the probability . The way the bootstrap method as-

and to systems that are not too small. In particular, applica§Igns an accuracy to our parameters does not depend on any

tion of both approaches to helix-coil transitions in polyala—theoret'c_al calculation but on random samples of swe
nine demonstrates the difficulties appearing when they arérawn with replacement frork, called a bootstrap sample,

applied to the study of phase transitions in biomolecules. .
FoX*=(x] ., x5, ... X)), (A4)

ACKNOWLEDGMENTS where each valug equals any one of the valuesx; .

U.H.E.H. gratefully acknowledges support by the Na- Therefore for each bootstrap sampié there is a boot-
tional Science FoundatiofGrant No. CHE-998187%4 and  strap replication of¢ which we denote ag*. If we repeat
N.A.A. support by CNPq(Brazil). Part of this paper was this process, the sample standard deviation can be obtained
written when U.H.E.H. was visiting the University of Central from B replications:
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vz Therefore, the bias-corrected estimatogisb—lg’. It is also

B
Eg= bzl [6*(b)—6*()1%(B-1) (A5)  convenient to evaluate the ratio of estimated bias to standard
A A deviation B,go/ E400- A small number indicates an unneeded
where the bootstrap meait (-)==F_,6*(b)/B. The limit  bias correction considering the standard error. The so-called
of £ asB goes to infinity gives the ideal bootstrap estimateroot mean square error of the estimatbfor ¢ can be de-
of £(9). fined to take into account both bias and standard deviation
for L=128 with B=400 replications. We obtain the boot-

[17]:

- VER(0— 6)2)= VE-(9)2+ Be(8,0)°=Ex(9) 1425
strap meamn* =0.46(17). On the other hand, a calculation ' —F F R F 2\ &/
of simple averages from our 16 measurements leads to (A7)
=0.41(18).

The bootstrap estimate of bias basedBoreplications is A A ) o —
given by If we take B=B,qq, our final result isa=0.36(18) for

g=4 andL=128. In the tables we quote our final estimates
Z%B= @*(~)— 0. (AB) 0= 60— B and the above bias-corrected standard errors.

The histogram in Fig. 6 represents air distribution for
the parameter in our simulation of thegq=4 Potts model
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