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Let f, U, andC represent, respectively, the free energy, the internal energy, and the specific heat of the
critical Ising model on thé/ X N square lattice with periodic boundary conditions, &ndepresents for fixed
M/N and N—. We find thatf, U, and C can be written asN(f—f.)=3 ,f,_1/N¥"% U=—2
+37 Uy 1/NZ"1 andC=8 InN/7+=7 /N, i.e.,, Nf andU are odd functions oN~1. We also find that
Upi_1/Cy_1=1/\2 anduy,; /c,=0 for 1<i<o and obtain closed form expressions for U, andC up to
orders IN®, 1/N®, and 1N2, respectively, which implies an analytic equation égr
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[. INTRODUCTION specific heat behavior due to a relation between scaling ex-
ponents in the renormalization group thedty], the scaling
The Ising model has been used to represent critical phgform (1) must then be replaced by a more general form
nomena in ferromagnets, binary alloys, binary fluids, gas{4,15-11
liquid mixture, etc., and is perhaps the most widely studied
model of critical phenomengl]. For analyzing the simula-
tion or experimental data of finite critical systefi$y, it is
useful to appeal to theories of finite-size correctipBlkand
finite-size scalind4]. Such theories have attracted much at- Ce=Yo(L/&E) +InLXc(L/E,). 3)
tention in recent yeargb—9| because of the fast advance in
computers’ computing power and algorithms for simulatingThe results of this paper to be presented below show that the
or analyzing data. Theories of finite-size effects and of finitedeading term ofCy is 8 InL/, all other finite-size corrections
size scaling, in general, have been most successful in derite the specific heat are always integer powerk of, which
ing critical and noncritical properties of infinite systems from also imply that the scaling functioXc in Eqg. (3) is constant
those of their finite or partially finite counterparts. Finite-sizeand equal to 8. Very recently, Caselleet al. [18] have
corrections and finite-size scaling for th&X N square lat- shown that this result can be predicted by conformal field
tice Ising model are of particular interest because the Isingheory under a number of general conjectures.
model is very popular and such system is usually used to test The relevance of the finite-size properties to the confor-
the efficiency of algorithms for studying critical systems mal field theory is another source of interest. Discussion of
[10]. In the present paper, we present analytic results fogeneral properties of nonuniversal corrections to finite-size
finite-size effects in the Ising model on a layex< N square  scaling and their relation to irrelevant operators in conformal
lattice at the critical point. field theory can be found in Ref19]. On the basis of con-
Finite-size scaling is the basis of the powerful phenom-formal invariance, the asymptotic finite-size scaling behavior
enological renormalization group methidd.,12). In the two-  of the critical free energy, per site and the inverse corre-
dimensional Ising model the finite-size effect on the renordation Iengthf,gl of aNXx o system is found to bg20]
malization transformation has been demonstrated to be rather

Qe=LYaYq(L/E,) +LYINLXo(L/E.,), )

which in the case of the specific hd&l) becomes

benign[13], and the effects due to convergence to the fixed i N2(fo— £ ) — cm 4
point and finite size are clearly distinguishied!]. The finite- N'Tw (fn=fa)= 6’ (4)
size scaling theory predicts that near the critical point the
singular part of the thermodynamic quantity of a finite sys- lim N§,§1=27rx, (5)
tem, sayQs, has the scaling form N
Q.=LYeYq(L/E.), (1)  wheref,, is the free energy of the bulk system,is the
Q

conformal anomaly number, andis the scaling dimension.
wherelL is system linear siz&,, is the correlation length of The corrections to Eq€$4) and(5) can be calculated by the
the bulk systemyq is a critical exponent, and is the  means of a perturbated conformal field the¢®i,22 and
scaling function. The scaling ansatz mentioned above ignoresan be expressed in terms of the universal structure constants
the possible logarithmic corrections. In the case of plana(C,,) of the operator product expansid@l]. Quite re-
Ising model, which displays a logarithmic singularities in thecently, Izmailian and H{i9] studied the finite-size correction

terms for the free energy and the inverse correlation length of

critical Ising model orN X« lattices and obtained a new set

*Electronic address: huck@phys.sinica.edu.tw of the universal amplitude ratios for the coefficients in the
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free energy and the inverse correlation length expansions. It This paper is organized as follows. In Sec. Il, we write the

was shown that such results could be understood from a pefree energyf, the internal energy, and the specific he&@

turbated conformal field theory. of the Ising model in terms d?,, P,, P3, P4, Qq, Q,,
Based on Onsager’s solution, explicit calculations of theand Q5 defined in this section. In Sec. lll, we present

specific-heat finite-size scaling behavior have been reportegsymptotic expansions fdr, U, andC. In Sec. IV, we dis-

by Ferdinand and Fish¢B] and by Kleban and Akindi23]. cuss some problems for further studies. Some mathematical

In 1969, Ferdinand and Fish¢B] first studied finite-size details used in the derivation of equations in Sec. Il are

corrections for a critical Ising model oM XN square lat- given in the Appendix.

tices with periodic boundary conditions. They gave explicit

expressions for the critical free energyinternal energyJ, II. ISING MODEL
and specific hea€ per lattice site for a fixed=M/N and _ _ _ _
largeN up to orders M?, 1/N, and 1N, respectively, Consider an Ising ferromagnet on & XN lattice with

periodic boundary conditiong.e., a torug. The Hamiltonian

1 1 of the system is
=f.+— +0;+0,)— = +0| —
f=f, e IN(6;-+ 03+ 64) — 5IN(46,036,) |+ O vk
(6) pH=-32 ss, )
1 26,6050, 1 whereB=(kgT) "1, the Ising spins;= *+ 1 are located at the
U=—v2-5 Oy 02t 0, ) (7)  sites of the lattice and the summation goes over all nearest-
neighbor pairs of the lattice. The partition functi@gy(T)
4 of a finite M X N square Ising lattice wrapped on a torus can
be written as
52 2, 6In6,
= SN 2l i W) 16 =2 1 ‘
4] 7 0,+03+0, Zun(T)= 5(2 sinh 2) 2MNS, 7, (10)
=1
0,036, 0,050, 1
S 0,05+ 0, V2 0,+ 63+ 6, N where the partial partition functioris are defined by
+O([INNT¥N?), ®) Nt

M [ M N—1
Z1= H 2 COSh§72r+1: Piexp > E Yor+1
where 6,=6;(0,)(i=2,3,4) is elliptic theta functions of =0 L& =0
modulusq=e~ "¢, Cg is the Euler constant, anfl, is the
free energy in the thermodynamic lintil ,N— oo, N-1 M Mg N—1
In 1983, Kleban and Akindi23] gave a very accurate and Z,=[1 2 sinh=y,.,=P,exp
relatively simple approximate closed form expression for r=0 2 ]
leading specific-heat correction term that results from retain- (12
ing only the two largest eigenvalues of the transfer matrix.

11)

\<
N
+
5

This approximation is already good §&=1 and becomes e M MG _
exponentially better with increasing and they interpreted 23~ rﬂo 2 cosh vy =Psexp - 24 Y (1+e M),
their results in terms of domain-wall energies. ) ’ (13
In this paper we study the same system[Zkand find
that f, U, and C can be written as N(f—f.) N-1 M [m N2t
=37 fo 1/NF7L U=—\2+37 juy_41/N?7% and C Z,= HO 2 sinh— v =Py exp = | Yor (1—e M),
r= r=

=8InN/7+3;" ,;/N|, i.e., Nf and U are odd functions of
N~1. We also find that,; _;/Cy_;=1/J/2 andu,; /c,=0
for 1<i<w and obtain analytic equations fér U, andC  wjith
up to orders M°, 1/N®, and 1N3, respectively, which im-
plies an analytic equation fars.

We have also shown that Kleban and Akinci approxima-  P1= [] (1+e M), P,
tion is in excellent agreement with our exact results for the =0
leading correction terms of the free enerdy)( the internal N—1
energy (,), and the specific heatg,c,) at é=1. For the P.= H (1+e Mrr), P
next correction terms the error introduced by the two- S ' 4
eigenvalues approximation is maximum &t1 (M=N).
With increasingt the exact and approximate values approactand vy, is implicitly given by
exponentially and approximation becomes already good at
£=1.65 for the correction termgs;,u;,c,,c3 and at &
=1.85 for the correction termf;, Us.

(14)

N—-1

N-1
H (1—e Mrar+1),
r=0

N

|
SN

(1—e M7y, (15

Il
=

r

_costf 2] ra 16
COSh)/r —m COSW. (16)
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At the critical pointJ. of the square lattice Ising model, and P; are given by Eq(15) with y,=y°? and /" de-
whereJ,= 1In(1+/2), one then obtains note the second derivative of, with respect toJ at the

critical pointJ=J.. Then the exact expression for the free

(c,)_ . _ , e energy, the internal energy, and the specific heat of a finite
lesq(ZN with — sq(x) = In(sinx-+ 1+sin’x). Ising model at critical point T=T,) can be written as
17
1 1 P;+P,+2P;expB—A)
The free energy, the internal' energy per spin, al_wq the spe.cific f= In 2+ WAJF MN n 2 '
heat per spin can be obtained from the partition function (29)
ZMN
4 P
4 4
1 1 U=—\2-5 . (29
f MNInZMN =In2 sinh 21+ MNan Z
18 4P 2
( ) C=\/§U_§ 4
1 q 2P;+(P1+Py)expA—B)
RO VINF R 2QsPs +(QuP1+Q:PIOXHA-B)
K 4 2P;+ (P, +Py)expA—B)
=—coth2]— — E z!) / (E zi), (19)
MN\ = =1 IIl. ASYMPTOTIC EXPANSIONS
1 2 We consider only sequences of lattices in whigh
C=< 5 INZyuy =M/N remains positive and finite as the thermodynamic
MN dJ limit M,N—x is approached. Using Taylor's theorem we
4 find thatM v, is even function of M at the critical point
3 2 1 S 7 S 7
a smi’?ZJ MN i=1 i i=1 I M (cr) S i— r_7T_3§E+7T_5§£+
. . TSN T T 12 e e
—{(2 zi’)/ > zi) ] (20) 3
i=1 i=1

Using Euler-Maclaurin summation formul24] we can ex-
where the primes denote differentiation with respecl.tat pandA andB up to arbitrary order
the critical point T=T,) the partial partition functiong;
heir f o .
and their first and second derivatives are given by A _f Ysg(X)dx M 2 (2k2)l: (22k-1_ l)lﬂ(Zk 1(0)
Z,=Pe,  Z,=P,e®, Z;=2P;e®, Z,=0; (21

aT 2k—-1
Z2;=0, Z,=0, Z;=0, Z,=4MP,e® (22 5N
z; 0.2 z; 0,2 z3 0.2 _ZGMN 'n'§ 7m3¢ 1 31“5'5i
MN < MNP MmN e B v 1440 N2 24192N4
Z,=—12z,, (23 . 1003377¢ 1 . i
Where 9676800N6 (32
M M MN (= - 2B 2k=1
_ (cr) _ (cr) _ " 2k (2k 1)
5 2 vt B=5 2080 @ B=——| s0dx—M 2 (ZK),( ) (0)
1S e o MA _26 \TE mEL mEl 79rTE 1l
Qu=3y & Yar+1tanh—5—, (29 T 6 180N2 756 N4 75600N6 ’
(33
Q,= 2 () coth o V2L virls (26) i _ i
279N ; Yor+1 5> whereB,; are the Bernoulli numbers ar@l=0.915 965 is
Catalan’s constant.
1 N2 M D Let us now evaluate the produd® for i=1,2,3,4. It is
" 7 f Eqg€15) and (31) that P, contains onl
=4&+ — " tanh——="—, 2 easy to see from Eq i %
Qa=4¢ N Z Var @7 even power of M
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- 3
Pij . a2 TElA_ 26]0
Pi=m<o,§)( “,Zl N—;,) (i=1234, (34 ma(06) =65, e™M=p
D D where 6,= 6;(0,q) is elliptic theta functions of modulug
Pi=m(0,8)| 1+ —1214— —142+ e =e~ "¢, The explicit expressions for the coefficiemts and
N° N pi» for i=1,2,3,4 are given in the Appendix.
One readily sees from Eq&8), (29), and(32)—(34) that
_ P21 P22 the finite-size estimates of the free ener@yf) and the in-
Pa=m5(04)| 1+ FJ“ m+ ol ternal energyU) must be odd functions dfi .
Pyz my(0,6)| 1+ 24 P22 N(f 1) =, 121 (35
3=m3(0,8) +F+m+"' : “ Nzt
Pa1  Pa _ o Upig
P4:7T4(01§) 1+F+m+ ’ U__\/§+|21 N2i71 (36)
with Substituting Eqs.(32)—(34), (A14), and (A15) in Egs.
P p 02 (28) and(29) we can write the expansions of the free energy
3 4 0 i it i
m1(08)=—, ) (08)=—, 14(0,6)= ——, (Nf) and the internal energyU) at the critical point T
1(04) o 2(04) to 3(04) 030, =T,) up to 1N® order. The final result is
|
¢t 1 7 86,050 0303+ 63) — 03631~ 7(03+ 05+ 63)
N(f_fm)_W In(6,+ 63+ 04)—§In(4620304) —m 1440 6,+ 05+ 05)
for+ E_E f
1 £K® 51 K K 52 5 1 ,
+m189n-2 O+ 03+ 0,4 N7’ 37
with
fop,= 0,(— 32+ 48k — 78k*+ 31k®) + 03(31— 78k + 48k*— 32k®) + 0,(31— 15k?— 15k*+ 31K°), (389
fs1= 0,(— 32+ 80k?— 38k*+ 21k®) + 03(31— 88k + 88k*) + 0,(31— 67k + 25k*— 21k®)
. 21 030,k (1+K'2)2+ 0,05k *(1+k?)%+ 0,0,(k'>—k?)? 39
and
Ue 3 2 6,030, 2 0,050,(05+ 65+ 63) w3 2 0,050,  &K® . E’ ulio
N Op+03+6s N3 (0,4 05+60,)2 96 NS (0,+0,+0,)% 32| - |k K/ % N7
(40)
with
Usgo=03(k'2—Kk?)— 6,k*(1+K'?)+ 0,k" H(1+K?), (41)

036103-4



EXACT AMPLITUDE RATIO AND FINITE-SIZE . .. PHYSICAL REVIEW E 65 036103

- 23-64k°+ 64" k416+8k2—k4 12 ,23—6k*—k*
D L7
030,k (1+K'2)2+ 0,05k 4(1+k?)%+ 0,0,(k'>—k?)? 4
* 12 6,+ 6+ 6) : 42
|
wheref,.,=—0.5In2-2G/7 and 6,, 65,6, are elliptic func- (app) o ¢
tions, f5PP = o3 1~ 63tantimé/s)] - 737zgsecﬁ(w§/8),
51
o [2kK(k) pae 2K (k) g 12k" K (k) &1
2 L m ™ (;13) u@PP = — 1+ tan w¢/8), (52)
3
with K(k) and E(k) the elliptic integrals of the first and u(app)zﬂ-—gseCH(’lT§/8) (53)
second kind, respectively. For simplicity we dendke 3 192 '
=K(k), K'=K’'(k), E=E(k), andE’'=E’(k).
It is interesting to compare our results for the free energy (app) ¢ w82
and the internal energy with Kleban and Akinci two- ug pp=ﬁ3secﬁ(w§/8)—msecﬁ(w§/8)
eigenvalues approximation. Keeping only two largest eigen-
valuesky and\ ; of the transfer matrix, the partition function Xtanh(wé&l8). (54)

of the Ising model can be written as

The expressions of the coefficients given by Ed®)—(54)
Zyn=Mg +\Y (44 are much simpler than their exact counterparts given by Egs.
(37)—(42). Nevertheless, one can see from Figs. 1 and 2 that
with two-eigenvalues approximation proposed by Kleban and Ak-
inci is already good af=1 for the leading corrections terms
Nt in the free energy f(;) and the internal energyu¢) and
Ao=(2 sinh ZJ)N’Zexp(E > y2r+1), (45  becomes exponentially better with increasifigThe error
r=0 introduces by the two-eigenvalues approximation is maxi-
N mum até=1 (M=N). With increasingé the exact and ap-
B ) N2 1 proximate values approach exponentially and approximation
A1=(2sinh2))" exp 5 21 Yor | (40 pecomes already good &t=1.65 for the correction terms
f3,u3 and até=1.85 for the correction termsés,us. We
where y, is implicitly given by Eq.(16). consider the casé=1 only. By symmetry, the same results

To write the critical free energfyand critical internal en- hold for & =1/¢<1. .
ergy U in the form of Eqs(35) and (36), we must evaluate To c_alculate the specific h.eat. we must also evaluate as-
Egs. (45 and (46) asymptotically. These sums can be ymptotically the sums appearing in the expre_s:{[ﬂﬁ) for C,
handled by using the Euler-Maclaurin summation formulah@mely; Q1, Q», and Qs. Since the analysis follows the

[24]. After a straightforward calculation, we have obtained S@Me general lines as in the cases of the free energy and the
internal energy, we will not present the details of calculations

f@pp  f(@app)  f(app and we quote here only results, namely, at the critical point
N(f—f.)= CRINNTIR S R (47) T=T, the asymptotic expansion of the suRs, Q,, and
N N3 N° Q3 can be written as
(app) (app) (app) 8 - i
_ ! us = L Us =—InN+> — for (i=1,2,3 55
U=—2+ Nt NE + NG + .. (48 Qi - jzosz (i=123), (59
with whereq;q andq;, (for i=1,2,3) are given by
- 1 8 5/2
f(lapp)=—1—2—gln(1+e’”§’4), (49) d10=—| CetIn——21In 03), (56)
71_3 8 5/2
PP = e 1- 15 tantim¢/8)], (50) 020=—| Ce+In—~21In 94)' (57)
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FIG. 1. Finite-size free energy correction terias f,, (b) f,

and(c) f5 as functions of the aspect ratip which are defined by

PHYSICAL REVIEW E 65 036103

o
firy

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

exact
approximate

W - 6 U bk WD R

[+]
w

0.2

exact

approximate

0.1

exact

approximate

(c)
1.5 2 2.5 3 3.5 4

€
4.5 5

FIG. 2. Finite-size internal energy correction terfas u;, (b)
uz, and(c) us as functions of the aspect ratip which are defined

Egs. (37), (39), (39), and(43). Solid curves: exact values; dashed by Eqs.(40)—(43). Solid curves: exact values; dashed curves: two-

curves: two-eigenvalue approximations of E89)—(51). The ex-
act and approximate values approach exponentially iasreases.

8 5/2
q30=W(CE+|nW2|n02), (58)
8K* ,|E E

qll::_- 97T2 14‘(1 2k ) “7_'FZ y (59)

8l<4§ ’
=——[1-3K*+(1+k?)| ——-—||, (60
Gor= (1) == || ©0
—8K4§ 2—3Kk%>+(2—K>? E_E 61
Ga1=g |2~ +(2-Kk%) <K (61)

It is easy to see from Eq$29), (30), (34), and(55) that the

asymptotic expansion of the specific heat, can be written as

eigenvalue approximations of Eq&2)—(54). The exact and ap-
proximate values approach exponentiallyéamcreases.

czﬁln N+, ¢ /N (62)

T i=0
Except for the leading term, all other corrections in the
asymptotic expansion of the specific heat are proportional to
1/N', without multiplicative logarithms. This result imply
immediately that scaling functiok in Eq. (3) is constant
and equal to &f. _

It is also clear that the contribution to odd (' 1) order
in the specific-heat expansion give only first term in right-
hand side of the Eq(30). Thus, we can obtained immedi-
ately that the ratiau,;,;/Cy.; of subdominant If~2~1)
finite-size corrections term in the internal energy and the
specific-heat expansions are constant, namely,

Upi+1/Coi1 =112 (63
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as well thatu,; /¢, =0 for 1<i<<oo,

Let us now evaluate the first few terms in the specific-heat

expansion. Substituting Eq932)—(34), (55), (56)—(61),

(A14), and (A15) in Eqg. (30) we have finally obtained the

expansion of the specific he&€) at the critical point T
=To),

6,650, )2
0,+ 03+ 6,

4
2 Hi |nt9i

16 i=2

6,656 1 ¢
_—_2\/5 2V3V4 2
a 02+03+64

6,+ 605+ 6, N N2

1 1
+Om+0$

(64)

L1 m3E 0,0504( 05+ 63+ 65)
N3 24\2  (0,+ 65+ 6,)2

with

LT 0050:(05+ 03+ 6) | mPE 030420, 05— 6)
212 (9405400 9 Ort6st0,

77_2§ 6,650,
6 (6,+ 03+ 6,)°

0
(0%+ 62) egma—3
4

0 0
— (0440563 In>+ (65— 0963 In->
03 04

T 053+ 03+ 0405+ 603) — 26,0563+ 63)
9 0,4 02+ 6,

X (1—2£65E). (65)

Equation(63) imply that the amplitude of the ter®(1/N°)

in Eq. (64), i.e.,cs, is \2us whereus is the amplitude of the

PHYSICAL REVIEW E 65 036103

Co
2
1.8
1.6
1.4
1.2
3
/ 2 3 4 5 6
0.8 exact
6 (a) — — — approximate
C2
.4
E—— exact
0.2 — — —  approximate

FIG. 3. Finite-size specific-heat correction terfas c, and (b)
¢, as functions of the aspect ratip which are defined by Eq$64)
and(65). Solid curves: exact values; dashed curves: two-eigenvalue
approximations of Eqs(67) and (69). The exact and approximate
values approach exponentially &sncreases.

m2&In2

PP — — g+ g[ —1+tani 7&/8)]+ 24 secR(w&l8)
77352
-5 secl(w&l8)tan wé/8), (69
A T /8) (70)
cy _96\/5380 (élB).

N~ correction terms in the internal energy expansion Eq.

We plot the aspect-ratio&] dependence of the finite-size

In two-eigenvalues approximation the specific heat can bépecific-heat correction terntg andc, in Fig. 3. The exact

(40).
written as
8 (@pp)  (@app  (app)
C=—InN+c{PP+ : °
T NE N3
(66)
with
5/2 -
capn :;( |n7 +Cg— vy + & secR(él8)
8In2
+——[-1+tank(7&/8)], (67)
c{arP = V2[ - 1+tani( w¢l8)], (68)

and approximate values approach exponentially&am-
creases. Note, that the ratios of correction tetméc,; and
us/c4 are constant and given by E@3). In Fig. 4 we plot

the aspect-ratio dependence of the error introduced by two-
eigenvalue approximation for the correction terms in the free
energy, internal energy, and specific-heat asymptotic expan-
sions. The deviation of the two-eigenvalues approximation
from exact result is about one percentagetatl for the
leading correction terms; ,u,,cq, at £=1.65 for the second
correction termg3,us,C,, até=1.85 for the third correction
termsfs,us, and diminishes very rapidly asincreases.

It is of interest to compare this finding with other results.
Equations(37), (40), and(64) are consistent with Ferdinand
and Fisher’s similar expansiofid] up to orders M?, 1N,
and 1N, respectively. Others terms in our equations, except
the term ofO(1/N3) for U [6], are new. Fog=1, we have
u3=0.206 683 145 and u;=0.730 182 312 347- that are
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Error to know whether the amplitude ratio of E@3) can be ex-
0.01 (a) tended to honeycomb and plane triangular lattices, i.e.,
0.005 whether the ratio is universaliii) If, so, how do such am-
’ \ plitudes behave in other models, for example, in the three-
= = £ state Potts model?
1.1 222837 ={:4 1.5 1.6 Note added After the completion of this paper, we
-0.005p -~ P free energy learned that similar results have been independently obtained
,.’ -—- inte:l_:'n_al energy by Sa|ag:26]
-0.01 .,- ————— specific heat
4
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APPENDIX
-0.005 free energy
- :‘f_z:‘gi energy Let us now evaluate the coefficiengs; and p;, for i
-0.01 P =1,2,3,4. After little algebra, following the general lines of
_0.015 the Ferdinand and Fisher pafd@], we can obtain the fol-
’ lowing expression for the coefficiengs; andp;,:
Error
0'01\\ () 1 ; 1% ( ; coshméj
- P o _
0.005| “~_ Pu==3m 8 & sint? 7¢j
1.9 2 2.12.22.32.42.52.6 +§z(_1)1005h77§]
-0.005 —— free energy 2= sint 3|
— — - internal energy
-0.01 o . o
1 coshméj N 3 2 coshméj
Pa= 378 4 & — 5 T35 .
-0.015 3" "4 =isintwé) 211 sintf g
FIG. 4. The error introduced by two-eigenvalue approximation (A1)
for the correction terms in the free energy, internal energy, and _
specific-heat asymptotic expansiotta) The error for the leading 1 5 * (— 1)1’ 37 (— 1)1’
correction terms,, uy, andc, as functions of. (b) The error for pP31= —§7T {2 ——+ 5 - -
the second correction ternfg, us, andc, as functions of¢. (c) | I=1 sint? g /=1 sinkf* 7 ¢j
The error for the third correction ternfg andus as functions of.
The vertical axes represent the error defined by Erf@f*2° 1 * 1 37 1
— adPpProXy gexact \wherea stand for the correction terms in the free Pa= ——773§ E —+ = E .
energy, internal energy, and specific-heat asymptotic expansions. 3 Sisintt g 2 i1 sintf wé
Solid curves: free energy; dashed curves: internal energy; dot-
dashed curves: specific heat. The deviation of the two-eigenvalues 1 475¢3[ 3 d
approximation from exact result is about one percentage=dt for p12:§p§1+ T py: Vo (mé)+ 77— A(md) Wi(mé)|,

the leading correction terms, §&=1.65 for the second correction
terms, até=1.85 for the third correction terms and diminishes very )
rapidly as¢ increases. 1, 4m%[3 d
=-p5t—— +—F
p22 2 le 81 g 2( 775) d( g) 2( 7T§)_

quite consistent with numerical datg=0.206 683 133 and

us=0.730182 312 35 obtained by Salas and S¢&al 1 47563 3 d
Pa2=5P3t —gr | —z Va(mé) + o= Wy(mé) |,
32 2 31 81 g 3 d( g) 3 |
IV. DISCUSSION (A2)
The results of this paper inspire several problems for fur- 6.3
ther studies{(i) can one obtain an exact asymptotic expan- 1, 4m¢

Pt | W (mE) T
sion for the thermodynamic functions up to arbitrary order, Paz=5Pu™ g1 m§ (m6) d( §) (78]

as it can be done for the Ising model bk « square, hon-
eycomb, and plane triangular latticg. (ii) It is of interest  with
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(0= 2( 1)) costuj| —=—+ —
X cos
' 128 5 : sinftxj  sint? xj
N 120
sintP xj/’
¥ (x) = 1 2 b 1 N 60 N 120
X cos ,
2 128 5 : sinftxj sintfxj  sintf xj
(A3)
1 < 15 15
Pa(X)= 7= - + + ,
(X) 16121 (sinhzxj sintf xj  sintP x|
1 < 15 15
voo- 53, [ 2 el
16 /=1 \ sink? x| S|nkf‘x1 sintf xj
Let us now introduce the following notation:
o1
S\ (X)= >, for n=2,46. (A4)

Then the coefficientp;; andp;, can be rewritten in the more

j=1 sinH' x|

symmetrical way,

and

with

B 1
p11—§

1 5
79%§W83—ZR@HQRQ8}

_13 1
Pa=3 7 R(§)— gR(£/2) |,

1
p31=§773§[R(§)—2R(2§)],

_ 1
Pu=—3m ER($),

B 17 1
W1(6)=—2W(26) + 75V (6~ 35V (E/2),

Vo) =—-V(H)+ ‘I’(f/Z)

W(x)=

W3(§)=2W(2£) -V (§)

3
R(X)=Sp(x) + 5 Su(x),

1
T6L282(%) +1584(x) + 1555(x) .

(A5)

(AB)

(A7)

(A8)
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Thus we have shown that the coefficiepts andp;, can be
expressed in terms of the only object, nam&lyx) for n
=2,4,6. TheS,(x) is given by(see[25], p. 721

2(2 —k2) <2 2
Sa(x )——+ 3 K4(k)— ZK(k)E(k), (A9)

wherex= 7K’ (k)/K(k) with K(k) andE(k) the elliptic in-
tegrals of the first and second kind, respectively. Bh€x)
and Sg(x) are calculated to be

11 4(2-KY) K2 4
54(X)——9—0—T (k)+3—K(k)E(k)
8(1—k2+k%
— K%k, A10
+ e (k) (A10)
191 32(2—k?) (2
Se(X) = 1890’ 1572 K(k)— )

8(1—k2+k% K
4574

32(2—3k?—3k*+ 2k®)

YT K8(k). (A11)

Thus we are now in position to evaluaR{x) and ¥ (x)
given by Eqs(A7) and(A8), respectively. The result is

1 41-K+kY

1 2(2—3k>—3k*+2k®)

_ _ 6
V(0= 1508 o KS(k). (A13)

The expressions foR(2x),R(x/2) andW¥(2x),¥(x/2) can
be written as function of the modullsby using properties
of the elliptic functions.

Thus for the coefficientp;; (for i=1,2,3,4) we have fi-
nally obtained

7m3¢ (7+8k2—8k4)§K

P~ " 7420 90m (),
- et
(A14)
p31=% + (=8* Zﬁj L K4(k),
p41=717—;g— WK“(M.

036103-9



N. SH. IZMAILIAN AND CHIN-KUN HU

After little algebra the expressions fq, (for i=1,2,3,4)
can be written as

2K8
p12=§— 31— 88K+ 88Kk*+ (31— 78k?+ 48k*— 32k°)
18972
E' E\| 317% p%
K' K/|| 241927 2"

2K8
P2o=———| 31— 67k*+ 25k* — 21k°®+ (31— 15k*— 15k*
1897

317  ph
24192 2

+ 31k E_E
)F K

(A15)

2 )

PHYSICAL REVIEW E 65 036103

2K8
Pay=— ¢ 32— 80k*+38Kk* — 21K°+ (32— 48>+ 78k*
18972
E' E moé pgl
_ 6y —_ _ — 24 5=
31")(K/ K) 756 2
16£2K8
=— 2—5k2+5k*+ (2 —3k2—3k*+2k8
p42 189772 ( )
E' E ¢ ph
K’ K 756 2

where for simplicity we denot&K=K(k), K'=K’(k), E
=E(k), andE’'=E’'(k).
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