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Generalized thermodynamics ofq-deformed bosons and fermions
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We study the thermostatistics ofq-deformed bosons and fermions obeying the symmetric (q↔q21) algebra
and show that it can be built on the formalism ofq calculus. The entire structure of thermodynamics is
preserved if ordinary derivatives are replaced by an appropriate Jackson derivative. In this framework, we
derive the most important thermodynamic functions describing theq-boson andq-fermion ideal gases in the
thermodynamic limit. We also investigate the semiclassical limit and the low-temperature regime and demon-
strate that the nature of theq deformation gives rise to pure quantum statistical effects stronger than unde-
formed boson and fermion particles.
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I. INTRODUCTION

There have emerged two distinct methods in the literat
for the purpose of introducing an intermediate statistical
havior to describe a deformed physical system. The fi
method consists of modifying the partitioning of the m
crostates and thus the logarithm of the statistical weightW of
the many-body system. Specifically this is accomplished b
deformation of the logarithm function in the Boltzmann e
tropy S5 lnT W, by the introduction of the Tsallis logarithm
@1#. This then introduces nonextensivity in the statistical b
havior. The second method is to deform the quantum alge
of the creation and annihilation operators, thus modifying
exchange factor between the permuted particles or sta
The theory ofq oscillators is related to the theory of quantu
groups originally introduced individually by Biedenharn a
Macfarlane@2,3#.

The mathematical framework ofq oscillators is based on
theq calculus, which is introduced via the Jackson derivat
~JD! @4#. We thus expect such aq calculus to play an impor-
tant role in the thermostatistics ofq oscillators. Indeed, it has
been shown@5# that an internally self-consistent thermost
tistics ofq bosons can be formulated by using an appropr
prescription of the JD to be used in the thermodynamic re
tions so that the entire structure of thermodynamics in
sense of the Legendre transformations is preserved.

Many investigations are devoted to the study ofq oscilla-
tors providing much insight into both the mathematical d
velopment and theq-deformed thermodynamics@6–14#.
However, it is our opinion that a full understanding of th
physical meaning of theq deformation and its effect on th
thermodynamic relations is still lacking.

The purpose of this paper is twofold: first, we want
extend the formalism introduced in Ref.@5# to incorporate
the algebra that is symmetric under the transformat
q↔q21, considering both boson and fermion degrees
freedom. Second, by using the generalized thermodyna
relations, we wish to examine the equation of state of
q-deformed ideal gas in the semiclassical limit and the lo
temperature regime ofq fermions in order to provide a
deeper insight into the understanding of the statistical beh
1063-651X/2002/65~3!/036101~5!/$20.00 65 0361
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ior of q-deformed bosons and fermions. We organize the
per as follows. Section II introduces theq-deformed algebra
of bosons and fermions and the thermal expectation val
The statistical thermodynamics ofq-deformed bosons and
fermions is developed in Sec. III. The equation of state a
specific heat of the ideal boson and fermion gases are der
in Sec. IV. We study the equation of state in the semiclass
limit in Sec. V. We devote Sec. VI to the investigation of th
ideal q-deformed fermions at low temperatures. Section V
contains some concluding remarks.

II. q-OSCILLATORS ALGEBRA AND THERMAL
AVERAGES

In this section we shall briefly review the basic propert
of q-oscillators algebra useful in the present investigati
The symmetricq-oscillators algebra is defined in terms of th
creation and annihilation operatorsc, c† and theq-number
operatorN by @6–9#

@c,c#k5@c†,c†#k50, cc†2kqkc†c5q2N, ~1!

@N,c†#5c†, @N,c#52c, ~2!

where the deformation parameterq is real and@x,y#k5xy
2kyx, wherek51 for q bosons with commutators andk
521 for q fermions with anticommutators.

Furthermore, the operators obey the relations

c†c5@N#, cc†5@11kN#, ~3!

where theq-basic number is defined as

@x#5
qx2q2x

q2q21 . ~4!

By using the above algebra it is possible to construct
q-Fock space valid for bothq bosons andq fermions. It is,
however, important to stress that forq fermions the eigenval-
ues of the number operatorN can take on the valuesn
50,1 only ~as in the case of undeformed fermions!.
©2002 The American Physical Society01-1
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The transformation from Fock space to the configurat
space~Bargmann holomorphic representation! may be ac-
complished by means of the JD@4,15,16#

D~q! f ~x!5
f ~qx!2 f ~q21x!

x~q2q21!
, ~5!

which reduces to the ordinary derivative in the limit whenq
goes to unity. Therefore, the JD occurs naturally
q-deformed structures and we will see that it plays a cru
role in theq generalization of the thermodynamic relation

Thermal average of observables can be computed by
lowing the usual prescription of quantum mechanics. T
Hamiltonian of the noninteractingq-deformed oscillators
~fermions or bosons! is expected to have the form

H5(
i

~e i2m!Ni , ~6!

wherem is the chemical potential ande i is the kinetic energy
in the statei associated with the number operatorNi . Let us
note that the Hamiltonian is deformed and depends implic
on q, since the number operator is deformed by means of
~3!. The thermal average of an operator has the stand
form

^O&5Tr^rO&, ~7!

wherer is the density operator andZ is the grand canonica
partition function defined as

r5
e2bH

Z , Z5Tr~e2bH!, ~8!

andb51/T ~henceforward we shall set Boltzmann consta
equal to unity!. We observe that the structure of the dens
matrix r and the thermal average are undeformed. As a c
sequence, the structure of the partition function is also
changed. We emphasize that this is not a trivial assump
because its validity implicitly amounts to an unmodifie
structure of the Boltzmann-Gibbs entropy,Sq5 ln Wq , where
Wq stands for the number of states of the system corresp
ing to the set of occupation numbersni . Obviously the num-
berWq is modified in theq-deformed case. Such a deform
tion is radically different from the so-called nonextensi
statistics, recently proposed by Tsallis@1#, where the struc-
ture of the entropy is deformed via the logarithmic functio

The above assumptions allow us to calculate the ave
occupation numberni defined by the relation @ni #
5Tr(e2bHci

†ci)/Z. Repeated application of the algebra
c,c† along with the use of the cyclic property of the tra
leads to the result@17#

ni5
1

q2q21 lnS z21ebe i2kq2k

z21ebe i2kqk D , ~9!

wherez5ebm is the fugacity. It is easy to verify that theq
→1 limit reproduces the standard distribution. We shall s
later that such a result can be obtained in a natural way
means the generalization of the standard thermodynamic
lations.
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III. THERMODYNAMICS OF q-DEFORMED BOSONS AND
FERMIONS

In order to develop the thermodynamics ofq oscillators,
we shall begin with the logarithm of the grand partition fun
tion given by

ln Z52k(
i

ln~12kze2be i !. ~10!

This form is due to the fact that we have chosen the Ham
tonian to be a linear function of the number operator but i
not linear in c†c. For this reason, the standard thermod
namic relations in the usual form are ruled out. It is verifie
for instance, thatNÞz(]/]z)ln Z.

As the coordinate space representation of theq-boson al-
gebra is realized by the introduction of the JD, we stress
the key point of theq-deformed thermostatistics is in th
observation that the ordinary thermodynamic derivative w
respect toz, must be replaced with the JD, thus

]

]z
⇒Dz

~q! . ~11!

Consequently, the number of particles in theq-deformed
theory can be derived from the relation

N5zDz
~q! ln Z[(

i
ni , ~12!

where ni is the mean occupation number expressed
Eq. ~9!.

The usual Leibniz chain rule is not valid for the JD an
therefore, derivatives encountered in thermodynamics m
be modified according to a well-defined prescription as f
lows. First we observe that the JD applies only with resp
to the variable in the exponential form, such asz5ebm or
yi5e2be i. Therefore for theq-deformed case, any thermo
dynamic derivative of functions that depend onz or yi must
be transformed to derivatives in one of these variables
using the ordinary chain rule and then evaluating the JD w
respect to the exponential variable. For the case of the in
nal energy in theq-deformed case, we can write this pr
scription explicitly as

U52
]

]b
ln ZU

z

5k(
i

]yi

]b
Dyi

~q! ln~12kzyi !. ~13!

In this case we obtain the correct form of the internal ene

U5(
i

e ini , ~14!

whereni is the mean occupation number expressed in
~9!. This shows that the above procedure is the correct p
scription for the application of the JD.

Introducing the thermodynamic potentialV52T ln Z,
we can determine the entropy to be
1-2
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S52
]V

]TU
m

[ ln Z1kb(
i

]a i

]b U
m

Da i

~q! ln~12ka i !

5 ln Z1bU2bmN, ~15!

wherea i5ze2be i, N and U are the modified functions ex
pressed in Eqs.~12! and ~13!. After some simple manipula
tions, we may express the above entropy in terms of
q-basic numbers as follows:

S5(
i

$2ni ln@ni #1k~11kni !ln@11kni #

2k ln~@11kni #2k@ni # !%. ~16!

We point out that the entropy determined in Eq.~16! re-
duces to the standard boson and fermion entropies@18# in the
q→1 limit. It is interesting to observe that the above entro
has the same structure as the standard boson/fermion en
apart from the appearance of the last term, which follo
from the nonadditivity property of theq-basic number de-
fined in Eq.~4!.

We can establish internal self-consistency by demons
ing that the extremization of the entropy with constrain
internal energy and total number of particles, leads to
correct distribution function. Accordingly, the extremizatio
can be stated as

d~S2bU1bmN!50, ~17!

whereb andbm play the role of Lagrange multipliers. Fo
lowing our prescription for the use of the JD, this conditi
becomes

Dyi

~q!~S2bU1bmN!dyi50. ~18!

After simple manipulations it is easy to show that the abo
condition gives the correct distribution function as in Eq.~9!
derived from theq algebra.

IV. IDEAL q-DEFORMED BOSON AND FERMION GAS

We shall now proceed to investigate the thermodyna
functions describing the behavior of an idealq-deformed bo-
son or fermion gas. In the following, we shall not analyze
phenomena ofq-boson condensation~explicitly studied in
Ref. @5#!. In other words, forq-bosons the considered tem
perature is greater than the critical temperature.

For a large volume and a large number of particles,
sum over states can be replaced with the integral and
thermodynamic relationPV/T5 ln Z can be written as

P

T
52k

2

Ap

gk

l3 E
0

`

dx x1/2 ln~12kze2x!, ~19!

wheregk is the spin degeneracy factor,x5be, e5p2/2m is
the kinetic energy andl5h/(2pmT)1/2 is the thermal wave-
length.

Following the prescription of the JD in theq-deformed
thermodynamics derivatives, we may reexpress the ab
equation as
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T
5

gk

l3 hd/2
k ~z,q!, ~20!

where we have defined theq-deformedhn
k(z,q) function as

hn
k~z,q!5

1

G~n!
E

0

`

dx xn21
1

q2q21 lnS z21ex2kq2k

z21ex2kqk D
[

1

q2q21 S (
i 51

`
~kqkz! i

i n11 2(
i 51

`
~kq2kz! i

i n11 D . ~21!

In the limit q→1, the deformedhn
k(z,q) functions reduce

to the standardgn(z) functions for bosons and to thef n(z)
functions for fermions@18#. In terms of theseq-generalized
functions, we obtain the particle density

N

V
5

gk

l3 h3/2
k ~z,q!, ~22!

and the internal energy

U5
3

2

gk

l3 VTh5/2
k ~z,q!. ~23!

Comparing Eqs.~20! and~23!, we see that, as in the case
the undeformed gas, the following well-known relation
satisfied:

U5 3
2 PV. ~24!

In a similar manner, in the thermodynamic limit, we ca
obtain the entropy per unit volume

S

V
5

gk

l3 @ 5
2 h5/2

k ~z,q!2h3/2
k ~z,q!ln z#. ~25!

We may now proceed to calculate the specific heat

Cv5
]U

]TU
V,N

. ~26!

Making use of the JD prescription as before, we determ
the specific heat to be

Cv52b2(
i

e i

]a i

]b

1

q2q21 Da i

~q! lnS 12kq2ka i

12kqka i
D ,

~27!

wherea i5ze2be i. The above equation can be written in th
thermodynamic limit as

Cv5
gk

l3 H 15

4
zDz

~q!h7/2
k ~z,q!2

9

4

z@Dz
~q!h5/2

k ~z,q!#2

Dz
~q!h3/2

k ~z,q! J .

~28!

We observe that the above equations have the same stru
as the undeformed relation, even though the deformatio
contained in the JD and in theh(z,q) functions.
1-3
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V. EQUATION OF STATE IN THE SEMICLASSICAL
LIMIT

First, we observe that in the classical limitz5ebm!1, the
q-deformed distribution function~9! reduces to the standar
Maxwell-Boltzmann distribution and the entropy~16! re-
duces to the Boltzmann entropy:S52( ini ln ni , for any
value of q. Furthermore, studying the classical limit in E
~28!, it is easy to check that the specific heat goes to
classical value:Cv→3/2N. Hence theq deformation in the
thermodynamic relations is a pure quantum effect, which
washed up in the classical limit. Such a feature is quite
opposite in the case of Tsallis statistics, where the defor
tion is intrinsic and does not depend on the quantum na
of the system@1#.

We shall now investigate the effects of the deformation
the equation of state of an ideal quantum boson/fermion
in the semiclassical limit. For low values ofz, Eq. ~19! re-
duces to

P.
T

l3 gkzH 11kS q1q21

2 D z

25/2J . ~29!

The equation of state can be expressed in terms of the n
ber of particles considering the semiclassical limit of E
~22!,

N.
V

l3 gkzH 11kS q1q21

2 D z

23/2J . ~30!

Inverting the above equation asz5z(N) and inserting the
result in Eq.~29!, we can write the equation of state in th
semiclassical limit as

PV.NTF12kS q1q21

2 D Nl3

Vgk25/2G . ~31!

As usual, when the thermal wavelengthl is much less
than the average interparticle distance (l3!V), the quantum
statistics does not have a significant influence on the ther
dynamic property of the gas. Otherwise we find that
equation of state is modified by the quantum statistical ef
and, at fixed volume, the pressure is decreased forq-boson
particles (k51) and increased forq-fermion particles (k5
21) compared with the classical case. This feature is sim
to the standard boson/fermion result: the attractive boson
teractions reduce the pressure and the repulsive fermion
teractions increase the degeneracy pressure. However, in
~31!, this effect is enhanced by the factor (q1q21)/2 ~al-
ways greater than unity!. Therefore, theq deformation of the
algebra implies an enhancement of the quantum statis
behavior of the particles relative to the standard boson
fermions. In the following section, we will see that this fe
ture is in agreement with the results obtained conside
q-deformed fermions at a low-temperature regime.

VI. IDEAL q-DEFORMED FERMIONS AT LOW
TEMPERATURES

We shall now investigate the low-temperature behavio
the q-deformed fermions (k521). We start by observing
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that for the case ofq fermions, the Fermi surface in the lim
T→0 ~or b→1`! assumes the standard undeformed s
shape, for all values ofq: nq→q(m2e). Consequently, the
quantum deformation of the statistics is a finite temperat
effect only.

In order to bring out the salient features of the behavior
theq-deformed fermion gas at low but finite temperature,
us begin with the function introduced in Eq.~21!, now with
k521 which is needed to evaluate the number of partic
for unit volume and the internal energy. Thus we specifica
consider the integral

f 3/2~z,q!5
2

Ap
E

0

`

dx x1/2
1

q2q21 lnS ex2n1q

ex2n1q21D ,

~32!

where n5bm. Considering the low-temperature limitn
→`, the above integral can be expanded in a Taylor se
as follows:

f 3/2~z,q!5
2

Ap
H 2

3
n2/31g1~q!

p2

12
n21/2

1g3~q!
7p4

120

n25/2

8
1¯J , ~33!

where gn(q) is a factor that depends on the deformati
parameter

gn~q!5E
0

`

dt tn
1

q2q21 lnS et1q

et1q21D Y E
0

`

dt tn
1

et11
,

~34!

and goes to unity whenq→1.
Inserting Eq.~33! in Eq. ~22!, we have

1

gF

N

V S 2p\2

m D5
4

3Ap
H n3/21g1~q!

p2

8
m21/2T2

1g3~q!
7p4

640
n25/2T4

¯J . ~35!

In the limit T→0, we obtain the expression for the chemic
potential~equivalent to the Fermi energy! as a function of the
average density in the form

m~T50![eF5
\2

2m S 6p2

gF

N

VD 2/3

. ~36!

Since the deformation acts only at finite temperature,
Fermi energy does not depend onq.

If we now consider the effect to second order inT, the
chemical potential can be written as

m5eFF12g1~q!
p2

12 S T

eF
D 2G . ~37!

Becauseg1(q),1 for qÞ1 and decreases when the defo
mation parameter is increased@for example, g1(1.5)
50.989,g1(2)50.969#, the deformed quantum statistics im
1-4
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plies a reduction of the chemical potential at finite tempe
ture but this reduction is smaller than the undeformed
mion case. In other words, theq-deformation increases th
strength of the Pauli repulsion between particles at fin
temperature in clear agreement with the result obtained in
preceding section. A somewhat similar result was found
Greenberg in the framework of quon statistics@19#.

Let us now compute the internal energy, which in t
low-temperature regime becomes

U

V
5

3

2

gF

l3 T f5/2~z,q!.
4

5Ap
gFS m

2p\2D 3/2

3Fm5/21g1~q!
5p2

8
m1/2T22g3~q!

7p4

384
m23/2T41¯G .

~38!

By using Eqs.~35! and ~36!, the above expression at th
second order inT can be written as

U5
3

5
NeFF11g1~q!

5p2

12 S T

eF
D 2G . ~39!

Similarly, the heat capacity in the low-temperature regi
and forq'1 can be obtained as

Cv5
]U

]TU
V,N

5g1~q!
Np2

2eF
T. ~40!

The q-fermionic specific heat depends linearly onT at very
low temperatures and goes to zero at zero temperatur
accordance with the third law of thermodynamics. In E
~40! the specific heat is modulated by the factorg1(q),
which is always smaller than unity forqÞ1, therefore the
specific heat at low temperatures is smaller inq-deformed
theories as a consequence of a greater Pauli repulsion at
zero temperature.
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VII. CONCLUSION

We have studied the thermostatistics ofq bosons andq
fermions using the symmetricq↔q21 algebra and we have
shown that the entire structure of thermodynamics is p
served if the ordinary derivatives are replaced by the
This prescription gives us the recipe to derive the fundam
tal thermodynamic functions and an explicit form of th
q-deformed entropy.

In the classical limit, theq-deformed statistics is reduce
to the classical statistical mechanics: the distribution funct
goes to the Maxwell-Boltzmann distribution and the entro
reduces to the Boltzmann entropy. Theq deformation is a
pure quantum effect. However, we have seen t
q-deformed bosons and fermions have an enhancemen
the quantum statistical effects compared to standard be
ior: at finite temperature, the ideal gas ofq bosons is more
attractive than undeformed ideal boson gas, and forq fermi-
ons, the Pauli repulsion is stronger than undeformed fer
ons. This feature is confirmed by an examination of the lo
temperature limit ofq-deformed fermion ideal gas. At zer
temperature the Pauli exclusion principle is rigorously sa
fied but at low but nonzero temperature, the chemical pot
tial is greater than in the undeformed case and the spe
heat is smaller. Such an effect appears more significan
increasing the deformation parameterq.

The generalized thermostatistics, which we have dev
oped, appears to provide a deeper insight into the natur
the deformed boson and fermion algebra. These results
be conceptually important in many physical fields from so
state to cosmological problems. For example, primordial
cleosynthesis can be nontrivially modified by the influen
of statistics@20#. Furthermore, finite limits on Pauli principle
violation by nuclei produced in the core collapse superno
has been found in Ref.@21#. Since supernova explosions a
finite temperature events (T.430 keV), a value of the
q-deformation parameter slightly different from unity cou
take into account such effects and influence sensibly the
lar collapse mechanism.
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