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We study the thermostatistics gfddeformed bosons and fermions obeying the symmetyie § 1) algebra
and show that it can be built on the formalism gfcalculus. The entire structure of thermodynamics is
preserved if ordinary derivatives are replaced by an appropriate Jackson derivative. In this framework, we
derive the most important thermodynamic functions describingjtheson andy-fermion ideal gases in the
thermodynamic limit. We also investigate the semiclassical limit and the low-temperature regime and demon-
strate that the nature of tlepdeformation gives rise to pure quantum statistical effects stronger than unde-
formed boson and fermion particles.
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[. INTRODUCTION ior of g-deformed bosons and fermions. We organize the pa-
per as follows. Section Il introduces tlgedeformed algebra
There have emerged two distinct methods in the literatur@f bosons and fermions and the thermal expectation values.
for the purpose of introducing an intermediate statistical beThe statistical thermodynamics ofdeformed bosons and
havior to describe a deformed physical system. The firstermions is developed in Sec. lll. The equation of state and
method consists of modifying the partitioning of the mi- specific heat of the ideal boson and fermion gases are derived
crostates and thus the logarithm of the statistical weilof ~ in Sec. IV. We study the equation of state in the semiclassical
the many-body system. Specifically this is accomplished by amlt in Sec. V. We devote Sec. VI to the investigation of the
deformation of the logarithm function in the Boltzmann en- ideal g-deformed fermions at low temperatures. Section VI
tropy S=In; W, by the introduction of the Tsallis logarithm contains some concluding remarks.
[1]. This then introduces nonextensivity in the statistical be-
havior. The second method is to deform the quantum algebra  |I. q-OSCILLATORS ALGEBRA AND THERMAL
of the creation and annihilation operators, thus modifying the AVERAGES
exchange factor between the permuted particles or states. _ . ) ) . _
The theory ofg oscillators is related to the theory of quantum ' this section we shall briefly review the basic properties
groups originally introduced individually by Biedenharn and ©f a-oscillators algebra useful in the present investigation.
Macfarlane[2,3]. The s_ymmetnaq—o_sc_nla_tors algebrais griefmed in terms of the
The mathematical framework of oscillators is based on Ccréation and annihilation operatoesc’ and theg-number
theq calculus, which is introduced via the Jackson derivative@PeratorN by [6-9]
(JD) [4]. We thus expect suchacalculus to play an impor-
tant role in the thermostatistics gfoscillators. Indeed, it has
been shownr5] that an internally self-consistent thermosta- . .
tistics of g bosons can be formulated by using an appropriate [N.c']=c’, [N,c]=-—c, 2
prescription of the JD to be used in the thermodynamic rela- ) )
tions so that the entire structure of thermodynamics in thevhere the deformation parametgrns real and[x,y],=xy
sense of the Legendre transformations is preserved. —kyX, wherex=1 for q bosons with commutators ane
Many investigations are devoted to the studygafscilla- = —1 for g fermions with anticommutators.
tors providing much insight into both the mathematical de- Furthermore, the operators obey the relations
velopment and theg-deformed thermodynamic§6—14.

[c,c]l.=[c'c™,=0, cc'—«kg“cle=q~ N, )

However, it is our opinion that a full understanding of the c'e=[N], cc'=[1+«N], 3
physical meaning of thg deformation and its effect on the ) . ]
thermodynamic relations is still lacking. where theg-basic number is defined as

The purpose of this paper is twofold: first, we want to oy
extend the formalism introduced in Ré6] to incorporate [x]= a—q (4
the algebra that is symmetric under the transformation q—-q *°

q<q %, considering both boson and fermion degrees of

freedom. Second, by using the generalized thermodynamic By using the above algebra it is possible to construct the
relations, we wish to examine the equation of state of tha-Fock space valid for botly bosons andj fermions. It is,
g-deformed ideal gas in the semiclassical limit and the low-however, important to stress that fpfermions the eigenval-
temperature regime off fermions in order to provide a ues of the number operatdd can take on the valuen
deeper insight into the understanding of the statistical behav=0,1 only (as in the case of undeformed fermidns
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The transformation from Fock space to the configuration!l. THERMODYNAMICS OF g-DEFORMED BOSONS AND
space(Bargmann holomorphic representatiomay be ac- FERMIONS

complished by means of the J&,15,14
F(qx)— F(q~ 1) In order to develop the thermodynamics gpbscillators,
i, (5)  we shall begin with the logarithm of the grand partition func-

) x(q—q~1) tion given by

which reduces to the ordinary derivative in the limit whgn

goes to unity. Therefore, the JD occurs naturally in InZ=— KZ INn(1— kze Ps). (10

g-deformed structures and we will see that it plays a crucial :

role in theq generalization of the thermodynamic relations. _ . ) )
Thermal average of observables can be computed by foll NS form is due to the fact that we have chosen the Hamil-

lowing the usual prescription of quantum mechanics. Thdonian to be a linear function of the number operator but it is

Hamiltonian of the noninteractingi-deformed oscillators MOt linear inc'c. For this reason, the standard thermody-
(fermions or bosonsis expected to have the form namic relations in the usual form are ruled out. It is verified,

for instance, thaN # z(d/9z)In Z.
H ZE N 6 As the coordinate space representation ofgHmson al-
i (&= wN;i, 6) gebra is realized by the introduction of the JD, we stress that
the key point of theg-deformed thermostatistics is in the
whereu is the chemical potential ang is the kinetic energy observation that the ordinary thermodynamic derivative with
in the statd associated with the number operalyyr. Let us  respect taz, must be replaced with the JD, thus
note that the Hamiltonian is deformed and depends implicitly

on g, since the number operator is deformed by means of Eq. i:}D(q) (11)
(3). The thermal average of an operator has the standard 0z z
form
_ Consequently, the number of particles in thaleformed
(0)=Tr(pO), @ theory can be derived from the relation

wherep is the density operator anél is the grand canonical
partition function defined as N=zD In ZEE n, (12)

e AH £ |

= , Z=Tr(e™P"), 8 . ) .
P Z ( ) ® where n; is the mean occupation number expressed in

Eq. (9).

andB=1/T (henceforward we shall set Boltzmann constant CIT(h(l usual Leibniz chain rule is not valid for the JD and,
equal to unity. We observe that the structure of the densitytherefore, derivatives encountered in thermodynamics must
matrix p and the thermal average are undeformed. As a comye modified according to a well-defined prescription as fol-
sequence, the structure of the partition function is also Unpws, First we observe that the JD applies only with respect
changed. We emphasize that this is not a trivial assumptiog, the variable in the exponential form, such zse?* or
structure of the Boltzmann-Gibbs entro84=InW,, where  gynamic derivative of functions that depend oor y; must
W, stands for the number of states of the system correspongse transformed to derivatives in one of these variables by
ing to the set of occupation numbers Obviously the num-  ysing the ordinary chain rule and then evaluating the JD with
berW, is modified in theq-deformed case. Such a deforma- respect to the exponential variable. For the case of the inter-
tion is radically different from the so-called nonextensiveng| energy in theg-deformed case, we can write this pre-
statistics, recently proposed by Tsallls], where the struc-  scription explicitly as
ture of the entropy is deformed via the logarithmic function.

The above assumptions allow us to calculate the average d ay; (@
occupation numbern; defined by the relation[n;] U= —ﬁlnz :KZ ﬁpyi In(1-xzy). (13
=Tr(e‘BHciTci)/Z. Repeated application of the algebra of z
c,c’ along with the use of the cyclic property of the trace
leads to the resultl7]

1 z tePa—kq " B
_ U=> &n;, 14
ni_q—q_lln( z‘leﬁfi—KqK)' ©) Z Ml (14)

In this case we obtain the correct form of the internal energy

wherez=e* is the fugacity. It is easy to verify that ttg ~ wheren; is the mean occupation number expressed in Eq.
—1 limit reproduces the standard distribution. We shall se€9). This shows that the above procedure is the correct pre-
later that such a result can be obtained in a natural way bgcription for the application of the JD.

means the generalization of the standard thermodynamic re- Introducing the thermodynamic potenti&el=—TIn Z,
lations. we can determine the entropy to be
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&ai P g
= = ] (a) — ) _ Kk
S=-—F ) InZ+ kP Eiﬁ B MDai IN(1— ka;) 7 =5305(2.0), (20)
=InZ+BU—BuN, (15  where we have defined thpdeformedh’(z,q) function as

where aj=ze #¢, N andU are the modified functions ex- 1 [ 1

pressed in Eq912) and(13). After some simple manipula- hn(z,q)= —f dx X" t——In

: : I'(n) Jo q—q

tions, we may express the above entropy in terms of the

g-basic numbers as follows: 1 ( % %
1

Z*lex_ quk
Z—lex_ KqK

ST LG i el o

S=> {—n;In[n]+ x(1+kn)In[1+ kn;] = =
I
In the limit g— 1, the deformedh;;(z,q) functions reduce
—xkIn([1+&ni]—«[niD}. (16) o the standard),(2) functions for bosons and to tHg(z)
functions for fermiong18]. In terms of these-generalized

We point out that the entropy determined in Ef6) re- functions, we obtain the particle density

duces to the standard boson and fermion entrddi@kin the
g—1 limit. It is interesting to observe that the above entropy N g,
has the same structure as the standard boson/fermion entropy Vo th,z(z,q), (22
apart from the appearance of the last term, which follows
from the nonadditivity property of the-basic number de-
fined in Eq.(4).

We can establish internal self-consistency by demonstrat- 3g
ing that the extremization of the entropy with constrained U=~ 3VThi,(2,9). (23
internal energy and total number of particles, leads to the 2\
correct distribution function. Accordingly, the extremization
can be stated as

and the internal energy

Comparing Eqs(20) and(23), we see that, as in the case of
the undeformed gas, the following well-known relation is

8(S—BU+ BuN)=0, (17  satisfied:

where 8 and Bu play the role of Lagrange multipliers. Fol- U=3pPV. (24
lowing our prescription for the use of the JD, this condition

becomes In a similar manner, in the thermodynamic limit, we can

obtain the entro er unit volume
D (S~ U+ BuN) 5y,=0. (18) PP
Ok 5, «
After simple manipulations it is easy to show that the above Vo F[ghS/z(Z,Q) —hz(z,q)Inz]. (25)

condition gives the correct distribution function as in E9).
derived from theg algebra. We may now proceed to calculate the specific heat

IV. IDEAL g-DEFORMED BOSON AND FERMION GAS Ju (
= 26)

We shall now proceed to investigate the thermodynamic coaT VN
functions describing the behavior of an ideadleformed bo-

son or fermion gas. In the following, we shall not analyze theMaking use of the JD prescription as before, we determine
phenomena of-boson condensatiotexplicitly studied in  the specific heat to be

Ref. [5]). In other words, forg-bosons the considered tem-

perature is greater than the critical temperature. c,=— g e_ﬁ 1 DD n 1-xq “a
For a large volume and a large number of particles, the v ~ 9B q—q LT 1-«qQ“a; |’
sum over states can be replaced with the integral and the (27)

thermodynamic relatio®?V/T=In Z can be written as
wherea;=ze #¢. The above equation can be written in the

= 2 g, (= N
—=- K\/__ %J’ dx X2In(1— kze ), (19 thermodynamic limit as
0
whereg, is the spin degeneracy factors= Be, e=p?/2m is v=\3| 7 2P hdz )~ DWh5(2,9)
the kinetic energy andl=h/(27mT)*?is the thermal wave- (28

length.

Following the prescription of the JD in thg-deformed \We observe that the above equations have the same structure
thermodynamics derivatives, we may reexpress the abovas the undeformed relation, even though the deformation is
equation as contained in the JD and in tH&z,q) functions.

036101-3



A. LAVAGNO AND P. NARAYANA SWAMY PHYSICAL REVIEW E 65036101

V. EQUATION OF STATE IN THE SEMICLASSICAL that for the case af fermions, the Fermi surface in the limit
LIMIT T—0 (or B— +x) assumes the standard undeformed step
shape, for all values af: n— 9(u—€). Consequently, the
quantum deformation of the statistics is a finite temperature
effect only.
duces to the Boltzmann entrop@=—3n;Inry, for any In order to bring out the salient featurefs of the behavior of
SN the g-deformed fermion gas at low but finite temperature, let

value ofqg. Furthermore, studying the classical limit in Eq. S S . .
(28), it is easy to check that the specific heat goes to S begin with the function introduced in E®1), now with

classical valueC. —3/2N. Hence theq deformation in the X~ —1 which is needed to evaluate the number of particles
JTu TR « -~ for unit volume and the internal energy. Thus we specifically
thermodynamic relations is a pure quantum effect, which is

washed up in the classical limit. Such a feature is quite theCOnSIder the integral

First, we observe that in the classical limit efr<1, the
g-deformed distribution functio9) reduces to the standard
Maxwell-Boltzmann distribution and the entrofiL6) re-

opposite in the case of Tsallis statistics, where the deforma- 2 [ 1 e "+q
tion is intrinsic and does not depend on the quantum nature  f4(z,q)= —f dx x*2 — lIn( g 1)
of the systenj1]. Va Jo a-q €

We shall now investigate the effects of the deformation in (32
the equation of state of an ideal quantum boson/fermion g
in the semiclassical limit. For low values af Eq. (19) re-
duces to

Ahere v=pBu. Considering the low-temperature limit
—oo, the above integral can be expanded in a Taylor series
as follows:

q+q*

1+« 5 —12

T z
PZFQKZ 2—5/2 . (29)

fanl2,0) 2[22’%()”2
Z,q)=—=\3V 5V
32Z,q \/; 3 vilq 12
The equation of state can be expressed in terms of the num-

ber of particles considering the semiclassical limit of Eq. s )7_774 V_5/2+“_ (33)
(22, v3(A) 50 8 ,
v g+q’'| z where y,(q) is a factor that depends on the deformati
_ n . vn(q) is a factor that depends on the deformation
N=339.21 K( 2 5377] 30 parameter
Inverting the above equation a&s=z(N) and inserting the B xdtt” 1 | e'+q xdtt“ 1
result in Eq.(29), we can write the equation of state in the (@)= 0 q—q* n el+q? 0 et+1’
semiclassical limit as
(34)
q+q -t N3 } d -
PV=NT| 1— ] 31 ana goes to Unlty Wheq—> 1.
T2 Vg2 3D Inserting Eq.(33) in Eq. (22), we have
As usual, when the thermal wavelengthis much less 1 N/2mh? 4 oo 2 P
than the average interparticle distana€<€V), the quantum g_ viTm |© 3V v+ y1(q) g M T
statistics does not have a significant influence on the thermo- F ™
dynamic property of the gas. Otherwise we find that the 754
equation of state is modified by the quantum statistical effect + v3(Q) a0 p 2T } (35)

and, at fixed volume, the pressure is decreasedfooson

particles (=1) and increased fag-fermion particles k= | the limit T—0, we obtain the expression for the chemical

—1) compared with the classical case. This feature is similapotential(equivalent to the Fermi energgss a function of the
to the standard boson/fermion result: the attractive boson iNsverage density in the form

teractions reduce the pressure and the repulsive fermion in-
teractions increase the degeneracy pressure. However, in Eq. h2 (6m? N|\2P
(31), this effect is enhanced by the factay4q~1)/2 (al- “(T:O)EeF:ﬁ(gv
ways greater than unityTherefore, the deformation of the

algebra implies an enhancement of the quantum statistic&@ince the deformation acts only at finite temperature, the
behavior of the particles relative to the standard bosons dfermi energy does not depend gn

fermions. In the following section, we will see that this fea- If we now consider the effect to second orderTinthe
ture is in agreement with the results obtained consideringhemical potential can be written as

g-deformed fermions at a low-temperature regime.

(36)

2
1_71(Q)E

2

m=e€g : 37

VI. IDEAL o-DEFORMED FERMIONS AT LOW €F

TEMPERATURES
Becausey;(gq)<1 for g#1 and decreases when the defor-

We shall now investigate the low-temperature behavior ofmation parameter is increaseffor example, y,(1.5)
the g-deformed fermions #=—1). We start by observing =0.989,y,(2)=0.969, the deformed quantum statistics im-
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plies a reduction of the chemical potential at finite tempera- VIl. CONCLUSION

ture but this reduction is smaller than tr_]e u_ndeformed fer- \we nhave studied the thermostatistics pbosons andy
mion case. In other words, thgpdeformation increases the formions using the symmetrig—q~* algebra and we have
strength of the Pauli repulsion between particles at finit&shown that the entire structure of thermodynamics is pre-
temperature in clear agreement with the result obtained in thgeryed if the ordinary derivatives are replaced by the JD.
preceding section. A somewhat similar result was found byrhis prescription gives us the recipe to derive the fundamen-

Greenberg in the framework of quon statistj@$). tal thermodynamic functions and an explicit form of the
Let us now compute the internal energy, which in theg-deformed entropy.
low-temperature regime becomes In the classical limit, they-deformed statistics is reduced
3 to the classical statistical mechanics: the distribution function
U 30 ¢ 4 m goes to the Maxwell-Boltzmann distribution and the entropy
Vo EFT 5’2(Z’q)_ﬁgF 27h2 reduces to the Boltzmann entropy. Thedeformation is a

pure quantum effect. However, we have seen that
- 5m2 P 77t 3 g-deformed bosons and fermions have an enhancement of
met 71(Q)TM T2~ 73(@@# T the quantum statistical effects compared to standard behav-
ior: at finite temperature, the ideal gasgbosons is more
(38 attractive than undeformed ideal boson gas, andftarmi-
) . ons, the Pauli repulsion is stronger than undeformed fermi-
By using Egs.(35 and (36), the above expression at the ong This feature is confirmed by an examination of the low-
second order ifT can be written as temperature limit ofg-deformed fermion ideal gas. At zero

X

3 572 T)\2 temperature the Pauli exclusion principle is rigorously satis-
U=—=Neg| 1+ y1(q) == <—> (39  fied but at low but nonzero temperature, the chemical poten-
S 12 \er tial is greater than in the undeformed case and the specific

Similarly. the heat capacity in the low-temperature re .meheat is smaller. Such an effect appears more significant by
imuarty, pacity’l w peratu 9! increasing the deformation parametgr

and forg~1 can be obtained as The generalized thermostatistics, which we have devel-

U 2 oped, appears to provide a deeper insight into the nature of
C“:_T = 71(q)2—T. (400  the deformed boson and fermion algebra. These results can
J V,N €F be conceptually important in many physical fields from solid

. . ) state to cosmological problems. For example, primordial nu-
The g-fermionic specific heat depends linearly rat very  cjgosynthesis can be nontrivially modified by the influence
low temperatures and goes to zero at zero temperature ¥ statisticy20]. Furthermore, finite limits on Pauli principle
accordance with the third law of thermodynamics. In Eq.yjolation by nuclei produced in the core collapse supernovas
(40) the specific heat is modulated by the factpi(d),  has been found in Ref21]. Since supernova explosions are
which is always smaller than unity fay# 1, therefore the finite temperature eventsT&430keV), a value of the
specific heat at low temperatures is smallergieformed  g-deformation parameter slightly different from unity could
theories as a consequence of a greater Pauli repulsion at narake into account such effects and influence sensibly the stel-
zero temperature. lar collapse mechanism.
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