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Statistical theory for incoherent light propagation in nonlinear media
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A statistical approach based on the Wigner transform is proposed for the description of partially incoherent
optical wave dynamics in nonlinear media. An evolution equation for the Wigner transform is derived from a
nonlinear Schro¨dinger equation with arbitrary nonlinearity. It is shown that random phase fluctuations of an
incoherent plane wave lead to a Landau-like damping effect, which can stabilize the modulational instability.
In the limit of the geometrical optics approximation, incoherent, localized, and stationary wave fields are
shown to exist for a wide class of nonlinear media.
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It is well known that the propagation of electromagne
waves and beams in dispersive nonlinear media is assoc
with the phenomena of modulational instability and the f
mation of stationary wave structures, i.e., temporal and s
tial envelope solitons, cf.@1#. The conventional treatment o
these phenomena considers coherent wave structures. H
ever, a recent series of experimental@2# and theoretical pa-
pers @3–6# have demonstrated the existence of incoher
solitons. In particular, spatially incoherent optical solito
have attracted much attention. Until now, three approac
have been developed to describe partially incoherent w
propagation in nonlinear media:~i! the propagation equatio
for the mutual coherence function@3#, ~ii ! the coherent den
sity method @4#, and ~iii ! the self-consistent multimod
theory @5#. In fact, it has been shown in Ref.@6# that these
three approaches are formally equivalent.

In the present article, we propose a general, statist
theory for describing the dynamics of partially incohere
optical waves and beams in dispersive and nonlinear me
The approach is based on the Wigner transform method@7#,
which was introduced in statistical quantum mechanics
describe the dynamics of the quantum state of a system in
classical space language. A similar approach has been
cessfully applied in the theory of surface gravity waves@8# in
plasma physics in connection with the theory of weak plas
turbulence@9#, as well as with the description of electroma
netic wave propagation in a nonstationary, inhomogeno
and relativistic plasma@10#. Recently, the Wigner function
method has been used to analyze the longitudinal dynam
of charged-particle beams in accelerators@11#, and to study
the dynamics of Bose-Einstein condensates in the pres
of a chaotic external potential@12#.

The scope and outline of this article is as follows. Start
from the nonlinear Schro¨dinger equation describing the evo
lution of the slowly varying wave amplitude in a dispersi
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medium with an arbitrary nonlinear response, we derive
Wigner-Moyal equation for the Wigner transform includin
the Klimontovich statistical average. This equation reduc
in the geometrical optics approximation, to the classi
Liouville or Vlasov-like equation describing the conservati
of optical quasiparticles in phase space, cf. Ref.@13#. To
illustrate the usefulness of this approach, we consider an
plication to the case of one-dimensional~1D! propagation of
partially incoherent light in a nonlinear Kerr medium, an
investigate the stability of a constant amplitude plane wa
against small harmonic perturbations. It is found that, in
dition to the classical modulational instability~MI !, a new
linear Landau-like damping effect arises. This damping
due to the broadening of the Wigner spectrum, which is
sociated with the random phase fluctuations. Consequent
is found that the partially incoherent character of the lig
may suppress the modulational instability, in agreement w
the result of Refs.@14,15#. Finally, we illustrate an analog to
the Bernstein-Greene-Kruskal~BGK! waves in plasma phys
ics. In the limit of the geometrical optics approximation, w
derive the Wigner distribution functions of a new class
stationary, self-trapped, and incoherent wave pulse st
tures, which may exist in a wide class of nonlinear media

The approach proposed here sheds new light on the p
ics behind the recently reported results in this field. It a
allows the formulation of conceptually new problems rega
ing the dynamics of partially incoherent waves and beam
nonlinear media. In addition, using the Wigner transform
studying this kind of phenomena establishes new conn
tions to quantum mechanics, plasma physics, mesosc
physics, image and signal processing, and mathematics.
thermore, the Wigner transform, apart from serving as a v
convenient mathematical tool, is widely used in its own rig
in the field of optics, as a supplement to the envelope w
function @16#.

As our starting point, we assume that the 3D wave pro
gation in a dispersive~or diffractive! nonlinear medium is
described by a system of coupled model equations for
©2002 The American Physical Society02-1
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slowly varying complex wave amplitudec(t,r ) and the non-
linear response function of the mediumn(t,r ),

i S ]

]t
1vg•“c Dc1

b

2
¹2c1nc50,

tm

]n

]t
1n5kG~^c* c&!. ~1!

For convenience, we uset andr as the evolution and spatia
dispersive variables, respectively;vg is the group velocity,b
is the diffraction or second order dispersion coefficient,k is
the nonlinear coefficient, and the functionG(^c* c&) char-
acterizes the nonlinear properties of the medium. The bra
^•••& denotes the statistical ensemble average. The re
ation time of the medium response function,tm , is assumed
to be much longer than the characteristic time of the sta
tical wave intensity fluctuations,ts . Assuming also thattp
@tm , wheretp is the characteristic time scale of the~deter-
ministic! wave amplitude variation, we can approximate t
medium response function asn'kG(^c* c&). The system
~1! then reduces to a generalized nonlinear Schro¨dinger
equation,

i
]c

]t
1

b

2
¹2c1kG~^c* c&!c50, ~2!

where the coordinate system has been transformed to
reference system moving with the group velocityvg , andr is
the reduced distance according tor→r2vgt.

We stress that the independent variables in Eq.~2! should
be adopted to suit the particular situation. For instance
describe the 2D spatial optical solitons one would usez as
the evolution variable and restrict the nabla operator to
transverse dimensions, while an equation similar to Eq.~2!
with z as evolution variable and]2/]t2 instead of the nabla
operator would describe temporal 1D solitons.

Replacingi ]/]t by v and 2 i“ by p yields the corre-
sponding nonlinear dispersion relation,

v5
b

2
p22kG~^c* c&!. ~3!

We will now apply the Wigner transform method@7#. The
s-dimensional Wigner transform, including the Klimontovic
statistical average, is defined as

r~p,t,r !5
1

~2p!sE2`

1`

dsj eip•j^c* ~r1j/2,t !c~r2j/2,t !&,

~4!

which satisfies^c* (r ,t)c(r ,t)&5*2`
1`dsp r(p,t,r ). Apply-

ing this transform, with dimensionalitys53, to Eq.~2!, we
obtain the following Wigner-Moyal equation for the evolu
tion of the Wigner distribution function,

]r

]t
1bp•

]r

]r
12kG~^ucu2&!sinS 1

2

]Q

]r
•

]W

]pD r50. ~5!
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The arrows in the sine differential operator indicate that
derivatives act to the left and right, respectively. The s
operator is defined by its Taylor expansion,

sinS 1

2

]Q

]r
•

]W

]pD 5(
l 50

`
~21! l

~2l 11!!22l

]Q2l 11

]r2l 11
•

]W2l 11

]p2l 11
. ~6!

For those situations where the geometrical optics appr
mation is valid, we can neglect the higher order derivativ
in Eq. ~6!. This approximation is valid forDp•Dr@2p,
whereDp is the local width of the Wigner spectrum andDr
is the width of the medium response functionn(t,r ). We
emphasize that this is a rather strong limitation, which c
only be valid in the long-wavelength limit. Retaining on
the first term in the expansion~6!, we obtain a Vlasov-like
equation,

]r

]t
1bp•

]r

]r
1k

]G~^ucu2&!

]r
•

]r

]p
50. ~7!

Equation~7! implies the conservation of the number of o
tical quasiparticles in phasespace. Using the Liouville th
rem we recover the canonical Hamilton equations of mot
for the quasiparticle with massb, or, equivalently, the ray
equations of the geometrical optics approximation, wherr
and p are the canonical variables andv is the Hamilton
equation defined by Eq.~3!,

ṙ5
]v

]p
5bp,

ṗ52
]v

]r
5k

]G~^c* c&!

]r
. ~8!

Note that Eq.~7! is similar to the radiation transfer equatio
used in@3,17,18#.

As an example of the applicability of the Wigner tran
form approach, we consider the MI of a 1D plane wave w
a constant amplitude in a nonlinear Kerr-like medium, f
which G(^ucu2&)5^ucu2&. For the case ofcoherent light
propagating in a 1D Kerr medium, it is well known from
conventional stability analysis that a perturbation of t
monochromatic stationary solutionc(x,t)5c0 exp(ikc0

2t)
experiences a modulational instability whenbk.0 andK2

,4kc0
2/b, whereK is the wave number of the perturbatio

The instability growth rate is given by

V5 i
bk

2 S 4kc0
2

bK2
21D 1/2

. ~9!

To investigate the effect of the incoherence, we assum
Wigner distribution function of the formr(p,t,x)5r0(p)
1r1 exp@i(Kx2Vt)#, with r0@ur1u. Here,r0(p) is the back-
ground distribution function corresponding to the plane wa
with a complex amplitudec5c0 exp@ikc0

2t1if(x)#, imply-
ing *2`

1`r0(p) dp5c0
2 . The incoherence is modeled by th

randomly varying phase termf(x). Studying the linear evo-
lution of the perturbationr1, we obtain from the linearized
Wigner-Moyal equation~5! the following dispersion relation
2-2
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11
k

bE2`

1`r0~p1K/2!2r0~p2K/2!

K~p2V/bK !
dp50. ~10!

The corresponding dispersion relation following from t
linearized Vlasov-like equation~7! has the form

11
k

bE2`

1` dr0 /dp

~p2V/bK !
dp50, ~11!

which can also be directly obtained from Eq.~10! by taking
the limit of small K. The relation~11! is similar to the dis-
persion relation for electron plasma waves, which is w
known to contain the effect of the Landau damping. In ge
eral, the kinetic integrals in Eqs.~10! and~11! can be repre-
sented as the sum of a principal value and a residue co
bution, where the latter leads to a Landau-like damping
the perturbation. This stabilizing effect is not an ordina
dissipative damping. It is rather an energy-conserving s
action effect within a partially incoherent wave field, whic
causes a redistribution of the Wigner spectrum because o
interaction between different parts of the spectrum. T
spectral redistribution counteracts the MI. Similar pheno
ena occur in connection with nonlinear propagation of el
tron plasma waves interacting with intense electromagn
radiation@9,17#, nonlinear interaction between random pha
photons and sound waves in electron-positron plasmas@18#,
and the longitudinal dynamics of charged-particle beams
accelerators@11#.

It is interesting to note that for a coherent wave, i.e.
delta-shaped background distributionr0(p)5c0

2d(p), and
for bk.0, Eq.~10! gives exactly the modulational instabi
ity growth rate defined by Eq.~9!. For the same case, th
dispersion relation~11! yields V5 i (bk)1/2c0K, which is
identical to the growth rate of the MI as given by the expr
sion ~9! in the limit of long wavelengths, i.e., whenK2

!4kc0
2/b.

To illustrate the incoherent case, we assume thatf(x) is
described by the following autocorrelation function:

^exp@2 if~x1y/2!1 if~x2y/2!#&5exp~2p0uyu!,
~12!

where p0
21 is the correlation length. The correspondin

Wigner function has a Lorentzian shape,

r0~p!5
c0

2

p

p0

p21p0
2

, ~13!

and the dispersion relation~10! yields the following exact
result for 4kc0

2/bK2.1:

V

bK
5 i

K

2 S 4kc0
2

bK2
21D 1/2

2 ip0 , ~14!

which is similar to the result obtained in Ref.@14#.
Equation~14! clearly shows the stabilizing effect of th

Landau-like damping due to the finite widthp0 of the
Lorentzian spectrum~or the finite correlation length of the
wave phase!. In fact, if the width of the Lorentzian spectrum
p0, satisfies the relation p0.pc[Kc/2, where Kc
03560
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[(4kc0
2/b)1/2 is the cutoff wavelength of the MI, the insta

bility is completely suppressed for all wave numbersK of the
perturbation. In other words, if the Landau-like dampin
induced by the broadening of the Wigner spectrum due to
partial incoherence of the wave, is strong enough, it c
overcome the coherent growth associated with the MI. T
result has also been verified experimentally; see, e.g.,
@15#.

Finally, we will demonstrate the existence of a class
self-trapped and partially incoherent wave pulse solutions
the stationary Vlasov-like equation

bp
]r

]x
1k

]G~^ucu2&!

]x

]r

]p
50, ~15!

for an arbitrary nonlinear functionG(^ucu2&). According to
the Jeans theorem, cf.@13#, the solution of Eq.~15! can be
expressed as an arbitrary function of the HamiltonianH
5bp2/22kG(^ucu2&). Thus, we haver5rs(H), wherers
is an arbitrary function. The quasiparticles are trapped in
nonlinear potential for 2g<p<g, where g
5„2kG(^ucu2&)/b…1/2 and kb.0, and consequently the
condition *2g

1gdp r0(p)5^ucu2t& leads to an integral equa
tion having the following solution forrs ~cf. @19#!:

rs~H !5
1

p S b

2 D 1/2E
0

2H dH8

~2H2H8!1/2

dF~H8!

dH8
, ~16!

where F(Q)[G21(Q) with Q[G(^ucu2&)5(bp2/2
2H)/k. For instance, for the Kerr nonlinearity we hav
F(Q)[Q and Eq. ~16! yields rs(H)5(2/pk)A2bH/2.
Equation~16! describes the Wigner distributions of quasipa
ticles trapped in a collectively produced, stationary, partia
incoherent, and localized wave structure. These struct
are similar to the large-amplitude BGK waves in a plasm
see@19#.

In conclusion, we have proposed a general, statistical
proach for the theoretical analysis of the propagation of p
tially incoherent optical waves and beams in dispersive m
dia with arbitrary nonlinearities. The approach is based
the Wigner transform method including the Klimontovic
statistical average. The derived Wigner-Moyal equation
termining the evolution of the Wigner distribution functio
represents a generalization of the Vlasov-like equati
which is only valid within the geometrical optics approxim
tion. The Wigner-Moyal equation clearly shows that t
number of optical quasiparticles isnot conserved in phase
space beyond the validity of the geometrical optics appro
mation. Using the Wigner-Moyal equation, we have carr
out a linear stability analysis for small perturbations on
constant, 1D, and partially incoherent background in a n
linear Kerr medium. The theory reproduces the exact exp
sion for the MI growth rate of a coherent wave, but al
includes a linear Landau-like damping effect associated w
the broadening of the Wigner spectrum due to partial wa
incoherence. This damping effect explains the previously
ported incoherent suppression of the modulational instabi

The authors are grateful to D. N. Christodoulides, M. S
gev, and A. Hasegawa for valuable discussions.
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