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A statistical approach based on the Wigner transform is proposed for the description of partially incoherent
optical wave dynamics in nonlinear media. An evolution equation for the Wigner transform is derived from a
nonlinear Schrdinger equation with arbitrary nonlinearity. It is shown that random phase fluctuations of an
incoherent plane wave lead to a Landau-like damping effect, which can stabilize the modulational instability.
In the limit of the geometrical optics approximation, incoherent, localized, and stationary wave fields are
shown to exist for a wide class of nonlinear media.
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It is well known that the propagation of electromagnetic medium with an arbitrary nonlinear response, we derive the
waves and beams in dispersive nonlinear media is associat&igner-Moyal equation for the Wigner transform including
with the phenomena of modulational instability and the for-the Klimontovich statistical average. This equation reduces,
mation of stationary wave structures, i.e., temporal and span the geometrical optics approximation, to the classical
tial envelope solitons, cf.1]. The conventional treatment of Liouville or Vlasov-like equation describing the conservation
these phenomena considers coherent wave structures. Hoof optical quasiparticles in phase space, cf. R&B]. To
ever, a recent series of experiment2] and theoretical pa- illustrate the usefulness of this approach, we consider an ap-
pers [3—6] have demonstrated the existence of incoherenplication to the case of one-dimensioriaD) propagation of
solitons. In particular, spatially incoherent optical solitonspartially incoherent light in a nonlinear Kerr medium, and
have attracted much attention. Until now, three approachegvestigate the stability of a constant amplitude plane wave
have been developed to describe partially incoherent wavagainst small harmonic perturbations. It is found that, in ad-
propagation in nonlinear medié) the propagation equation dition to the classical modulational instabilitil), a new
for the mutual coherence functigB], (i) the coherent den- linear Landau-like damping effect arises. This damping is
sity method [4], and (iii) the self-consistent multimode due to the broadening of the Wigner spectrum, which is as-
theory[5]. In fact, it has been shown in Rd®] that these sociated with the random phase fluctuations. Consequently, it
three approaches are formally equivalent. is found that the partially incoherent character of the light

In the present article, we propose a general, statisticahay suppress the modulational instability, in agreement with
theory for describing the dynamics of partially incoherentthe result of Refs[14,15. Finally, we illustrate an analog to
optical waves and beams in dispersive and nonlinear medighe Bernstein-Greene-KruskdGK) waves in plasma phys-
The approach is based on the Wigner transform meffidd ics. In the limit of the geometrical optics approximation, we
which was introduced in statistical quantum mechanics talerive the Wigner distribution functions of a new class of
describe the dynamics of the quantum state of a system in thstationary, self-trapped, and incoherent wave pulse struc-
classical space language. A similar approach has been sugres, which may exist in a wide class of nonlinear media.
cessfully applied in the theory of surface gravity waj@kin The approach proposed here sheds new light on the phys-
plasma physics in connection with the theory of weak plasmécs behind the recently reported results in this field. It also
turbulencd 9], as well as with the description of electromag- allows the formulation of conceptually new problems regard-
netic wave propagation in a nonstationary, inhomogenousng the dynamics of partially incoherent waves and beams in
and relativistic plasm&10]. Recently, the Wigner function nonlinear media. In addition, using the Wigner transform for
method has been used to analyze the longitudinal dynamicstudying this kind of phenomena establishes new connec-
of charged-particle beams in acceleratd$], and to study tions to quantum mechanics, plasma physics, mesoscopic
the dynamics of Bose-Einstein condensates in the presenghysics, image and signal processing, and mathematics. Fur-
of a chaotic external potentigl2]. thermore, the Wigner transform, apart from serving as a very

The scope and outline of this article is as follows. Startingconvenient mathematical tool, is widely used in its own right
from the nonlinear Schringer equation describing the evo- in the field of optics, as a supplement to the envelope wave
lution of the slowly varying wave amplitude in a dispersive function[16].

As our starting point, we assume that the 3D wave propa-
gation in a dispersiveéor diffractive) nonlinear medium is
*Electronic address: bjorn.hall@elmagn.chalmers.se described by a system of coupled model equations for the
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slowly varying complex wave amplitudg(t,r) and the non-
linear response function of the mediumt,r),
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For convenience, we ugeandr as the evolution and spatial
dispersive variables, respectively; is the group velocitys

is the diffraction or second order dispersion coefficiants
the nonlinear coefficient, and the functi@({¢* )) char-
acterizes the nonlinear properties of the medium. The brack
(---) denotes the statistical ensemble average. The rela
ation time of the medium response functiaf,, is assumed

to be much longer than the characteristic time of the statis-

tical wave intensity fluctuations;s. Assuming also that,
> 7, wherer, is the characteristic time scale of ttaeter-

ministic) wave amplitude variation, we can approximate the

medium response function as~ «G((* ¢)). The system
(1) then reduces to a generalized nonlinear Sdimger
equation,

d
2 Evry e =0, @

where the coordinate system has been transformed to the

reference system moving with the group velogify andr is
the reduced distance accordingrte:r —vt.

We stress that the independent variables in(Bpshould
be adopted to suit the particular situation. For instance, t
describe the 2D spatial optical solitons one would Bses
the evolution variable and restrict the nabla operator to th
transverse dimensions, while an equation similar to ).
with z as evolution variable ané?/t? instead of the nabla
operator would describe temporal 1D solitons.

Replacingid/dt by o and —iV by p yields the corre-
sponding nonlinear dispersion relation,

) 3

We will now apply the Wigner transform methdd]. The
s-dimensional Wigner transform, including the Klimontovich
statistical average, is defined as

+

f gy 1+ 20 01— 820),
(4

which satisfies(y* (r,t)(r,t))=[T2d% p(p,t,r). Apply-
ing this transform, with dimensionality=3, to Eq.(2), we
obtain the following Wigner-Moyal equation for the evolu-
tion of the Wigner distribution function,
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The arrows in the sine differential operator indicate that the
derivatives act to the left and right, respectively. The sine
operator is defined by its Taylor expansion,

_(1 J 5) (—1)
SiN| = — -+ — . .
=0 (2|+1)!22I ﬂI’ZHl 3p2|+1
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For those situations where the geometrical optics approxi-
mation is valid, we can neglect the higher order derivatives
in Eqg. (6). This approximation is valid forAp-Ar>2r,
whereAp is the local width of the Wigner spectrum ana
is the width of the medium response functiaft,r). We
emphasize that this is a rather strong limitation, which can
only be valid in the long-wavelength limit. Retaining only
%he first term in the expansiof®), we obtain a Vlasov-like
)é'quation,

a2|+l a2l+l

(6)
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Equation(7) implies the conservation of the number of op-
tical quasiparticles in phasespace. Using the Liouville theo-
rem we recover the canonical Hamilton equations of motion
for the quasiparticle with masg, or, equivalently, the ray
equations of the geometrical optics approximation, where
and p are the canonical variables and is the Hamilton
equation defined by Ed3),

. Jdw
o PP
do  IG((Y* )
0 T T ' ®

&ote that Eq(7) is similar to the radiation transfer equation
used in[3,17,19.

As an example of the applicability of the Wigner trans-
form approach, we consider the Ml of a 1D plane wave with
a constant amplitude in a nonlinear Kerr-like medium, for
which G((|#]%))=(]#|?). For the case ofcoherentlight
propagating in a 1D Kerr medium, it is well known from
conventional stability analysis that a perturbation of the
monochromatic stationary solutiofy(x,t) = ¢ expdmpgt)
experiences a modulational instability whgx>0 andK?
<4K¢//§/B, whereK is the wave number of the perturbation.
The instability growth rate is given by

4K¢(2)

1/2
( K2 _1) '

To investigate the effect of the incoherence, we assume a
Wigner distribution function of the formp(p,t,x)=po(p)
+ p; exdi(Kx—Qt)], with po>|p,|. Here,pq(p) is the back-
ground distribution function corresponding to the plane wave
with a complex amplitudef= ¢ exr[imﬂ%t+i¢(x)], imply-
ing [ 2po(p) dp= zp(z). The incoherence is modeled by the
randomly varying phase teriga(x). Studying the linear evo-
lution of the perturbatiorp;, we obtain from the linearized
Wigner-Moyal equatiori5) the following dispersion relation:
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Kk [+2po(p+K/2)—po(p—K/2) =(4xyf/B)*? is the cutoff wavelength of the MI, the insta-
1+ 5. K(p— 0/ AK) dp=0. (100  bpility is completely suppressed for all wave numbirsf the

perturbation. In other words, if the Landau-like damping,

The corresponding dispersion relation following from the iNduced by the broadening of the Wigner spectrum due to the

linearized Vlasov-like equatiof?) has the form partial incoherence of the wave, is strong enough, it can
overcome the coherent growth associated with the MI. This

1+ 2 +Qchp:o, (11)  result has also been verified experimentally; see, e.g., Ref.
BJ -« (p—Q/BK) [15].
which can also be direcﬂy obtained from Hq_o) by tak|ng Fina”y, we will demonstrate the existence of a class of

the limit of smallK. The relation(11) is similar to the dis- Self-trapped and partially incoherent wave pulse solutions to
persion relation for electron plasma waves, which is wellthe stationary Viasov-like equation
known to contain the effect of the Landau damping. In gen- 5_10+ IG((|¥*) 07_/3_0 15
eral, the kinetic integrals in Eq§10) and (11) can be repre- P ax X op (15
sented as the sum of a principal value and a residue contrfor an arbitrary nonlinear fUﬂCtiOG((RﬂP»- According to
bution, where the latter leads to a Landau-like damping othe Jeans theorem, df13], the solution of Eq(15) can be
the perturbation. This stabilizing effect is not an ordinary,expressed as an arbitrary function of the Hamiltontdn
dissipative damping. It is rather an energy-conserving self= 8p%/2— kG ({|#|?)). Thus, we haver=ps(H), where p
action effect within a partially incoherent wave field, which is an arbitrary function. The quasiparticles are trapped in the
causes a redistribution of the Wigner spectrum because of theonlinear  potential  for —y=<p<vy, where vy
interaction between different parts of the spectrum. This=(2«G({|#|%))/8)Y? and xB>0, and consequently the
spectral redistribution counteracts the MI. Similar phenom-condition ffzdppo(p)=(|¢|2t) leads to an integral equa-
ena occur in connection with nonlinear propagation of election having the following solution fop (cf. [19]):

tron plasma waves interacting with intense electromagnetic

radiation[9,17], nonlinear interaction between random phase 1(p\¥2r-H  dH’ dF(H")
photons and sound waves in electron-positron plagdrh@ls ps(H)=—15 f

0 (_H_Hr)1/2 dH’ ’ (16)
and the longitudinal dynamics of charged-particle beams in h F(@)=G-! ith 0=G 20 _ 2/9
accelerator§11]. where F(0)=G 7(0) wi =G((|¢19)=(Bp

It is interesting to note that for a coherent wave, i.e a;H)/K' For instance, for the Kerr nonlinearity we have
i o ) P F(®)=0 and Eq. (16) yields pg(H)=(2/7«)\— BHI/2.
delta-shaped backgr_ound distributign(p) = %5( p)_, and_ Equation(16) describes the Wigner distributions of quasipar-
for Bx>0, Eq.(10) gives exactly the modulational instabil-

. : ticles trapped in a collectively produced, stationary, partially
ity growth rate defined by Eq9). For the same case, the . .
dispersion relation(11) yields Q=i (8x) 2poK, which is incoherent, and localized wave structure. These structures

identical to the growth rate of the Ml as given by the exgres-zgz[sllg_”ar to the large-amplitude BGK waves in a plasma;
sion (92) in the limit of long wavelengths, i.e., wheK In conclusion, we have proposed a general, statistical ap-
<4sz_0/ B. ] _ proach for the theoretical analysis of the propagation of par-
To illustrate the incoherent case, we assume #(&0) s {ja|ly incoherent optical waves and beams in dispersive me-
described by the following autocorrelation function: dia with arbitrary nonlinearities. The approach is based on

(exd —i p(x+yl2)+ip(x—y/2)])=exp(—poly]), the Wigner transform method including the Klimontovich
(12 statistical average. The derived Wigner-Moyal equation de-

where p,* is the correlation length. The corresponding termining the evolution of the Wigner distribution function
Wigner function has a Lorentzian shape, represents a generalization of the Vlasov-like equation,

W D which is only valid within the geometrical optics approxima-
pol ):_0 0 5 (13)  tion. The Wigner-Moyal equation clearly shows that the
T p*+pg number of optical quasiparticles it conserved in phase

and the dispersion relatiofl0) yields the following exact space beyond the validity of the geometrical optics approxi-
result for 4K¢S/[7’K2>1: mation. Using the Wigner-Moyal equation, we have carried
out a linear stability analysis for small perturbations on a
QO K|[4kyd Ve constant, 1D, and partially incoherent background in a non-
B_KZI 2 BK? =1 —ipo, (14 linear Kerr medium. The theory reproduces the exact expres-

sion for the MI growth rate of a coherent wave, but also
includes a linear Landau-like damping effect associated with
the broadening of the Wigner spectrum due to partial wave
incoherence. This damping effect explains the previously re-
ported incoherent suppression of the modulational instability.

which is similar to the result obtained in R¢i.4].

Equation(14) clearly shows the stabilizing effect of the
Landau-like damping due to the finite width, of the
Lorentzian spectruntor the finite correlation length of the
wave phaskg In fact, if the width of the Lorentzian spectrum,  The authors are grateful to D. N. Christodoulides, M. Se-
po, satisfies the relation pg>p.=K .2, where K. gev, and A. Hasegawa for valuable discussions.
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