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The decay of the variance of a diffusive scalar in chaotic advection (@ovequivalently Batchelor-regime
turbulence is analyzed using a model in which the advection is represented by an inhomogeneous baker’s map
on the unit square. The variance decays exponentially at large times, with a rate that has a finite limit as the
diffusivity « tends to zero and is determined by the action of the inhomogeneous map on the gravest Fourier
modes in the scalar field. The decay rate predicted by recent theoretical work that follows scalar evolution in
linear flow and then averages over all stretching histories is shown to be incorrect. The exponentially decaying
scalar field is shown to have a spatial power spectrum of the Rfk)~k™“ at wave numbers small enough
for diffusion to be neglected, withr<<1.
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The mixing of a passive scalar advected by an incom- The theoretical work mentioned above is based on the
pressible time-dependent flow that is smoothly varying inassumption of scale separation between the flohich var-
space and subject to weak diffusion remains a problem oies on the large scalend the scalar fielwhich varies on a
fundamental theoretical interest, as well as being of practicadmaller scalg This allows the scalar within each fluid ele-
importance in environmental and industrial flows. Suchment to evolve, independently of all other elements, as if the
flows are sometimes described, when the time dependenceflsw were a linear function of space. In this description the
deterministic, as “chaotic advection” flows or, when the time scalar variance decays within each fluid element at a rate
dependence is random, as the “Batchelor regime” of turbu-depending on the time history of the local flow. Taking the
lence. Scalar evolution in turbulent flows has recently beerensemble average over all such histories gives the decay rate
the focus of much researdi], and the Batchelor regime of the total scalar variance.
represents an important limiting case. In this paper we argue that the above description is inad-

One measure of mixing is the rate of decay of the scalaequate for quantitive prediction of exponential decay rates.
variance. Numerical simulations of globally chaotic flows We describe a different mechanism that leads to exponential
(i.e., flows without transport barrierhiave shown that the decay of the variance of a diffusive scalar in a chaotic ad-
variance decays exponentially at large tifi@s4]. There is  vection flow. This new mechanism involves the gravest spa-
some evidence that the decay rate is asymptotically indepenial Fourier modes in the system and cannot be captured by
dent of diffusivity for small diffusivity[2,4], though it has any “local” theory that follows the evolution of small scale
been argued recently 5] that this is not always the case. structures within each fluid element. We shall therefore refer
Pierrehumberf2] has suggested that the scalar has an equito the new mechanism as a “global” mechanism to distin-
librium spatial structure during the period of exponential de-guish from the “local” mechanism for decay envisaged in
cay associated with a “strange eigenmode” of the advectionthe papers mentioned above. We here illustrate the “global”
diffusion equation and some evidence for persistent spatiahechanism in a model where the advecting flow is repre-
structure in decaying scalar in a chaotic advection flow hasented by an area-preserving baker’s map.
been presented if6]. This paper discusses the mechanism The inhomogeneous baker's map has been described in
that determines the asymptotic decay rate of the scalar vari9,10]. The unit square is divided by a cut parallel to the
ance. axis into two rectangles of areaand B, with «+ 8=1 and,

Antonsenet al. [4], working in the context of “chaotic without loss of generalitya<g. The two rectangles are
advection,” and Son7] and Balkovsky and Fouxof8], stretched in the direction by, respectively, factors * and
working in the context of “Batchelor turbulence,” have ar- 8~ ! and then reassembled into a unit square.
gued that the rate of exponential decay may be predicted The baker's map can be taken to represent the effect of a
from the statistics of the stretching history experienced bytwo-dimensional flow on a scalar field in the unit square, in
different fluid parcels. These statistics are conventionally exthe sense that it can be approximated arbitrarily closely by
pressed by the probability density functiét(h,t) for the the effect of a continuous two-dimensional flow. For our pur-
finite-time Liapunov exponent distribution. The finite-time poses it is sufficient to consider the effect of the map on a
Liapunov exponenh at timet is simply the maximal average scalar field that varies only in the contracting direction of the
rate of stretching experienced following a given fluid particlemap, i.e., in thex direction. This reduces the problem from
up to that time. two dimensions to one dimension.
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Repeated application of the baker's map may be regardegith ®,=@ _,, () denoting a complex conjugate. The sca-
as equivalent to the advective effect of a time-periodic flow|ar variance £(t), may then be evaluated 35_ |0 ,(t)|2.
that is present only for an instant during each period, buj \ye write ®n(|T)=®| then the action of a single applica-
which leads to finite particle displacements during that in'tion of the baker’s m:;p plus diffusion acting over a tiffie
stant. The effect of diffusion during the instant that the flow ay be expressed in terms of a transfer mativacting on
is present may be neglected, but the scalar may evolve dity " rourier coefficients as
fusively during the remainder of each period.

Let the scalar field be represented 8)x). Under the
baker’'s ma
P ®In+1: E Mnm®|m- (5
() \ O(a ) 0=sx<a, @

X):0=x<1}— _ 1
OB H(x—a)) ra=x<Ll The components of the transfer matrix may be straightfor-

. . . ! i wardly evaluated as
This map is applied to the scalar field at intervals of tilme

Between applications of the map the scalar field evolves ac- ) AT
cording to the one-dimensional diffusion equation M _sin(nma) (B—a)me 7 ITe MNTe
nm T (m—an)(m-—An)

(6)
0= k0yy, 2
wherek is the diffusivity. Periodic boundary conditions are -I:VZOZ TngpeC'al casels are «=0,  when Mlnm
imposed ax=0 andx=1. The evolution of the scalar con- =€ ~ " 6nm, anda=3, whenM,,=0 unlessm=3n,
centration, as measured by the scalar variaf(¢®, for ex-  in which caseM = e 4m«Tr Eor the caser=0, i.e., no
ample, may be followed numerically by applying H@) on  stretching, an initial condition of a single wave with only
a grid, Fourier transforming to solve E@) and then apply- ©., nonzero implies scalar variance decay according to
ing the inverse transform to return to the grid. It is found, asg(1T) = £(0)exp(872«TI), i.e., exponential decay, but at a
in [2,4] that there is a first stage in which the decay of therate proportional to diffusivity. For the case=%, i.e., ho-
variance is super-exponential and then a second stage iogeneous stretching, the corresponding initial condition
which the decay is exponential. gives  variance decay according to &(IT)
The behavior in the first stage may be captured by a=g(0)exp(3272«T(4'—1)/3), i.e., super-exponential de-
model analogous to that [#] which follows the evolution of  cay and consistent with E¢3).
the scalar field within each fluid element and then integrates For 0<a<3} the evolution must be calculated numeri-
over all possible stretching histories for fluid elements. Ac-cally. Within the Fourier representation this is done by trun-
cording to that model, the variangof a scalar field that cating the Fourier series, so thatN<n=<N. We denote the
initially varies sinusoidally with wave numbég is given by corresponding truncation of the transfer matrix iy, In
the long-time limit the varianc&(1T) will, a2|ccording to a
_ ” ” _ 12 a2ht calculation at finite truncatiol, vary as|u|®', whereu is
€(t)—5(0)f0 th(h,t)fo drQ(7t)exp(~ ko &™), the eigenvalue of the truncated transfer matX) with
(3)  largest modulus. Explicit numerical calculation shows that
all eigenvalues have modulus less than 1, implying decay of
where r=e~2"[{exp(2h(t')t') depends on the history of the variance at large times. The symmetry properties of the
stretching andQ(7,t) is its distribution. At large timekand ~ matrixM (M, ,,=M _, _.,), imply that if x is an eigenvalue,
7 may be regarded as independp#l The stretching prop-  yith eigenvecto® = x,, say, thenu is also an eigenvalue,
erties of the inhomogeneous baker's map are analyzed in. h ei tor® .=y - After a large number of itera-
detail in[10] and the functionP(h,t) is derived explicitly, /o €lgenvectord,=x . After a large number of itera-
Here it is sufficient to note that the minimum possible Valuet|ons the Fourier coeff|0|ents of the scalar field will be domi-
of stretching ratéh is —log(B)/T and the minimum possible nated by these two eigenvectors, so that
value ofr, at larget, is T’/ (1— a?). It follows from Eq.(3) L
that the variancé(t) decays superexponentially for all time. @'nz,u',\/nJr wy . (7)
In [4] an additional integration over orientation of wave
number with respect to stretching direction allows exponen-

tial, rather than super-exponential decay in time. However ivlérno?:1 tEe f(%r)mth(g ﬁg? (Ca(s)tmgiogir\l/gslu(g Egeet;agiga Toatgé
that is not relevant in the one-dimensional problem consid? 9. 9 9 P

ered here and a different explanation of the exponential delpdependent of th_e trunca}t_ion N provided that
cay is needed exp(—47«kTN?)<1. This was verified to be the case and the

It is useful to write the scalar field as a Fourier seriex,in corrgspondm_g decay rates checked against the_ .epr|C|t nu-
merical solution of Eqs(1) and(2). It was also verified that

oo for eacha the decay factoju| appeared to tend to a limit as
o= S ()e2minx @ «—0. Indeed it was also shown that, for fixed || tended
B = ' to a limit as the truncatiomN increased. These results are
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1 T T T T T 1eBo any finite truncation of the matrix must all be zer@/henk

e 1e-7 + is large the dispersive effect of the width of the peaks is less
08y # ® ]g;gi ] important, since the width remains constankascreases.

06l G @ ] It may be shown that the transfer in wave number space is
] u] more dispersive when the baker’s map is less homogeneous
0.4f @ 1 in physical space, i.e., whan is smaller, i.e., the dispersion

arises from large-scale spatial variations in the stretching ef-
0.2y fects of the inhomogeneous baker's méphe same effect
o . .. . . . . has been noted previously in the context of vortical flows
0 0.1 0.2 0.3 0.4 0.5

o [11].) It follows that the decay rate should then also be
smaller, since the greater dispersion implies slower transfer
of scalar variance out of the lowest spatial wave numbers in
the system, and indeed this is the behavior observed.

While the decay rate appears to be governed by the action
of the baker’'s map on the large scales, the exponentially
decaying mode that emerges has a complex structure at small
scales. A simple theory for the wave number spectrum of the
decaying mode may be developed as follows.

After many iterations the scalar variance in each wave
numbern is, from Eq.(7),

FIG. 1. Decay factotu| as a function ofa, for diffusivity «
=10"%,10"5,10"7,10 8 for truncationN=800.

summarized in Figs. 1 and 2, which show the variatiop.of
with «, in 1 for fixed truncationN=2800 and for different
values ofx and in 2 for fixedk=10"" and varyingN, from
N=1 to N=800. These results confirm that, whilst non-zero
K is essential for the decay of the scalar variafi€¢here
were no diffusion then there would be no dekdkie value of
the decay rat€in the problem considered heris essentially

independent ofx in the smallx limit. The decay rate is 10! 12+]0" |2=2|0 2
largest when the baker's map is close to homogeneous = " "
.(|,u|ﬁ0 asa— 3) and decreases as the map becomes more = 2| w2 (xenl?+ I x—nl® + 202 X~ nxn
inhomogeneous|ft| —1 asa—0). )
The results shown in Fig. 2 show that the largest eigen- T XnX—n)- (8)

value of the truncated transfer matridd$™) converges rap- S

idly as N increases and is close to its limiting value evenThe ratio (w? x _nxn+u® xnx—-n)/ 2| u|? (| xal*+[x—nl?))
when N is quite small. Indeed, provided that is not too  Will, as| increases, oscillate about an average value of 0 and
close to}, a useful estimate of the decay rate is obtained byt is useful to consider | (| xq/*+|x—n|?) as the “aver-
truncating to the gravest Fourier modé= 1). This suggests age scalar variance” in each wave numbeVe now regard
that it is primarily the effect of the map on the gravest spatiawave number as continuously varyirignd denoted by)
Fourier modes in the system that determines the decay ratend define by analogy the “average spectral densiy(k).

The transfer matrix shows that one application of the in-We shall assume that the important effect of the baker's map
homogeneous baker map disperses scalar variance initially at determining the spectrum is to move scalar variance from
wave numbek to a range of wave numbers, but concentratedvave numbek to wave numbers:~*k and 3~ 'k in propor-
in peaks about the two wave numbers*k and 87'k. Of  tionsa and3, respectively. This suggests tHi(k) satisfies
particular importance whek is small is the finite width of the recurrence relation
the peaks, which implies that one iteration of the map leaves
some of the scalar variance initially at wave numkere- E'*1(k)=e *T¥{a?E(ka) + BZE'(KB)}. ©)
maining at that wave numbdindeed some may move to
wave numbers less thag. This allows the possibility that The extra factors ofr and 3 take account of the fact that if
the transfer matrix has a nonzero eigenvalue and therefoie wave number is multiplied by a certain factor then the
that there is exponential, rather than super-exponential, dgysower spectral density is multiplied by the inverse so that the
cay. (Note that whena=3 the position of the nonzero ele- total variance is conserved. Furthermore in the exponentially
ments in the transfer matrix implies that the eigenvalues Oﬁecaying stage of evolution th@ﬂ(k): |M|2E'(k), hence

! . ' ' To | w|?B (k)= “T¢Ia?E! (ka) + B2E'(KB)}.  (10)
0.8 3 2000 1 ~
o ¥ B 800 X This serves as an equation fElL(k). If we consider Wa\2/e
" 0.6 M o o 1 numbers for which diffusion is unimportant, so thz?”k
0.4 o f =1, then Eq.(10) has the power law solutiorE'(k)
° ~|wu|?'k™7, provided that the spectral slope satisfies the
0.2 o | condition
0001 02 ch 03 04 05 |u|?=a? 7+ p2". (12)

FIG. 2. Decay factotu| as a function ofa, for truncationN  Note thato is therefore determined by the decay fadtat.
=1,10,200,800, with diffusivitye=10"". In particular, if |u|<1 then o<1. For example, if|u|
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stretching ratesis, following [10], 1—2a+ 2a2. For 0<a
<0.42 this is less than the “global” decay factdfor «
—0) shown in Fig. 1, for ay-independent scalar field. But
the slowest decaying structure in the two-dimensional prob-
lem must have decay factor greater than or equal to that
shown in Fig. 1. Hence the “local” theory cannot be correct
and it must be the “global” mechanism that controls the rate
of decay. Support for this conclusion is provided by recent
. numerical simulations of two-dimensional floWk2], which
10 Waved ber 1000 show that the decay rate of tmth moment of the scalar is
proportional ton. This is inconsistent with the predictions of
FIG. 3. Scaled average spectral dendityk) (solid lineg and  “local” theories, but consistent with the scalar taking the
power law predicted by Eqll) (dashed lingsfor (from top to  form of a globally determined decaying eigenmode, as de-
bottom a=0.4, 0.3, and 0.2. scribed here.

Lo This paper illustrates, using the baker map as the simplest
=y(a+B°) theno=0. In the limiting case of no decay nsssible relevant model, how the rate of scalar decay is de-
|ul=1 ando=1. This happens to correspond to the casgermined. The map acts on the large-scale contrast in the
where the scalar variance is maintained constant, €.g., by &ajar field and, in each iteration, reduces the amplitude of
forcing at small wave numbers, and the predicted power-lawhjs contrast by a fixed factor. Similarly in a two-dimensional
spectrum is then just the Batchelor = spectrum. The spec- fiow, action of the flow over some suitable fixed time interval
trum of the decaying mode being shallower thart implies 4150 reduces the amplitude of the scalar field by a fixed fac-
strongly singular behavior of the scalar field at small scalesyor. A fuller study, analyzing this process in detail in two-
but in practice the singularity is resolved by diffusion. Figure gimensjonal flow, is in preparation and will be reported else-
3 shows the average spectral density for the slowest decayifgnere.
mode fora=0.2,0.3,0.4 and also that predicted by Etfl),
which is in good qualitative agreement. This work was supported by the U.K. Natural Environ-

We now return to regarding the baker’s map as representnent Research CoundiD.R.F. and A.W. A.W. is also sup-
ing the effect of a two-dimensional flow on a two- ported by the Dr. Karl Wamsler Foundation and J.C.V. by the
dimensional field. The prediction of a “local” theory for the Royal Society. Useful discussions with Z. Neufeld are ac-
decay factor(based on the distribution function for the knowledged.
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