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Scalar variance decay in chaotic advection and Batchelor-regime turbulence
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The decay of the variance of a diffusive scalar in chaotic advection flow~or equivalently Batchelor-regime
turbulence! is analyzed using a model in which the advection is represented by an inhomogeneous baker’s map
on the unit square. The variance decays exponentially at large times, with a rate that has a finite limit as the
diffusivity k tends to zero and is determined by the action of the inhomogeneous map on the gravest Fourier
modes in the scalar field. The decay rate predicted by recent theoretical work that follows scalar evolution in
linear flow and then averages over all stretching histories is shown to be incorrect. The exponentially decaying
scalar field is shown to have a spatial power spectrum of the formP(k);k2s at wave numbers small enough
for diffusion to be neglected, withs,1.
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The mixing of a passive scalar advected by an inco
pressible time-dependent flow that is smoothly varying
space and subject to weak diffusion remains a problem
fundamental theoretical interest, as well as being of pract
importance in environmental and industrial flows. Su
flows are sometimes described, when the time dependen
deterministic, as ‘‘chaotic advection’’ flows or, when the tim
dependence is random, as the ‘‘Batchelor regime’’ of turb
lence. Scalar evolution in turbulent flows has recently be
the focus of much research@1#, and the Batchelor regime
represents an important limiting case.

One measure of mixing is the rate of decay of the sca
variance. Numerical simulations of globally chaotic flow
~i.e., flows without transport barriers! have shown that the
variance decays exponentially at large times@2–4#. There is
some evidence that the decay rate is asymptotically inde
dent of diffusivity for small diffusivity @2,4#, though it has
been argued recently in@5# that this is not always the case
Pierrehumbert@2# has suggested that the scalar has an e
librium spatial structure during the period of exponential d
cay associated with a ‘‘strange eigenmode’’ of the advecti
diffusion equation and some evidence for persistent spa
structure in decaying scalar in a chaotic advection flow
been presented in@6#. This paper discusses the mechani
that determines the asymptotic decay rate of the scalar v
ance.

Antonsenet al. @4#, working in the context of ‘‘chaotic
advection,’’ and Son@7# and Balkovsky and Fouxon@8#,
working in the context of ‘‘Batchelor turbulence,’’ have a
gued that the rate of exponential decay may be predic
from the statistics of the stretching history experienced
different fluid parcels. These statistics are conventionally
pressed by the probability density functionP(h,t) for the
finite-time Liapunov exponent distribution. The finite-tim
Liapunov exponenth at timet is simply the maximal averag
rate of stretching experienced following a given fluid partic
up to that time.
1063-651X/2002/65~3!/035301~4!/$20.00 65 0353
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The theoretical work mentioned above is based on
assumption of scale separation between the flow~which var-
ies on the large scale! and the scalar field~which varies on a
smaller scale!. This allows the scalar within each fluid ele
ment to evolve, independently of all other elements, as if
flow were a linear function of space. In this description t
scalar variance decays within each fluid element at a
depending on the time history of the local flow. Taking t
ensemble average over all such histories gives the decay
of the total scalar variance.

In this paper we argue that the above description is in
equate for quantitive prediction of exponential decay rat
We describe a different mechanism that leads to expone
decay of the variance of a diffusive scalar in a chaotic
vection flow. This new mechanism involves the gravest s
tial Fourier modes in the system and cannot be captured
any ‘‘local’’ theory that follows the evolution of small scal
structures within each fluid element. We shall therefore re
to the new mechanism as a ‘‘global’’ mechanism to dist
guish from the ‘‘local’’ mechanism for decay envisaged
the papers mentioned above. We here illustrate the ‘‘glob
mechanism in a model where the advecting flow is rep
sented by an area-preserving baker’s map.

The inhomogeneous baker’s map has been describe
@9,10#. The unit square is divided by a cut parallel to thex
axis into two rectangles of areaa andb, with a1b51 and,
without loss of generality,a<b. The two rectangles are
stretched in they direction by, respectively, factorsa21 and
b21 and then reassembled into a unit square.

The baker’s map can be taken to represent the effect
two-dimensional flow on a scalar field in the unit square,
the sense that it can be approximated arbitrarily closely
the effect of a continuous two-dimensional flow. For our p
poses it is sufficient to consider the effect of the map o
scalar field that varies only in the contracting direction of t
map, i.e., in thex direction. This reduces the problem from
two dimensions to one dimension.
©2002 The American Physical Society01-1
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Repeated application of the baker’s map may be regar
as equivalent to the advective effect of a time-periodic fl
that is present only for an instant during each period,
which leads to finite particle displacements during that
stant. The effect of diffusion during the instant that the flo
is present may be neglected, but the scalar may evolve
fusively during the remainder of each period.

Let the scalar field be represented byQ(x). Under the
baker’s map

$Q~x!:0<x,1%→H Q~a21x! :0<x,a,

Q„b21~x2a!… :a<x,1.
~1!

This map is applied to the scalar field at intervals of timeT.
Between applications of the map the scalar field evolves
cording to the one-dimensional diffusion equation

Q t5kQxx , ~2!

wherek is the diffusivity. Periodic boundary conditions a
imposed atx50 andx51. The evolution of the scalar con
centration, as measured by the scalar varianceE(t), for ex-
ample, may be followed numerically by applying Eq.~1! on
a grid, Fourier transforming to solve Eq.~2! and then apply-
ing the inverse transform to return to the grid. It is found,
in @2,4# that there is a first stage in which the decay of t
variance is super-exponential and then a second stag
which the decay is exponential.

The behavior in the first stage may be captured by
model analogous to that in@4# which follows the evolution of
the scalar field within each fluid element and then integra
over all possible stretching histories for fluid elements. A
cording to that model, the varianceE of a scalar field that
initially varies sinusoidally with wave numberk0 is given by

E~ t !5E~0!E
0

`

dhP~h,t !E
0

`

dtQ~t,t !exp„2kk0
2 e2htt… ,

~3!

where t5e22ht*0
t exp„2h(t8)t8… depends on the history o

stretching andQ(t,t) is its distribution. At large timesh and
t may be regarded as independent@4#. The stretching prop-
erties of the inhomogeneous baker’s map are analyze
detail in @10# and the functionP(h,t) is derived explicitly.
Here it is sufficient to note that the minimum possible va
of stretching rateh is 2 log(b)/T and the minimum possible
value oft, at larget, is Ta2/(12a2). It follows from Eq.~3!
that the varianceE(t) decays superexponentially for all time
In @4# an additional integration over orientation of wav
number with respect to stretching direction allows expon
tial, rather than super-exponential decay in time. Howe
that is not relevant in the one-dimensional problem cons
ered here and a different explanation of the exponential
cay is needed.

It is useful to write the scalar field as a Fourier series inx,

Q~x,t !5 (
n52`

`

Qn~ t !e2p inx, ~4!
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with Qn5Q̄2n , ( )̄ denoting a complex conjugate. The sc
lar variance,E(t), may then be evaluated as(n52`

` uQn(t)u2.
If we write Qn( lT)5Qn

l then the action of a single applica
tion of the baker’s map plus diffusion acting over a timeT
may be expressed in terms of a transfer matrixM acting on
the Fourier coefficients as

Qn
l 115 (

m52`

`

MnmQm
l . ~5!

The components of the transfer matrix may be straightf
wardly evaluated as

Mnm5
sin~npa!

p

~b2a!me24p2kTn2
e2nipa

~m2an!~m2bn!
. ~6!

Two special cases are a50, when Mnm

5e24p2kTn2
dnm , and a5 1

2 , when Mnm50 unlessm5 1
2 n,

in which caseMnm5e24p2kTn2
. For the casea50, i.e., no

stretching, an initial condition of a single wave with on
Q61 nonzero implies scalar variance decay according
E( lT)5E(0)exp(28p2kTl), i.e., exponential decay, but at
rate proportional to diffusivity. For the casea5 1

2 , i.e., ho-
mogeneous stretching, the corresponding initial condit
gives variance decay according to E( lT)
5E(0)exp(232p2kT(4l21)/3), i.e., super-exponential de
cay and consistent with Eq.~3!.

For 0,a, 1
2 the evolution must be calculated nume

cally. Within the Fourier representation this is done by tru
cating the Fourier series, so that2N<n<N. We denote the
corresponding truncation of the transfer matrix byM (N). In
the long-time limit the varianceE( lT) will, according to a
calculation at finite truncationN, vary asumu2l , wherem is
the eigenvalue of the truncated transfer matrixM (N) with
largest modulus. Explicit numerical calculation shows th
all eigenvalues have modulus less than 1, implying deca
the variance at large times. The symmetry properties of
matrix M (Mnm5M̄ 2n,2m), imply that if m is an eigenvalue,
with eigenvectorQn5xn , say, thenm̄ is also an eigenvalue
with eigenvectorQn5x̄2n . After a large number of itera-
tions the Fourier coefficients of the scalar field will be dom
nated by these two eigenvectors, so that

Qn
l .m lxn1m̄ l x̄2n . ~7!

From the form of the components of the transfer mat
given in Eq. ~6! the largest eigenvalue is expected to
independent of the truncation N provided that
exp(24p2kTN2)!1. This was verified to be the case and t
corresponding decay rates checked against the explicit
merical solution of Eqs.~1! and~2!. It was also verified that
for eacha the decay factorumu appeared to tend to a limit a
k→0. Indeed it was also shown that, for fixedk, umu tended
to a limit as the truncationN increased. These results a
1-2
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summarized in Figs. 1 and 2, which show the variation om
with a, in 1 for fixed truncationN5800 and for different
values ofk and in 2 for fixedk51027 and varyingN, from
N51 to N5800. These results confirm that, whilst non-ze
k is essential for the decay of the scalar variance~if there
were no diffusion then there would be no decay!, the value of
the decay rate~in the problem considered here! is essentially
independent ofk in the small-k limit. The decay rate is
largest when the baker’s map is close to homogene
(umu→0 asa→ 1

2 ) and decreases as the map becomes m
inhomogeneous (umu→1 asa→0).

The results shown in Fig. 2 show that the largest eig
value of the truncated transfer matricesM (N) converges rap-
idly as N increases and is close to its limiting value ev
when N is quite small. Indeed, provided thata is not too
close to1

2 , a useful estimate of the decay rate is obtained
truncating to the gravest Fourier mode (N51). This suggests
that it is primarily the effect of the map on the gravest spa
Fourier modes in the system that determines the decay

The transfer matrix shows that one application of the
homogeneous baker map disperses scalar variance initia
wave numberk to a range of wave numbers, but concentra
in peaks about the two wave numbersa21k and b21k. Of
particular importance whenk is small is the finite width of
the peaks, which implies that one iteration of the map lea
some of the scalar variance initially at wave numberk re-
maining at that wave number~indeed some may move t
wave numbers less thank). This allows the possibility tha
the transfer matrix has a nonzero eigenvalue and there
that there is exponential, rather than super-exponential,
cay. ~Note that whena5 1

2 the position of the nonzero ele
ments in the transfer matrix implies that the eigenvalues

FIG. 1. Decay factorumu as a function ofa, for diffusivity k
51025,1026,1027,1028 for truncationN5800.

FIG. 2. Decay factorumu as a function ofa, for truncationN
51,10,200,800, with diffusivityk51027.
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any finite truncation of the matrix must all be zero.! Whenk
is large the dispersive effect of the width of the peaks is l
important, since the width remains constant ask increases.

It may be shown that the transfer in wave number spac
more dispersive when the baker’s map is less homogene
in physical space, i.e., whena is smaller, i.e., the dispersio
arises from large-scale spatial variations in the stretching
fects of the inhomogeneous baker’s map.~The same effect
has been noted previously in the context of vortical flo
@11#.! It follows that the decay rate should then also
smaller, since the greater dispersion implies slower tran
of scalar variance out of the lowest spatial wave number
the system, and indeed this is the behavior observed.

While the decay rate appears to be governed by the ac
of the baker’s map on the large scales, the exponenti
decaying mode that emerges has a complex structure at s
scales. A simple theory for the wave number spectrum of
decaying mode may be developed as follows.

After many iterations the scalar variance in each wa
numbern is, from Eq.~7!,

uQn
l u21uQ2n

l u252uQn
l u2

52umu2l~ uxnu21ux2nu2!12~m̄2l x̄2nx̄n

1m2lxnx2n!. ~8!

The ratio (m̄2l x̄2nx̄n1m2lxnx2n)/„2umu2l(uxnu21ux2nu2)…
will, as l increases, oscillate about an average value of 0
it is useful to consider 2umu2l(uxnu21ux2nu2) as the ‘‘aver-
age scalar variance’’ in each wave numbern. We now regard
wave number as continuously varying~and denoted byk)
and define by analogy the ‘‘average spectral density’’Ẽl(k).
We shall assume that the important effect of the baker’s m
in determining the spectrum is to move scalar variance fr
wave numberk to wave numbersa21k andb21k in propor-
tionsa andb, respectively. This suggests thatẼl(k) satisfies
the recurrence relation

Ẽl 11~k!5e2kTk2
$a2Ẽl~ka!1b2Ẽl~kb!%. ~9!

The extra factors ofa andb take account of the fact that i
the wave number is multiplied by a certain factor then t
power spectral density is multiplied by the inverse so that
total variance is conserved. Furthermore in the exponenti
decaying stage of evolution thenẼl 11(k)5umu2Ẽl(k), hence

umu2Ẽl~k!5e2kTk2
$a2Ẽl~ka!1b2Ẽl~kb!%. ~10!

This serves as an equation forẼl(k). If we consider wave
numbers for which diffusion is unimportant, so thate2kTk2

.1, then Eq. ~10! has the power law solutionẼl(k)
;umu2lk2s, provided that the spectral slopes satisfies the
condition

umu25a22s1b22s. ~11!

Note thats is therefore determined by the decay factorumu.
In particular, if umu,1 then s,1. For example, ifumu
1-3
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5A(a21b2) then s50. In the limiting case of no deca
umu51 and s51. This happens to correspond to the ca
where the scalar variance is maintained constant, e.g.,
forcing at small wave numbers, and the predicted power-
spectrum is then just the Batchelork21 spectrum. The spec
trum of the decaying mode being shallower thank21 implies
strongly singular behavior of the scalar field at small sca
but in practice the singularity is resolved by diffusion. Figu
3 shows the average spectral density for the slowest deca
mode fora50.2,0.3,0.4 and also that predicted by Eq.~11!,
which is in good qualitative agreement.

We now return to regarding the baker’s map as repres
ing the effect of a two-dimensional flow on a two
dimensional field. The prediction of a ‘‘local’’ theory for th
decay factor~based on the distribution function for th

FIG. 3. Scaled average spectral densityẼl(k) ~solid lines! and
power law predicted by Eq.~11! ~dashed lines! for ~from top to
bottom! a50.4, 0.3, and 0.2.
ys
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stretching rates! is, following @10#, 122a12a2. For 0,a
,0.42 this is less than the ‘‘global’’ decay factor~for k
→0) shown in Fig. 1, for ay-independent scalar field. Bu
the slowest decaying structure in the two-dimensional pr
lem must have decay factor greater than or equal to
shown in Fig. 1. Hence the ‘‘local’’ theory cannot be corre
and it must be the ‘‘global’’ mechanism that controls the ra
of decay. Support for this conclusion is provided by rece
numerical simulations of two-dimensional flows@12#, which
show that the decay rate of thenth moment of the scalar is
proportional ton. This is inconsistent with the predictions o
‘‘local’’ theories, but consistent with the scalar taking th
form of a globally determined decaying eigenmode, as
scribed here.

This paper illustrates, using the baker map as the simp
possible relevant model, how the rate of scalar decay is
termined. The map acts on the large-scale contrast in
scalar field and, in each iteration, reduces the amplitude
this contrast by a fixed factor. Similarly in a two-dimension
flow, action of the flow over some suitable fixed time interv
also reduces the amplitude of the scalar field by a fixed f
tor. A fuller study, analyzing this process in detail in tw
dimensional flow, is in preparation and will be reported els
where.
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