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Ehrenfest times for classically chaotic systems

P. G. Silvestrot? and C. W. J. Beenakkkr
lnstituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands
2Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia
(Received 26 November 2001; published 7 March 2002

We describe the quantum-mechanical spreading of a Gaussian wave packet by means of the semiclassical
WKB approximation of Berry and Balazd. Phys. A2, 625(1979]. We find that the time scaleon which this
approximation breaks down in a chaotic system is larger than the Ehrenfest times considered previously. In one
dimensionr= %)Clln(A/h), with \ the Lyapunov exponent andl a typical classical action.
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According to Ehrenfest’s theorefi], the propagation of y AT dy
a quantum-mechanical wave packet is described for shortW(X,IO)=f Wl x5 W x= 5 e o

times by classical equations of motion. The time scale at

which this correspondence between quantum and classical 1 a(x—%g)2 [p—Po— B(X—Xo)]?
dynamics breaks down is called the Ehrenfest time. If the = %ex% - 7 - ah

classical dynamics is chaotic with Lyapunov expona&nt

then the Ehrenfest time is of order\ ~* In(A/%) (with A a 2

typical classical action of the dynamical sysdi®)]. There is

; ; : he wave packet is centered »§(t),po(t) and for a(t)
actually more than a single Ehrenfest time, corresponding ta- ) : :
different types of semiclassical approximations. Although<1 becomes highly elongated and tilted with slapp/Ax

they differ only by a numerical coefficient,r, ~A. It _has length Ij=VA(1+p%)/a and width I,
=c;\ " LIn(A%), the structure of the wave function changes = Vi @/(1+ %), so that the area in phase space is conserved
qualitatively from one time scale to the next. exactly, Il , =#. The Gaussian quantum wave packet satis-

Up to a timer;, with ¢;=1/6, the initial coherent state fieS the classical Liouville theorem. _
will retain its Gaussian form with vanishing error in the limit 1€ Gaussian fornil) takes into account the elongation
%0 [3,4]. For longer times up tor,, with c,=1/2, the qf the wave packet, but not the curvature that develiops in
uncertainty in the position and momentum of the particlelime and results in a bending of the packet. To describe the
remains small but the phase-space structure of the waveHrvature we add an imaginary cubic term in the exponent in
packet deviates strongly from a Gaussian. For times greatcﬁq' D,
than 7, the wave function no longer has the form of a wave
packet(this is the “mixing regime” of Refs[5,6]), but up to \Ir(x)z(i
a time 73 it can still be described semiclassically by the mh
time-dependent WKB approximation of Berry and Balazs o )
[7]. As we will show in this paper, the WKB representation (For simplicity we have puko,=0.) The cubic term leads to

it

1/4 H 2 3
Pox  (IiB—a)x® X
eXp( 7 on e ©

implies c;=7/6 for a single degree of freedotwith simple ~ an appreuggle phase shift over a |erl]/g‘t4§/gﬁ/a)1/2 when
generalizations for higher dimension$his is larger than the (/%) (%i/a) 1/322%3; hence whem(t)=<A""y"". _
valuec;= 2/3 obtained by Bouzouina and Robfi from a For a<™*y* the Wigner function takes again a simple
different semiclassical approximation. form, in terms of the Airy function Ai
Let us start with the Gaussian one-dimensional wave
packet a'exp(—ax?lh) [ pot Bx+yx*—p
W(X’ p) = 1/2 2 1/3 2 1/3
” ) exor? mhHA(yh?l4) (yh<ld) "
o _
\I’(x)=(ﬁ) exp(ip%ﬂiﬁ—a)z—ﬁ" Y

One can check that/(x,p) — 8(x) 8(p— pg) whenz—0 (at
fixed «), by means of the identity lim,oAi(z/e)le

Initially B(t=0)=0 anda(t=0)=pe/L, wherepg andL = ./7§(z). At finite # the wave packet is extended along the
are the typical classical momentum and length. The typicaturved line p=py+ Bx+ yx2. Since p,py.x are of order
classical action iA=pgL. The parametergy(t),po(t) fol-  unity, the two parameterg and y are of order unity as well

low the classical trajectory fok <A. We will measure the (in contrast toa, which is <1). The transverse width is of
momentum and coordinate in units pf andL, respectively, order

so that «(0)=1 and A=1. For chaotic dynamics with
Lyapunov exponenh one hasa(t)xexp(—2it), hencea |, ~y¥3h2R1+ p?) 12 (5)
<1 fort>1/\.

To describe the time evolution in phase space we considerhe length of the packet remains|at VE(1+ %)/ a. Since
the Wigner function now |l, >%, the Liouville theorem no longer holds.
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To obtain the Ehrenfest time, we parametrize time as

—CI ! 6
t—xn%. ()

The classical limit for a chaotic system medns-0, t—oo
at fixedc. Different coefficients follow from different semi-
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iy°o

iy(o'—p)
Wkk(x,p)=jexr< Uh + a7

2 1 1/3
:\/_;(hZO_m) |f(X)|2AI(

3 _m |f(X)|2dy

2mh
2(c'—p)
(ﬁZO'W)lIS '

(11

classical approximations. If we use the Gaussian wave
packet(1), without the cubic term to account for the curva- We have made a Taylor expansion e{x*y/2) and ne-

ture, then we need(t)>7%3y?3 Sinceaxe Mo 2¢ we
needc<1/6. The upper limit ofc gives the first Ehrenfest
time r,=3:\"tIn(1/4).

glected the difference betwedx*y/2) andf(x).
If we parametrize time as in E¢6) we have for botH
andl, the same scaling with as in Eq.(7). The range of

The classical limit can be reached for longer times if wevalidity of Eq. (8) is limited by the condition that the differ-

use the wave packeB), including the cubic term. The di-
mensions of the packet far> 7, scale withA as

|L0Cﬁ2/3, |Hoch1/27c_

@)

For c<1/2 the length of the packet approaches zero in the

classical limit. This upper limit ot gives the second Ehren-
fest timer,= 3\ "t In(1/h).

ent branches should be distinguishable. This requires that the
different parts of the curve(x) in phase space should not
get closer tham, . Their spacing is of order i/ (assuming a
uniform filling of phase spagehence

I, <1=h"°<1. (12)

The upper limit of 7/6 forc leads to the third Ehrenfest time

For t> 1, the length of the wave packet exceeds the size

of the system and is no longer small compared to the radius
of curvature. For these large times we may adopt the semi-

classical WKB approximation of Berry and Baldz§. Con-
sider a curve in phase spapéx) and a phase-space distri-
bution p(p(x),x). Both p and p evolve in accordance with
classical equations of motion. For 7, the functionp(x) is

_ I ! 13
7'3—& n%. ( )

The third derivatives™ in Eq. (11) vanishes at the points
of inflection of the curvep(x). In order to find the Wigner
function there, one should expangx=*y/2) up to terms of

multivalued with an exponentially large number of branchesorder y°. This leads to a different scaling «%*® of the

~exgA\(t—m)]. The quantum wave function in this “mix-
ing” regime has the form

qf(x)=2k f(x)exdi o X)/A]. (8

width of the Wigner function near the inflection points. Be-
cause these are isolated points, they will not contribute to the
matrix elements of nonsingular operatdntaining only
smooth functions ok and p). This different scaling should
therefore not affect the Ehrenfest tinie3).

The nondiagonal contributiond/, , to the Wigner func-

The summation ovek accounts for the different branches of tion lead to the “ghost curves” discussed in REJ]. (Ghost

the multivalued functiop(x). The two functiond ando are
related fori—0 to p andp by the correspondence principle

f=1p(p,x).

ax ©)

=p(x),

An explicit description of the evolution of the wave function
(8) for guantum maps can be found in RE3].

Near the pointx, at which p(x) bifurcates into two
branches, one hap=py*ayx—X, p=bl/{yx—x,. The
wave function there is

¥ =(fla)pY2Ai[(alh)Z(x—x,)]eP*, (10

curves are regions of large values of the Wigner function
which do not correspond to classical trajectojie¥he
Wigner function near these curves is given by the same Airy
function as in Eq.11), but in addition acquires a strongly
oscillating factor. Due to these oscillations the nondiagonal
terms do not contribute to the matrix elements of nonsingular
operators(They may play a role in the decoherence by the
environmen{10].) At t= 75 the ghost curves merge with the
(multivalued curve p(x) and become indistinguishable.

The time scalg13) for the breakdown of the WKB ap-
proximation is greater than the Ehrenfest tigwe tIin(1/4)
in the mixed regime obtained in Rg®6]. That shorter time
scale may signal the breakdown of the series expansion
oK (X) =2 =0j(X)R!. Then Eq.(9) would no longer hold,

up to an overall phase. The phase difference between tHeut fort< 73 the representatiof8) with a renormalized func-

bifurcation points can be determined from E¢R). and (9).
Because the curvp(x) is not closed, there is no analog of
the Bohr-Sommerfeld quantization rule.

tion o (x) would still be valid.
So far we have discussed a one-dimensighBl) chaotic
system, which in general can be represented by an area pre-

The Wigner function corresponding to the wave functionserving map[8]. A familiar example is the kicked rotator

(8), being quadratic in¥, contains both diagonal W
«|f,|%) and oscillating nondiagonaMm>f{f) contribu-

[11]. For mesoscopic quantum dots, however, a more rel-
evant model is thed-dimensional ¢=2,3) Schralinger

tions. Far from bifurcations, the diagonal contributions to theequation with a smooth potenti®|(r). The Gaussian wave

Wigner function read

packet then takes the form
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. i . .. Doy 2B Do 2ehit j=12,...d—1. 16
\If(r)ocexp{% S(ro(t))+ po-x+%x,xn) . (14 + h (16

The longitudinal dimensions” correspond to eigenvalues
HereSis the action for the classical trajectory(t) and we M With 1<i=<d—1, and the transverse dimensidfisto m
: with d+2=<i=<2d. The two unit eigenvaluesng=mq, 1

have defineddoo=mro, X=r—ro, {in=RBintiain. AS be- 4 huibite another factof% each to the total volum¥
fore, we rescale the momentum and coordinate such that tf]ﬁ phase space covered by the wave packet

typical classical actio®=1. Initially, {;,=i 6, . Similar to
the one-dimensional case,, defines the form of the packet -1 d-1
in coordinate space an@,,=Ap,/Ax, give the angles in v=n]] |1 ocfy 7016~ Veeho, No=2 Ni- (17)
phase space. Substituting the wave functi@d) into the =1 =1

Schralinger equation one finds Newton's equation of motionre ayailable area’,., is restricted to a shell of constant

for FO. The spreading of the wave packet in phase space iénergy with thickness/%, hence V.. We requireV

described by =Vnax fOr the semiclassical approximation, which leads to
1 92V the Ehrenfest time
_§|n:E§|k§kn+(9rl7 N (15 7d—4 A
"ir=ro 3= In—,d=2. (18)
Bhtot 7'

This is the equation describing the spreading in phase space ] ] . .

of a small Gaussian bunch of classical particles. In_conclusion, we examined different time scales
The Wigner function corresponding to the wave function=CiA " In(1/z) for the breakdown of different types of

(14) has the Gaussian foriVecexp(—QM,,Q,/%), where —Semiclassical approximations. These Ehrenfest times differ

(§=(F—F 5_5 ) is a vector in 2-dimensional phase only by a numerical coefficient;, which may seem insig-

space Tﬁéd Lya%unov exponents; (i =1,2 d) govern nificant. However, this difference is actually a signal of a

the large-time behavior of the eligenva,lu;msz Moy i 11 different power law scaling witlt of the volume) in phase

exp(2t) of the real symmetric matri¥l. Because of en- space covered by the wave packet. For short times Liou-

ergy conservation one Lyapunov exponent vanishes. We Oy_ille's theorem dictate3’=#. For long tim_es[parame_terized
der the\’s from large to small, so that, is the largest and  2° YEQEC’”'”(”@] the WKB approximation  givesV
Ag=0. xh for a one-dimensional quantum mdaguch as the

; 7d/6—1/6—c i ; ]
The wave packet remains Gaussigmeserving the vol- k'Cke?. rotato{ and%/rc]xﬁ it Ior ad dllmensu;InaIt (t:r?nf
ume %9 in phase spageuntil the curvature starts to play a servative system. These difierent power faws retiect the fun-

role (via a cubic term in the action The corresponding _dament_al change in the structure of the wave function with

. T -1 . . increasing time and should, therefore, have observable con-
Ehrenfest timer, =3\ “In(1/%) is the same as in 1D, only T bl licati he Loschmidt ech
now it is defined through the largest Lyapunov exponent seguen(tj:eti. wo p?SSI Er:]atpp |(_:a£|§ns ?{et teh Oéﬁ m|f t?C °
The second Ehrenfest time, when the length of the pack ] and the quantum shot noig#3], where the Ehrenfes

. me plays a key role.
exceeds the size of the system, also has the same form play y

= %)\Il In(1/4). This work was supported by the Dutch Science Founda-
The third timers is different ford=2,3 from the 1D case. tion NWO/FOM and by the National Science Foundation
Instead of Eq(7), one now has under Grant No. PHY99-07949.
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