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Rainbow transition in chaotic scattering
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We study the effects of classical chaotic scattering on the differential cross section, which is the measurable
guantity in most scattering experiments. We show that the fractal set of singularities in the deflection function
is not, in general, reflected on the differential cross section. We show that there are systems in which, as the
energy(or some other paramejesrosses a critical value, the system’s differential cross-section changes from
a singular function having an infinite set of rainbow singularities with structure in all scales to a smooth
function with no singularities, the scattering being chaotic on both sides of the transition. We call this meta-
morphosis therainbow transition We exemplify this transition with a physically relevant class of systems.
These results have important consequences for the problem of inverse scattering in chaotic systems and for the
experimental observation of chaotic scattering.
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Chaotic scattering is one of the most important manifesdirections, causinglo/d{) to diverge there. Rainbow singu-
tations of chaos in open systems. The number of physicdarities correspond to caustic directions, and are seen as sharp
systems where chaotic scattering has been identified is fduright peaks in scattering experiments. They have been ob-
too many for an exhaustive list; notable examples includeserved in many scattering experiments, including atomic
molecular dynamic$1], fluid dynamics[2], atomic physics scattering[8], optical system$9], and nucleus-nucleus col-
[3], electronic conductance in mesoscopic systgdisand lisions[10]. The appearance of rainbow singularities in cha-
scattering in smooth potential§], to name a few. Chaotic otic scattering systems has been investigated previously for
scattering is characterized by the presence of a Cantor set particular potentials(usually superpositions of repulsive
singularities inscattering functionselating the final state of hills) [11,17]; in those studiesjo/d() was shown to have an
a scattered particle to its initial state, such as the deflectiomfinite set of rainbow singularities, which mirrored nicely
angle as a function of the impact parameter. This fractal sehe fractal set of singularities in the deflection function.
of singularities is the result of the existence of a fractal set ofThose results have led to the tacit beligt] that all systems
bounded unstable orbits in the scattering region. Systemshowing chaotic scattering have such a set of singularities in
with chaotic scattering have regions in the space of initiathe differential cross section, related in a simple way to the
conditions where the outcome of the scattering is very senset of singularities in the deflection function. In this paper,
sitive to small changes in the initial staf6], which is a we address this issue in a general way, and we show that
defining feature of chaos. there are systems whose scattering is chaotic but have nev-

Most investigations of chaotic scattering so far have fo-ertheless a smooth differential cross section, with no rainbow
cused on the study of scattering functions, whose propertiesingularities. This means that the presence of a fractal set of
are determined by individual trajectories. Although sensitiv-singularities in the deflection function, which characterizes
ity of individual trajectories to initial conditions may in prin- chaotic scattering, is not necessarily reflected in the cross
ciple be observable, in practice it is usually not possible tesection. In fact, in this paper, we introduce a physically im-
observe individual trajectories, and hence, this phenomenoportant class of potentials, which shows a kind of dynamical
is not accessible to direct observation. For this reason, thmetamorphosis, namely, a transition from a differential cross
experimentally important quantities are those obtained fronsection with an infinite set of rainbow singularities to a per-

a beam of incident trajectories, spanning a large range dectly smooth cross section, even though the scattering is
impact parameters. The scattering of a beam of incident pachaotic on both sides of the transition; we call this phenom-
ticles is described by thdifferential cross section @/d(},  enon arainbow transition We note that this phenomenon is
which measures the intensity of the scattered beam in a givemot a pathology devoid of physical meaning; on the contrary,
direction, and is the measured quantity in most scatteringt is a common property shared by many important physical
experiments. A natural question arises: how does chaotisystems, such as the one we introduce below as an example.
scattering manifest itself in the differential cross sectionThe reason why chaotic scattering systems do not necessarily
do/dQ? In particular, does chaotic scattering imply a set ofhave singularities in their differential cross sections is that
singularities with structure in all scales foo/d(}, as it does rainbow singularities arise from extrenfaaxima, minima,

for the deflection angle? This paper addresses these ques- saddle pointsof the deflection function, which are not
tions. directly related to the deflection function’s fractal set of sin-

Singularities in the differential cross section appear in thegularities. In the previously studied systems, the potentials
form of rainbow singularitied 7], which arise as a result of were such that the deflection function had a set of maxima
the density of scattered trajectories being infinite for someand minima along with the fractal set of singularities, and as
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a consequencelo/d() also had a set of singularities mirror- dition allows the dynamics of the system to be understood as
ing those of the deflection function. However, this need nota sequence of scatterings from each individual hill, as we
be the case: there are potentials whose deflection functiowill see.
has a Cantor set of singulariti@hich means that the sys- Examples of physical systems that could be modeled by
tem shows chaotic scatteringnd has no maxima or minima, Eq. (2) include the elastic interaction of an atom with a di-
their differential cross section being smooth. We now pro-atomic molecule whose atoms can be considered to be fixed
ceed to illustrate the above points with a concrete system. [1], the electronic scattering by a diatomic moledudld], the

For simplicity, we restrict ourselves in this paper to clas-interaction of an electron or a hole with a pair of quantum
sical Hamiltonian systems whogtaree-dimensionalpoten-  dots in a semiconductdf 4], and the scattering of light by a
tials are symmetric with respect to thexis; in this case, the pair of transparent spheres with a refraction index which de-
dynamics is effectively two dimensional. We further restrict pends on their radids]. For definiteness, we choo%eo be
the incident particles to have initial velocities parallekztdn ~ the Morse potentigl15], given in appropriate units by
this case, the motion of the particles is restricted to a plane
containingz. These conditions being satisfied, the output di- 1 1
rection of the particle depends only on the anglaleter- Vxy)= E{l—exp{a(r—re)]}z— 2’ 3
mined by the particle’s velocity after the scattering andzhe
axis, with O< @< . The differential cross section depends wherer?=x2+y?, and the parametetsandr  are related to
thus on @ only. For a givend, do/dQ is the sum of the the range of the potential and the size of the repulsive core.
contributions from all trajectories scattered in the direction The potential(3) is repulsive forr<r. and attractive for

[71, >r., and approaches zero exponentially forr,. The
large separation condition spelled out in the previous para-
do b, |d¢(by)| 2 graph means in this caseaRa—rg)>r.. We choose the
d—Q(0)=2 S|_n|¢9 dbl , (1) values a=6, r,=0.68, anda=2 in what follows. The
I

Morse potential describes approximately the interaction of
two atoms due to their dipole-dipole interactiph5]. We
where ¢(b) denotes the deflection suffered by an incidentemphasize that our results are not dependent on the particu-
particle with impact-parametér (b is measured with respect lar, form of V, and in particular we show explicitly below
to the symmetry axisz). The sum is over all impact- that the rainbow transition in the differential cross section is
parameter$; satisfyingé(b;) +2nm= 6 for some integen. @ generic property for a large class of potentidls
Note that contrary t@, ¢ can take either positive or nega-  Because of the large separation condition, the scattering
tive values. The above formula relates the scattering functioRY the full potentialu can be(approximately described as
#(b), which gives information about individual trajectories, P€ing a succession of isolated scatterings by each of the hills
to the differential cross-sectioa/d() that gives informa- V(x,y—a) and V(x,y+a). Since each hill is spherically
tion about a beam of trajectories. In systems with chaotiGymmetric, one single scattering on such a hill is not chaotic;
scattering, there is a Cantor set of value &r which ¢(b) ~ but the composition of many individual scatterings by a pair
is singular. From Eq(1), we see thatlo/dQ can diverge in  Of hills may be chaotic, as we will see. The scattering on an
two ways[7]: (1) for #=0 or 6= (forward and backward isolated hill is described by the deflection functigiy(b).
glory), or (2) for d/db=0 (rainbow singularity. We focus Remember that we allow, to assume arbitrary values, so
our attention on the rainbow singularities, since the gloryth® number of “turns” a particle makes during scattering is
singularities are a purely kinematic effect that are not related@ken into account. Lethn,, be the maximum valugin
to the scattering dynamics. module as_sur_ned bypg. FOr pma=s ™, the attractive part _of

As an example, we introduce a class of potentis{x,y) thg potential is not capable of bending an mmdent particle’s
defined on the planes containing the symmetry akisis  trajectory enough for it to reach the other hill. Even though

defined to be the sum of two localized potential hills, the repulsive core can deflect a particle towards the other
hill, the attractive part does not participate in this “swing-

ing” process. In this case, there is no fractal set of unstable
orbits and no chaotic scattering, for the same reason that the
scattering by two purely repulsive hills is not chaotic. For
whereV(x,y) is a spherically symmetric potential that de- ¢max=, therefore, the scattering is regular, but .,
cays rapidly for large distances, and it is attractive beyond & = it is chaotic, because the particle is now able to reach
certain distance from the center. This attractive character ithe other hill.¢p,,,4 IS @ function of the energy of the incom-
fundamental for the appearance of chaotic orbits: the dynaning particles:¢ = dmax E), and ¢, .y increases as the en-
ics in the field of two purely repulsive hills is always regular. ergy decreases. The transition point between chaotic and
We further impose the additional condition that the distanceronchaotic scattering, given by, .~ , is found numeri-

2a which separates the center of the two hills is large enougleally to be E=E.~0.39, for the parameters chosen by us.
so that the overlap of the two potentials is small, and theThus, the scattering, which is regular fBe>E., becomes
motion of a particle in the vicinity of one of the hills can be chaotic forE<E.. This can be seen clearly in Fig(al,
considered to be influenced by the potential of that hill alonewhich shows the deflection anggb) (for the whole poten-

the effect of the other one being negligible. This latter con-tial U, not for an isolated hijl as a function of the impact

U(x,y)=V(x,y—a)+V(x,y+a), 2
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FIG. 1. (a) Deflection angle¢ as a function of the impact
parameteb, for E=0.38. ¢ is calculated by numerically integrat-
ing the equations of motion for initial conditiong=—10 andx
=b. (b) is an enlargement af). The scattering is clearly chaotic,
and ¢(b) has an infinite set of maxima and minima in all scales. . . .
Differential cross sectiomlo/d() as a function of the scattering €'€d:®@max grows, and the maximurtand minimum in ¢

angle 6 for E=0.38. da/dQ) has an infinite set of rainbow singu- P€comes sharper and sharper. For a second critical energy
larities. Ei<Ec, bmax diverges: ¢y E)—> for E—E; from
above. ForE<E;, ¢y(b) has no maxima or minima, and
consequently, the deflection functigi(b) of the full poten-

tial U also has no maxima or minima. We find numerically
~0.30 for our parameters. The deflection functigtb)

FIG. 2. Same as Fig. 1, f&=0.28. Although the scattering is
still chaotic, ¢(b) no longer has any smooth maximum or mini-
mum, anddg/d ) is smooth.

parameter folE=0.38. Magnifications of Fig. (& [one of
them is shown in Fig. (b)] show that¢(b) has structure on
all scales, and the calculation of the box-counting dimensiorJt : o
of the set of singularities on the one-dimensional segme rE=0.28is pIotted'ln Figs. @ and 2b), and we see
parametrized by, using the uncertainty methddeé], gives clearly that although it has a fractal structure, it has no

d=0.26+0.02. We note that every timg,. crosses an odd maxima or minima. As a result, there are no rainbow singu-
multiple of , a set of unstable Ol‘bitSmiaSX created in a ho_larities for E<E;, and the differential cross section is per-

moclinic bifurcation, corresponding to particles being able to/€Ctly smooth, as shown in Fig(@, although the scattering

make multiple turns around a hill. is still chaotic forE<E;,, as is evident from Figs.(3) and
From Figs. 1a) and 1b), we see that there is an infinite 2(b), and from a numerical calculation of the box-counting

number of maxima and minima in the deflection functipn Tmension of the set of singularities, which givés:0.34
occurring on the smooth intervals @f in between the sin- +0.02. AsSE crosse<, from above, there is a transition from

gularities. This is a consequence of the fact that the deflec® differential cross section with an infinite number of rain-
tion function ¢o(b) of one isolated hill has one maximum ow singularities to a smooth one, with the scattering being

brmax @nd ONE Minimum- ¢, remember that the scatter- chaotic on both sides of the transition; this is the rainbow
max max-»

ing by the total potentiall can be regarded as a sequence ofiransition. Since every ti.méimax crosses an qdd multiple of
scatterings by individual hills. From our earlier discussion,™ & Set of unstable orbits is created, and sitg,— as
this means that the differential cross section has an infinit& @PProaches,, the transition at energl, is the accumu-
set of rainbow singularities. This is also confirmed by a di-/ation point of an infinite number ofhomoclinio bifurca-
rect numerical calculation of the cross section using &§. tions. . . .

[17]. The result is shown in Fig.(&), where the rainbow Although for convenience of explanation we illustrated
singularities are seen as sharp spikes. We thus find that d

his transition with a particular choice of potentid), our
energies close to the critical enery (but lower thanE,), result is general. To show this, let us consider the effective
the differential cross section has a set of rainbow singular

ipotential of one hill \(r)

ties mirroring the singularities i, just as in the systems 5
stu¢ed previously11,17. Since the maxima and minima pf Ver(D)=V(r)+ , @)
¢ lie on the complement of the Cantor set of singularities, 2mr2

the rainbow singularities form a countable set, with structure

on all scales, which reflects the fractal structure of the set ofvhereL is the angular momentum of the particle with re-

singularities ofg. spect to the center of the hill, and is the reduced mass.
This is not the whole story, however. Asis further low-  ¢,,.4 diverges for some energy whenev&s;; has a positive-
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valued maximum, which corresponds to the existence of &cattering is chaotic, and we have studied a class of systems
circular unstable periodic orbf with positive energy, thus which show a rainbow transition from a cross section with an
enabling an incoming particle to approaChasymptotically. infinite set of rainbow singularities to a smooth one, the sys-
Those are the orbits with divergingy, (that is, they lie onthe tem showing chaotic scattering on both sides of the transi-
stable manifold ofC). SinceV is by assumption attractive tion. This is important because the differential cross section
for large enoughr, V approaches zero from negative valuesjs in many cases the most accessible quantity in a scattering
for r—ce. If V decays fast enough so thetV(r)—0 asr  experiment, and the possibility of a smooth cross section in
—oo, the positive termL?/2mr? in Eq. (4) eventually be-  chaotic scattering systems may pose new challenges for the
comes larger in module than the negative tevifr), for  gpservation of chaotic scattering. Our results also have im-
larger. SinceV—0 forr—oo, this means tha¥e; has a  portant consequences to the theory of inverse chaotic scatter-
maximumVpay, With Viya>0. This proves that all poten- g since it does not appear to be possible to infer the fractal
tials of the form(2) whereV is spherically symmetric with @ g4 cture of the invariant set of a chaotic scattering system

. _2 -
raputj) enct)ugh_?eca}y for Iarge(f?st(ir thaw )tﬁ'Splay thet. from a smooth cross section. As a final note, even though we
rainbow transition Irom a singuiar to a Smooth cross Seclioly ,ye jimjted ourselves to classical scattering, our results

studied abovéas long as the separatiom s large enough should also hold for wave scattering in the short-wavelength
In fact, we expect this transition to be found in many otherIimit

systems, not just in those described by E.
To sum up, we have shown that the differential cross sec- This work was sponsored by FAPESP and ORHys-
tion of a scattering system may be smooth even when thies).
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