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Spatial forcing of spontaneous optical patterns
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A nonlinear optical system, which spontaneously forms hexagonal patterns, is exposed to a weak, spatially
modulated forcing. As forcing, stationary hexagonal patterns are used under variation of their transverse wave
number. In the experiment, we observe a locking when the forcing wave number is close to one of the critical
wave numbers of the unforced system. Outside the locking regimes, forcing provokes spatiotemporal disorder.
The system response is characterized quantitatively with respect to its dynamics and to its spatial order.
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Many modern optical systems fulfill the prerequisites forare chosen to have the same hexagonal symmetry as the
the occurrence of spatial instabilities: they are spatially exspontaneous ones, but with varying wave numbers. This
tended, nonlinear, and far from thermodynamic equilibrium drives the system into one of two distinct states: either it
Today, spontaneous optical patterns are investigated in a v&€Produces the forcing pattettocking or it responds with
riety of optical architectures and nonlinear mater[dls On spatiotemporal disorder. To obtain a quantitative picture, we

a macroscopic level, the emerging patterns resemble verg:lll lrgdnquggsreeg?mptlﬁg sﬁfﬁ,t;tgmngonr]?(l;ssﬁgToﬁﬁgogssﬂg
much those well known from other disciplines, like fluid J 9 y P

dynamics, chemical oscillations, or biolodg®]. However order. - : Lo .
> . ’ S T In the experiment, the Kerr-type nonlinearity is provided
the physical mechanisms are completely dissimilar. One im

liaritv of ontics is th finf .~ by aliquid crystal light valve(LCLV), which allows us to
portant peculiarity of optics is that transport of information Is ;o 5i7¢ |arge aspect ratio patterns with laser powers of some
not associated with the transport of mass.

: ) - ten milliwatts only. The LCLV is a multilayer device with an
. Optics opens new access to the investigation of the phySptensity sensitive photoconductor layewrite side and a
ics of pattern formation, in particular, through conceptsjiquid crystal layer(read side Both are separated by a di-
which are hard to realize experimentally in other disciplines.electric mirror. To couple the layers, an electric field is ap-
One example is the minimal invasive control and stabilizaplied by sandwiching transparent electrodes. In such a way,
tion of unstable patterns3,4]. Another example is the topic the refractive index of the liquid crystal layer changes with
of this Rapid Communication: spatial forcihg]. the light intensity at the write side. A light wave which is
As known from purely temporal systems, the response ofeflected by the LCLV read side acquires a phase profile
nonlinear oscillators to external stimuli can be very complexwhich corresponds to the intensity profile at the write side.
[8]. In the case of extended systems, there is the additional The LCLV is put into an optical feedback lodpig. 1): a
degree of freedom in the spatial modulation of the forcinguniform laser beantpump is phase modulated and reflected
signal. Recent work often dealt with a time-dependent, buby the LCLV read side. The modulated beam is guided back
spatially uniform perturbatiof9]. In the following, we will  to the write side. In the feedback loop, higher spatial fre-
instead consider a static, but spatially modulated perturbatioguencies can be cut off by an optical low-pass filter. During
applied to a system which exhibits a stationary bifurcation tahe propagation through the feedback loop, diffraction trans-
patterns. forms spatial phase modulations back into intensity modula-
Experimentally, spatial forcing is not simple to realize, tions.

e.g., in fluids or chemical oscillations, because one needs to
manipulate system quantities in space and time. In optics, the
possibility to superpose light waves makes it simple to intro-
duce external, spatially modulated signals. This advantage .
can be utilized in other systems if the nonlinearity is made i . [ f Q’E"'lg____l
photosensitivg9]. :
A previous experiment covered spatial forcing of roll pat- E 0@) :
terns in an electrofluid dynamical systé¢d®]. In this quasi- !
one-dimensional case, a locking of the system state onto the Laser I
forcing pattern was observed for certain commensurate ratios mmm -
of spatial forcing and spontaneous wave number. The 0pen g 1. simplified scheme of the experimental setup. From the
question is what happens for fully two-dimensional pattemSiett, an expanded laser beam is incident onto the liquid crystal light
Spatial forcing of an optical system has previously beenajve (LCLV) read side. The phase modulated wave is reflected and
investigated in numerical simulations of a two-level mediumgyided to the write side by beam splitt&i®S) and mirrors ().
in a cavity[6]. We instead use a single-feedback experimentrwo lenses(L) and an aperturéA) form a spatial low pass filter.
containing a Kerr-type nonlinearifyl1-13. The forcing light wave is generated by a data projector and coupled
Forcing is realized by superposition of an additional lightinto the system by a beam splitter. Not shown are the components
wave with a particular intensity profile. The forcing patternsfor detection and imaging purposes.
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Far field an enormous degree of freedom in choosing the sp@iral
tempora) structure of the forcing signal. As a first step, we
use static hexagonal patterns, varying their wave nurkper
T The presence of higher wave numbers can have different
effects on the pattern formation process. Harmonics have
been proven to be necessary to stabilize particular patterns,
like squares or quasipatterf¥s 16]. However, we have never
experimentally observed these ordered patterns in our free
running system. Instead, the presence of higher critical wave
FIG. 2. Example of a spontaneous pattéeft-hand side and numpers here only promotes the occurrence of spatiotempo-
the corresponding far fielfight-hand sidgin inverse gray scale: al disorder{14,15.
dark corresponds to high intensity. The active area has a diameter of We can now focus on the two basic wave numbers,
6 mm. The average of the forcing intensity shifts the operating poinnnamely, the critical on&, and the one of the forcing pattern
of the LCLV. Therefore, this image has been taken with a uniformk; by suppressing higher wave numbers with the spatial low-
forcing intensity corresponding to the average of the forcing pat-pass filter. When the forcing wave number is smaller than the
terns applied later. spontaneous ong<Kk_, the low-pass cutoff is set just above

the critical wave number. For larger forcing wave numbers,

Since the optical feedback is almost instantaneous, thgqever, this setting would cut off the forcing itself. There-
system dynamics is determined by the relaxation-type rey,

¢ th in th : ¢ mill ore, for ki>k., the low pass was opened tk2(due to
sponse of the LCLMin t € order of tens o mi isecongls diffusion, even larger wave numbers are barely excited any-
The system can be described by an equation for the pha

shift & (x,y.1) induced by the LCLMEq. 1 and by one for Way). This allows the excitation of harmonics and higher

; . critical wave numbers.
the feedback wave intensitfq. 2 [13] The pump intensity is chosen well above threshold, where

the spontaneous pattern already begins to loose spatial order

T __12v2
@-ITVie+ o (cf. Fig. 2. It consists of large ordered domains with moving
T+ (lo+1:) . ~ boundaries and/or few localized defects. The system runs for
r( w f) . . . .
=, 1—tant? TF ral 1) Vext™ Vin | (1) a while, before forcing is switched on. After about 30 sec-
s\'w

onds, when the system appeared to have reached an
| o= (/2K V2 —id)2 2 asymptotic state, sequences of int(_ensity_ patterns were re-
w= X =i (L/2Kko) Vi ]exp( =i )| @ corded. The measurement was divided into two pakis (
>k, andks=<k.). When approachini;~k. from large forc-

Here, ®may, kr ks, Vext,Vin, andl are LCLV parameters. ing wave numbers, the system appeared to drift, requiring a

Diffraction is covered by the operator e{xpi(L/ZkO)Vf], readjustment.

with the propagation length. (here, L=30 cm) and the We observe two distinct types of system response: either
light wavelengthh (here,\ =532 nm).V is the Laplacian  the system locks onto the forcing and shows stationary and
in the transverse coordinatgsy. highly ordered patterns, which correspond exactly to the
The laser pump intensity is,, and the feedback intensity forcing pattern(the response pattern even follows a rotating
at the LCLV write side idl(x,y,t). This intensity distribu-  forcing pattern up to a certain angular velogitn the other
tion is recorded in the experiment and is also the quantity orase, the response is quite dynamic and spatially disordered
which we act with the forcing intensity fieltk(x,y). The  (“turbulent”). Examples of snapshots are shown in Fig. 3.
optical far field, i.e., the spatial power spectrum of the feed- From the corresponding far fields, also shown in Fig. 3,
back light field is recorded as well. we can take that in almost all cases the optical power is
A linear stability analysis of the unforced system showsmainly concentrated ifmodes ohthe annulus belonging to
that above a certain pump intensity threshold, the unifornihe first critical wave numbek.. The only exception is the
state becomes modulationally unstable with respect to a pajocking regime close tok;/k.~1.6, where the power is
ticular transverse wave numbé&g~+3/(2\L) [11,13. In  mainly in these higher modes.
the largest part of the parameter space, this leads to patterns|n the locking regimes, the far-field modes are clearly
of hexagonally arranged bright spdisig. 2). There are also  hexagonal and very localized. Outside the locking regimes,
higher-order critical wave numbeté”)w V[ (4n—1)/3]k,, and for small forcing wave numbers we find broadened hex-
but with higher thresholds. When increasing pump intensityagonal modes. As the forcing wave number further
further above threshold, spatial order breaks up and dynamncreases—still outside the locking regimes—the broadened
ics sets in14,15. modes gradually transform into an excitation of the full criti-
Forcing is realized by coupling an additional, incoherentcal wave number annuluef. Fig. 3. In real space, this
light wave into the given feedback loop. A standard datacorresponds to an increasing number of local defects and
projector with a white light source serves to generate almosboundaries between domains of decreasing size until the pat-
arbitrary forcing signals, focused onto the LCLV write side tern is too disordered to describe it in terms of defects. For
(Fig. 1). The projector intensity is attenuated to corresponchigh forcing wave numbers, also domains of rolls appear in
to about 20% of the intensity of the feedback wave. There ishe system response.
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i FIG. 3. Forcing and system re-
sponse for different ratiok; /k,
between forcing and spontaneous

o wave number. The upper row

.E shows the synthesized forcing pat-

5 terns, the middle row shows the

£ corresponding system response,
and the lower row presents the
corresponding far fields.
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We use two complementary approaches to derive quanti- " .
tative measures from the system response. First, disregarding C(6,%0,Y0) = f Lw(X Y)W (X" y ) dx dy, (4)
the spatial structure, the dynamics is characterized by a tem-

poral autocorrelation, averaged in space x',y’ being the rotated coordinates addhe rotation angle.

A . This is done for many rotation centersy(yg), over which
(K(At))xyyzf lu(X,y,t=At),(x,y,t)dtdxdy. (3) we averageC(#6,Xq,Yo)—(C(8)). Hexagonal order is re-
flected in peaks at ever§=nx60° (Fig. 5, insel. The am-
7 T : : plitude of these peaks can be summarized in a single number
h(y, ) =lw=lw IS the recorged Intensity - sequence H, the hexagonal symmetry parameter. The average of the
lw(x,y,1), subtracted by its averadg, . From the autocorre-  gymmetry parameters found for the images of each sequence
lation functions, we can extract as characteristic quantity the; plotted in Fig. 5 over the forcing wave number. The three
time constantrs of the first steep decaffFig. 4, insel. The 4513 points just abovk, =k, (not connected by the dashed
gggpe:dence ofs on the forcing wave number is shown in jine) are probably outliers, caused by the above-mentioned
9. . , _ drift.

As a second approach, we consider spatial order only by goih the temporal and the spatial measure display the
measuring the degree of hexagonal symmEig]. We again  same hehavior. We identify a regime of strong spatial locking
use autocorrelation functions, now correlating an 'nd'V'd“alaroundkfwkc where the response is stationddjverging

snapshot to its rotated counterpart, 75) and highly orderedlarge value oH), matching the forc-
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FIG. 4. Characterization of the response dynamics: plot of the FIG. 5. Change of spatial order: plot of the hexagonal symmetry
short-term decay time constanf of the temporal autocorrelation parameteH, averaged over many snapshots of one sequence, ver-
function versus the ratié; /k, between forcing and critical wave sus scaled forcing wave number. The value for the unforced system
number. The value for the unforced systemx - -) is included for (- - % - -) is included for comparison. Strong hexagonal order in the
comparison. Two locking regimes of stationary system responsécking regimes corresponds to large valuedHofThe inset shows
exist wherer diverges. The inset shows a typical temporal auto-a typical average rotational autocorrelation function. Here, peaks at
correlation function and the linear fit to determing every 60° indicate hexagonal order.
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ing pattern. Outside the locking regime, strong dynamics is In conclusion, we find that with a weak forcing of the
reflected in a small time constamf, accompanied by low appropriate wave number, it is not only possible to reconsti-
values of the symmetry parameted. Another, less- tute the perfect regular hexagonal pattern belonging to the
pronounced locking regime at aboki~1.6k, can be as- basic critical wave numbd6]. We can furthermore excite a

ianed t itati £th d critical b attern of a higher-critical wave number, which is otherwise
signed to an excitation of the second critical wave NUMDET &, ycegled. So far, we find no indication for an excitation at

k@” ES the second harmonic or locking at other rational multiples of
The locking appears within a certain range of forcingk.. The locking regimes are in agreement with the linear

wave numbers. This is in agreement with the linear stabilitystability analysis.

analysis, predicting that above threshold the critical wave Beyond the predictions of the linear theory, we observe

number widens to a whole band. The system can seemingfjat forcing with other than a generic wave number provokes

lock onto any wave number within this band. This also holds>Patiotemporal disordefoptical turbulence?). This is par-
ticularly clear for forcing wave numbers smaller than the

for the second, smaller locking regime, belonging to a nar-_ " ; .
L ) critical one, when higher wave numbers are not active. These
rower critical band arouné¢™. findings indicate that disorder is provoked by the presence of
For comparison, the characteristic time constanand  nfitting spatial scaleEL5], hinting at competition effects.
the symmetry parametét of the unforced system are shown  Finally, it is also worthwhile to note that—through falling
in the plots as well. Forcing outside the locking regimesinto one of two distinct states—the system performs a very
seemingly does not induce a dynamics with a time constargimple, but all-optical image processing task: the discrimina-

very different from the unforced system. The motion of de-tion of a particular spatial scale.

fects and domain boundaries and the dynamics of a com- rhe guthors would particularly like to thank T. Tschudi
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