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Spatial forcing of spontaneous optical patterns
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A nonlinear optical system, which spontaneously forms hexagonal patterns, is exposed to a weak, spatially
modulated forcing. As forcing, stationary hexagonal patterns are used under variation of their transverse wave
number. In the experiment, we observe a locking when the forcing wave number is close to one of the critical
wave numbers of the unforced system. Outside the locking regimes, forcing provokes spatiotemporal disorder.
The system response is characterized quantitatively with respect to its dynamics and to its spatial order.
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Many modern optical systems fulfill the prerequisites
the occurrence of spatial instabilities: they are spatially
tended, nonlinear, and far from thermodynamic equilibriu
Today, spontaneous optical patterns are investigated in a
riety of optical architectures and nonlinear materials@1#. On
a macroscopic level, the emerging patterns resemble
much those well known from other disciplines, like flu
dynamics, chemical oscillations, or biology@2#. However,
the physical mechanisms are completely dissimilar. One
portant peculiarity of optics is that transport of information
not associated with the transport of mass.

Optics opens new access to the investigation of the ph
ics of pattern formation, in particular, through concep
which are hard to realize experimentally in other disciplin
One example is the minimal invasive control and stabili
tion of unstable patterns@3,4#. Another example is the topic
of this Rapid Communication: spatial forcing@5#.

As known from purely temporal systems, the response
nonlinear oscillators to external stimuli can be very comp
@8#. In the case of extended systems, there is the additi
degree of freedom in the spatial modulation of the forc
signal. Recent work often dealt with a time-dependent,
spatially uniform perturbation@9#. In the following, we will
instead consider a static, but spatially modulated perturba
applied to a system which exhibits a stationary bifurcation
patterns.

Experimentally, spatial forcing is not simple to realiz
e.g., in fluids or chemical oscillations, because one need
manipulate system quantities in space and time. In optics
possibility to superpose light waves makes it simple to int
duce external, spatially modulated signals. This advant
can be utilized in other systems if the nonlinearity is ma
photosensitive@9#.

A previous experiment covered spatial forcing of roll pa
terns in an electrofluid dynamical system@10#. In this quasi-
one-dimensional case, a locking of the system state onto
forcing pattern was observed for certain commensurate ra
of spatial forcing and spontaneous wave number. The o
question is what happens for fully two-dimensional patter

Spatial forcing of an optical system has previously be
investigated in numerical simulations of a two-level mediu
in a cavity@6#. We instead use a single-feedback experim
containing a Kerr-type nonlinearity@11–13#.

Forcing is realized by superposition of an additional lig
wave with a particular intensity profile. The forcing patter
1063-651X/2002/65~3!/035205~4!/$20.00 65 0352
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are chosen to have the same hexagonal symmetry as
spontaneous ones, but with varying wave numbers. T
drives the system into one of two distinct states: eithe
reproduces the forcing pattern~locking! or it responds with
spatiotemporal disorder. To obtain a quantitative picture,
will reduce the complex spatiotemporal system respons
single measures for the global dynamics and for the spa
order.

In the experiment, the Kerr-type nonlinearity is provide
by a liquid crystal light valve~LCLV !, which allows us to
realize large aspect ratio patterns with laser powers of so
ten milliwatts only. The LCLV is a multilayer device with a
intensity sensitive photoconductor layer~write side! and a
liquid crystal layer~read side!. Both are separated by a d
electric mirror. To couple the layers, an electric field is a
plied by sandwiching transparent electrodes. In such a w
the refractive index of the liquid crystal layer changes w
the light intensity at the write side. A light wave which
reflected by the LCLV read side acquires a phase pro
which corresponds to the intensity profile at the write sid

The LCLV is put into an optical feedback loop~Fig. 1!: a
uniform laser beam~pump! is phase modulated and reflecte
by the LCLV read side. The modulated beam is guided b
to the write side. In the feedback loop, higher spatial f
quencies can be cut off by an optical low-pass filter. Duri
the propagation through the feedback loop, diffraction tra
forms spatial phase modulations back into intensity modu
tions.

FIG. 1. Simplified scheme of the experimental setup. From
left, an expanded laser beam is incident onto the liquid crystal li
valve ~LCLV ! read side. The phase modulated wave is reflected
guided to the write side by beam splitters~BS! and mirrors (M ).
Two lenses~L! and an aperture~A! form a spatial low pass filter.
The forcing light wave is generated by a data projector and coup
into the system by a beam splitter. Not shown are the compon
for detection and imaging purposes.
©2002 The American Physical Society05-1
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Since the optical feedback is almost instantaneous,
system dynamics is determined by the relaxation-type
sponse of the LCLV~in the order of tens of milliseconds!.
The system can be described by an equation for the p
shift F(x,y,t) induced by the LCLV~Eq. 1! and by one for
the feedback wave intensity~Eq. 2! @13#

tḞ2 l 2¹'
2 F1F

5FmaxF12tanh2S 11k r~ I w1I f !

11ks~ I w1I f !
V̂ext2V̂thD G , ~1!

I w5uexp@2 i ~L/2k0!¹'
2 #exp~2 iF!u2I p . ~2!

Here, Fmax,k r ,ks ,V̂ext ,V̂th , and l are LCLV parameters
Diffraction is covered by the operator exp@2i(L/2k0)¹'

2 #,
with the propagation lengthL ~here, L530 cm) and the
light wavelengthl ~here,l5532 nm).¹'

2 is the Laplacian
in the transverse coordinatesx,y.

The laser pump intensity isI p , and the feedback intensit
at the LCLV write side isI w(x,y,t). This intensity distribu-
tion is recorded in the experiment and is also the quantity
which we act with the forcing intensity fieldI f(x,y). The
optical far field, i.e., the spatial power spectrum of the fe
back light field is recorded as well.

A linear stability analysis of the unforced system sho
that above a certain pump intensity threshold, the unifo
state becomes modulationally unstable with respect to a
ticular transverse wave numberkc'A3/(2lL) @11,13#. In
the largest part of the parameter space, this leads to pat
of hexagonally arranged bright spots~Fig. 2!. There are also
higher-order critical wave numberskc

(n)'A@(4n21)/3#kc ,
but with higher thresholds. When increasing pump intens
further above threshold, spatial order breaks up and dyn
ics sets in@14,15#.

Forcing is realized by coupling an additional, incohere
light wave into the given feedback loop. A standard d
projector with a white light source serves to generate alm
arbitrary forcing signals, focused onto the LCLV write sid
~Fig. 1!. The projector intensity is attenuated to correspo
to about 20% of the intensity of the feedback wave. Ther

FIG. 2. Example of a spontaneous pattern~left-hand side! and
the corresponding far field~right-hand side! in inverse gray scale
dark corresponds to high intensity. The active area has a diamet
6 mm. The average of the forcing intensity shifts the operating p
of the LCLV. Therefore, this image has been taken with a unifo
forcing intensity corresponding to the average of the forcing p
terns applied later.
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an enormous degree of freedom in choosing the spatial~and
temporal! structure of the forcing signal. As a first step, w
use static hexagonal patterns, varying their wave numberkf .

The presence of higher wave numbers can have diffe
effects on the pattern formation process. Harmonics h
been proven to be necessary to stabilize particular patte
like squares or quasipatterns@4,16#. However, we have neve
experimentally observed these ordered patterns in our
running system. Instead, the presence of higher critical w
numbers here only promotes the occurrence of spatiotem
ral disorder@14,15#.

We can now focus on the two basic wave numbe
namely, the critical onekc and the one of the forcing patter
kf by suppressing higher wave numbers with the spatial lo
pass filter. When the forcing wave number is smaller than
spontaneous onekf<kc , the low-pass cutoff is set just abov
the critical wave number. For larger forcing wave numbe
however, this setting would cut off the forcing itself. Ther
fore, for kf.kc , the low pass was opened to 2kc ~due to
diffusion, even larger wave numbers are barely excited a
way!. This allows the excitation of harmonics and high
critical wave numbers.

The pump intensity is chosen well above threshold, wh
the spontaneous pattern already begins to loose spatial o
~cf. Fig. 2!. It consists of large ordered domains with movin
boundaries and/or few localized defects. The system runs
a while, before forcing is switched on. After about 30 se
onds, when the system appeared to have reached
asymptotic state, sequences of intensity patterns were
corded. The measurement was divided into two partskf
.kc andkf<kc). When approachingkf'kc from large forc-
ing wave numbers, the system appeared to drift, requirin
readjustment.

We observe two distinct types of system response: ei
the system locks onto the forcing and shows stationary
highly ordered patterns, which correspond exactly to
forcing pattern~the response pattern even follows a rotati
forcing pattern up to a certain angular velocity!. In the other
case, the response is quite dynamic and spatially disord
~‘‘turbulent’’ !. Examples of snapshots are shown in Fig. 3

From the corresponding far fields, also shown in Fig.
we can take that in almost all cases the optical powe
mainly concentrated in~modes on! the annulus belonging to
the first critical wave numberkc . The only exception is the
locking regime close tokf /kc'1.6, where the power is
mainly in these higher modes.

In the locking regimes, the far-field modes are clea
hexagonal and very localized. Outside the locking regim
and for small forcing wave numbers we find broadened h
agonal modes. As the forcing wave number furth
increases—still outside the locking regimes—the broade
modes gradually transform into an excitation of the full cri
cal wave number annulus~cf. Fig. 3!. In real space, this
corresponds to an increasing number of local defects
boundaries between domains of decreasing size until the
tern is too disordered to describe it in terms of defects.
high forcing wave numbers, also domains of rolls appea
the system response.
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FIG. 3. Forcing and system re
sponse for different ratioskf /kc

between forcing and spontaneou
wave number. The upper row
shows the synthesized forcing pa
terns, the middle row shows th
corresponding system respons
and the lower row presents th
corresponding far fields.
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We use two complementary approaches to derive qua
tative measures from the system response. First, disrega
the spatial structure, the dynamics is characterized by a t
poral autocorrelation, averaged in space

^K~Dt !&x,y5E Î w~x,y,t2Dt ! Î w~x,y,t !dt dx dy. ~3!

Î w(x,y,t)5I w2 Ī w is the recorded intensity sequen
I w(x,y,t), subtracted by its averageĪ w . From the autocorre-
lation functions, we can extract as characteristic quantity
time constantts of the first steep decay~Fig. 4, inset!. The
dependence ofts on the forcing wave number is shown
Fig. 4.

As a second approach, we consider spatial order only
measuring the degree of hexagonal symmetry@17#. We again
use autocorrelation functions, now correlating an individ
snapshot to its rotated counterpart,

FIG. 4. Characterization of the response dynamics: plot of
short-term decay time constantts of the temporal autocorrelation
function versus the ratiokf /kc between forcing and critical wave
number. The value for the unforced system~- - * - -! is included for
comparison. Two locking regimes of stationary system respo
exist wherets diverges. The inset shows a typical temporal au
correlation function and the linear fit to determinets .
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C~u,x0 ,y0!5E Î w~x,y! Î w~x8,y8!dx dy, ~4!

x8,y8 being the rotated coordinates andu the rotation angle.
This is done for many rotation centers (x0 ,y0), over which
we averageC(u,x0 ,y0)→^C(u)&. Hexagonal order is re-
flected in peaks at everyu5n360° ~Fig. 5, inset!. The am-
plitude of these peaks can be summarized in a single num
H, the hexagonal symmetry parameter. The average of
symmetry parameters found for the images of each sequ
is plotted in Fig. 5 over the forcing wave number. The thr
data points just abovekf5kc ~not connected by the dashe
line! are probably outliers, caused by the above-mentio
drift.

Both the temporal and the spatial measure display
same behavior. We identify a regime of strong spatial lock
aroundkf'kc , where the response is stationary~diverging
ts! and highly ordered~large value ofH), matching the forc-

e

e
-

FIG. 5. Change of spatial order: plot of the hexagonal symme
parameterH, averaged over many snapshots of one sequence,
sus scaled forcing wave number. The value for the unforced sys
~- - * - -! is included for comparison. Strong hexagonal order in
locking regimes corresponds to large values ofH. The inset shows
a typical average rotational autocorrelation function. Here, peak
every 60° indicate hexagonal order.
5-3
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ing pattern. Outside the locking regime, strong dynamics
reflected in a small time constantts , accompanied by low
values of the symmetry parameterH. Another, less-
pronounced locking regime at aboutkf'1.6kc can be as-
signed to an excitation of the second critical wave numbe
kc

(2)'A7/3kc .
The locking appears within a certain range of forci

wave numbers. This is in agreement with the linear stabi
analysis, predicting that above threshold the critical wa
number widens to a whole band. The system can seemi
lock onto any wave number within this band. This also ho
for the second, smaller locking regime, belonging to a n
rower critical band aroundkc

(2) .
For comparison, the characteristic time constantts and

the symmetry parameterH of the unforced system are show
in the plots as well. Forcing outside the locking regim
seemingly does not induce a dynamics with a time cons
very different from the unforced system. The motion of d
fects and domain boundaries and the dynamics of a c
pletely disordered pattern take place on a similar time sc
Only the measure for the spatial order makes clear that
system falls either into a well-ordered or a rather disorde
state—both significantly different from the unforced case
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In conclusion, we find that with a weak forcing of th
appropriate wave number, it is not only possible to recon
tute the perfect regular hexagonal pattern belonging to
basic critical wave number@6#. We can furthermore excite a
pattern of a higher-critical wave number, which is otherw
concealed. So far, we find no indication for an excitation
the second harmonic or locking at other rational multiples
kc . The locking regimes are in agreement with the line
stability analysis.

Beyond the predictions of the linear theory, we obse
that forcing with other than a generic wave number provo
spatiotemporal disorder~‘‘optical turbulence’’!. This is par-
ticularly clear for forcing wave numbers smaller than t
critical one, when higher wave numbers are not active. Th
findings indicate that disorder is provoked by the presenc
unfitting spatial scales@15#, hinting at competition effects.

Finally, it is also worthwhile to note that—through fallin
into one of two distinct states—the system performs a v
simple, but all-optical image processing task: the discrimi
tion of a particular spatial scale.

The authors would particularly like to thank T. Tschu
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